US20130298571A1 - Magnetic refrigeration system and vehicle air conditioning device - Google Patents

Magnetic refrigeration system and vehicle air conditioning device Download PDF

Info

Publication number
US20130298571A1
US20130298571A1 US13/976,543 US201213976543A US2013298571A1 US 20130298571 A1 US20130298571 A1 US 20130298571A1 US 201213976543 A US201213976543 A US 201213976543A US 2013298571 A1 US2013298571 A1 US 2013298571A1
Authority
US
United States
Prior art keywords
refrigerant
magnetic
heat exchanger
port
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/976,543
Other languages
English (en)
Inventor
Tsuyoshi Morimoto
Naoki Watanabe
Shinichi Yatsuzuka
Katzutoshi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NISHIZAWA, KAZUTOSHI, WATANABE, NAOKI, YATSUZUKA, SHINICHI, MORIMOTO, TSUYOSHI
Publication of US20130298571A1 publication Critical patent/US20130298571A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00864Ventilators and damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0022Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a rotating or otherwise moving magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present disclosure relates to a magnetic refrigeration system and a vehicle air conditioning device to which the magnetic refrigeration system is applied.
  • the magnetic refrigeration system of this patent document 1 is constructed of: a magnetic working material mounted in a railroad vehicle; a strong magnetic field generating device for applying a magnetic field to the magnetic working material; a first heat exchange flow passage through which a heating medium for transferring the heat (hot heat) of the magnetic working material flows, the heat (hot heat) being increased when the magnetic field applied to the magnetic working material by the strong magnetic field generating device is increased; a second heat exchange flow passage through which the heating medium for transferring the heat (cold heat) of the magnetic working material flows, the heat (cold heat) being decreased when the magnetic field applied to the magnetic material by the strong magnetic field generating device is decreased; and pumps and heat exchangers arranged in the respective heat exchange flow passages.
  • the pump disposed in the first heat exchange flow passage is activated to make the heating medium whose temperature is increased by the hot heat of the magnetic working material exchange heat with air outside a passenger compartment by the heat exchanger.
  • the pump disposed in the second heat exchange flow passage is activated to make the heating medium whose temperature is decreased by the cold heat of the magnetic working material exchange heat with air inside the passenger compartment by the heat exchanger.
  • the strong magnetic field generating device is constructed of a superconducting coil or the like so as to increase a temperature change in the magnetic working material and the application of the magnetic refrigeration system is limited to special uses. Hence, it is difficult to apply the magnetic refrigeration system to a general-purpose product such as a vehicle air conditioning device.
  • an AMR Active Magnetic Refrigerator
  • refrigerant magnetic heat transporting medium
  • the refrigerant is transferred to the other end (low temperature end) in the magnetic working material, whereby the cold heat and the hot heat generated by the magnetocaloric effect are stored in the magnetic working material itself.
  • the AMR type magnetic refrigeration system generally has a container filled with a magnetic working material and having a refrigerant flow passage through which a refrigerant flows and reciprocally transfers the refrigerant between one end and the other end of the container according to applying and removing a magnetic field to and from the magnetic working material.
  • the AMR type magnetic refrigeration system is applicable to the magnetic refrigeration system of the patent document 1.
  • the COP Coefficient Of Performance
  • the COP expresses a cooling or heating capacity per 1 kW of power consumption.
  • An object of the present disclosure is to provide a magnetic refrigeration system and a vehicle air conditioning device to which the magnetic refrigeration system is applied.
  • a magnetic refrigeration system is provided with: a cylindrical container having a plurality of working chambers formed therein radially in a circumferential direction, the plurality of working chambers having a magnetic working material having a magnetocaloric effect arranged therein and having refrigerant flowing therethrough; a magnetic field applying and removing part which repeats applying and removing a magnetic field to and from the magnetic working material; a first refrigerant circulation circuit constructed in such a way that the refrigerant flowing out of a refrigerant discharge part of one refrigerant port flows through a first heat exchanger and returns to a refrigerant suction part of the one refrigerant port, of the one and other refrigerant ports respectively disposed on end faces of the container in a longitudinal direction; a second refrigerant circulation circuit constructed in such a way that the refrigerant flowing out of a refrigerant discharge part of the other refrigerant port flows through a second heat exchanger and returns to a refrig
  • the refrigerant is transferred from the other refrigerant port to the one refrigerant port in the working chambers, whereby the refrigerant near the one refrigerant port, whose temperature is increased by hot heat of the magnetic working material generated by applying the magnetic field to the magnetic working material, can be made to flow into the first heat exchanger via the first refrigerant circulation circuit.
  • the refrigerant is transferred from the one refrigerant port to the other refrigerant port in the working chambers, whereby the refrigerant near the other refrigerant port, whose temperature is decreased by cold heat of the magnetic working material generated by removing the magnetic field from the magnetic working material, can be made to flow into the second heat exchanger via the second refrigerant circulation circuit.
  • the refrigerant whose temperature is increased by the hot heat generated in the magnetic working material can be made to flow directly into the first heat exchanger and the refrigerant whose temperature is decreased by the cold heat generated in the magnetic working material can be made to flow directly into the second heat exchanger.
  • a heat exchange loss can be reduced when the hot heat and the cold heat generated in the magnetic working material are transported, and hence the COP of the magnetic refrigeration system can be improved.
  • the volume of a space constructing each of the refrigerant suction part and the refrigerant discharge part smaller than the volume of the refrigerant discharged at one time in the refrigerant transfer part, it is possible to prevent the refrigerant, whose temperature is increased by the hot heat generated in the magnetic working material, and the refrigerant, whose temperature is decreased by the cold heat generated in the magnetic working material, from remaining in the container. In other words, it is possible to efficiently discharge the refrigerant, whose temperature is increased by the hot heat generated in the magnetic working material, and the refrigerant, whose temperature is decreased by the cold heat generated in the magnetic working material, to the outside.
  • the refrigerant suction part is provided with a suction valve opened when the refrigerant is sucked into the working chambers
  • the refrigerant discharge part is provided with a discharge valve opened when the refrigerant is discharged from the working chambers.
  • the refrigerant near the one refrigerant port whose temperature is increased by the hot heat generated in the magnetic working material by applying the magnetic field, can be made to surely flow into the first heat exchanger via the first refrigerant circulation circuit and the refrigerant flowing out of the second heat exchanger can be sucked into the working chambers from the other refrigerant port.
  • the refrigerant near the other refrigerant port whose temperature is decreased by the cold heat generated in the magnetic working material by removing the magnetic field, can be made to surely flow into the second heat exchanger via the second refrigerant circulation circuit and the refrigerant flowing out of the first heat exchanger can be sucked into the working chambers from the one refrigerant port.
  • the discharge valve is arranged at a position nearer to the working chambers than the suction valve is in the longitudinal direction of the container.
  • At least the suction valve is constructed of a rotary valve having a valve plate and a rotary disk, the valve plate being arranged adjacently to the working chambers and having a communication hole communicating with an interior of the working chambers, the rotary disk rotating in a circumferential direction of the container to thereby open or close the communication hole.
  • the magnetic refrigeration system can be realized by a simple construction.
  • each of the refrigerant suction part and the refrigerant discharge part in the one refrigerant port is provided with a first backward flow preventing part for allowing the refrigerant to flow in one direction in order of the refrigerant discharge part, a refrigerant flow-in port in the first heat exchanger, a refrigerant flow-out port in the first heat exchanger, and the refrigerant suction part
  • each of the refrigerant suction part and the refrigerant discharge part in the other refrigerant port is provided with a second backward flow preventing part for allowing the refrigerant to flow in one direction in order of the refrigerant discharge part, a refrigerant flow-in port in the second heat exchanger, a refrigerant flow-out port in the second heat exchanger, and the refrigerant suction part.
  • this can make the refrigerant near the other refrigerant port, whose temperature is decreased by the cold heat generated in the magnetic working material by removing the magnetic field after the magnetic field is removed from the magnetic working material, surely flows into the second heat exchanger via the second refrigerant circulation circuit and can suck the refrigerant flowing out of the first heat exchanger into the working chambers from the one refrigerant port.
  • the magnetic refrigeration system can be realized by a simple construction.
  • the refrigerant suction parts and the refrigerant discharge part are disposed plurally in correspondence to the plurality of working chambers, it is preferable that the refrigerant suction parts are disposed in such a way as to be positioned on a same circumference when viewed from the longitudinal direction of the container and that the refrigerant discharge parts are disposed in such a way as to be positioned on a same circumference when viewed from the longitudinal direction of the container.
  • the magnetic field applying and removing part is constructed of a magnetic field generating part, a rotary shaft for rotatably supporting the magnetic field generating part, and a drive part for driving the rotary shaft, and the magnetic field generating part is disposed in such a way as to periodically come near to the magnetic working material according to the rotation of the rotary shaft. This makes it possible to periodically repeat applying and removing the magnetic field to and from the magnetic working material by the magnetic field applying and removing part.
  • the magnetic refrigeration system is provided with a power transmission mechanism for transmitting power by the drive part to the refrigerant transfer part.
  • the refrigerant transfer part reciprocally transfers the refrigerant between the one refrigerant port and the other refrigerant port by the power transmitted via the power transmission mechanism.
  • the magnetic refrigeration system employs a construction in which the refrigerant transfer part is driven by the power of the drive part of the magnetic field applying and removing part
  • the drive source can be common between the refrigerant transfer part and the magnetic field applying and removing part.
  • the magnetic refrigeration system can be realized by a simple construction.
  • power consumption in the magnetic refrigeration system can be restricted from increasing, and hence can further improve the COP of the magnetic refrigeration system.
  • the refrigerant transfer part is constructed of a multi-cylinder type piston pump having a plurality of cylinders and a plurality of pistons, corresponding to the plurality of working chambers.
  • a vehicle air conditioning device to which the magnetic refrigeration system described above is applied includes a case constructing an air flow passage for blown air to be blown into a passenger compartment.
  • a heating heat exchanger for heating the blow air to be blown into the passenger compartment is constructed by the first heat exchanger, and a cooling heat exchanger for cooling the blow air to be blown into the passenger compartment is constructed by the second heat exchanger.
  • the vehicle air conditioning device can cool and heat the interior of the passenger compartment.
  • the first heat exchanger when the first heat exchanger is arranged downstream of the second heat exchanger in a flow of the blown air in the case, the first heat exchanger can heat the blown air, which is cooled and dehumidified by the second heat exchanger, thereby dehumidify the blown air at the time of heating the interior of the passenger compartment.
  • the vehicle air conditioning device may include a temperature adjusting part for adjusting a volume of the blown air flowing into the first heat exchanger to thereby adjust a temperature of air blown off into the passenger compartment.
  • FIG. 1 is a general construction diagram illustrating a vehicle air conditioning device according to a first embodiment.
  • FIG. 2 is an enlarged view illustrating a magnetic refrigerator according to the first embodiment.
  • FIG. 3 is a section view taken along a line A-A in FIG. 2 .
  • FIG. 4 is an explanatory view illustrating an operating principle of the magnetic refrigerator according to the first embodiment.
  • FIG. 5 is a general construction diagram illustrating a refrigerant circuit at the time of a cooling mode of the vehicle air conditioning device according to the first embodiment.
  • FIG. 6 is a general construction diagram illustrating the refrigerant circuit at the time of a heating mode of the vehicle air conditioning device according to the first embodiment.
  • FIG. 7 is a general construction diagram illustrating the refrigerant circuit at the time of a dehumidifying mode of the vehicle air conditioning device according to the first embodiment.
  • FIG. 8 is a general construction diagram illustrating a vehicle air conditioning device according to a second embodiment.
  • FIG. 9 is a general construction diagram illustrating a vehicle air conditioning device according to a third embodiment.
  • FIG. 10 is a general construction diagram illustrating a vehicle air conditioning device according to a fourth embodiment.
  • FIG. 11 is a general construction diagram illustrating a vehicle air conditioning device according to a fifth embodiment.
  • FIG. 12 is an enlarged view illustrating a magnetic refrigerator according to the fifth embodiment.
  • FIG. 13 is a general construction diagram illustrating a vehicle air conditioning device according to a sixth embodiment.
  • FIG. 14 is a general construction diagram illustrating a vehicle air conditioning device according to a seventh embodiment.
  • FIG. 15 is an enlarged view illustrating a main portion of a magnetic refrigerator according to an eighth embodiment.
  • FIG. 16 is an enlarged view illustrating a magnetic refrigerator according to a ninth embodiment.
  • FIG. 17 is a section view taken along a line B-B in FIG. 16 .
  • FIG. 18 is a section view taken along a line C-C in FIG. 16 .
  • FIG. 19 is an enlarged view illustrating a magnetic refrigerator according to a tenth embodiment.
  • FIG. 20 is a section view taken along a line D-D in FIG. 19 .
  • FIG. 21 is a section view taken along a line E-E in FIG. 19 .
  • FIG. 22 is a schematic section view illustrating a nozzle type fluid diode according to an 11th embodiment.
  • FIG. 23 is an explanatory view illustrating a vortex type fluid diode according to the 11th embodiment.
  • FIG. 1 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment.
  • a magnetic refrigeration system 2 of the present disclosure is applied to the vehicle air conditioning device 1 for air-conditioning an interior of a passenger compartment of an automobile.
  • the vehicle air conditioning device 1 of the present embodiment is an air conditioning device mounted in the automobile acquiring a drive force for driving from an internal combustion engine (engine).
  • the vehicle air conditioning device 1 as shown in FIG. 1 , is provided with the magnetic refrigeration system 2 arranged in an engine compartment, an indoor air conditioning unit 10 arranged in the passenger compartment, and an air conditioning control device 100 .
  • the magnetic refrigeration system 2 of the present embodiment is constructed in such a way as to be capable of switching a refrigerant circuit of a cooling mode for cooling the interior of the passenger compartment, a heating mode for heating the interior of the passenger compartment, and a dehumidifying mode for humidifying the interior of the passenger compartment at the heating time.
  • the vehicle air conditioning device 1 can cool, heat, and dehumidify the interior of the passenger compartment.
  • the magnetic refrigeration system 2 of the present embodiment employs an AMR (Active Magnetic Refrigeration) system of storing cold heat and hot heat generated by a magnetocaloric effect in a magnetic working material 30 itself.
  • the magnetic refrigeration system 2 of the present embodiment is constructed of a magnetic refrigerator 3 for generating the cold heat and the hot heat by the magnetocaloric effect, a high temperature side refrigerant circuit (first refrigerant circulation circuit) 4 for circulating refrigerant whose temperature is increased by the hot heat generated by the magnetic refrigerator 3 in a heating heat exchanger (first heat exchanger) 13 , a low temperature side refrigerant circuit (second refrigerant circulation circuit) 5 for circulating the refrigerant whose temperature is decreased by the cold heat generated by the magnetic refrigerator 3 in a cooling heat exchanger (second heat exchanger) 12 , and the like.
  • AMR Active Magnetic Refrigeration
  • the magnetic refrigerator 3 is constructed of: a heat exchange container 31 having working chambers 311 formed therein, the working chamber 311 receiving the magnetic working material 30 having the magnetocaloric effect and having refrigerant (for example, water or antifreeze solution) of a heat transporting medium flowing therethrough; a magnetic field applying and removing device 32 for applying and removing a magnetic field to and from the magnetic working material 30 ; a refrigerant pump 34 for transferring the refrigerant in the heat exchange container 31 ; an electric motor 35 corresponding to a drive source of the magnetic refrigerator 3 ; and the like.
  • refrigerant for example, water or antifreeze solution
  • FIG. 2 is an enlarged view of the magnetic refrigerator 3
  • FIG. 3 is a section view taken on a line A-A in FIG. 2 .
  • FIG. 2 a section in an axial direction of the magnetic refrigerator 3 is shown.
  • the heat exchange container 31 of the present embodiment is divided into a high temperature side container 31 a for generating the hot heat by the magnetocaloric effect and a low temperature side container 31 b for generating the cold heat by the magnetocaloric effect.
  • the high temperature side container 31 a and the low temperature side container 31 b are arranged side by side in a coaxial direction with the refrigerant pump 34 interposed between them.
  • Each of the high temperature side container 31 a and the low temperature side container 31 b is constructed of a cylindrical container.
  • Each of the containers 31 a , 31 b has the working chambers 311 formed therein, the working chamber 311 receiving the magnetic working material 30 in a wall portion constructing an outer shape and having the refrigerant flowing therethrough.
  • each of the containers 31 a , 31 b has a plurality of working chambers 311 formed therein radially in a circumferential direction.
  • high temperature side and low temperature side refrigerant ports 312 , 313 are respectively formed in end faces of the heat exchange container 31 (on sides opposite to the refrigerant pump 34 in the respective containers 31 a , 31 b ), and the refrigerant can be sucked and discharged through the refrigerant ports 312 , 313 .
  • end faces adjacent to the refrigerant pump 34 in the respective containers 31 a , 31 b have communication passages 314 , 315 respectively formed therein, the communication passages 314 , 315 communicating with the interior of the cylinder bore 344 of the refrigerant pump 34 which will be described later.
  • the communication passages 314 , 315 are formed plurally in correspondence to the respective high temperature side ports 312 and to the respective low temperature side ports 313 .
  • the high temperature side ports 312 formed in the high temperature side container 31 a are formed in correspondence to the respective working chambers 311 of the high temperature side container 31 a and communicate with the corresponding working chambers 311 .
  • Each of the high temperature side ports 312 is constructed of a refrigerant suction part 312 a for sucking the refrigerant and a refrigerant discharge part 312 b for discharging the refrigerant.
  • the refrigerant suction part 312 a is provided with a suction valve 312 c opened at the time of sucking the refrigerant
  • the refrigerant discharge part 312 b is provided with a discharge valve 312 d opened at the time of discharging the refrigerant.
  • Each of the suction valve 312 c and the discharge valve 312 d of the present embodiment is a reed valve constructed of an elastic plate member having one end fixed.
  • the low temperature side ports 313 formed in the low temperature side container 31 b are formed in correspondence to the respective working chambers 311 of the low temperature side container 31 b and communicate with the corresponding working chambers 311 .
  • each of the low temperature side ports 313 is constructed of a refrigerant suction part 313 a and a refrigerant discharge part 313 b .
  • the refrigerant suction part 313 a is provided with a suction valve 313 c and the refrigerant discharge part 313 b is provided with a discharge valve 313 d.
  • end faces adjacent to the refrigerant pump 34 in the respective containers 31 a , 31 b have communication passages 314 , 315 respectively formed therein, the communication passages 314 , 315 communicating with the interior of the cylinder bore 344 of the refrigerant pump 34 which will be described later.
  • the communication passages 314 , 315 are formed plurally in correspondence to the respective high temperature side ports 312 and to the respective low temperature side ports 313 .
  • Each of the rotary shafts 321 a , 321 b is rotatably supported by support members 36 a , 36 b disposed on both end portions in a longitudinal direction of each of the containers 31 a , 31 b.
  • the high temperature side rotary shaft 321 a received in the high temperature side container 31 a has an end portion, adjacent to the refrigerant pump 34 , extended to the outside of the high temperature side container 31 a and coupled to a drive shaft 341 of the refrigerant pump 34 , which will be described later, via a speed change mechanism 37 a which will be described later.
  • the low temperature side rotary shaft 321 b received in the low temperature side container 31 b has an end portion, on the refrigerant pump 34 , extended to the outside of the low temperature side container 31 b and coupled to the drive shaft 341 of the refrigerant pump 34 , which will be described later, via a speed change mechanism 37 b which will be described later. Still further, the low temperature side rotary shaft 321 b has an end portion on the side opposite to the refrigerant pump 34 extended to the outside of the low temperature side container 31 b and coupled to the electric motor 35 for rotating the respective rotary shafts 321 a , 321 b . The electric motor 35 will be described later.
  • the rotor 322 a , 322 b is fixed to the rotary shaft 321 a , 321 b in such a way as to rotate with a given air gap from the inner circumferential face of the container 31 a , 31 b in a state where the rotor 322 a , 322 b has the permanent magnet 323 a , 323 b disposed on its outer circumferential face.
  • the permanent magnet 323 a , 323 b is disposed on the outer circumferential face (for example, a range of about 1 ⁇ 4 of the outer circumferential faces) in the rotor 322 a , 322 b in such a way as to periodically come near to the upper working chambers 311 and the lower working chambers 311 in the container 31 a , 31 b according to the rotation of the rotary shaft 321 a , 321 b.
  • a magnetic field generated around the permanent magnet 323 a , 323 b is applied to the magnetic working material 30 received on the side near to the permanent magnet 323 a , 323 b in the container 31 a , 31 b and is removed from the magnetic working material 30 disposed on the side far from the permanent magnet 323 a , 323 b in the container 31 a , 31 b.
  • the refrigerant pump 34 constructs a refrigerant transfer part for transferring the refrigerant between the high temperature side ports 312 and the low temperature side ports 313 which are formed in the heat exchanger container 31 .
  • a piston pump of a tandem type in which two compression mechanisms are coaxially activated by one drive shaft 341 is employed as the refrigerant pump 34 .
  • the refrigerant pump 34 of the present embodiment is constructed of: a housing 340 ; the drive shaft 341 rotatably supported in the housing 340 ; a swash plate 342 having a slant face slanted with respect to the drive shaft 341 and rotated integrally with the drive shaft 341 ; a piston 343 reciprocated according to the rotation of the swash plate 342 ; the cylinder bore 344 formed on both sides of the piston 343 in the housing 340 ; and the like.
  • the drive shaft 341 is rotatably supported by support members 340 a , 340 b disposed on both end portions in the longitudinal direction of the housing 340 .
  • the drive shaft 341 has both end portions thereof extended to the outside of the housing 340 and coupled to the high temperature side rotary shaft 321 a and the low temperature side rotary shaft 321 b via the respective speed change mechanisms 37 a , 37 b.
  • the respective speed change mechanisms 37 a , 37 b construct a power transmission mechanism for transmitting power generated by the electric motor 35 to the refrigerant pump 34 via the low temperature side rotary shaft 321 b coupled to the electric motor 35 .
  • Each of the speed change mechanisms 37 a , 37 b of the present embodiment is constructed in such a way as to adjust the ratio (speed reducing ratio) of the number of revolutions of each of the rotary shafts 321 a , 321 b to the number of revolutions of the drive shaft 341 of the refrigerant pump 34 .
  • the speed reducing ratio is determined according to the number of poles of each of the permanent magnets 323 a , 323 b fixed respectively to the rotary shafts 321 a , 321 b .
  • the speed reducing ratio can be determined to be 1/n in such a way that when the drive shaft 341 of the refrigerant pump 34 is rotated by n, each of the rotary shafts 321 a , 321 b are rotated by one.
  • the cylinder bore 344 is constructed of a high temperature side bore part 344 a corresponding to the respective communication passages 314 of the high temperature side container 31 a and a low temperature side bore part 344 b corresponding to the respective communication passages 315 of the low temperature side container 31 b .
  • the cylinder bore 344 is constructed in such a way that the refrigerant in the high temperature side bore part 344 a can exchange heat with the refrigerant in the low temperature side bore part 344 b.
  • the refrigerant pump 34 of the present embodiment is constructed in such a way as to suck or discharge the refrigerant from or into the respective containers 31 a , 31 b in synchronization with applying and removing the magnetic field to and from the magnetic working material 30 .
  • the refrigerant pump 34 is constructed in the following way: when the magnetic field is applied to the magnetic working material 30 in the respective working chambers 311 disposed on the upper side of each of the containers 31 a , 31 b , the refrigerant pump 34 discharges the refrigerant in sequence into the respective working chambers 311 disposed on the upper side in the high temperature side container 31 a and sucks the refrigerant in sequence from the respective working chambers 311 disposed on the upper side in the low temperature side container 31 b .
  • the refrigerant pump 34 the refrigerant is sucked in sequence from the respective working chambers 311 disposed on the lower side in the high temperature side container 31 a and is discharged in sequence into the respective working chambers 311 disposed on the lower side in the low temperature side container 31 b.
  • the refrigerant pump 34 is constructed in the following way: when the magnetic field is removed from the magnetic working material 30 in the respective working chambers 311 disposed on the upper side of each of the containers 31 a , 31 b , the refrigerant pump 34 sucks the refrigerant in sequence from the respective working chambers 311 disposed on the upper side in the high temperature side container 31 a and discharges the refrigerant in sequence into the respective working chambers 311 disposed on the upper side in the low temperature side container 31 b.
  • the discharge valves 312 d , 313 d disposed at the refrigerant discharge parts 312 b , 313 b of the respective containers 31 a , 31 b are opened, whereby the refrigerant near the refrigerant discharge parts 312 b , 313 b in the respective containers 31 a , 31 b is discharged to the outside.
  • the suction valves 312 c , 313 d disposed at the refrigerant suction parts 312 a , 313 a of the respective containers 31 a , 31 b are opened, whereby the refrigerant is introduced from the outside into portions near the refrigerant suction parts 312 a , 313 a in the respective containers 31 a , 31 b.
  • the refrigerant in the magnetic refrigerator 3 , the refrigerant can be sucked or discharged in sequence from or into the respective working chambers 311 in the respective containers 31 a , 31 b in synchronization with applying and removing the magnetic field to and from the magnetic working material 30 , so that the refrigerant near the refrigerant discharge parts 312 b , 313 b in the respective containers 31 a , 31 b can be continuously discharged to the outside.
  • the electric motor 35 is a drive part that is activated by electric power supplied from a battery (not shown) mounted in the automobile and that supplies power to the rotary shafts 321 a , 321 b and the drive shaft 341 to thereby drive the magnetic refrigerator 3 .
  • the rotary shafts 321 a , 321 b , the rotors 322 a , 322 b , the permanent magnets 323 a , 323 b , which are received respectively in the containers 31 , 31 b , and the electric motor 35 disposed on the outside of the heat exchange container 31 construct the magnetic field applying and removing device 32 that is a magnetic field applying and removing part. Further, each of the permanent magnets 323 a , 323 b constructs a magnetic field generating part for generating a magnetic field.
  • the high temperature side refrigerant circuit 4 is a refrigerant circulation circuit for introducing the refrigerant discharged from the refrigerant discharge parts 312 b of the high temperature side ports 312 in the high temperature side container 31 a into a refrigerant flow-in port 13 a of the heating heat exchanger 13 and for returning the refrigerant flowing out of a refrigerant flow-out port 13 b of the heating heat exchanger 13 into the refrigerant suction parts 312 a of the high temperature side ports 312 .
  • the refrigerant discharge parts 312 b of the high temperature side ports 312 have the refrigerant flow-in port 13 a of the heating heat exchanger 13 connected thereto.
  • the heating heat exchanger 13 is a heat exchanger (first heat exchanger) that is arranged in a case 11 of the indoor air conditioning unit 10 to be described later and that makes the refrigerant flowing through the case 11 exchange heat with blown air after passing through the cooling heat exchanger 12 to be described later to thereby heat the blown air.
  • the refrigerant flow-out port 13 b of the heating heat exchanger 13 has a first electric three-way valve 41 connected thereto.
  • the first electric three-way valve 41 constructs a flow passage switching part whose activation is controlled by a control signal outputted from the air conditioning control device 100 .
  • the first electric three-way valve 41 switches a refrigerant circuit for connecting the refrigerant flow-out port 13 b of the heating heat exchanger 13 to the refrigerant suction part 312 a of the high temperature side container 31 a and a refrigerant flow passage for connecting the refrigerant flow-out port 13 b of the heating heat exchanger 13 to a heat radiation side refrigerant flow-in port 61 a of a heat absorbing and radiating heat exchanger 6 .
  • the heat absorbing and radiating heat exchanger 6 is an outdoor heat exchanger that is arranged in the engine compartment and that makes the refrigerant flowing through itself exchange heat with an outside air.
  • the heat absorbing and radiating heat exchanger 6 of the present embodiment is constructed of two heat exchange parts corresponding to a heat radiating part 61 through which the refrigerant flowing out of the heating heat exchanger 13 flows and a heat absorption part 62 through which the refrigerant discharged from the low temperature side container 31 b flows.
  • the heat radiating part 61 of the heat absorbing and radiating heat exchanger 6 is a heat exchange part for making the refrigerant flowing-in (refrigerant flowing out of the heating heat exchanger 13 ) through the heat radiation side refrigerant flow-in port 61 a exchange heat with the outside air.
  • the heat absorption part 62 of the heat absorbing and radiating heat exchanger 6 is a heat exchange part for making the refrigerant flowing-in (refrigerant discharged from the low temperature side container 31 b ) through the heat absorption side refrigerant flow-in port 62 a exchange heat with the outside air.
  • the heat radiating part 61 and the heat absorption part 62 have their refrigerant flow passages constructed independently of each other so as to prevent the refrigerant flowing through the heat radiating part 61 and the refrigerant flowing in the heat absorption part 62 from being mixed with each other in the heat absorbing and radiating heat exchanger 6 .
  • the heat radiation side refrigerant flow-out port 61 b of the heat absorbing and radiating heat exchanger 6 has the refrigerant suction parts 312 a of the high temperature side container 31 a connected thereto, and the refrigerant having heat radiated in the heat absorbing and radiating heat exchanger 6 is returned to the working chambers 311 of the high temperature side container 31 a.
  • the high temperature side refrigerant circuit 4 is constructed of: a circulation circuit in which the refrigerant is circulated in order of the refrigerant discharge part 312 b of the high temperature side container 31 a , the heating heat exchanger 13 , the first electric three-way valve 41 , and the refrigerant suction part 312 a of the high temperature side container 31 a ; and a circulation circuit in which the refrigerant is circulated in order of the refrigerant discharge part 312 b of the high temperature side container 31 a , the heating heat exchanger 13 , the first electric three-way valve 41 , the heat radiating part 61 of the heat absorbing and radiating heat exchanger 6 , and the refrigerant suction part 312 a of the high temperature side container 31 a.
  • the high temperature side refrigerant circuit 4 has a reservoir tank 43 connected between the heating heat exchanger 13 and the first electric three-way valve 41 via a fixed throttle 42 , the reservoir tank 43 adjusting the amount of the refrigerant flowing through the high temperature side refrigerant circuit 4 .
  • the fixed throttle 42 can be employed an orifice or a capillary tube.
  • the low temperature side refrigerant circuit 5 is a refrigerant circulation circuit that introduces the refrigerant discharged from the refrigerant discharge parts 313 b of the low temperature side ports 313 in the low temperature side container 31 b into the refrigerant flow-in port 12 a of the cooling heat exchanger 12 and that returns the refrigerant flowing out of the refrigerant flow-out port 12 b of the cooling heat exchanger 12 to the refrigerant suction parts 313 a of the low temperature side ports 313 .
  • the refrigerant discharge parts 313 b of the low temperature side ports 313 have a second electric three-way valve 51 connected thereto.
  • the second electric three-way valve 51 constructs a flow passage switching part whose activation is controlled by a control signal outputted from the air conditioning control device 100 .
  • the second electric three-way valve 51 switches a refrigerant circuit for connecting the refrigerant discharge parts 313 b of the low temperature side ports 313 to the heat absorption side refrigerant flow-in port 62 a of the heat absorbing and radiating heat exchanger 6 and a refrigerant circuit for connecting the refrigerant discharge parts 313 b of the low temperature side ports 313 to a third electric three-way valve 52 in accordance with a control signal outputted from the air conditioning control device 100 .
  • the heat absorption side refrigerant flow-out port 62 b of the heat absorbing and radiating heat exchanger 6 has the third electric three-way valve 52 connected thereto.
  • the third electric three-way valve 52 constructs a flow passage switching part whose activation is controlled by a control signal outputted from the air conditioning control device 100 .
  • the third electric three-way valve 52 is constructed in such a way as to be activated in conjunction with the second electric three-way valve 51 . That is, when the refrigerant circuit is switched by the second electric three-way valve 51 to a refrigerant circuit for connecting the refrigerant discharge parts 313 b of the low temperature side ports 313 to the third electric three-way valve 52 , the third electric three-way valve 52 switches the refrigerant circuit to a refrigerant circuit for connecting the second electric three-way valve 51 to the refrigerant flow-in port 12 a of the cooling heat exchanger 12 .
  • the third electric three-way valve 52 switches the refrigerant circuit to a refrigerant circuit for connecting the second electric three-way valve 51 to the refrigerant suction parts 313 a of the low temperature side ports 313 .
  • the cooling heat exchanger 12 connected to the third electric three-way valve 52 is a heat exchanger that is arranged on the upstream of the heating heat exchanger 13 in the flow of the blown air in the case 11 of the indoor air conditioning unit 10 and that makes the refrigerant flowing through itself exchange heat with the blown air to thereby cool the blown air.
  • the refrigerant suction parts 313 a of the low temperature side ports 313 are connected to the refrigerant flow-out port 12 b of the cooling heat exchanger 12 .
  • the low temperature side refrigerant circuit 5 is constructed of: a circulation circuit in which the refrigerant is circulated in order of the refrigerant discharge parts 313 b of the low temperature side container 31 b , the second electric three-way valve 51 , the third electric three-way valve 52 , the cooling heat exchanger 12 , and the refrigerant suction parts 313 a of the low temperature side container 31 b ; and a circulation circuit in which the refrigerant is circulated in order of the refrigerant discharge parts 313 b of the low temperature side container 31 b , the heat absorption part 62 of the heat absorbing and radiating heat exchanger 6 , the second electric three-way valve 51 , the third electric three-way valve 52 , and the refrigerant suction parts 313 a of the low temperature side container 31 b.
  • the low temperature side refrigerant circuit 5 has a reservoir tank 54 connected between the second electric three-way valve 51 and the heat absorbing and radiating heat exchanger 6 , and the third electric three-way valve 52 via a fixed throttle 53 , the reservoir tank 54 adjusting the amount of the refrigerant flowing through the low temperature side refrigerant circuit 5 .
  • the fixed throttle 53 can be employed an orifice or a capillary tube.
  • the indoor air conditioning unit 10 is a unit that is arranged inside a meter board (instrument panel) at a forefront portion in the passenger compartment and that receives a blower (not shown), the cooling heat exchanger 12 , the heating heat exchanger 13 , and a heater core 14 in the case 11 of forming the outer shape thereof.
  • the case 11 forms an air flow passage for the blown air to be blown into the passenger compartment and is formed of resin having a certain degree of elasticity and excellent in strength (for example, polypropylene).
  • An inside and outside air switching box (not shown) for switching and introducing an inside air (air inside the passenger compartment) and an outside air (air outside the passenger compartment) is arranged on the most upstream side of the flow of the blown air in the case 11 .
  • the inside and outside air switching box are formed an inside air introduction port through which the inside air is introduced into the case 11 and an outside air introduction port through which the outside air is introduced into the case 11 .
  • an inside and outside air switching door for continuously adjusting an opening area of the inside air introduction port and an opening area of the outside air introduction port to thereby change a ratio of the volume of the inside air and the volume of the outside air.
  • the inside and outside air switching door constructs an air volume ratio changing part for switching a suction port mode of changing the ratio of the volume of the inside air and the volume of the outside air which are introduced into the case 11 .
  • the blower On the downstream side of the inside and outside air switching box in the air flow is arranged a blower for blowing the air sucked through the inside and outside air switching box into the passenger compartment.
  • the blower is an electric blower for driving a centrifugal multi-blade fan (sirocco fan) by an electric motor and has the number of revolutions (the volume of blown air) controlled by a control voltage outputted from the air conditioning control device 100 .
  • the cooling heat exchanger 12 is arranged on the downstream side of the blower in the air flow. On the downstream side of the cooling heat exchanger 12 in the air flow are formed air passages such as a heating cold air passage 15 and a cold air bypass passage 16 through which the air after passing through the cooling heat exchanger 12 flows, and an air mixing space 17 in which the air flowing out of the heating cold air passage 15 is mixed with the air flowing out of the cold air bypass passage 16 .
  • the heating heat exchanger 13 and a heater core 14 are arranged in this order in a direction in which the blown air flows as a heating part for heating the air after passing through the cooling heat exchanger 12 .
  • the heater core 14 is a heat exchanger for making cooling water of an engine (not shown) which outputs a drive force for running the automobile exchange heat with the air after passing through the cooling heat exchanger 12 to thereby heat the air after passing through the cooling heat exchanger 12 .
  • the cold air bypass passage 16 is an air passage for introducing the air after passing through the cooling heat exchanger 12 into the air mixing space 17 without passing through the heating heat exchanger 13 and the heater core 14 .
  • the temperature of the blown air mixed in the air mixing space 17 is changed according to the ratio of the volume of the air passing through the heating heat exchanger 15 and the volume of the air passing through the cold air bypass passage 16 .
  • an air mixing door 18 for continuously changing the ratio of the volume of the air flowing into the heating cold air passage 15 and the volume of the air flowing into the cold air bypass passage 16 is disposed on the downstream side of the cooling heat exchanger 12 in the air flow and on the entry side of the heating cold air passage 15 and the cold air bypass passage 16 .
  • the air mixing door 18 constructs a temperature adjusting part for adjusting the volume of the blown air flowing into the heating heat exchanger 13 to thereby adjust an air temperature in the air mixing space 17 (temperature of the air blown off into the passenger compartment).
  • blowoff ports (not shown, for example, face blowoff port, foot blowoff port, and defroster blowoff port) for blowing off the blown air having temperature adjusted into the passenger compartment, which is a space to be cooled, from the air mixing space 17 .
  • a door for adjusting an opening area of the blowoff port, and the blowoff ports for blowing off the conditioned air into the passenger compartment can be switched by opening or closing the respective doors.
  • the air conditioning control device 100 is constructed of a well known microcomputer, which includes a CPU, a ROM, and a RAM, and a peripheral circuit thereof.
  • the air conditioning control device 100 performs various operations and processings on the basis of control programs stored in the ROM to thereby control the activations of the electric motor 35 , the respective electric three-way valves 41 , 51 , 52 for constructing flow passage switching parts, the blower, and the drive part of the air mixing door 18 connected to the output side.
  • An operation signal is inputted to the input side of the air conditioning control device 100 from various air conditioning operation switches disposed in an operation panel (not shown) arranged near the instrument panel in the front portion of the passenger compartment.
  • the various air conditioning operation switches disposed in the operation panel include an activating switch, an automatic switch, and a selector switch of an operation mode (cooling mode, heating mode, dehumidifying mode) of the vehicle air conditioning device 1 .
  • the air conditioning control device 100 has an electric motor control part controlling the electric motor 35 corresponding to the drive part of the magnetic refrigerator 3 and a flow passage switching control part controlling the respective electric three-way valves 41 , 51 , 52 .
  • FIG. 4 illustrates enlarged views of a portion B shown in FIG. 1 .
  • (a) of FIG. 4 shows a magnetic field applying process of applying a magnetic field to the magnetic working material 30
  • (b) of FIG. 4 shows a refrigerant discharging process of discharging the refrigerant from the working chamber 311
  • (c) of FIG. 4 shows a magnetic field removing process of removing the magnetic field from the magnetic working material 30
  • (d) of FIG. 4 shows a refrigerant sucking process of sucking the refrigerant into the working chamber 311 .
  • the hot heat generated by the magnetocaloric effect of the magnetic working material 30 received in the upper working chambers 311 of the high temperature side container 31 a can be transported to the heating heat exchanger 13 by these four processes of the magnetic field applying process, the refrigerant discharging process, the magnetic field removing process, and the refrigerant sucking process.
  • the four processes of the magnetic field applying process, the refrigerant discharging process, the magnetic field removing process, and the refrigerant sucking process are performed, which is different only in timing from the processes performed on the upper working chambers 311 .
  • the magnetic field is applied to the magnetic working material 30 in a state where the piston 343 in the low temperature side bore part 344 b is positioned near the top dead center.
  • the piston 343 in the low temperature side bore part 344 b is moved from the top dead center to the bottom dead center and the refrigerant in the upper working chambers 311 is transferred from the low temperature side ports 313 to the refrigerant pump 34 .
  • the suction valves 313 c disposed at the refrigerant suction parts 313 a of the low temperature side ports 313 are opened and the refrigerant flowing out of the cooling heat exchanger 12 is sucked into portions near the refrigerant suction parts 313 a (refrigerant sucking process).
  • the magnetic field is removed from the magnetic working material 30 received in the upper working chambers 311 in a state where the piston 343 in the low temperature side bore part 344 b is positioned near the bottom dead center.
  • the piston 343 in the low temperature side bore part 344 b is moved from the bottom dead center to the top dead center and the refrigerant in the upper working chambers 311 is transferred from the refrigerant pump 34 to the low temperature side ports 313 .
  • the discharge valves 313 d disposed at the refrigerant discharge parts 313 b of the low temperature side ports 313 are opened and the refrigerant near the refrigerant discharge parts 312 b is discharged to the cooling heat exchanger 12 side (refrigerant discharging process).
  • the cold heat generated by the magnetocaloric effect of the magnetic working material 30 received in the upper working chambers 311 of the low temperature side container 31 b can be transported to the cooling heat exchanger 12 by these four processes of the magnetic field applying process, the refrigerant discharging process, the magnetic field removing process, and the refrigerant sucking process.
  • the four processes of the magnetic field applying process, the refrigerant discharging process, the magnetic field removing process, and the refrigerant sucking process are performed, which is different only in timing from the processes performed on the upper working chambers 311 .
  • the refrigerant is transferred from the low temperature side ports 313 to the high temperature side ports 312 , whereas after the magnetic field is removed from the magnetic working material 30 , the refrigerant is transferred from the high temperature side ports 312 to the low temperature side ports 313 .
  • the magnetic field applying process, the refrigerant discharging process, the magnetic field removing process, and the refrigerant sucking process are repeated on the high temperature side container 31 a in the heat exchange container 31
  • the magnetic field applying process, the refrigerant discharging process, the magnetic field removing process, and the refrigerant sucking process are repeated on the low temperature side container 31 b , whereby a large temperature gradient can be generated between the magnetic working material 30 received in the upper working chambers 311 of the high temperature side container 31 a and the magnetic working material 30 received in the upper working chambers 311 of the low temperature side container 31 b.
  • each operation mode is set as appropriate by a selector switch of the operation mode disposed in the operation panel or by a control processing of the air conditioning control device 100 .
  • FIG. 5 shows the refrigerant circuit at the time of the cooling mode
  • FIG. 6 shows the refrigerant circuit at the time of the heating mode
  • FIG. 7 shows the refrigerant circuit at the time of the dehumidifying mode.
  • the high temperature side refrigerant circuit 4 is switched to the refrigerant circuit for connecting the refrigerant flow-out port 13 b of the heating heat exchanger 13 to the heat radiation side refrigerant flow-in port 61 a of the heat absorbing and radiating heat exchanger 6 by the first electric three-way valve 41 according to a control signal from the air conditioning control device 100 .
  • the low temperature side refrigerant circuit 5 is switched by the second electric three-way valve 51 to the refrigerant circuit for connecting the refrigerant discharge parts 313 b of the low temperature side ports 313 to the third electric three-way valve 52 and is switched by the third electric three-way valve 52 to the refrigerant circuit for connecting the second electric three-way valve 51 to the refrigerant flow-in port 12 a of the cooling heat exchanger 12 .
  • the high temperature side refrigerant circuit 4 in the high temperature side refrigerant circuit 4 is constructed a circulation circuit in which the refrigerant is circulated in order of the magnetic refrigerator 3 , the heating heat exchanger 13 , the first electric three-way valve 41 , the heat radiating part 61 of the heat absorbing and radiating heat exchanger 6 , and the magnetic refrigerator 3 .
  • the low temperature side refrigerant circuit 5 in the low temperature side refrigerant circuit 5 is constructed a circulation circuit in which the refrigerant is circulated in order of the magnetic refrigerator 3 , the second electric three-way valve 51 , the third electric three-way valve 52 , the cooling heat exchanger 12 , and the magnetic refrigerator 3 .
  • the refrigerant having temperature increased by the magnetic refrigerator 3 is discharged from the refrigerant discharge parts 312 b of the high temperature side container 31 a of the magnetic refrigerator 3 to the heating heat exchanger 13 and exchanges heat with the blown air (cold air) after passing through the cooling heat exchanger 12 in the heating heat exchanger 13 , thereby being cooled.
  • the refrigerant flowing out of the heating heat exchanger 13 exchanges heat with the outside air in the heat radiating part 61 of the heat absorbing and radiating heat exchanger 6 , thereby being cooled.
  • the refrigerant is sucked into the high temperature side container 31 a via the refrigerant suction parts 312 a of the magnetic refrigerator 3 , thereby being again increased in temperature.
  • the refrigerant having temperature decreased by the magnetic refrigerator 3 is discharged from the low temperature side ports 313 of the low temperature side container 31 b of the magnetic refrigerator 3 to the cooling heat exchanger 12 and absorbs heat from the blown air in the cooling heat exchanger 12 . In this way, the blown air passing through the cooling heat exchanger 12 is cooled.
  • both portions of the blown air are mixed in the air mixing space 17 and hence the temperature of the blown air to be blown off into the passenger compartment is adjusted to a desired temperature, whereby the interior of the passenger compartment can be cooled.
  • the blown air has also a high dehumidifying capacity but hardly exerts a heating capacity.
  • the refrigerant flowing out of the cooling heat exchanger 12 is sucked into the low temperature side container 31 b via the refrigerant suction parts 313 a of the magnetic refrigerator 3 , thereby being again decreased in temperature.
  • the high temperature side refrigerant circuit 4 is switched to the refrigerant circuit for connecting the refrigerant flow-out port 13 b of the heating heat exchanger 13 to the refrigerant suction parts 312 a of the high temperature side container 31 a by the first electric three-way valve 41 according to a control signal from the air conditioning control device 100 .
  • the low temperature side refrigerant circuit 5 is switched to the refrigerant circuit for connecting the refrigerant discharge parts 313 b of the low temperature side ports 313 to the heat absorption side refrigerant flow-in port 62 a of the heat absorbing and radiating heat exchanger 6 by the second electric three-way valve 51 and is switched to the refrigerant circuit for connecting the second electric three-way valve 51 to the refrigerant suction parts 313 a of the low temperature side ports 313 by the third electric three-way valve 52 .
  • the high temperature side refrigerant circuit 4 in the high temperature side refrigerant circuit 4 is constructed a circulation circuit in which the refrigerant is circulated in order of the magnetic refrigerator 3 , the heating heat exchanger 13 , the first electric three-way valve 41 , and the magnetic refrigerator 3 .
  • the low temperature side refrigerant circuit 5 in the low temperature side refrigerant circuit 5 is constructed a circulation circuit in which the refrigerant is circulated in order of the magnetic refrigerator 3 , the heat absorption part 62 of the heat absorbing and radiating heat exchanger 6 , the second electric three-way valve 51 , the third electric three-way valve 52 , and the magnetic refrigerator 3 .
  • the refrigerant having temperature increased by the magnetic refrigerator 3 is discharged from the refrigerant discharge parts 312 b of the high temperature side container 31 a of the magnetic refrigerator 3 to the heating heat exchanger 13 and exchanges heat with the blown air blown from the blower in the heating heat exchanger 13 , thereby being cooled. In this way, the blown air passing through the heating heat exchanger 13 is heated.
  • both portions of the blown air are mixed in the air mixing space 17 and the temperature of the blown air blown off into the passenger compartment can be adjusted to a desired temperature and the interior of the passenger compartment can be heated.
  • the heating mode the dehumidifying capacity of the blown air is not exerted.
  • the refrigerant flowing out of the heating heat exchanger 13 is sucked into the high temperature side container 31 a via the refrigerant suction parts 312 a of the magnetic refrigerator 3 , thereby being again increased in temperature.
  • the refrigerant having temperature decreased by the magnetic refrigerator 3 is discharged from the low temperature side ports 313 of the low temperature side container 31 b of the magnetic refrigerator 3 to the heat absorbing and radiating heat exchanger 6 and exchanges heat with the outside air in the heat absorption part 62 of the heat absorbing and radiating heat exchanger 6 , thereby being increased in temperature.
  • the refrigerant flowing out of the heat absorption part 62 of the heat absorbing and radiating heat exchanger 6 is sucked into the low temperature side container 31 b via the refrigerant suction parts 313 a of the magnetic refrigerator 3 , thereby being again decreased in temperature.
  • the high temperature side refrigerant circuit 4 is switched to the refrigerant circuit for connecting the refrigerant flow-out port 13 b of the heating heat exchanger 13 to the refrigerant suction parts 312 a of the high temperature side container 31 a by the first electric three-way valve 41 according to a control signal from the air conditioning control device 100 .
  • the low temperature side refrigerant circuit 5 is switched to the refrigerant circuit for connecting the refrigerant discharge parts 313 b of the low temperature side ports 313 to the third electric three-way valve 52 by the second electric three-way valve 51 and is switched to the refrigerant circuit for connecting the second electric three-way valve 51 to the refrigerant flow-in port 12 a of the cooling heat exchanger 12 by the third electric three-way valve 52 .
  • the high temperature side refrigerant circuit 4 in the high temperature side refrigerant circuit 4 is constructed a circulation circuit in which the refrigerant is circulated in order of the magnetic refrigerator 3 , the heating heat exchanger 13 , the first electric three-way valve 41 , and the magnetic refrigerator 3 .
  • the low temperature side refrigerant circuit 5 in the low temperature side refrigerant circuit 5 is constructed a circulation circuit in which the refrigerant is circulated in order of the magnetic refrigerator 3 , the second electric three-way valve 51 , the third electric three-way valve 52 , the cooling heat exchanger 12 , and the magnetic refrigerator 3 .
  • the refrigerant having temperature increased by the magnetic refrigerator 3 is discharged from the refrigerant discharge parts 312 b of the high temperature side container 31 a of the magnetic refrigerator 3 to the heating heat exchanger 13 and exchanges heat with the blown air (cold air) after passing through the cooling heat exchanger 12 in the heating heat exchanger 13 , thereby being cooled. In this way, the blown air passing through the heating heat exchanger 13 is heated.
  • the refrigerant having temperature decreased by the magnetic refrigerator 3 is discharged from the low temperature side ports 313 of the low temperature side container 31 b of the magnetic refrigerator 3 to the cooling heat exchanger 12 and absorbs heat from the blown air in the cooling heat exchanger 12 . In this way, the blown air passing through the cooling heat exchanger 12 is cooled and dehumidified.
  • the blown air cooled and dehumidified by the cooling heat exchanger 12 is again heated at the time of passing through the heating heat exchanger 13 and the heater core 14 and is blown off into the passenger compartment from the air mixing space 17 .
  • the interior of the passenger compartment can be dehumidified.
  • the humidifying capacity of the blown air can be exerted but the heating capacity is reduced as compared with the heating mode.
  • the refrigerant flowing out of the heating heat exchanger 13 is sucked into the high temperature side container 31 a via the refrigerant suction parts 312 a of the magnetic refrigerator 3 , thereby being again increased in temperature.
  • the vehicle air conditioning device 1 including the magnetic refrigeration system 2 of the present embodiment is activated in the manner described above and hence can produce the following excellent advantages.
  • the magnetic field is applied to the magnetic working material 30 and then the refrigerant is transferred from the low temperature side ports 313 to the high temperature side ports 312 , whereby the refrigerant near the high temperature side ports 312 , whose temperature is increased by the hot heat of the magnetic working material 30 caused by applying the magnetic field, can be made to flow into the heating heat exchanger 13 via the high temperature side refrigerant circuit 4 .
  • the magnetic field is removed from the magnetic working material 30 and then the refrigerant is transferred from the high temperature side ports 312 to the low temperature side ports 313 , whereby the refrigerant near the low temperature side ports 313 , whose temperature is decreased by the cold heat of the magnetic working material 30 caused by removing the magnetic field, can be made to flow into the cooling heat exchanger 12 via the low temperature side refrigerant circuit 5 .
  • the refrigerant having temperature increased by the hot heat generated in the magnetic working material 30 can be made to directly flow into the heating heat exchanger 13 and the refrigerant having temperature decreased by the cold heat generated in the magnetic working material 30 can be made to directly flow into the cooling heat exchanger 12 .
  • a heat exchange loss can be reduced when the hot heat and the cold heat generated in the magnetic working material 30 are transported to the respective heat exchangers 12 , 13 .
  • a temperature of refrigerant at the high temperature side ports 312 of the heat exchange container 31 in the magnetic refrigerator 3 is defined as Th
  • a temperature of refrigerant at the low temperature side ports 313 is defined as Tl ( ⁇ Th)
  • a cycle efficiency ⁇ of the magnetic refrigeration system 2 is defined as 80% of a cycle efficiency ⁇ th of an ideal Carnot cycle.
  • the heat exchange loss ⁇ T can be reduced when the hot heat and the cold heat generated in the magnetic working material 30 are transported to the respective heat exchangers 12 , 13 .
  • the COP of the magnetic refrigeration system 2 can be improved.
  • the magnetic refrigerator 3 employing the AMR system has a construction in which the refrigerant in the working chambers 311 of the heat exchange container 31 is transferred between the high temperature side ports 312 and the low temperature side ports 313 . For this reason, if it is employed a construction in which the ports 312 , 313 of the heat exchange container 31 are connected to the corresponding heat exchanger 12 , 13 simply by the use of piping or the like, the refrigerant discharged from the respective ports 312 , 313 toward the heat exchanger 12 , 13 is likely to be sucked into the working chambers 311 of the heat exchange container 31 before the refrigerant flows into the heat exchanger 12 , 13 .
  • the heat of the refrigerant discharged from each of the ports 312 , 313 toward each of the heat exchangers 12 , 13 is only transmitted to the refrigerant in each of the heat exchangers 12 , 13 via the refrigerant in the piping and a long time is required to make the temperature of the refrigerant in each of the heat exchangers 12 , 13 to have a desired temperature.
  • the high temperature side ports 312 of the heat exchange container 31 is connected to the heating heat exchanger 13 by the high temperature side refrigerant circuit 4 constructed in such a way that the refrigerant discharged from the high temperature side ports 312 passes through the heating heat exchanger 13 and again returns to the high temperature side ports 312 , so that the refrigerant discharged from the high temperature side ports 312 of the heat exchange container 31 can be made to flow into the heating heat exchanger 13 .
  • the low temperature side ports 313 of the heat exchange container 31 is connected to the cooling heat exchanger 12 by the low temperature side refrigerant circuit 5 constructed in such a way that the refrigerant discharged from the low temperature side ports 313 passes through the cooling heat exchanger 12 and again returns to the low temperature side ports 313 , so that the refrigerant discharged from the low temperature side ports 313 of the heat exchange container 31 can be made to flow into the cooling heat exchanger 12 .
  • the present embodiment employs a construction in which each of the ports 312 , 313 of the heat exchange container 31 is provided with the suction valve opened when the refrigerant is sucked into the working chambers 311 of the heat exchange container 31 and the discharge valve opened when the refrigerant is discharged from the working chambers 311 of the heat exchange container 31 .
  • the refrigerant near the high temperature side ports 312 whose temperature is increased by the hot heat generated in the magnetic working material 30 by applying the magnetic field, can be made to surely flow into the heating heat exchanger 13 and the refrigerant flowing out of the heating heat exchanger 13 can be sucked into the working chambers 311 of the heat exchange container 31 .
  • the refrigerant near the low temperature side ports 313 whose temperature is decreased by the cold heat generated in the magnetic working material 30 by removing the magnetic field can be made to surely flow into the cooling heat exchanger 12 and the refrigerant flowing out of the cooling heat exchanger 12 can be sucked into the working chambers 311 of the heat exchange container 31 .
  • the present embodiment employs the construction in which the rotary shafts 321 a , 321 b of the magnetic field applying and removing device 32 are coupled to the drive shaft 341 of the refrigerant pump 34 and in which the refrigerant pump 34 is driven by the electric motor 35 which is the drive part of the magnetic field applying and removing device 32 .
  • the drive source of the magnetic field applying and removing device 32 can be made common to the drive source of the refrigerant pump 34 , so that the magnetic refrigeration system 2 can be realized by a simple construction. Accordingly, the power consumption in the magnetic refrigeration system 2 can be restricted from increasing, and the COP of the magnetic refrigeration system 2 can be further improved.
  • FIG. 8 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment.
  • the descriptions of parts identical or equivalent to the parts in the first embodiment will be omitted or simplified.
  • the first embodiment described above employs the following construction: that is, the refrigerant suction part 312 a , 313 a of the container 31 a , 31 b is provided with the suction valve 312 c , 313 c ; and the refrigerant discharge part 312 b , 313 b of the container 31 a , 31 b is provided with the discharge valve 312 d , 313 d , whereby in each of the refrigerant circuits 4 , 5 , the refrigerant flows in one direction in order of the refrigerant ports 312 , 313 of the container 31 a , 31 b , the refrigerant flow-in port 12 a , 13 a of the heat exchanger 12 , 13 , the refrigerant flow-out port 12 b , 13 b of the heat exchanger 12 , 13 , and the refrigerant ports 312 , 313 of the container 31 a , 31 b.
  • the present embodiment employs a construction in which the suction valve 312 c , 313 c and the discharge valve 312 d , 313 d are eliminated, instead, the high temperature side refrigerant circuit 4 is provided with check valves 44 , 45 and the low temperature side refrigerant circuit 5 is provided with check valves 56 , 57 .
  • a first check valve 44 for allowing the refrigerant to flow from the refrigerant ports 312 of the high temperature side container 31 a to the refrigerant flow-in port 13 a of the heating heat exchanger 13 is interposed between the refrigerant ports 312 of the high temperature side container 31 a and the refrigerant flow-in port 13 a of the heating heat exchanger 13 .
  • a second check valve 45 for allowing the refrigerant to flow from the refrigerant flow-out port 13 b of the heating heat exchanger 13 to the refrigerant ports 312 of the high temperature side container 31 a is interposed between the refrigerant flow-out port 13 b of the heating heat exchanger 13 and the refrigerant ports 312 of the high temperature side container 31 a.
  • a third check valve 56 for allowing the refrigerant to flow from the refrigerant ports 313 of the low temperature side container 31 b to the refrigerant flow-in port 13 a of the cooling heat exchanger 12 is interposed between the refrigerant ports 313 of the low temperature side container 31 b and the refrigerant flow-in port 13 a of the cooling heat exchanger 12 .
  • a fourth check valve 57 for allowing the refrigerant to flow from the refrigerant flow-out port 13 b of the cooling heat exchanger 12 to the refrigerant ports 313 of the low temperature side container 31 b is interposed between the refrigerant flow-out port 13 b of the cooling heat exchanger 12 and the refrigerant ports 313 of the low temperature side container 31 b.
  • the refrigerant near the high temperature side ports 312 whose temperature is increased by the hot heat generated in the magnetic working material 30 by applying the magnetic field, can be made to surely flow into the heating heat exchanger 13 and the refrigerant flowing out of the heating heat exchanger 13 can be sucked into the working chambers 311 of the heat exchanger container 31 .
  • the refrigerant near the low temperature side ports 313 whose temperature is decreased by the cold heat generated in the magnetic working material 30 by removing the magnetic field, can be made to surely flow into the cooling heat exchanger 12 and the refrigerant flowing out of the cooling heat exchanger 12 can be sucked into the working chambers 311 of the heat exchanger container 31 .
  • the first and the second check valves 44 , 45 disposed in the high temperature side refrigerant circuit 4 may correspond to a first backward flow preventing part of the present disclosure
  • the third and the fourth check valves 56 , 57 disposed in the low temperature side refrigerant circuit 5 may correspond to a second backward flow preventing part of the present disclosure.
  • FIG. 9 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment.
  • the descriptions of parts identical or equivalent to the parts in the first and the second embodiments will be omitted or simplified.
  • the second embodiment described above employs a construction in which the high temperature side refrigerant circuit 4 is provided with the first and the second check valves 44 , 45 and in which the low temperature side refrigerant circuit 5 is provided with the third and the fourth check valves 56 , 57 .
  • the present embodiment employs a construction in which the refrigerant circuit 4 is provided with opening and closing valves 46 , 47 and the refrigerant circuit 5 is provided with opening and closing valves 58 , 59 , the opening and closing valves being opened or closed according to a control signal from the air conditioning control device 100 , in place of the respective check valves 44 , 45 and 56 , 57 .
  • a first opening and closing valve 46 is interposed between the refrigerant ports 312 of the high temperature side container 31 a and the refrigerant flow-in port 13 a of the heating heat exchanger 13
  • a second opening and closing valve 47 is interposed between the refrigerant flow-out port 13 b of the heating heat exchanger 13 and the refrigerant ports 312 of the high temperature side container 31 a.
  • the first opening and closing valve 46 is controlled by the air conditioning control device 100 in such a way as to allow the refrigerant to flow only from the refrigerant ports 312 of the high temperature side container 31 a to the refrigerant flow-in port 13 a of the heating heat exchanger 13 .
  • the second opening and closing valve 47 is controlled by the air conditioning control device 100 in such a way as to allow the refrigerant to flow only from the refrigerant flow-out port 13 b of the heating heat exchanger 13 to the refrigerant ports 312 of the high temperature side container 31 a.
  • a third opening and closing valve 58 is interposed between the refrigerant ports 313 of the low temperature side container 31 b and the refrigerant flow-in port 13 a of the cooling heat exchanger 12
  • a fourth opening and closing valve 59 is interposed between the refrigerant flow-out port 13 b of the cooling heat exchanger 12 and the refrigerant ports 313 of the low temperature side container 31 b.
  • the third opening and closing valve 58 is controlled by the air conditioning control device 100 in such a way as to allow the refrigerant to flow only from the refrigerant ports 313 of the low temperature side container 31 b to the refrigerant flow-in port 13 a of the cooling heat exchanger 12 .
  • the fourth opening and closing valve 59 is controlled by the air conditioning control device 100 in such a way as to allow the refrigerant to flow only from the refrigerant flow-out port 13 b of the cooling heat exchanger 12 to the refrigerant ports 313 of the low temperature side container 31 b.
  • the same advantages as the second embodiment can be produced.
  • the first and the second opening and closing valves 46 , 47 disposed in the high temperature side refrigerant circuit 4 in the present embodiment may correspond to the first backward flow preventing part of the present disclosure
  • the third and the fourth opening and closing valves 58 , 59 disposed in the low temperature side refrigerant circuit 5 in the present embodiment may correspond to the second backward flow preventing part of the present disclosure.
  • FIG. 10 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment.
  • the magnetic refrigeration system 2 having a refrigerant circuit of only the cooling mode for cooling the interior of passenger compartment will be described.
  • the descriptions of parts identical or equivalent to the parts in the first to the third embodiments will be omitted or simplified.
  • the magnetic refrigeration system 2 of the present embodiment is constructed of: the magnetic refrigerator 3 ; a heat radiation side refrigerant circuit (first refrigerant circulation circuit) 8 for circulating the refrigerant having temperature increased by the hot heat generated by the magnetic refrigerator 3 to a heat radiator (first heat exchanger) 7 ; and a low temperature side refrigerant circuit (second refrigerant circulation circuit) 5 for circulating the refrigerant having temperature decreased by the clod heat generated by the magnetic refrigerator 3 to the cooling heat exchanger (second heat exchanger) 12 .
  • the heat exchange container 31 of the magnetic refrigerator 3 of the present embodiment is constructed of a hollow cylindrical container having working chambers 311 formed therein, the working chamber 311 having the magnetic working material 30 received therein and having the refrigerant flowing therethrough.
  • the heat exchange container 31 has the refrigerant pump 34 coaxially arranged on one end side thereof.
  • the heat exchange container 31 has the refrigerant ports 312 formed in its end face opposite to the refrigerant pump 34 , and has communication passages 314 formed in its end face adjacent to the refrigerant pump 34 , the communication passage 314 communicating with the cylinder bore 344 of the refrigerant pump 34 .
  • the refrigerant pump 34 of the present embodiment is constructed of a first bore part 344 a corresponding to the communication passages 314 of the heat exchange container 31 , and a second bore part 344 b communicating with the low temperature side refrigerant circuit 5 which will be described later.
  • the cylinder bore 344 is constructed in such a way that the refrigerant in the first bore part 344 a and the refrigerant in the second bore part 344 b can flow, whereby the heat of the first bore part 344 a is directly transported to the second bore part 344 b.
  • each communication passage 345 for making the second bore part 344 b to communicate with the low temperature side refrigerant circuit 5 is constructed of a refrigerant suction part 345 a for sucking the refrigerant from the low temperature side refrigerant circuit 5 and a refrigerant discharge part 345 b for discharging the refrigerant to the low temperature side refrigerant circuit 5 .
  • the refrigerant suction part 345 a of the communication passage 345 is provided with a suction valve 345 c opened when the refrigerant is sucked, and the refrigerant discharge part 345 b of the communication passage 345 is provided with a discharge valve 345 d opened when the refrigerant is discharged.
  • the communication passages 345 communicating with the low temperature side refrigerant circuit 5 in the refrigerant pump 34 construct refrigerant ports corresponding to the refrigerant ports 312 in the heat exchange container 31 .
  • the heat radiation side refrigerant circuit 8 is a refrigerant circulation circuit for introducing the refrigerant discharged from the refrigerant discharge parts 312 b of the refrigerant ports 312 in the heat exchange container 31 into a refrigerant flow-in port 7 a of the heat radiator 7 and for returning the refrigerant flowing out of a refrigerant flow-out port 13 b of the heat radiator 7 to the refrigerant suction parts 312 a of the refrigerant ports 312 in the heat exchange container 31 .
  • the refrigerant is circulated in order of the refrigerant discharge parts 312 b of the heat exchange container 31 , the heat radiator 7 , and the refrigerant suction parts 312 a of the heat exchange container 31 .
  • the heat radiator 7 is a heat exchanger that is arranged in the engine compartment and that makes the refrigerant flowing therein through the refrigerant flow-in port 7 a exchange heat with the outside air.
  • the low temperature side refrigerant circuit 5 of the present embodiment is a refrigerant circulation circuit for introducing the refrigerant discharged from the refrigerant discharge parts 345 b of the communication passages 345 in the refrigerant pump 34 into the refrigerant flow-in port 12 a of the cooling heat exchanger 12 and for returning the refrigerant flowing out of the refrigerant flow-out port 12 b of the cooling heat exchanger 12 to the refrigerant suction parts 345 a of the communication passages 345 in the refrigerant pump 34 .
  • the refrigerant is circulated in order of the refrigerant discharge parts 345 b of the communication passages 345 in the refrigerant pump 34 , the cooling heat exchanger 12 , and the refrigerant suction parts 345 a of the communication passages 345 in the refrigerant pump 34 .
  • the piston 343 in the first bore part 344 a in the refrigerant pump 34 When the piston 343 in the first bore part 344 a in the refrigerant pump 34 is positioned near the bottom dead center and the permanent magnet 323 a comes near to the upper working chambers 311 of the heat exchange container 31 , the magnetic field is applied to the magnetic working material 30 received in the upper working chambers 311 and the refrigerant in the upper working chambers 311 is increased in temperature (the magnetic field applying process). At this time, the piston 343 in the second bore part 344 b is positioned near the top dead center.
  • the piston 343 in the first bore part 344 a is moved from the bottom dead center to the top dead center, the refrigerant in the upper working chambers 311 is transferred from the refrigerant pump 34 to the refrigerant ports 312 and the high temperature refrigerant near the refrigerant discharge parts 312 b is discharged to the heat radiator 7 (refrigerant discharging process).
  • the piston 343 in the second bore part 344 b is moved from the top dead center to the bottom dead center and the refrigerant flowing out of the cooling heat exchanger 12 is sucked into the second bore part 344 b via the refrigerant suction parts 345 a of the communication passages 345 .
  • the piston 343 in the first bore part 344 a is positioned near the top dead center and the permanent magnet 323 a is moved away from the upper working chambers 311 in the heat exchange container 31 , the magnetic field is removed from the magnetic working material 30 received in the upper working chambers 311 , whereby the refrigerant in the upper working chambers 311 is decreased in temperature (magnetic field removing process).
  • the piston 343 in the second bore part 344 b is positioned near the bottom dead center.
  • the refrigerant in the first bore part 344 a whose temperature is decreased by removing the magnetic field from the magnetic working material 30 flows into the second bore part 344 b , whereby the refrigerant in the second bore 344 b is decreased in temperature.
  • the piston 343 in the first bore part 344 a is moved from the top dead center to the bottom dead center and the refrigerant flowing out of the heating heat exchanger 13 is sucked into portions near the refrigerant suction parts 312 a .
  • the piston 343 in the second bore part 344 b is moved from the bottom dead center to the top dead center and the refrigerant in the second bore part 344 b is discharged to the cooling heat exchanger 12 via the refrigerant discharge parts 345 b of the communication passages 345 .
  • the cold heat generated by the magnetocaloric effect of the magnetic working material 30 received in the upper working chambers 311 of the heat exchange container 31 is transported to the cooling heat exchanger 12 .
  • the blown air to be blown into the passenger compartment can be cooled in the cooling heat exchanger 12 .
  • the hot heat generated by the magnetocaloric effect of the magnetic working material 30 received in the upper working chambers 311 of the heat exchange container 31 is transported to the heat radiator 7 and is radiated to the outside air.
  • the refrigerant having temperature decreased by the cold heat generated in the magnetic working material 30 can be made to directly flow into the cooling heat exchanger 12 , so that a heat exchanger loss caused when the cold heat generated in the magnetic working material 30 is transported can be reduced and hence the COP of the magnetic refrigeration system can be improved.
  • the magnetic refrigeration system 2 having the refrigerant circuit of only the cooling mode for cooling the interior of the passenger compartment
  • the magnetic refrigeration system 2 may have a construction having a refrigerant circuit of only the heating mode for heating the interior of the passenger compartment.
  • the following construction is recommended: for example, the heat radiator 7 of the present embodiment is arranged in the case 11 of the indoor air conditioning unit 10 and is functioned as a heating heat exchanger for heating the blown air to be blown into the passenger compartment, and the cooling heat exchanger 12 is arranged in the engine compartment and is functioned as a heat absorber for exchanging heat with the outside air.
  • FIG. 11 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment
  • FIG. 12 is an enlarged view of a magnetic refrigerator of the present embodiment.
  • the present embodiment is different from the first to the fourth embodiments in the specific construction of the one and the other refrigerant ports 312 , 313 in the magnetic refrigerator 3 and in the specific construction of the refrigerant pump 34 .
  • the descriptions of parts identical or equivalent to the parts in the first to the fourth embodiments will be omitted or simplified.
  • the respective refrigerant suction parts 312 a , 313 a are disposed on the same circumference when viewed from the longitudinal direction of the heat exchange container 31 .
  • the respective refrigerant discharge parts 312 b , 313 b are disposed on the same circumference when viewed from the longitudinal direction of the heat exchange container 31 .
  • the refrigerant discharge parts 312 b , 313 b are arranged in such a way as to be positioned on the outer side in the radial direction of the heat exchange container 31 as compared with the refrigerant suction parts 312 a , 313 a .
  • the refrigerant suction parts 312 a , 313 a may be arranged in such a way as to be positioned on the outer side in the radial direction of the heat exchange container 31 as compared with the refrigerant discharge parts 312 b , 313 b.
  • Each of the refrigerant suction parts 312 a , 313 a is provided with the suction valve 313 c and each of the refrigerant discharge parts 312 b , 313 b is provided with the discharge valve 313 d .
  • the respective suction valves 313 c are disposed in such a way as to be positioned on the same circumference when viewed from the longitudinal direction of the heat exchange container 31 in correspondence to the refrigerant suction parts 312 a , 313 a .
  • the respective discharge valves 313 d are disposed in such a way as to be positioned on the same circumference when viewed from the longitudinal direction of the heat exchange container 31 in correspondence to the refrigerant discharge parts 312 b , 313 b.
  • the respective refrigerant suction parts 312 a in the high temperature side ports 312 communicate with each other via a suction side manifold 312 e
  • the respective discharge parts 312 b in the high temperature side ports 312 communicate with each other via a discharge side manifold 312 f
  • the respective refrigerant suction parts 313 a in the low temperature side ports 313 communicate with each other via a suction side manifold 313 e
  • the respective discharge parts 313 b in the low temperature side ports 313 communicate with each other via a discharge side manifold 313 f .
  • a heat insulating material (not shown) is arranged between the suction side manifold 312 e and the discharge side manifold 312 f in the high temperature side ports 312 , which hence inhibits heat transfer between the both manifolds 312 e and 312 f .
  • a heat insulating material (not shown) is arranged between the suction side manifold 313 e and the discharge side manifold 313 f in the low temperature side ports 313 , which hence inhibits heat transfer between the both manifolds 313 e and 313 f.
  • the volume of a space constructing each of the refrigerant suction parts 312 a , 313 a and the refrigerant discharge parts 312 b , 313 b in the heat exchange container 31 is made smaller than the volume of the refrigerant discharged at one time (that is, cylinder volume) in the refrigerant pump 34 , which will be described later.
  • the volume of the space constructing each of the refrigerant suction parts 312 a , 313 a and the refrigerant discharge parts 312 b , 313 b in the heat exchange container 31 corresponds to the total volume of the volume (dead volume) of a space in which each of the valves 312 c , 313 c , 312 d , 313 d is arranged (including the movable range of each valve).
  • the permanent magnets 323 a , 323 b constructing a portion of the magnetic field applying and removing device 32 are disposed at positions shifted by 180° from each other in the outer circumferences of the rotors 322 a , 322 b , respectively.
  • the other permanent magnet 323 b is positioned on the lower side.
  • the present embodiment employs a radial piston pump of a multi-cylinder type in which the pistons 346 are slid in the radial direction with respect to the axial direction of the rotary shaft 321 a , 321 b.
  • the refrigerant pump 34 of the present embodiment is constructed of a cylindrical housing 340 , a drive shaft rotatably supported in the housing 340 and having an eccentric cam 348 integrally formed, a plurality of cylinder bores 347 formed radially in the housing 340 , and the pistons 346 reciprocated in the respective cylinder bores 347 according to the rotation of the eccentric cam 348 .
  • the heat exchange container 31 is integrated with the housing 340 of the refrigerant pump 34 .
  • the refrigerant pump 34 of the present embodiment is constructed in such a way as to suck or discharge the refrigerant from or into the respective containers 31 a , 31 b in synchronization with applying and removing the magnetic field to and from the magnetic working material 30 .
  • the refrigerant pump 34 discharges the refrigerant in sequence into the respective working chambers 311 positioned on the upper side in the respective containers 31 a , 31 b and sucks the refrigerant in sequence from the respective working chambers 311 positioned on the lower side in the respective containers 31 a , 31 b.
  • the refrigerant pump 34 sucks the refrigerant in sequence from the respective working chambers 311 positioned on the upper side in the respective containers 31 a , 31 b and discharges the refrigerant in sequence into the respective working chambers 311 positioned on the lower side in the respective containers 31 a , 31 b.
  • the refrigerant in the magnetic refrigerator 3 , the refrigerant can be sucked or discharged in sequence from or into the respective working chambers 311 in the respective containers 31 a , 31 b in synchronization with applying and removing the magnetic field to and from the magnetic working material 30 , so that the refrigerant near the refrigerant discharge parts 312 b , 313 b in the respective containers 31 a , 31 b can be continuously discharged to the outside.
  • the operation of the magnetic refrigerator 3 will be generally described.
  • the piston 346 in the cylinder bore 347 positioned on the upper side in the refrigerant pump 34 is positioned near the bottom dead center and the permanent magnet 323 a comes near to the upper working chambers 311 positioned on the upper side of the high temperature side container 31 a
  • the magnetic field is applied in sequence to the magnetic working material 30 received in the upper working chambers 311 positioned on the upper side (that is, the magnetic working material 30 is magnetized, the magnetic field applying process).
  • the magnetic working material 30 generates heat by the magnetocaloric effect, whereby the refrigerant in the respective working chambers 311 positioned on the upper side is sequentially increased in temperature.
  • the piston 346 in the cylinder bore 347 positioned on the upper side in the refrigerant pump 34 is moved from the bottom dead center to the top dead center and the refrigerant in the respective working chambers 311 positioned on the upper side is transferred from the refrigerant pump 34 to the high temperature side ports 312 .
  • the discharge valves 312 d disposed at the refrigerant discharge parts 312 b of the high temperature side ports 312 are opened and hence the high temperature refrigerant near the refrigerant discharge parts 312 b is discharged to the heating heat exchanger 13 via the discharge side manifolds 312 f (refrigerant discharging process).
  • the piston 346 in the cylinder bore 347 positioned on the upper side in the refrigerant pump 34 is moved from the top dead center to the bottom dead center and the refrigerant in the respective working chambers 311 positioned on the upper side is transferred from the high temperature side ports 312 to the refrigerant pump 34 .
  • the suction valves 312 c disposed at the refrigerant suction parts 312 a of the high temperature side ports 312 are opened and the refrigerant flowing out of the heating heat exchanger 13 is sucked into portions near the refrigerant suction parts 312 a via the suction side manifolds 312 e (refrigerant sucking process).
  • the piston 346 of the refrigerant pump 34 is returned to a position near the bottom dead center, there is again brought about the magnetic field applying process.
  • the permanent magnet 323 b gets far away from the working chambers 311 and hence the magnetic field is removed in sequence from the magnetic working material 30 received in the respective working chambers 311 positioned on the upper side (magnetic field removing process).
  • the piston 346 in the cylinder bore 347 positioned on the upper side in the refrigerant pump 34 is moved from the bottom dead center to the top dead center and the refrigerant in the respective working chambers 311 positioned on the upper side is transferred from the refrigerant pump 34 to the low temperature side ports 313 .
  • the discharge valves 313 d disposed at the refrigerant discharge parts 313 b of the low temperature side ports 313 are opened and the low temperature refrigerant near the refrigerant discharge parts 313 b is discharged to the cooling heat exchanger 12 via the discharge side manifolds 313 f (refrigerant discharging process).
  • the magnetic field is applied to the magnetic working material 30 received in the respective working chambers 311 positioned on the upper side (magnetic field applying process).
  • the piston 346 in the cylinder bore 347 positioned on the upper side in the refrigerant pump 34 is moved from the top dead center to the bottom dead center and the refrigerant in the respective working chambers 311 positioned on the upper side is transferred from the low temperature side ports 313 to the refrigerant pump 34 .
  • the suction valves 313 c disposed at the refrigerant suction parts 313 a of the low temperature side ports 313 are opened and the refrigerant flowing out of the cooling heat exchanger 12 is sucked into portions near the refrigerant suction parts 313 a via the suction side manifolds 313 e (refrigerant sucking process).
  • the piston 346 of the refrigerant pump 34 is returned near the bottom dead center, there is again brought about the magnetic field removing process.
  • the refrigerant having temperature increased by the hot heat generated in the magnetic working material 30 can be made to directly flow into the heating heat exchanger 13 , and the refrigerant having temperature decreased by the cold heat generated in the magnetic working material 30 can be made to directly flow into the cooling heat exchanger 12 , so that the same advantages as the first embodiment described above can be produced.
  • the volume of a space constructing each of the refrigerant suction parts 312 a , 313 a and the refrigerant discharge parts 312 b , 313 b in the heat exchange container 31 is made smaller than the volume of the refrigerant discharged at one time (that is, cylinder volume) in the refrigerant pump 34 .
  • FIG. 13 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment.
  • the descriptions of parts identical or equivalent to the parts in the first to the fifth embodiments will be omitted or simplified.
  • the present embodiment employs a construction in which the suction valves 312 c , 313 c , which are disposed respectively in the refrigerant suction parts 312 a , 313 a , and the discharge valves 312 d , 313 d , which are disposed respectively in the refrigerant discharge parts 312 b , 313 b , in the fifth embodiment are eliminated and in which check valves 44 , 45 and 56 , 57 are provided in place of those valves.
  • each of the refrigerant suction parts 312 a of the high temperature side container 31 a is provided with a first check valve 44 for allowing the refrigerant to flow from the refrigerant flow-out port 13 b of the heating heat exchanger 13 to each of the refrigerant suction parts 312 a of the high temperature side container 31 a
  • each of the refrigerant discharge parts 312 b of the high temperature side container 31 a is provided with a second check valve 45 for allowing the refrigerant to flow from each of the refrigerant discharge parts 312 b of the high temperature side container 31 a to the refrigerant flow-in port 13 a of the heating heat exchanger 13 .
  • each of the refrigerant suction parts 313 a of the low temperature side container 31 b is provided with a third check valve 56 for allowing the refrigerant to flow from the refrigerant flow-out port 12 b of the cooling heat exchanger 12 to each of the refrigerant suction parts 313 a of the low temperature side container 31 b
  • each of the refrigerant discharge parts 313 b of the low temperature side container 31 b is provided with a fourth check valve 57 for allowing the refrigerant to flow from each of the refrigerant discharge parts 313 b of the low temperature side container 31 b to the refrigerant flow-in port 12 a of the cooling heat exchanger 12 .
  • the respective first and third check valves 44 , 56 disposed at the respective refrigerant suction parts 312 a , 313 a are arranged in such a way as to be positioned on the same circumference when the heat exchange container 31 is viewed from the longitudinal direction in correspondence to the refrigerant suction parts 312 a , 313 a .
  • the respective second and fourth check valves 45 , 57 disposed at the respective refrigerant discharge parts 312 b , 313 b are arranged in such a way as to be positioned on the same circumference when the heat exchange container 31 is viewed from the longitudinal direction in correspondence to the refrigerant discharge parts 312 b , 313 b.
  • the refrigerant having temperature increased by the hot heat generated in the magnetic working material 30 can be made to directly flow into the heating heat exchanger 13 , and the refrigerant having temperature decreased by the cold heat generated in the magnetic working material 30 can be made to directly flow into the cooling heat exchanger 12 , so that the same advantages as the fifth embodiment described above can be produced.
  • FIG. 14 is a general construction diagram of a vehicle air conditioning device 1 of the present embodiment.
  • the descriptions of parts identical or equivalent to the parts in the first to the sixth embodiments will be omitted or simplified.
  • the present embodiment employs a construction in which the check valves 44 , 45 , which are disposed in the respective refrigerant suction parts 312 a , 313 a and the check valves 56 , 57 , which are disposed in the respective refrigerant discharge parts 312 b , 313 b , in the sixth embodiment are eliminated and in which opening and closing valves 46 , 47 and 58 , 59 , which are opened or closed according to a control signal from the air conditioning control device 110 , are provided in place of those check valves 44 , 45 and 56 , 57 .
  • each of the refrigerant suction parts 312 a of the high temperature side container 31 a is provided with a first opening and closing valve 46 controlled in such a way as to allow the refrigerant to flow only from the refrigerant flow-out port 13 b of the heating heat exchanger 13 to each of the refrigerant suction parts 312 a of the high temperature side container 31 a
  • each of the refrigerant discharge parts 312 b of the high temperature side container 31 a is provided with a second opening and closing valve 47 controlled in such a way as to allow the refrigerant to flow only from the refrigerant discharge part 312 b of the high temperature side container 31 a to the refrigerant flow-in port 13 a of the heating heat exchanger 13 .
  • each of the refrigerant suction parts 313 a of the low temperature side container 31 b is provided with a third opening and closing valve 58 controlled in such a way as to allow the refrigerant to flow only from the refrigerant flow-out port 12 b of the cooling heat exchanger 12 to each of the refrigerant suction parts 313 a of the low temperature side container 31 b
  • each of the refrigerant discharge parts 313 b of the low temperature side container 31 b is provided with a fourth opening and closing valve 59 controlled in such a way as to allow the refrigerant to flow only from each of the refrigerant discharge parts 313 b of the low temperature side container 31 b to the refrigerant flow-in port 12 a of the cooling heat exchanger 12 .
  • the respective first and third opening and closing valves 46 , 58 disposed at the respective refrigerant suction parts 312 a , 313 a are arranged in such a way as to be positioned on the same circumference when the heat exchange container 31 is viewed from the longitudinal direction in correspondence to the refrigerant suction parts 312 a , 313 a .
  • the respective second and fourth opening and closing valves 47 , 59 disposed at the respective refrigerant discharge parts 312 b , 313 b are arranged in such a way as to be positioned on the same circumference when the heat exchange container 31 is viewed from the longitudinal direction in correspondence to the refrigerant discharge parts 312 b , 313 b.
  • the refrigerant having temperature increased by the hot heat generated in the magnetic working material 30 can be made to directly flow into the heating heat exchanger 13 , and the refrigerant having temperature decreased by the cold heat generated in the magnetic working material 30 can be made to directly flow into the cooling heat exchanger 12 , so that the same advantages as the fifth and sixth embodiments described above can be produced.
  • the suction valves 312 c , 313 c are arranged nearer to the working chambers 311 than the discharge valves 312 d , 313 d are. For this reason, when the refrigerant is discharged from each of the discharge valves 312 d , 313 d , the refrigerant remaining in a dead space around each of the suction valves 312 c , 313 c and the refrigerant discharged from each of the discharge valves 312 c , 313 c are likely to be mixed with each other and to unnecessarily exchange heat between them.
  • an eighth embodiment employs a construction in which the discharge valves 312 d , 313 d are arranged nearer to the working chambers 311 in the longitudinal direction of the heat exchange container 31 than the suction valves 312 c , 313 c are.
  • the discharge valves 312 d , 313 d are arranged in the vicinity of the working chambers 311 .
  • the refrigerant suction parts 312 a , 313 a are arranged on the outer side in the radial direction of the heat exchange container 31 as compared with the refrigerant discharge parts 312 b , 313 b.
  • a plate-shaped valve plate 316 having a suction hole 316 a and a discharge hole 316 b formed therein is arranged at a position adjacent to the working chambers 311 .
  • the suction hole 316 a formed in the valve pate 316 constructs a communication hole for sucking the refrigerant into the working chamber 311
  • the discharge hole 316 b constructs a communication hole for discharging the refrigerant from the working chamber 311 .
  • the discharge valves 312 d , 313 d are arranged at positions adjacent to the valve plate 316 and the suction valves 312 c , 313 c are arranged at positions away from the valve plate 316 by a distance more than a movable range of the valve.
  • the discharge valve 312 d , 313 d is constructed in such a way as to directly open or close the discharge hole 316 b of the valve plate 316 and the suction valve 312 c , 313 c is constructed in such a way as to indirectly open or close the suction hole 316 a of the valve plate 316 .
  • one rotary valve constructs the valves 312 c , 312 d and the other rotary valve constructs the valves 313 c , 313 d .
  • Each of the rotary valves is constructed of a valve plate 317 and a rotary disk 318 .
  • the valve plate 317 is arranged adjacently to the working chambers 311 , and has suction holes 317 a and discharge holes 317 b formed therein. Each of the suction holes 317 a and discharge holes 317 b communicates with each of the working chambers 311 .
  • the rotary disk 318 rotates in a circumferential direction of the heat exchange container 31 and opens or closes the suction holes 317 a and the discharge holes 317 b of the valve plate 317 .
  • Each of the suction holes 317 a formed in the valve plate 317 constructs a communication hole for sucking the refrigerant into each of the working chambers 311
  • each of the discharge holes 317 b constructs a communication hole for discharging the refrigerant from each of the working chambers 311 .
  • the rotary disk 318 is coupled to the rotary shaft 321 a , 321 b in such a way as to be rotated by power supplied from the electric motor 35 which is a drive part and is constructed in such a way as to open or close the suction holes 317 a and the discharge holes 317 b of the valve plate 317 at timings shifted from each other in synchronization with the rotation of the rotary shaft 321 a , 321 b.
  • the rotary disk 318 has suction side through holes 318 a passed through from an obverse to a reverse at positions, which are opposite to the suction holes 317 a of the valve plate 317 in the axial direction when the refrigerant is sucked into the working chambers 311 .
  • the rotary disk 318 has discharge side through holes 318 b passed through from an obverse to a reverse at positions, which are opposite to the discharge holes 317 b of the valve plate 317 in the axial direction when the refrigerant is discharged from the working chambers 311 .
  • the present embodiment employs a construction in which the rotary disk 318 of the rotary valve is rotated by the power for driving the magnetic field applying and removing device 32 , that is, the power of the electric motor 35 , the magnetic refrigeration system can be realized by a simple construction. Still further, the suction valves 312 c and the discharge valves 312 d can be integrally constructed and the suction valves 313 c and the discharge valves 313 d can be integrally constructed. Hence, the magnetic refrigeration system can be realized by a further simpler construction.
  • each of the suction valves 312 c , 313 c is constructed of a rotary valve and in which each of the discharge valves 312 d , 313 d is constructed of a reed valve.
  • the rotary valve constructing the respective suction valve 312 c , 313 c is constructed of a valve plate 317 and a rotary disk 318 .
  • the valve plate 317 is arranged adjacently to the working chambers 311 and has suction holes 317 a each of which communicates with each of the working chambers 311 .
  • the rotary disk 318 rotates in a circumferential direction of the heat exchange container 31 and opens or closes the suction holes 317 a of the valve plate 317 .
  • the rotary disk 318 is coupled to the rotary shaft 321 a , 321 b in such a way as to be rotated by power supplied from the electric motor 35 corresponding to the drive part and is constructed in such a way as to open or close the suction holes 317 a of the valve plate 317 in synchronization with the rotation of the rotary shaft 321 a , 321 b .
  • suction side through holes 318 a each of which is passed through from an obverse to a reverse at a position opposite to the suction hole 317 a of the valve plate 317 in the axial direction when the refrigerant is sucked into each of the working chambers 311 .
  • the reed valve constructing the discharge valve 312 d , 313 d is constructed in such a way as to open or close each of discharge holes 317 b formed in the valve plate 317 by an elastic plate member.
  • the first and the second backward flow preventing parts are respectively constructed of the check valves 44 , 45 and 56 , 57 in the second and the sixth embodiments.
  • each of the first and the second backward flow preventing parts may be constructed of a fluid diode in which resistance is smaller in a forward direction of a refrigerant flow than in a backward direction of the refrigerant flow.
  • the magnetic refrigeration system can be realized by a simple construction.
  • one of the first and the second backward flow preventing parts may be constructed of a fluid diode 71 , 72 .
  • the fluid diode can be employed a nozzle type fluid diode 71 or a vortex type fluid diode 72 .
  • FIG. 22 is a schematic section view of the nozzle type fluid diode 71 .
  • the nozzle type fluid diode 71 is constructed of a cylindrical member and, as shown in FIG. 22 , is constructed of a tapered part 71 a whose size is decreased in a conical shape from an upstream side of a refrigerant flow to a downstream side of the refrigerant flow in a refrigerant flow passage.
  • resistance at the tapered part 71 a becomes larger in the case where the refrigerant flows in the backward direction (see a black arrow in the drawing) than in the case where the refrigerant flows in the forward direction (see a white arrow in the drawing).
  • FIG. 23 is an explanatory view illustrating the vortex type fluid diode 72 , in which (a) of FIG. 23 is the schematic perspective view, (b) of FIG. 23 is a top view of (a) illustrating a flow of the refrigerant in the forward direction, and (c) of FIG. 23 is a top view of (b) illustrating a flow of the refrigerant in the backward direction.
  • the vortex type fluid diode 72 is constructed of a vortex case 721 having a cylindrical vortex chamber formed therein, an axial nozzle 722 extended in a central axis direction of the vortex chamber in the vortex case 721 , and a tangent nozzle 723 extended in a tangential direction of an outer circumference of the vortex chamber.
  • the magnetic field generating part of the magnetic field applying and removing device 32 is constructed of the permanent magnets 323 a , 323 b .
  • the magnetic field generating part is not limited to this but may be constructed of an electric magnet for generating a magnetic field when current is applied thereto.
  • the drive sources of the refrigerant pump 34 and the magnetic field applying and removing device 32 are constructed of one electric motor 35 .
  • the drive sources of the refrigerant pump 34 and the magnetic field applying and removing device 32 may be constructed of separate drive sources.
  • the drive sources of the respective valves 312 c , 313 c , 312 d , 313 d and the magnetic field applying and removing device 32 are constructed of one electric motor 35 .
  • the respective drive sources may be constructed of separate drive sources.
  • the magnetic refrigeration system 2 is applied to the vehicle air conditioning device 1 .
  • the magnetic refrigeration system 2 is not limited to this but may be applied to the other device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hard Magnetic Materials (AREA)
US13/976,543 2011-01-27 2012-01-24 Magnetic refrigeration system and vehicle air conditioning device Abandoned US20130298571A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2011014914 2011-01-27
JP2011-014914 2011-01-27
JP2011-110206 2011-05-17
JP2011110206 2011-05-17
JP2011281288A JP5488580B2 (ja) 2011-01-27 2011-12-22 磁気冷凍システムおよび自動車用空調装置
JP2011-281288 2011-12-22
PCT/JP2012/000412 WO2012102016A1 (ja) 2011-01-27 2012-01-24 磁気冷凍システムおよび自動車用空調装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000412 A-371-Of-International WO2012102016A1 (ja) 2011-01-27 2012-01-24 磁気冷凍システムおよび自動車用空調装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/253,975 Division US9995512B2 (en) 2011-01-27 2016-09-01 Magnetic refrigeration system with single direction coolant devices and vehicle air conditioning device applications

Publications (1)

Publication Number Publication Date
US20130298571A1 true US20130298571A1 (en) 2013-11-14

Family

ID=46580592

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/976,543 Abandoned US20130298571A1 (en) 2011-01-27 2012-01-24 Magnetic refrigeration system and vehicle air conditioning device
US15/253,975 Active US9995512B2 (en) 2011-01-27 2016-09-01 Magnetic refrigeration system with single direction coolant devices and vehicle air conditioning device applications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/253,975 Active US9995512B2 (en) 2011-01-27 2016-09-01 Magnetic refrigeration system with single direction coolant devices and vehicle air conditioning device applications

Country Status (5)

Country Link
US (2) US20130298571A1 (zh)
EP (1) EP2669604A4 (zh)
JP (1) JP5488580B2 (zh)
CN (1) CN103562658B (zh)
WO (1) WO2012102016A1 (zh)

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150102118A1 (en) * 2013-10-16 2015-04-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US20150168030A1 (en) * 2013-12-17 2015-06-18 Astronautics Corporation Of America Magnetic Refrigeration System With Improved Flow Efficiency
US20160090979A1 (en) * 2013-05-23 2016-03-31 Hanning Elektro-Werke Gmbh & Co. Kg Pump arrangement
US20160091227A1 (en) * 2013-12-17 2016-03-31 Astronautics Corporation Of America Magnetic Refrigeration System with Improved Coaxial Valve
US9322579B2 (en) 2013-04-12 2016-04-26 Denso Corporation Thermo-magnetic cycle apparatus
US20160244052A1 (en) * 2013-10-09 2016-08-25 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling same
US20170059215A1 (en) * 2015-09-01 2017-03-02 Denso Corporation Magnetic Heat Pump Device
US20170363333A1 (en) * 2011-06-06 2017-12-21 Jan Vetrovec Magnetocaloric Refrigerator
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US20180023854A1 (en) * 2016-07-19 2018-01-25 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US20180172323A1 (en) * 2016-07-19 2018-06-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10126025B2 (en) 2013-08-02 2018-11-13 Haier Us Appliance Solutions, Inc. Magneto caloric assemblies
US20190063795A1 (en) * 2017-08-25 2019-02-28 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US10222101B2 (en) * 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US20190257555A1 (en) * 2015-11-13 2019-08-22 Basf Se Magnetocaloric heat pump, cooling device and method of operating thereof
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11220155B2 (en) 2018-08-31 2022-01-11 Faurecia Interior Systems, Inc. Vehicle air vent
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11402136B2 (en) 2017-08-25 2022-08-02 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with multiple bed rings

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267613B2 (ja) 2011-04-25 2013-08-21 株式会社デンソー 磁気熱量効果型ヒートポンプ装置
JP5278486B2 (ja) 2011-04-25 2013-09-04 株式会社デンソー 熱磁気エンジン装置、および可逆熱磁気サイクル装置
JP5418616B2 (ja) 2011-05-13 2014-02-19 株式会社デンソー 熱磁気サイクル装置
JP5907023B2 (ja) * 2012-09-21 2016-04-20 株式会社デンソー 磁気ヒートポンプシステム
JP6212955B2 (ja) * 2013-05-23 2017-10-18 日産自動車株式会社 磁気冷暖房装置
WO2015118007A1 (en) * 2014-02-05 2015-08-13 Danmarks Tekniske Universitet An active magnetic regenerator device
JP6269307B2 (ja) * 2014-05-13 2018-01-31 株式会社デンソー 車両用空調装置
JP2018080854A (ja) * 2016-11-14 2018-05-24 サンデンホールディングス株式会社 磁気ヒートポンプ装置
JP6505781B2 (ja) * 2017-07-25 2019-04-24 株式会社フジクラ 磁気ヒートポンプ装置
JP2019100602A (ja) * 2017-11-30 2019-06-24 サンデンホールディングス株式会社 磁気ヒートポンプ装置
JP2019132552A (ja) * 2018-01-31 2019-08-08 サンデンホールディングス株式会社 磁気ヒートポンプシステム
JP2019143938A (ja) * 2018-02-23 2019-08-29 サンデンホールディングス株式会社 磁気熱量素子及び磁気ヒートポンプ装置
JP7111968B2 (ja) * 2018-09-11 2022-08-03 ダイキン工業株式会社 磁気冷凍装置
EP4027078A4 (en) * 2019-09-30 2023-10-25 Daikin Industries, Ltd. SOLID STATE COOLING MODULE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003016794A1 (en) * 2001-08-17 2003-02-27 Abb Ab A fluid handling system
US6526759B2 (en) * 2000-08-09 2003-03-04 Astronautics Corporation Of America Rotating bed magnetic refrigeration apparatus
US20050167631A1 (en) * 2002-01-30 2005-08-04 Horton David R. Valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281969A (en) * 1979-06-25 1981-08-04 Doub Ernest L Jun Thermal pumping device
JPH1114166A (ja) * 1997-06-24 1999-01-22 Daikin Ind Ltd 冷凍装置
FR2868153B1 (fr) * 2004-03-25 2011-03-04 Peugeot Citroen Automobiles Sa Systeme de refrigeration magnetique et procede de mise en oeuvre
JP4387892B2 (ja) * 2004-08-17 2009-12-24 財団法人鉄道総合技術研究所 鉄道車両用空調システム
JP2006112709A (ja) * 2004-10-14 2006-04-27 Ebara Corp 磁気冷凍装置
JP2006131180A (ja) * 2004-11-09 2006-05-25 Calsonic Kansei Corp 車両用空調装置
US7377291B2 (en) * 2005-12-28 2008-05-27 Serveron Corporation Multiport rotary valve
FR2922999A1 (fr) * 2007-10-30 2009-05-01 Cooltech Applic Soc Par Action Generateur thermique a materiau magnetocalorique
FR2937182B1 (fr) 2008-10-14 2010-10-22 Cooltech Applications Generateur thermique a materiau magnetocalorique
JP2010196914A (ja) * 2009-02-23 2010-09-09 Toyota Industries Corp 斜板式ピストン駆動を用いた磁気冷凍装置
FR2943407B1 (fr) 2009-03-20 2013-04-12 Cooltech Applications Generateur thermique magnetocalorique et son procede d'echange thermique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526759B2 (en) * 2000-08-09 2003-03-04 Astronautics Corporation Of America Rotating bed magnetic refrigeration apparatus
WO2003016794A1 (en) * 2001-08-17 2003-02-27 Abb Ab A fluid handling system
US20050167631A1 (en) * 2002-01-30 2005-08-04 Horton David R. Valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 2006131180 A (Takahashi) Machine Translation from Espacenet *

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170363333A1 (en) * 2011-06-06 2017-12-21 Jan Vetrovec Magnetocaloric Refrigerator
US10436481B2 (en) * 2011-06-06 2019-10-08 Jan Vetrovec Magnetocaloric refrigerator
US9322579B2 (en) 2013-04-12 2016-04-26 Denso Corporation Thermo-magnetic cycle apparatus
US20160090979A1 (en) * 2013-05-23 2016-03-31 Hanning Elektro-Werke Gmbh & Co. Kg Pump arrangement
US10126025B2 (en) 2013-08-02 2018-11-13 Haier Us Appliance Solutions, Inc. Magneto caloric assemblies
US10232844B2 (en) * 2013-10-09 2019-03-19 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling same
US20160244052A1 (en) * 2013-10-09 2016-08-25 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling same
US20150102118A1 (en) * 2013-10-16 2015-04-16 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US10814694B2 (en) * 2013-10-16 2020-10-27 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
US20160091227A1 (en) * 2013-12-17 2016-03-31 Astronautics Corporation Of America Magnetic Refrigeration System with Improved Coaxial Valve
EP3090219A4 (en) * 2013-12-17 2017-09-27 Astronautics Corporation Of America Magnetic refrigeration system with improved flow efficiency
US9995511B2 (en) * 2013-12-17 2018-06-12 Astronautics Corporation Of America Magnetic refrigeration system with improved flow efficiency
US20150168030A1 (en) * 2013-12-17 2015-06-18 Astronautics Corporation Of America Magnetic Refrigeration System With Improved Flow Efficiency
US20170059215A1 (en) * 2015-09-01 2017-03-02 Denso Corporation Magnetic Heat Pump Device
US10295228B2 (en) * 2015-09-01 2019-05-21 Denso Corporation Magnetic heat pump device
US20190257555A1 (en) * 2015-11-13 2019-08-22 Basf Se Magnetocaloric heat pump, cooling device and method of operating thereof
US10541070B2 (en) 2016-04-25 2020-01-21 Haier Us Appliance Solutions, Inc. Method for forming a bed of stabilized magneto-caloric material
US10299655B2 (en) 2016-05-16 2019-05-28 General Electric Company Caloric heat pump dishwasher appliance
US10006672B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047979B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10047980B2 (en) 2016-07-19 2018-08-14 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10222101B2 (en) * 2016-07-19 2019-03-05 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10006675B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10274231B2 (en) 2016-07-19 2019-04-30 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10281177B2 (en) 2016-07-19 2019-05-07 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10648703B2 (en) * 2016-07-19 2020-05-12 Haier US Applicance Solutions, Inc. Caloric heat pump system
US10006673B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10295227B2 (en) 2016-07-19 2019-05-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US10006674B2 (en) 2016-07-19 2018-06-26 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US20180172323A1 (en) * 2016-07-19 2018-06-21 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US20180023854A1 (en) * 2016-07-19 2018-01-25 Haier Us Appliance Solutions, Inc. Caloric heat pump system
US9869493B1 (en) 2016-07-19 2018-01-16 Haier Us Appliance Solutions, Inc. Linearly-actuated magnetocaloric heat pump
US10443585B2 (en) 2016-08-26 2019-10-15 Haier Us Appliance Solutions, Inc. Pump for a heat pump system
US10386096B2 (en) 2016-12-06 2019-08-20 Haier Us Appliance Solutions, Inc. Magnet assembly for a magneto-caloric heat pump
US10288326B2 (en) 2016-12-06 2019-05-14 Haier Us Appliance Solutions, Inc. Conduction heat pump
US10527325B2 (en) 2017-03-28 2020-01-07 Haier Us Appliance Solutions, Inc. Refrigerator appliance
US11009282B2 (en) 2017-03-28 2021-05-18 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10451320B2 (en) 2017-05-25 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with water condensing features
US10451322B2 (en) 2017-07-19 2019-10-22 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US10422555B2 (en) 2017-07-19 2019-09-24 Haier Us Appliance Solutions, Inc. Refrigerator appliance with a caloric heat pump
US20190063795A1 (en) * 2017-08-25 2019-02-28 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US11402136B2 (en) 2017-08-25 2022-08-02 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with multiple bed rings
US11125477B2 (en) * 2017-08-25 2021-09-21 Astronautics Corporation Of America Drum-type magnetic refrigeration apparatus with improved magnetic-field source
US10520229B2 (en) 2017-11-14 2019-12-31 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US11022348B2 (en) 2017-12-12 2021-06-01 Haier Us Appliance Solutions, Inc. Caloric heat pump for an appliance
US10830506B2 (en) 2018-04-18 2020-11-10 Haier Us Appliance Solutions, Inc. Variable speed magneto-caloric thermal diode assembly
US10641539B2 (en) 2018-04-18 2020-05-05 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10782051B2 (en) 2018-04-18 2020-09-22 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648706B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with an axially pinned magneto-caloric cylinder
US10648704B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10876770B2 (en) 2018-04-18 2020-12-29 Haier Us Appliance Solutions, Inc. Method for operating an elasto-caloric heat pump with variable pre-strain
US10551095B2 (en) 2018-04-18 2020-02-04 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10648705B2 (en) 2018-04-18 2020-05-12 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly
US10557649B2 (en) 2018-04-18 2020-02-11 Haier Us Appliance Solutions, Inc. Variable temperature magneto-caloric thermal diode assembly
US11054176B2 (en) 2018-05-10 2021-07-06 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a modular magnet system
US11015842B2 (en) 2018-05-10 2021-05-25 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial polarity alignment
US10989449B2 (en) 2018-05-10 2021-04-27 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with radial supports
US10684044B2 (en) 2018-07-17 2020-06-16 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a rotating heat exchanger
US11092364B2 (en) 2018-07-17 2021-08-17 Haier Us Appliance Solutions, Inc. Magneto-caloric thermal diode assembly with a heat transfer fluid circuit
US11220155B2 (en) 2018-08-31 2022-01-11 Faurecia Interior Systems, Inc. Vehicle air vent
US11149994B2 (en) 2019-01-08 2021-10-19 Haier Us Appliance Solutions, Inc. Uneven flow valve for a caloric regenerator
US11168926B2 (en) 2019-01-08 2021-11-09 Haier Us Appliance Solutions, Inc. Leveraged mechano-caloric heat pump
US11193697B2 (en) 2019-01-08 2021-12-07 Haier Us Appliance Solutions, Inc. Fan speed control method for caloric heat pump systems
US11274860B2 (en) 2019-01-08 2022-03-15 Haier Us Appliance Solutions, Inc. Mechano-caloric stage with inner and outer sleeves
US11112146B2 (en) 2019-02-12 2021-09-07 Haier Us Appliance Solutions, Inc. Heat pump and cascaded caloric regenerator assembly
US11015843B2 (en) 2019-05-29 2021-05-25 Haier Us Appliance Solutions, Inc. Caloric heat pump hydraulic system

Also Published As

Publication number Publication date
JP2012255641A (ja) 2012-12-27
JP5488580B2 (ja) 2014-05-14
US20160370037A1 (en) 2016-12-22
CN103562658B (zh) 2015-08-26
WO2012102016A1 (ja) 2012-08-02
US9995512B2 (en) 2018-06-12
CN103562658A (zh) 2014-02-05
EP2669604A4 (en) 2014-06-25
EP2669604A1 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
US9995512B2 (en) Magnetic refrigeration system with single direction coolant devices and vehicle air conditioning device applications
US8875522B2 (en) Magnetic heat pump apparatus
US9546803B2 (en) Reciprocating magnetic heat pump apparatus with multiple permanent magnets in different configurations
US9027339B2 (en) Thermo-magnetic engine apparatus and reversible thermo-magnetic cycle apparatus
US9534814B2 (en) Magneto-caloric effect type heat pump apparatus
US9534816B2 (en) Thermo-magnetic cycle apparatus with bypass valve
JP6418110B2 (ja) 磁気ヒートポンプ装置
US20210316597A1 (en) Temperature adjusting device
US11105536B2 (en) Combined heat exchanger
KR101927153B1 (ko) 차량용 히트펌프 시스템
JP5641002B2 (ja) 磁気ヒートポンプ装置
JP6558296B2 (ja) 磁気ヒートポンプ装置
WO2021176846A1 (ja) 熱管理システム
WO2023199823A1 (ja) 温調装置
CN117360169A (zh) 混合动力汽车热管理系统及汽车

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORIMOTO, TSUYOSHI;WATANABE, NAOKI;YATSUZUKA, SHINICHI;AND OTHERS;SIGNING DATES FROM 20130426 TO 20130506;REEL/FRAME:030697/0614

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION