US20130252114A1 - High voltage rechargeable magnesium cells having a non-aqueous electrolyte - Google Patents

High voltage rechargeable magnesium cells having a non-aqueous electrolyte Download PDF

Info

Publication number
US20130252114A1
US20130252114A1 US13/803,382 US201313803382A US2013252114A1 US 20130252114 A1 US20130252114 A1 US 20130252114A1 US 201313803382 A US201313803382 A US 201313803382A US 2013252114 A1 US2013252114 A1 US 2013252114A1
Authority
US
United States
Prior art keywords
magnesium
electrochemical cell
group
electrolyte
structured compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/803,382
Inventor
Robert Ellis Doe
George Hamilton Lane
Robert E. Jilek
Jaehee Hwang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PELLION Tech Inc
Original Assignee
PELLION Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PELLION Tech Inc filed Critical PELLION Tech Inc
Priority to US13/803,382 priority Critical patent/US20130252114A1/en
Assigned to PELLION TECHNOLOGIES, INC. reassignment PELLION TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HWANG, JAEHEE, LANE, GEORGE HAMILTON, DOE, ROBERT ELLIS, JILEK, ROBERT E.
Assigned to U.S. DEPARTMENT OF ENERGY reassignment U.S. DEPARTMENT OF ENERGY CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: PELLION TECHNOLOGIES
Publication of US20130252114A1 publication Critical patent/US20130252114A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to electrolytic solutions in general and particularly to an electrolyte that comprises magnesium ions as the charge carrier.
  • Such cells usually include a transition metal oxide or chalcogenide cathode-active material, an anode-active lithium metal or lithium intercalation or alloy compound such as graphitic carbon, tin and silicon, and an electrolytic solution containing a dissolved lithium-based salt in an aprotic organic or inorganic solvent or in a polymer.
  • Electrolytes utilizing an alkali metal with organic ligands from organometallic species have been described.
  • an alkaline earth metal anode such as magnesium would appear disadvantageous relative to the use of an alkali metal such as lithium because alkali metal anodes are much more readily ionized than are alkaline earth metal anodes.
  • the cell should be capable of re-depositing the anode metal that was dissolved during discharge, in a relatively pure state, and without the formation of deposits that block the electrodes.
  • This characteristic is not natural for Mg.
  • Alkali metals, and lithium are expensive and highly reactive.
  • Alkali metals are also highly flammable, and fire caused by the reaction of alkali metals with oxygen, water or other reactive materials is extremely difficult to extinguish.
  • the use of alkali metals requires specialized facilities, such as dry rooms, specialized equipment and specialized procedures, and shipment of Lithium containing products (e.g., batteries) is tightly controlled.
  • Lithium containing products e.g., batteries
  • magnesium metal and its respective inorganic salts are easy to process and usually are considered as benign.
  • Magnesium metal is reactive, but it undergoes rapid passivation of the surface, such that the metal and its alloys are highly stable. Magnesium is inexpensive relative to the alkali metals, and widely used as ubiquitous construction materials.
  • anodic limit is a measure of an electrolytes stability limit; represented as the highest voltage that can be applied to the electrolyte prior to initiating oxidative decomposition of the electrolyte at an electrode surface.
  • Enhanced electrochemical stability has been demonstrated by complexing Grignard reagents with strong Lewis acids.
  • a cell comprised of a magnesium metal anode, a molybdenum sulfide “Chevrel” phase active material cathode, and an electrolyte solution derived from an organometallic complex containing Mg is capable of the reversible, electrochemical plating of magnesium metal from solutions with about a 2 V anodic limit of the stability window.
  • Magnesium Chloride and organometallic Aluminum compounds complexes are employed.
  • Such cells are low energy density due to a low difference in operating potentials between a Chevrel cathode and Mg metal anode and therefore are not commercially viable cells.
  • Sustaining an anodic voltage greater than 2 volts is problematic or impossible with the usual intercalation cathodes and electrolytes based upon Grignard reagents and other organometallic species.
  • Magnesium batteries operating at voltages greater than 1.5 volts are particularly prone to electrolyte decomposition and to encrustation and/or passivation of the electrode surface due to anodic limits of the electrolyte.
  • organometallic species among the ionic species in the respective electrolytic solutions.
  • organometallic species There are many disadvantages to organometallic species, relative to inorganic salts. Practically, all organometallic species of the alkalis and the earth alkalis are highly unstable in the presence of air and water and thus are classified as pyrophoric. Organometallic species of sufficient purity are quite expensive to produce. Organometallic species introduce organic ligands into the electrolytic solution, which will limit the chemical stability of the solution when in contact with certain electrode active materials and other electrochemical cell components. In general, handling, manipulation and storing organometallic species of this sort are complicated, hazardous and expensive.
  • Mg secondary batteries The literature on Mg secondary batteries includes N. Amir et al., “Progress in nonaqueous magnesium electrochemistry,” Journal of Power Sources 174 (2007) 1234-1240, published on line on Jun. 30, 2007; Y Gofer et al., “Magnesium Batteries (Secondary and Primary),” published in Encyclopedia of Electrochemical Power Sources 2009 285-301 Elsevier B.V.; and John Muldoon et al., “Electrolyte roadblocks to a magnesium rechargeable battery,” 5 (2012) Energy & Environmental Science 5941-5950.
  • M′ is selected from a group consisting of magnesium, calcium, aluminum, lithium and sodium
  • Z is selected from a group consisting of aluminum, boron, phosphorus, antimony and arsenic
  • R represents radicals selected from the following groups: alkyl, alkenyl, aryl, phenyl, benzyl, and amido
  • An electrolyte for use in electrochemical cells is provided.
  • the properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg +2 .
  • the use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, organometallic materials, or Lewis acid derived anions including tetrachloroaluminate or tetraphenylborate.
  • the electrolyte is incorporated into specific Mg-ion electrochemical cells comprised of said electrolyte and an appropriate anode-cathode pair.
  • an appropriate anode-cathode pair is a magnesium metal anode and a magnesium insertion-compound cathode.
  • an appropriate anode-cathode pair is a magnesium metal anode and a cathode capable of conversion, or displacement reactions.
  • an appropriate anode-cathode pair is a magnesium metal anode and a catholyte.
  • solutions formed from combinations of Magnesium Chloride (MgCl 2 ) and Magnesium bis(trifluoromethylsulfonyl)imide (MgTFSI 2 ) in ethereal solvents such as THF and Glyme successfully address the shortcomings of the previously reported Mg electrolytes and provide a basis for the production of a viable, rechargeable magnesium battery with a voltage exceeding a 2 Volt stability window.
  • the significantly wider electrochemical window obtained using electrolytes described herein indicates improved stability for the electrolytic solution and allows the use of more energetic cathode materials, such that both the cycle life and the energy density of the battery are substantially increased. Furthermore the present invention enables cheaper, safer, and more chemically stable materials to be utilized for these purposes.
  • the invention relates to a method of preparing a non-aqueous electrolyte solution.
  • the method comprises the step of reacting a magnesium halide and a magnesium salt of formula MgZ 2 , where Z is a polyatomic monovalent anion.
  • Z is a polyatomic monovalent anion selected from the polyatomic monovalent anions described in Table I, and mixtures thereof.
  • the magnesium halide is magnesium chloride
  • the magnesium salt is Mg[N(CF 3 SO 2 ) 2 ] 2
  • the solvent is THF, DME, ethyl diglyme, butyl diglyme, or a mixture thereof.
  • the magnesium halide:MgZ 2 mole ratio is in the range from 4:1 to 1:4.
  • the magnesium halide:MgZ 2 mole ratio is in any proportion between 4:1 and 1:1.
  • the magnesium halide:MgZ 2 mole ratio is in any proportion between 4:1 and 1:4.
  • the method further comprises the step of conditioning the non-aqueous electrolyte solution by electrochemical polarization.
  • the invention features an electrochemical cell.
  • the electrochemical cell comprises a non-aqueous electrolyte solution comprising at least one organic solvent; and at least one electrolytically active, soluble, inorganic Magnesium (Mg) salt complex represented by the formula Mg n+1 X (2*n) Z 2 in which n is in the range from one-quarter to four, X is a halide, and Z is an inorganic polyatomic monovalent anion; a magnesium anode and a cathode capable of magnesium intercalation, conversion, or displacement reaction.
  • Mg Magnesium
  • the magnesium anode is selected from the group consisting of Mg metal, Anatase TiO 2 , rutile TiO 2 , Mo 6 S 8 , FeS 2 , TiS 2 , and MoS 2 .
  • the Mg alloy is selected from the group of Mg alloys consisting of AZ31, AZ61, AZ63, AZ80, AZ81, AZ91, AM50, AM60, Elektron 675, ZK51, ZK60, ZK61, ZC63, M1A, ZC71, Elektron 21, Elektron 675, Elektron, and Magnox.
  • the magnesium intercalation cathode is selected from the group consisting of Chevrel phase Mo 6 S 8 , MnO 2 , CuS, Cu 2 S, Ag 2 S, CrS 2 , VOPO 4 , a layered structure compound, a spinel structured compound, a zinc blende structure, a rock salt structured compound, a NASICON structured compound, a Cadmium iodide structured compound, an Olivine structured compound, a Tavorite structured compound, a pyrophosphate, a monoclinic structured compound, and a fluoride.
  • the layered structure compound is selected from the group consisting of TiS 2 , V 2 O 5 , MgVO 3 , MoS 2 , MgV 2 O 5 , and MoO 3 .
  • the spinel structured compound is selected from the group consisting of CuCr 2 S 4 , MgCr 2 S 4 , MgMn 2 O 4 , MgNiMnO 4 , and Mg 2 MnO 4 .
  • the NASICON structured compound is selected from the group consisting of MgFe 2 (PO 4 ) 3 and MgV 2 (PO 4 ) 3 .
  • the Olivine structured compound is selected from the group consisting of MgMnSiO 4 and MgFe 2 (PO) 2 .
  • the Tavorite structured compound is Mg 0.5 VPO 4 F.
  • the pyrophosphate is selected from the group consisting of TiP 2 O 7 and VP 2 O 7 .
  • the fluoride is selected from the group consisting of MgMnF 4 and FeF 3 .
  • FIG. 1 is a graph displaying a typical cyclic voltammogram of the all-inorganic Mg complex resulting from reaction of MgCl 2 and Mg(TFSI) 2 dissolved in a mixture of 1,2-dimethoxymethane (DME) and tetrahydrofuran (THF).
  • DME 1,2-dimethoxymethane
  • THF tetrahydrofuran
  • FIG. 2 is a graph displaying comparison of typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl 2 and Mg(TFSI) 2 when the mole ratio is varied between the two reactants.
  • FIG. 3 is a graph displaying a typical macrocoulometry cycling data for the inorganic magnesium salt complex Mg 3 Cl 4 (TFSI) resulting from reaction of 2MgCl 2 and 1Mg(TFSI) 2 in a mixed solution of 1,2-dimethoxymethane (DME) and N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide (P13-TFSI) ionic liquid.
  • DME 1,2-dimethoxymethane
  • P13-TFSI N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide
  • FIG. 4 is a graph displaying a typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl 2 and Mg(TFSI) 2 when the solvent utilized is a combination of butyl diglyme and the ionic liquid N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide.
  • An electrolyte is described for use in electrochemical cells that transfer Mg-ions between electrodes.
  • the properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg 2+ .
  • the use of an inorganic salt complex in an electrolyte promotes the substantially reversible deposition of magnesium metal on the anode current collector and the reversible intercalation of magnesium in the cathode material. It is expected that the systems, materials, and methods described will provide an improved non-aqueous electrolyte that allows the production of a practical, rechargeable magnesium battery which is expected to be safer and cleaner, and more durable, efficient and economical than heretofore known.
  • FIG. 1 is a graph displaying a typical cyclic voltammogram of the Mg 2 Cl 3 -TFSI complex resulting from reaction of MgCl 2 and Mg(TFSI) 2 .
  • Solutions utilize a mixture of 1,2-dimethoxymethane (DME) and tetrahydrofuran (THF) as the solvent and Platinum as the working electrode while Magnesium serves as both the auxiliary and reference electrodes.
  • DME 1,2-dimethoxymethane
  • THF tetrahydrofuran
  • the data depicted in FIG. 1 shows the potentiodynamic behavior of Mg 2 Cl 3 -TFSI complex salt obtained with DME/THF solution from the reaction of 3MgCl 2 +Mg[N(CF 3 SO 2 ) 2 ] 2 .
  • the experiment utilized a scan rate of 25 mV/s, a platinum working electrode, and Mg for the counter and reference electrodes.
  • the anodic stability of the solution is about 3.5 V vs. the onset of Mg dissolution. This is significantly higher than previous electrolytic solutions capable of reversibly plating Mg.
  • Mg 2 Cl 3 -TFSI is one preferred embodiment of a complex salt useful in an electrolyte according to principles of the invention.
  • FIG. 2 is a graph displaying a typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl 2 and Mg(TFSI) 2 when the mole ratio is varied between the two reactants.
  • Solutions utilize 1,2-dimethoxymethane (DME) as the solvent.
  • DME 1,2-dimethoxymethane
  • the experiment utilized a scan rate of 25 mV/s, a platinum working electrode, and Mg for the counter and reference electrodes.
  • the mole ratio of MgCl 2 to Mg(TFSI) 2 ranges from 1:2 to 2.5:1 in this salt solution.
  • a high degree of reversibility and Coulombic efficiency is present in each composition depicted in FIG. 2 .
  • the Mg deposition and stripping occurs with low overpotential.
  • Electrolyte solutions for secondary magnesium batteries which are the product of magnesium halide (e.g., MgCl 2 ) and another inorganic salt (e.g., Mg(TFSI) 2 ) containing an inorganic polyatomic monovalent anion is one preferred embodiment of a complex salt useful in an electrolyte according to principles of the invention.
  • these inorganic Magnesium halide complex solutions display high conductivity of >1 mS/cm at 25 degrees Celsius.
  • FIG. 3 is a graph displaying a typical macrocoulometry cycling data for the inorganic magnesium salt complex Mg 3 Cl 4 (TFSI) resulting from reaction of 2MgCl 2 and 1Mg(TFSI) 2 in a mixed solution of 1,2-dimethoxymethane (DME) and N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide (P13-TFSI) ionic liquid.
  • DME 1,2-dimethoxymethane
  • P13-TFSI N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide
  • inorganic magnesium electrolyte solutions for secondary magnesium batteries with Coulombic efficiency >98% which are the product of magnesium halide (e.g., MgCl 2 ) and another inorganic salt (e.g., Mg(TFSI) 2 ) containing an inorganic polyatomic monovalent anion is one preferred embodiment of a complex salt.
  • FIG. 4 is a graph displaying a typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl 2 and Mg(TFSI) 2 when the solvent utilized is a combination of butyl diglyme and the ionic liquid N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide.
  • the experiment utilized a scan rate of 25 mV/s, a platinum working electrode, and Mg for the counter and reference electrodes.
  • the mole ratio of MgCl 2 to Mg(TFSI) 2 is about 2:1 in this inorganic salt solution.
  • an electrochemically active Mg 2 Cl 3 -TFSI solution can be dependent upon ascertaining proper conditions for some or all of the following non-limiting examples of solution variables: the mole ratio of Mg:Cl:TFSI (or other anodically stable anion), overall molarity, solvent properties, precursor and solvent purity, and reaction conditions.
  • a suitable complex is prepared by reacting MgCl 2 with a compound containing bis(trifluoromethanesulfonyl)imide.
  • an electrochemically active Mg 2 Cl 3 -TFSI solution such as 0.25 M Mg 2 Cl 3 -TFSI, one may perform the following reaction:
  • the product can be described as Mg 2 Cl 3 [N(CF 3 SO 2 ) 2 ] salt or more generally as a magnesium halide cation complex or more specifically as a Mg 2 Cl 3 -TFSI complex solution.
  • the coordination solvent molecules it may be preferable to note the coordination solvent molecules to the complex cation.
  • the product of this reaction enables reversible, facile electrochemical plating and stripping of Mg ions onto an electrode while maintaining a high anodic stability, and these advantageous electrochemical characteristics are achieved without the use of Grignard reagents, organometallic materials, or Lewis acid derived anions including tetrachloroaluminate or tetraphenylborate.
  • X represents a halide
  • Z represents an inorganic polyatomic monovalent ion, such as the non-limiting examples of anions listed in Table I
  • X represents a halide
  • Z represents an inorganic polyatomic monovalent ion, such as the non-limiting examples of anions listed in Table I
  • Such generalized formulas are given in Table III, along with specific examples for different integer values of the variable n.
  • the non-aqueous electrolyte solution including Mg 2 Cl 3 -TFSI can employ MgCl 2 and Mg[N(CF 3 SO 2 ) 2 ] 2 over a range of proportions to provide formation of Mg 2+ , Mg 2 Cl 3 + , MgCl + and MgCl 2 , or mixtures thereof.
  • the MgCl 2 :Mg(TFSI) 2 ratio is in the ratio of 1:4 to 5:1 with preferable ratios being 4:1, 3:1, 2:1 or any ratio between.
  • the electrolyte salt complex can have an Mg concentration of greater than 0.1 M for Mg.
  • a non-aqueous electrolyte for use in an electrochemical cell includes at least one organic solvent and at least one electrolytically active, soluble, magnesium (Mg) salt complex represented by the formula Mg n+1 Cl (2*n) Z 2 , in which Z is selected from the group of monovalent negative complex ions described in Table I or mixtures thereof; and n is in the range from one to four.
  • the electrolyte salt complex can be used at any concentration; however, in certain embodiments, the Mg molarity, e.g., concentration, ranges up to 1 M. In one or more embodiments, the electrolyte salt complex is expected to have a Mg concentration of about 0.25 to about 0.5 M. In a few additional embodiments, the electrolyte salt complex is expected to have a Mg concentration of greater than 1 M.
  • the voltage at which the anodic electrolyte decomposition occurs is set by the breaking of metal-organic bonds.
  • chlorinated anions such as tetrachloroaluminate limit the anodic stability to ⁇ 3 V vs. Mg/Mg 2+ .
  • electrolyte capable of higher voltage stability while maintaining the ability to electrochemically deposit and strip Mg-ions in facile, reversible manner.
  • MgCl + and/or Mg 2 Cl 3 + and/or Mg 3 Cl 4 + clusters in solution.
  • Cationic species using other halides, such as MgBr + and/or Mg 2 Br 3 + clusters, and MgF + and/or Mg 2 F 3 + clusters may also be suitable for reversible Mg deposition.
  • MgCl 2 is generally regarded as insoluble or poorly soluble in many organic solvents, it is possible to prepare non-aqueous electrolyte solution including magnesium chloride complexes and in particular using Mg 2 Cl 3 -TFSI, wherein the Mg molarity, e.g., concentration, ranging up to 2 M, and for example at about 0.1 to about 0.5 M for Mg.
  • Mg molarity e.g., concentration, ranging up to 2 M, and for example at about 0.1 to about 0.5 M for Mg.
  • organic solvents are suitable for use in the electrolyte of the present invention.
  • the organic solvents can be used alone or in combination. Whether a solvent comprises a single organic composition or a plurality of organic compositions, for the purposes of further exposition, the organic solvent will be referred to as “the solvent” in the singular.
  • the solvent advantageously should provide appreciable solubility by coordination of the constituent inorganic salts of Mg. Further the solvent preferably should not reduce above the Mg plating potential, so as to form products which inhibit migration of Mg from solution to the electrode surface.
  • suitable solvents include ethers and tertiary amines, and may also include organic carbonates, lactones, ketones, glymes, nitriles, ionic liquids, aliphatic and aromatic hydrocarbon solvents and organic nitro solvents.
  • suitable solvents include THF, 2-methyl THF, dimethoxyethane, diglyme, triglyme, tetraglyme, diethoxyethane, diethylether, proglyme, ethyl diglyme, butyl diglyme, dimethylsulfoxide, dimethylsulfite, sulfolane, ethyl methyl sulfone, acetonitrile, hexane, toluene, nitromethane, 1-3 dioxalane, 1-3 dioxane, 1-4 dioxane, trimethyl phosphate, tri-ethyl phosphate, hexa-methyl-phosphoramide (HMPA), N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide (P13-TFSI), N,N-propyl-methyl-pyrrolidinium-diacetamide (P13-DCA),
  • the solvent that enables reversible, electrochemical deposition and stripping of Mg from a solution containing the reaction product(s) of MgCl 2 and Mg(TFSI) 2 is a THF, dimethoxyethane, ethyl diglyme, butyl diglyme, or a mixture thereof.
  • MgCl 2 is a chemically inert inorganic magnesium salt. It does not dissociate in based on aprotic organic solvents to appreciable extent and displays little to no conductivity in ethereal solution. Furthermore, MgCl 2 alone is electrochemically inactive in such ethereal solutions, enabling only negligible Mg deposition, dissolution or intercalation.
  • the magnesium electrolyte salt can be prepared by combining a source of magnesium cation, e.g., a magnesium halide, and a source of an anion stable at high voltage, based on the anion Z in the electrolyte solvent with stirring and heating.
  • a source of magnesium cation e.g., a magnesium halide
  • exemplary reaction temperatures include between 20 and 50 degrees Celsius. Heating under inert or reduced atmosphere is preferred to avoid water contamination and formation of oxide species.
  • additives are provided in the electrolyte to mitigate the deleterious species, without the production of side reaction or unwanted, harmful chemicals. Water, oxygen, and peroxide(s) are non-limiting examples of deleterious species.
  • Solution conditioning is accomplished by control of variables including, but not limited to, cation:anion ratio, constituent molarity, choice of solvent or solvents, precursor and solvent purity, impurity removal, reaction temperature, time, mixing, and electrochemical conditions can yield a solution containing an all inorganic salt capable of reversible deposition of Mg.
  • the electrolyte can be conditioned using a variety of processes, including physical, chemical and electrochemical process.
  • the process of conditioning includes the following non-limiting examples.
  • MgCl 2 :MgZ 2 ratio is 1:1, 2:1, 3:1, or 4:1 or any non-integer value in between.
  • the MgCl 2 :MgZ 2 ratio can be adjusted to result in a high concentration of electrolytically active Mg salt complex.
  • Electrochemical processes like potentiostatic, potentiodynamic or galvanostatic electrolysis that enable a high degree of Mg complex formation and removal of deleterious species/impurities. This can be accomplished at reducing or oxidizing potentials, which reduce or oxidize deleterious species and/or drive the reaction of reactants to products. It can be exercised with inert electrodes, sacrificial electrodes, like Mg or, within a complete cell, with an auxiliary electrode or with the cathode serving as the working electrode.
  • the electrolyte is subjected to multiple cycles of potentiostatic, potentiodynamic or galvanostatic electrolysis. In some specific embodiments, the electrolyte is potentiostatically polarized for 5 cycles, 10 cycles, 15 cycles, 20 cycles, or 30 cycles.
  • the electrolyte salt solution is conditioned to improve the electrochemical properties through electrochemical polarization.
  • the electrolyte salt solution is conditioned to improve the electrochemical properties by reacting with insoluble active metals, such as metallic Mg, Al, Ca, Li, Na, or K, and/or reacting with insoluble acids/bases, and by being exposed to adsorbing agents such as molecular sieves, CaH 2 , alumina, silica, MgCO 3 , and similar absorptive materials.
  • insoluble active metals such as metallic Mg, Al, Ca, Li, Na, or K
  • adsorbing agents such as molecular sieves, CaH 2 , alumina, silica, MgCO 3 , and similar absorptive materials.
  • the electrolyte salt solution is conditioned to improve the electrochemical properties by providing additives to scavenge contaminants.
  • the contaminants that can be scavenged include but are not limited to organo-Mg compounds, organo-Al compounds, organo-B compounds, organometallics, trace water, oxygen, CO 2 , and protic contaminants such as acids.
  • the electrochemical window of a cell with an electrolyte as described herein and an appropriate anode-cathode pair has been observed to be 3.5-3.6 volts.
  • electrolytic solutions described and contemplated herein can be used in such devices as electrochemical cells, secondary (e.g., rechargeable) batteries, and energy storage devices that include, in addition to the electrolyte, an anode and a cathode.
  • an electrochemical cell can include a metal anode and an intercalation cathode.
  • a secondary battery includes the electrolyte according to the present invention, a magnesium metal anode and a magnesium insertion compound cathode.
  • a secondary battery includes the electrolyte according to the present invention, a magnesium metal anode and a conversion, or displacement compound cathode.
  • the magnesium insertion-compound cathode includes a magnesium-Chevrel intercalation cathode of the formula, Mo 6 S 8 .
  • the electrolyte composition of the present invention includes an organic solvent and electrochemically-active, soluble, inorganic salt complex represented by the formula Mg n+1 Cl (2*n) Z 2 , in which Z is selected from the compounds described in Table I or mixtures thereof; and n is in the range from one to four.
  • Inorganic salts of this form may, in certain cases, be combined with compatible organometallic salts or with compatible inorganic salts of other forms.
  • Intercalation cathodes used in conjunction with the electrolyte according to the present invention preferably include transition metal oxides, transition metal oxo-anions, chalcogenides, and halogenides and combinations thereof.
  • positive electrode active material for the Mg battery include Chevrel phase Mo 6 S 8 , MnO 2 , CuS, Cu 2 S, Ag 2 S, CrS 2 , VOPO 4 , layered structure compounds such as TiS 2 , V 2 O 5 , MgVO 3 , MoS 2 , MgV 2 O 5 , MoO 3 , Spinel structured compounds such as CuCr 2 S 4 , MgCr 2 S 4 , MgMn 2 O 4 , MgNiMnO 4 , Mg 2 MnO 4 , NASICON structured compounds such as MgFe 2 (PO 4 ) 3 and MgV 2 (PO 4 ) 3 , Olivine structured compounds such as MgMnSiO 4 and MgFe 2 (PO 4 )
  • the positive electrode layer further comprises an electronically conductive additive.
  • electronically conductive additives include carbon black, Super P, Super C65, Ensaco black, Ketjen black, acetylene black, synthetic graphite such as Timrex SFG-6, Timrex SFG-15, Timrex SFG-44, Timrex KS-6, Timrex KS-15, Timrex KS-44, natural flake graphite, carbon nanotubes, fullerenes, hard carbon, or mesocarbon microbeads.
  • the positive electrode layer further comprises a polymer binder.
  • polymer binders include poly-vinylidene fluoride (PVdF), poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), Polytetrafluoroethylene (PTFE), Kynar Flex 2801, Kynar Powerflex LBG, and Kynar HSV 900, or Teflon.
  • Negative electrodes used in conjunction with the present invention comprise a negative electrode active material that can accept Mg-ions.
  • Non-limiting examples of negative electrode active material for the Mg battery include Mg, Mg alloys such as AZ31, AZ61, AZ63, AZ80, AZ81, AZ91, AM50, AM60, Elektron 675, ZK51, ZK60, ZK61, ZC63, M1A, ZC71, Elektron 21, Elektron 675, Elektron, Magnox, or insertion materials such as Anatase TiO2, ruble TiO2, Mo 6 S 8 , FeS 2 , TiS 2 , MoS 2 .
  • the negative electrode layer further comprises an electronically conductive additive.
  • electronically conductive additives include carbon black, Super P, Super C65, Ensaco black, Ketjen black, acetylene black, synthetic graphite such as Timrex SFG-6, Timrex SFG-15, Timrex SFG-44, Timrex KS-6, Timrex KS-15, Timrex KS-44, natural flake graphite, carbon nanotubes, fullerenes, hard carbon, or mesocarbon microbeads.
  • the negative electrode layer further comprises a polymer binder.
  • polymer binders include poly-vinylidene fluoride (PVdF), poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), Polytetrafluoroethylene (PTFE), Kynar Flex 2801, Kynar Powerflex LBG, and Kynar HSV 900, or Teflon.
  • the Mg battery used in conjunction with the electrolyte described herein comprises a positive electrode current collector comprising carbonaceous material, or a current collector comprising a metal substrate coated with an over-layer to prevent corrosion in the electrolyte.
  • the Mg battery described herein comprises a negative electrode current collector comprising carbonaceous material.
  • the Mg battery described herein comprises positive and negative electrode current collectors comprising carbonaceous material.
  • the Mg battery disclosed herein is a button or coin cell battery consisting of a stack of negative electrode, porous polypropylene or glass fiber separator, and positive electrode disks sit in a can base onto which the can lid is crimped.
  • the Mg battery used in conjunction with the electrolyte disclosed herein is a stacked cell battery.
  • the Mg battery disclosed herein is a prismatic, or pouch, cell consisting of one or more stacks of negative electrode, porous polypropylene or glass fiber separator, and positive electrode sandwiched between current collectors wherein one or both current collectors comprise carbonaceous materials, or a metal substrate coated with an over-layer to prevent corrosion in the electrolyte.
  • the stack(s) are folded within a polymer coated aluminum foil pouch, vacuum and heat dried, filled with electrolyte, and vacuum and heat sealed.
  • the Mg battery disclosed herein is a prismatic, or pouch, bi-cell consisting of one or more stacks of a positive electrode which is coated with active material on both sides and wrapped in porous polypropylene or glass fiber separator, and a negative electrode folded around the positive electrode wherein one or both current collectors comprise carbonaceous materials.
  • the stack(s) are folded within a polymer coated aluminum foil pouch, dried under heat and/or vacuum, filled with electrolyte, and vacuum and heat sealed.
  • an additional tab composed of a metal foil or carbonaceous material of the same kind as current collectors described herein, is affixed to the current collector by laser or ultrasonic welding, adhesive, or mechanical contact, in order to connect the electrodes to the device outside the packaging.
  • the Mg battery used in conjunction with the electrolyte disclosed herein is a wound or cylindrical cell consisting of wound layers of one or more stacks of a positive electrode which is coated with active material on one or both sides, sandwiched between layers of porous polypropylene or glass fiber separator, and a negative electrode wherein one or both current collectors comprise carbonaceous materials.
  • the stack(s) are wound into cylindrical roll, inserted into the can, dried under heat and/or vacuum, filled with electrolyte, and vacuum and welded shut.
  • an additional tab composed of a metal foil or carbonaceous material of the same kind as current collectors described herein, is affixed to the current collector by laser or ultrasonic welding, adhesive, or mechanical contact, in order to connect the electrodes to the device outside the packaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

A electrochemical cell having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to and the benefit of co-pending U.S. provisional patent application Ser. No. 61/613,063, filed Mar. 20, 2012, which application is incorporated herein by reference in its entirety.
  • STATEMENT REGARDING FEDERALLY FUNDED RESEARCH OR DEVELOPMENT
  • This invention was made with government support under award number DE-AR0000062, awarded by Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy. The government has certain rights in the invention.
  • FIELD OF THE INVENTION
  • The invention relates to electrolytic solutions in general and particularly to an electrolyte that comprises magnesium ions as the charge carrier.
  • BACKGROUND
  • A variety of rechargeable, high energy density electrochemical cells have been demonstrated although the most widely utilized commercial system is that based upon Li-ion chemistry because it displays very high energy density. Such cells usually include a transition metal oxide or chalcogenide cathode-active material, an anode-active lithium metal or lithium intercalation or alloy compound such as graphitic carbon, tin and silicon, and an electrolytic solution containing a dissolved lithium-based salt in an aprotic organic or inorganic solvent or in a polymer. Today there is great demand for energy storage devices capable of storing more energy per unit volume or per unit mass, e.g., Watt-hours per liter (Wh/l) or Watt-hours per kilogram (Wh/kg), than premier rechargeable Li-ion batteries are capable of delivering. Consequently an increasingly sought after route to meeting this demand higher energy density is to replace the monovalent cation lithium (Li) with divalent magnesium cations (Mg2+) because magnesium can enable nearly twice the charge of Li+ to be transferred, per volume. Furthermore the abundance of Mg metal and readily available compounds containing Mg is expected to offer significant cost reduction relative to Li-ion batteries. Magnesium also offers superior safety and waste disposal characteristics.
  • Electrolytes utilizing an alkali metal with organic ligands from organometallic species have been described. Generally the use of an alkaline earth metal anode such as magnesium would appear disadvantageous relative to the use of an alkali metal such as lithium because alkali metal anodes are much more readily ionized than are alkaline earth metal anodes. In addition, on recharge the cell should be capable of re-depositing the anode metal that was dissolved during discharge, in a relatively pure state, and without the formation of deposits that block the electrodes. One practiced in the art would note this characteristic is not natural for Mg. Despite this, there are numerous other disadvantages to alkali batteries. Alkali metals, and lithium in particular, are expensive and highly reactive. Alkali metals are also highly flammable, and fire caused by the reaction of alkali metals with oxygen, water or other reactive materials is extremely difficult to extinguish. As a result, the use of alkali metals requires specialized facilities, such as dry rooms, specialized equipment and specialized procedures, and shipment of Lithium containing products (e.g., batteries) is tightly controlled. In contrast, magnesium metal and its respective inorganic salts are easy to process and usually are considered as benign. Magnesium metal is reactive, but it undergoes rapid passivation of the surface, such that the metal and its alloys are highly stable. Magnesium is inexpensive relative to the alkali metals, and widely used as ubiquitous construction materials.
  • Known electrolytes that enable reversible, electrochemical deposition of Mg and that have potential use in a battery contain organometallic materials. Most often these electrolytes contain organometallic Grignard salts as the electrochemically active component. However sustaining anodic limits greater than 1 Volt is problematic or impossible with the usual intercalation cathodes because of electrolyte decomposition and corresponding encrustation and/or passivation of electrode surfaces. The anodic limit, or anodic voltage, is a measure of an electrolytes stability limit; represented as the highest voltage that can be applied to the electrolyte prior to initiating oxidative decomposition of the electrolyte at an electrode surface. Enhanced electrochemical stability has been demonstrated by complexing Grignard reagents with strong Lewis acids. For example, a cell comprised of a magnesium metal anode, a molybdenum sulfide “Chevrel” phase active material cathode, and an electrolyte solution derived from an organometallic complex containing Mg is capable of the reversible, electrochemical plating of magnesium metal from solutions with about a 2 V anodic limit of the stability window. Under the same principle similar results have also been shown when Magnesium Chloride and organometallic Aluminum compounds complexes are employed.
  • Such cells are low energy density due to a low difference in operating potentials between a Chevrel cathode and Mg metal anode and therefore are not commercially viable cells. Sustaining an anodic voltage greater than 2 volts is problematic or impossible with the usual intercalation cathodes and electrolytes based upon Grignard reagents and other organometallic species. Magnesium batteries operating at voltages greater than 1.5 volts are particularly prone to electrolyte decomposition and to encrustation and/or passivation of the electrode surface due to anodic limits of the electrolyte. Furthermore electrolytes intended for use in electrochemical cells in which the plating and stripping of Mg ions is required include organometallic species among the ionic species in the respective electrolytic solutions. There are many disadvantages to organometallic species, relative to inorganic salts. Practically, all organometallic species of the alkalis and the earth alkalis are highly unstable in the presence of air and water and thus are classified as pyrophoric. Organometallic species of sufficient purity are quite expensive to produce. Organometallic species introduce organic ligands into the electrolytic solution, which will limit the chemical stability of the solution when in contact with certain electrode active materials and other electrochemical cell components. In general, handling, manipulation and storing organometallic species of this sort are complicated, hazardous and expensive.
  • In contrast one practiced in the art will recognize that previous attempts to utilize inorganic magnesium salts failed to enable substantial reversibility of magnesium deposition with high Coulombic efficiency and low overpotential. In general it has been shown that electrodeposition in previous inorganic magnesium salt solutions corresponded with electrolyte consumption and resulted in decomposition of the solution components. The decomposition products passivate the electrode blocking in further electrochemical reaction. Consequently no commercial Mg secondary batteries have succeeded thus far.
  • The literature on Mg secondary batteries includes N. Amir et al., “Progress in nonaqueous magnesium electrochemistry,” Journal of Power Sources 174 (2007) 1234-1240, published on line on Jun. 30, 2007; Y Gofer et al., “Magnesium Batteries (Secondary and Primary),” published in Encyclopedia of Electrochemical Power Sources 2009 285-301 Elsevier B.V.; and John Muldoon et al., “Electrolyte roadblocks to a magnesium rechargeable battery,” 5 (2012) Energy & Environmental Science 5941-5950.
  • Also previously described is Aurbach et al. in U.S. Pat. No. 6,316,141, issued Nov. 13, 2001, which is said to disclose a cell comprised of a Magnesium metal anode, a Molybdenum Sulfide “Chevrel” phase active material cathode, and an electrolyte solution derived from an organometallic complex containing Mg. The critical aspect of that invention is the specification of an electrolyte capable of the reversible, electrochemical plating of Magnesium metal from solutions with a 2 V anodic limit. This was demonstrated through the formation of complex electrolytically active salts represented by the formula: M′+m(ZRnXq-n)m in which: M′ is selected from a group consisting of magnesium, calcium, aluminum, lithium and sodium; Z is selected from a group consisting of aluminum, boron, phosphorus, antimony and arsenic; R represents radicals selected from the following groups: alkyl, alkenyl, aryl, phenyl, benzyl, and amido; X is a halogen (I, Br, Cl, F); m=1-3; and n=0-5 and q=6 in the case of Z=phosphorus, antimony and arsenic, and n=0-3 and q=4 in the case of Z=aluminum and boron.
  • In a different report Nakayama et. al., U.S. Patent Application Publication No. 2010/0136439, published Jun. 3, 2010, which is said to disclose a magnesium ion-containing nonaqueous electrolytic solution comprising a magnesium ion and another kind of a metal ion dissolved in an organic solvent, wherein solutions may be obtained through combinations of inorganic Lewis Base MgCl2 and organometallic Aluminum Lewis Acids such as dimethylaluminum chloride or methylaluminum dichloride.
  • Also described is Yamamoto et al., U.S. Patent Application Publication No. 2009/0068568, published Mar. 12, 2009, which is said to disclose a magnesium ion containing non-aqueous electrolyte in which magnesium ions and aluminum ions are dissolved in an organic ethereal solvent, and which is formed by adding metal magnesium, a halogenated hydrocarbon, an aluminum halide AlY3, and a quaternary ammonium salt to an organic ethereal solvent and applying a heating treatment while stirring them as a one-step reaction to form the Grignard-based organometallic containing complex solution species.
  • There is a need for improved non-aqueous electrolytes for use in secondary batteries.
  • SUMMARY OF THE INVENTION
  • An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, organometallic materials, or Lewis acid derived anions including tetrachloroaluminate or tetraphenylborate.
  • According to further features in preferred embodiments described below, the electrolyte is incorporated into specific Mg-ion electrochemical cells comprised of said electrolyte and an appropriate anode-cathode pair. In one aspect an appropriate anode-cathode pair is a magnesium metal anode and a magnesium insertion-compound cathode. In another aspect an appropriate anode-cathode pair is a magnesium metal anode and a cathode capable of conversion, or displacement reactions. In yet another aspect an appropriate anode-cathode pair is a magnesium metal anode and a catholyte.
  • In some specific embodiments described herein solutions formed from combinations of Magnesium Chloride (MgCl2) and Magnesium bis(trifluoromethylsulfonyl)imide (MgTFSI2) in ethereal solvents such as THF and Glyme successfully address the shortcomings of the previously reported Mg electrolytes and provide a basis for the production of a viable, rechargeable magnesium battery with a voltage exceeding a 2 Volt stability window.
  • The significantly wider electrochemical window obtained using electrolytes described herein indicates improved stability for the electrolytic solution and allows the use of more energetic cathode materials, such that both the cycle life and the energy density of the battery are substantially increased. Furthermore the present invention enables cheaper, safer, and more chemically stable materials to be utilized for these purposes.
  • According to one aspect, the invention relates to a method of preparing a non-aqueous electrolyte solution. The method comprises the step of reacting a magnesium halide and a magnesium salt of formula MgZ2, where Z is a polyatomic monovalent anion.
  • In one embodiment, Z is a polyatomic monovalent anion selected from the polyatomic monovalent anions described in Table I, and mixtures thereof.
  • In one embodiment, the magnesium halide is magnesium chloride, the magnesium salt is Mg[N(CF3SO2)2]2, and the solvent is THF, DME, ethyl diglyme, butyl diglyme, or a mixture thereof.
  • In another embodiment, the magnesium halide:MgZ2 mole ratio is in the range from 4:1 to 1:4.
  • In yet another embodiment, the magnesium halide:MgZ2 mole ratio is in any proportion between 4:1 and 1:1.
  • In yet another embodiment, the magnesium halide:MgZ2 mole ratio is in any proportion between 4:1 and 1:4.
  • In an additional embodiment, the method further comprises the step of conditioning the non-aqueous electrolyte solution by electrochemical polarization.
  • According to another aspect, the invention features an electrochemical cell. The electrochemical cell comprises a non-aqueous electrolyte solution comprising at least one organic solvent; and at least one electrolytically active, soluble, inorganic Magnesium (Mg) salt complex represented by the formula Mgn+1X(2*n)Z2 in which n is in the range from one-quarter to four, X is a halide, and Z is an inorganic polyatomic monovalent anion; a magnesium anode and a cathode capable of magnesium intercalation, conversion, or displacement reaction.
  • In one embodiment, the magnesium anode is selected from the group consisting of Mg metal, Anatase TiO2, rutile TiO2, Mo6S8, FeS2, TiS2, and MoS2.
  • In another embodiment, the Mg alloy is selected from the group of Mg alloys consisting of AZ31, AZ61, AZ63, AZ80, AZ81, AZ91, AM50, AM60, Elektron 675, ZK51, ZK60, ZK61, ZC63, M1A, ZC71, Elektron 21, Elektron 675, Elektron, and Magnox.
  • In yet another embodiment, the magnesium intercalation cathode is selected from the group consisting of Chevrel phase Mo6S8, MnO2, CuS, Cu2S, Ag2S, CrS2, VOPO4, a layered structure compound, a spinel structured compound, a zinc blende structure, a rock salt structured compound, a NASICON structured compound, a Cadmium iodide structured compound, an Olivine structured compound, a Tavorite structured compound, a pyrophosphate, a monoclinic structured compound, and a fluoride.
  • In still another embodiment, the layered structure compound is selected from the group consisting of TiS2, V2O5, MgVO3, MoS2, MgV2O5, and MoO3.
  • In a further embodiment, the spinel structured compound is selected from the group consisting of CuCr2S4, MgCr2S4, MgMn2O4, MgNiMnO4, and Mg2MnO4.
  • In yet a further embodiment, the NASICON structured compound is selected from the group consisting of MgFe2(PO4)3 and MgV2(PO4)3.
  • In an additional embodiment, the Olivine structured compound is selected from the group consisting of MgMnSiO4 and MgFe2(PO)2.
  • In one more embodiment, the Tavorite structured compound is Mg0.5VPO4F.
  • In still a further embodiment, the pyrophosphate is selected from the group consisting of TiP2O7 and VP2O7.
  • In one embodiment, the fluoride is selected from the group consisting of MgMnF4 and FeF3.
  • The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
  • FIG. 1 is a graph displaying a typical cyclic voltammogram of the all-inorganic Mg complex resulting from reaction of MgCl2 and Mg(TFSI)2 dissolved in a mixture of 1,2-dimethoxymethane (DME) and tetrahydrofuran (THF).
  • FIG. 2 is a graph displaying comparison of typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl2 and Mg(TFSI)2 when the mole ratio is varied between the two reactants.
  • FIG. 3 is a graph displaying a typical macrocoulometry cycling data for the inorganic magnesium salt complex Mg3Cl4(TFSI) resulting from reaction of 2MgCl2 and 1Mg(TFSI)2 in a mixed solution of 1,2-dimethoxymethane (DME) and N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide (P13-TFSI) ionic liquid.
  • FIG. 4 is a graph displaying a typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl2 and Mg(TFSI)2 when the solvent utilized is a combination of butyl diglyme and the ionic liquid N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide.
  • DETAILED DESCRIPTION
  • An electrolyte is described for use in electrochemical cells that transfer Mg-ions between electrodes. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg2+. The use of an inorganic salt complex in an electrolyte promotes the substantially reversible deposition of magnesium metal on the anode current collector and the reversible intercalation of magnesium in the cathode material. It is expected that the systems, materials, and methods described will provide an improved non-aqueous electrolyte that allows the production of a practical, rechargeable magnesium battery which is expected to be safer and cleaner, and more durable, efficient and economical than heretofore known.
  • We now provide example electrolytes that are expected to be suitable for Mg-based secondary battery systems. In particular, materials contemplated for use in the electrolytes of the invention can be described by the general formula Mg2X3Z, where X is a monovalent negative ion such as a halide (e.g., F−1, Cl−1, Br−1, I−1), and Z is a polyatomic monovalent negative ion. Examples of polyatomic monovalent anions that are believed to be useful in practicing the invention include, but are not limited to, those described in Table I, and mixtures thereof
  • TABLE I
    Acro-
    Chemical name nym Formula
    bis(perfluoroalkylsulfonyl)imides N((CxF2x+1)xSO2)2 −1
    bis(fluorosulfonyl)imide FSI N(SO2F)2 −1
    (x = 0)
    bis(trifluoromethanesulfonyl)imide TFSI N(CF3SO2)2 −1
    (x = 1)
    bis(perfluoroethylsulfonyl)imide BETI N(C2F5SO2)2 −1
    (x = 2)
    Dicyanamide DCA N(CN)2 −1
    Tricyanomethide TCM C(CN)3 −1
    tetracyanoborate TCB B(CN)4 −1
    2,2,2,-trifluoro-N- N(CF3SO2)
    (trifluoromethylsulfonyl)acetamide (CF3CO)−1
    tetrafluoroborate BF4 −1
    hexafluorophosphate PF6 −1
    triflate CF3SO3 −1
    bis(oxalate)borate BOB B(C2O4)2 −1
    perchlorate ClO4 −1
    hexafluoroarsenate AsF6 −1
    Hexafluoroantimonate SbF6 −1
    Perfluorobutylsulfonate (C4F9SO3)−1
    Tris(trifluoromethanesulfonyl)methide C(CF3SO2)3 −1
    trifluoroacetate CF3CO2 −1
    heptafluorobutanoate C3F7CO2 −1
    thiocyanate SCN−1
    triflinate CF3SO2 −1
  • Example 1
  • FIG. 1 is a graph displaying a typical cyclic voltammogram of the Mg2Cl3-TFSI complex resulting from reaction of MgCl2 and Mg(TFSI)2. Solutions utilize a mixture of 1,2-dimethoxymethane (DME) and tetrahydrofuran (THF) as the solvent and Platinum as the working electrode while Magnesium serves as both the auxiliary and reference electrodes.
  • The data depicted in FIG. 1 shows the potentiodynamic behavior of Mg2Cl3-TFSI complex salt obtained with DME/THF solution from the reaction of 3MgCl2+Mg[N(CF3SO2)2]2. The experiment utilized a scan rate of 25 mV/s, a platinum working electrode, and Mg for the counter and reference electrodes. The anodic stability of the solution is about 3.5 V vs. the onset of Mg dissolution. This is significantly higher than previous electrolytic solutions capable of reversibly plating Mg. The peak displaying maximum current density at −1.3 V is attributed to the deposition of magnesium metal while the peak with maximum current density at about 1.8 V is attributed to the subsequent electrochemical dissolution of the magnesium metal. The electrochemical window obtained with this system exceeds 3.5 V vs. the onset of Mg dissolution. Mg2Cl3-TFSI is one preferred embodiment of a complex salt useful in an electrolyte according to principles of the invention.
  • Example 2
  • FIG. 2 is a graph displaying a typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl2 and Mg(TFSI)2 when the mole ratio is varied between the two reactants. Solutions utilize 1,2-dimethoxymethane (DME) as the solvent. The experiment utilized a scan rate of 25 mV/s, a platinum working electrode, and Mg for the counter and reference electrodes. The mole ratio of MgCl2 to Mg(TFSI)2 ranges from 1:2 to 2.5:1 in this salt solution. A high degree of reversibility and Coulombic efficiency is present in each composition depicted in FIG. 2. Furthermore the Mg deposition and stripping occurs with low overpotential. Table II below demonstrates that solutions of mole ratio for MgCl2 to Mg(TFSI)2 ranging from 1:2 to 2.5:1 exhibit high solution conductivity; all samples being greater than 1 mS/cm at this molarity of magnesium and room temperature. Electrolyte solutions for secondary magnesium batteries, which are the product of magnesium halide (e.g., MgCl2) and another inorganic salt (e.g., Mg(TFSI)2) containing an inorganic polyatomic monovalent anion is one preferred embodiment of a complex salt useful in an electrolyte according to principles of the invention. In another preferred embodiment these inorganic Magnesium halide complex solutions display high conductivity of >1 mS/cm at 25 degrees Celsius.
  • TABLE II
    Mole Ratio of
    MgCl2 to MgTFSI2 Conductivity
    1:4 2.90 mS/cm @ 28.0 C.
    1:2 3.73 mS/cm @ 28.5 C.
    2:3 4.16 mS/cm @ 28.5 C.
    1:1 5.04 mS/cm @ 28.0 C.
    3:2 5.31 mS/cm @ 28.5 C.
    2:1 5.55 mS/cm @ 28.3 C.
    2.5:1   5.80 mS/cm @ 28.2 C.
  • Example 3
  • FIG. 3 is a graph displaying a typical macrocoulometry cycling data for the inorganic magnesium salt complex Mg3Cl4(TFSI) resulting from reaction of 2MgCl2 and 1Mg(TFSI)2 in a mixed solution of 1,2-dimethoxymethane (DME) and N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide (P13-TFSI) ionic liquid. The two-electrode experiment utilized galvanostatic cycling at 1 mA/cm2 to deposit about 2 microns of Magnesium onto a platinum working electrode from an Mg counter electrode. Subsequently 20% of the Mg layer is stripped and re-electrodeposited for 50 cycles prior to stripping the remaining 80% of Mg. The Coulometric efficiency of this process mimics deep cycling in a commercial cell. In FIG. 3 the average Coulometric efficiency over 50 cycles is 98.92%. Furthermore the cycling occurs with low overpotential to Mg deposition and Mg stripping. The high Coulombic efficiency, high degree of reversibility, and low polarization depicted in FIG. 3 is typical for preferred embodiments of these solutions. According to principles of the invention, inorganic magnesium electrolyte solutions for secondary magnesium batteries with Coulombic efficiency >98%, which are the product of magnesium halide (e.g., MgCl2) and another inorganic salt (e.g., Mg(TFSI)2) containing an inorganic polyatomic monovalent anion is one preferred embodiment of a complex salt.
  • Example 4
  • FIG. 4 is a graph displaying a typical cyclic voltammograms of the inorganic magnesium salt complex resulting from reaction of MgCl2 and Mg(TFSI)2 when the solvent utilized is a combination of butyl diglyme and the ionic liquid N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide. The experiment utilized a scan rate of 25 mV/s, a platinum working electrode, and Mg for the counter and reference electrodes. The mole ratio of MgCl2 to Mg(TFSI)2 is about 2:1 in this inorganic salt solution. To one practiced in the art, the voltammogram in FIG. 4 shows a high degree of reversibility and Coulombic efficiency, and the Mg deposition and stripping occurs with low overpotential. Such solutions are expected to provide much improved safety over previous organometallic-based Mg electrolytes due to not only the inorganic nature of the salt complex, but also the favorable vapor pressure and flash point of the solvents utilized.
  • Example 5
  • The formation of an electrochemically active Mg2Cl3-TFSI solution can be dependent upon ascertaining proper conditions for some or all of the following non-limiting examples of solution variables: the mole ratio of Mg:Cl:TFSI (or other anodically stable anion), overall molarity, solvent properties, precursor and solvent purity, and reaction conditions. In one preferred embodiment, a suitable complex is prepared by reacting MgCl2 with a compound containing bis(trifluoromethanesulfonyl)imide. In a typical preparation of an electrochemically active Mg2Cl3-TFSI solution such as 0.25 M Mg2Cl3-TFSI, one may perform the following reaction:

  • 3MgCl2+1Mg[N(CF3SO2)2]2→2Mg2Cl3[N(CF3SO2)2]  Eq. (1)
  • Place both 1.758 g MgCl2 powder (99.99%) and ˜2.016 g Mg[N(CF3SO2)2]2 (min. 97%) into a single glass container with a stir bar under inert atmosphere. Thereafter add 30.0 ml of tetrahydrofuran (THF, anhydrous<20 ppm H2O) and 20.0 ml of 1,2-dimethoxymethane (DME, anhydrous<20 ppm H2O). Subsequently stir for a time in the range from one to twenty-four hours at a temperature above room temperature after which solution may be returned to room temperature. In some cases it is preferential to heat the sample to 30.0° Celsius or more while stirring in order to facilitate reaction of the materials. The resulting solution is clear or slightly cloudy or translucent with no precipitation. In some embodiments it is preferable to rigorously stir over Mg metal powder in order to condition the solution for improved electrochemical response by reducing residual water and other impurities.
  • The product can be described as Mg2Cl3[N(CF3SO2)2] salt or more generally as a magnesium halide cation complex or more specifically as a Mg2Cl3-TFSI complex solution. In some embodiments it may be preferable to note the coordination solvent molecules to the complex cation. The product of this reaction enables reversible, facile electrochemical plating and stripping of Mg ions onto an electrode while maintaining a high anodic stability, and these advantageous electrochemical characteristics are achieved without the use of Grignard reagents, organometallic materials, or Lewis acid derived anions including tetrachloroaluminate or tetraphenylborate.
  • If X represents a halide, and Z represents an inorganic polyatomic monovalent ion, such as the non-limiting examples of anions listed in Table I, it is possible to generalize formulas the complexes or compounds that are expected to be useful in electrolytes for secondary Mg batteries, for electrochemical cells having a Mg electrode and in energy storage devices having a Mg electrode. Such generalized formulas are given in Table III, along with specific examples for different integer values of the variable n.
  • TABLE III
    Equivalent Example in Which
    Value Compound Cation and X = Cl and
    Formula of n or Complex Anion Species Z = TFSI
    Mgn+1X2nZ2 0 MgZ2 Mg2+ + 2Z Mg2+ + 2(TFSI)
    1 Mg2X2Z2 2MgX+ + 2Z 2MgCl+ +
    2(TFSI)
    2 Mg3X4Z2 MgX+ + MgCl+ +
    Mg2X3 + + 2Z Mg2Cl3 + +
    2(TFSI)
    3 Mg4X6Z2 2Mg2X3 + + 2Mg2Cl3 + +
    2Z 2(TFSI)
    4 Mg5X8Z2 MgX2 + MgCl2 +
    2Mg2X3 + + 2Mg2Cl3 + +
    2Z 2(TFSI)
  • The non-aqueous electrolyte solution including Mg2Cl3-TFSI can employ MgCl2 and Mg[N(CF3SO2)2]2 over a range of proportions to provide formation of Mg2+, Mg2Cl3 +, MgCl+ and MgCl2, or mixtures thereof. In certain embodiments, the MgCl2:Mg(TFSI)2 ratio is in the ratio of 1:4 to 5:1 with preferable ratios being 4:1, 3:1, 2:1 or any ratio between. For example, any non-whole number proportion in the range from 5:1 to 1:1 may also be used. In one or more embodiments, the electrolyte salt complex can have an Mg concentration of greater than 0.1 M for Mg.
  • In one or more embodiments a non-aqueous electrolyte for use in an electrochemical cell includes at least one organic solvent and at least one electrolytically active, soluble, magnesium (Mg) salt complex represented by the formula Mgn+1Cl(2*n)Z2, in which Z is selected from the group of monovalent negative complex ions described in Table I or mixtures thereof; and n is in the range from one to four. The electrolyte salt complex can be used at any concentration; however, in certain embodiments, the Mg molarity, e.g., concentration, ranges up to 1 M. In one or more embodiments, the electrolyte salt complex is expected to have a Mg concentration of about 0.25 to about 0.5 M. In a few additional embodiments, the electrolyte salt complex is expected to have a Mg concentration of greater than 1 M.
  • Surprisingly, it has been proposed that the voltage at which the anodic electrolyte decomposition occurs is set by the breaking of metal-organic bonds. In addition, chlorinated anions such as tetrachloroaluminate limit the anodic stability to ˜3 V vs. Mg/Mg2+. In order to surpass the energy density limitations of current state-of-the-art one needs an electrolyte capable of higher voltage stability while maintaining the ability to electrochemically deposit and strip Mg-ions in facile, reversible manner.
  • While not being bound by any particular mode of operation, it is hypothesized that the capability for reversible Mg deposition is accomplished via the formation of MgCl+ and/or Mg2Cl3 + and/or Mg3Cl4 + clusters in solution. Cationic species using other halides, such as MgBr+ and/or Mg2Br3 + clusters, and MgF+ and/or Mg2F3 + clusters may also be suitable for reversible Mg deposition.
  • Although MgCl2 is generally regarded as insoluble or poorly soluble in many organic solvents, it is possible to prepare non-aqueous electrolyte solution including magnesium chloride complexes and in particular using Mg2Cl3-TFSI, wherein the Mg molarity, e.g., concentration, ranging up to 2 M, and for example at about 0.1 to about 0.5 M for Mg.
  • Other anions with high anodic stability may be used, as long as they meet the requirements of electrochemical stability throughout the voltage window of cell operation.
  • A variety of organic solvents are suitable for use in the electrolyte of the present invention. The organic solvents can be used alone or in combination. Whether a solvent comprises a single organic composition or a plurality of organic compositions, for the purposes of further exposition, the organic solvent will be referred to as “the solvent” in the singular. In order to provide for the reversible dissolution and plating of Mg, the solvent advantageously should provide appreciable solubility by coordination of the constituent inorganic salts of Mg. Further the solvent preferably should not reduce above the Mg plating potential, so as to form products which inhibit migration of Mg from solution to the electrode surface. In various embodiments, suitable solvents include ethers and tertiary amines, and may also include organic carbonates, lactones, ketones, glymes, nitriles, ionic liquids, aliphatic and aromatic hydrocarbon solvents and organic nitro solvents. More specifically, suitable solvents include THF, 2-methyl THF, dimethoxyethane, diglyme, triglyme, tetraglyme, diethoxyethane, diethylether, proglyme, ethyl diglyme, butyl diglyme, dimethylsulfoxide, dimethylsulfite, sulfolane, ethyl methyl sulfone, acetonitrile, hexane, toluene, nitromethane, 1-3 dioxalane, 1-3 dioxane, 1-4 dioxane, trimethyl phosphate, tri-ethyl phosphate, hexa-methyl-phosphoramide (HMPA), N,N-propyl-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide (P13-TFSI), N,N-propyl-methyl-pyrrolidinium-diacetamide (P13-DCA), propyl-methyl-pyrrolidinium-bis(fluorosulfonyl)imide (P13-FSI), ethyl-dimethyl-propyl-ammonium-bis(trifluoromethylsulfonyl)imide (PDEA-TFSI), and 1-(methoxyethyl)-1-methylpiperidinium-bis(trifluoromethylsulfonyl)imide (MOEMPP-TFSI).
  • In one or more embodiments, the solvent that enables reversible, electrochemical deposition and stripping of Mg from a solution containing the reaction product(s) of MgCl2 and Mg(TFSI)2 is a THF, dimethoxyethane, ethyl diglyme, butyl diglyme, or a mixture thereof.
  • The reaction described above is motivated by an effort to surpass the high voltage and safety limitations of previous organometallic-based electrolytic solutions. However, it would appear that the result observed comes as a surprise to one of ordinary skill in the relevant art, for three reasons: First, electrolyte solutions previously shown to reversibly electrodeposit Mg metal at or near room temperature generally required the utilization of Grignard reagent, or another organometallic reagent with metal-organic bonds. One practiced in the art will recognize that previous attempts to utilize inorganic magnesium salts failed to enable substantial reversibility of magnesium deposition with high Coulombic efficiency and low overpotential, but instead resulted in decomposition of the solution components. Second, the low solubility of MgCl2 in various solvents led others to conclude co-dissolution and reaction was not favorable. And third, MgCl2 is a chemically inert inorganic magnesium salt. It does not dissociate in based on aprotic organic solvents to appreciable extent and displays little to no conductivity in ethereal solution. Furthermore, MgCl2 alone is electrochemically inactive in such ethereal solutions, enabling only negligible Mg deposition, dissolution or intercalation.
  • The magnesium electrolyte salt can be prepared by combining a source of magnesium cation, e.g., a magnesium halide, and a source of an anion stable at high voltage, based on the anion Z in the electrolyte solvent with stirring and heating. Exemplary reaction times include 1, 5, 10, 12, 24, 48 and 72 hours; exemplary reaction temperatures include between 20 and 50 degrees Celsius. Heating under inert or reduced atmosphere is preferred to avoid water contamination and formation of oxide species.
  • In some embodiments, it is preferable to condition the solution prior to use in an electrochemical cell, by elimination or mitigation of harmful species inevitable found in the raw materials and/or the as-prepared solution. In some embodiments, additives are provided in the electrolyte to mitigate the deleterious species, without the production of side reaction or unwanted, harmful chemicals. Water, oxygen, and peroxide(s) are non-limiting examples of deleterious species.
  • Solution Conditioning
  • Solution conditioning is accomplished by control of variables including, but not limited to, cation:anion ratio, constituent molarity, choice of solvent or solvents, precursor and solvent purity, impurity removal, reaction temperature, time, mixing, and electrochemical conditions can yield a solution containing an all inorganic salt capable of reversible deposition of Mg. The electrolyte can be conditioned using a variety of processes, including physical, chemical and electrochemical process.
  • The process of conditioning includes the following non-limiting examples.
  • Physical processes that enable a high degree of Mg complex formation and removal of deleterious species/impurities including: heating, freezing, distillation, maintaining an MgCl2:MgZ2 ratio between 1:1 and 4:1, maintaining molarities that saturate the solution, etc. In some embodiments, the electrolyte solution is heated to help the dissolution of the Mg salts. In some embodiments, the MgCl2:MgZ2 ratio is adjusted so that a saturated electrolyte solution with high concentration of the electrolytically active Mg salt complex is obtained. In some specific embodiments, the MgCl2:MgZ2 ratio is 1:1, 2:1, 3:1, or 4:1 or any non-integer value in between. Similarly, in the case where Z is an anion other than bis(trifluoromethylsulfonyl)imide, the MgCl2:MgZ2 ratio can be adjusted to result in a high concentration of electrolytically active Mg salt complex. Non-limiting examples of the MgCl2:MgZ2 with any ratio between 4:1 and 1:4.
  • Chemical processes in order to remove deleterious species such as addition of minute quantities of proton/water scavengers, such as Grignard reagents, AlCl3, organoaluminum, molecular sieves, gamma-alumina, silica, Magnesium metal, etc.
  • Electrochemical processes like potentiostatic, potentiodynamic or galvanostatic electrolysis that enable a high degree of Mg complex formation and removal of deleterious species/impurities. This can be accomplished at reducing or oxidizing potentials, which reduce or oxidize deleterious species and/or drive the reaction of reactants to products. It can be exercised with inert electrodes, sacrificial electrodes, like Mg or, within a complete cell, with an auxiliary electrode or with the cathode serving as the working electrode. In some specific embodiments, the electrolyte is subjected to multiple cycles of potentiostatic, potentiodynamic or galvanostatic electrolysis. In some specific embodiments, the electrolyte is potentiostatically polarized for 5 cycles, 10 cycles, 15 cycles, 20 cycles, or 30 cycles.
  • In one or more embodiments, the electrolyte salt solution is conditioned to improve the electrochemical properties through electrochemical polarization.
  • In one or more embodiments, the electrolyte salt solution is conditioned to improve the electrochemical properties by reacting with insoluble active metals, such as metallic Mg, Al, Ca, Li, Na, or K, and/or reacting with insoluble acids/bases, and by being exposed to adsorbing agents such as molecular sieves, CaH2, alumina, silica, MgCO3, and similar absorptive materials.
  • In one or more embodiments, the electrolyte salt solution is conditioned to improve the electrochemical properties by providing additives to scavenge contaminants. The contaminants that can be scavenged include but are not limited to organo-Mg compounds, organo-Al compounds, organo-B compounds, organometallics, trace water, oxygen, CO2, and protic contaminants such as acids.
  • As described above, the electrochemical window of a cell with an electrolyte as described herein and an appropriate anode-cathode pair has been observed to be 3.5-3.6 volts.
  • It is expected that the electrolytic solutions described and contemplated herein can be used in such devices as electrochemical cells, secondary (e.g., rechargeable) batteries, and energy storage devices that include, in addition to the electrolyte, an anode and a cathode. In some embodiments, an electrochemical cell can include a metal anode and an intercalation cathode.
  • In one or more embodiments, a secondary battery includes the electrolyte according to the present invention, a magnesium metal anode and a magnesium insertion compound cathode.
  • In one or more embodiments, a secondary battery includes the electrolyte according to the present invention, a magnesium metal anode and a conversion, or displacement compound cathode.
  • In one or more embodiments, the magnesium insertion-compound cathode includes a magnesium-Chevrel intercalation cathode of the formula, Mo6S8.
  • The electrolyte composition of the present invention includes an organic solvent and electrochemically-active, soluble, inorganic salt complex represented by the formula Mgn+1Cl(2*n)Z2, in which Z is selected from the compounds described in Table I or mixtures thereof; and n is in the range from one to four.
  • Inorganic salts of this form may, in certain cases, be combined with compatible organometallic salts or with compatible inorganic salts of other forms.
  • Intercalation cathodes used in conjunction with the electrolyte according to the present invention preferably include transition metal oxides, transition metal oxo-anions, chalcogenides, and halogenides and combinations thereof. Non-limiting examples of positive electrode active material for the Mg battery include Chevrel phase Mo6S8, MnO2, CuS, Cu2S, Ag2S, CrS2, VOPO4, layered structure compounds such as TiS2, V2O5, MgVO3, MoS2, MgV2O5, MoO3, Spinel structured compounds such as CuCr2S4, MgCr2S4, MgMn2O4, MgNiMnO4, Mg2MnO4, NASICON structured compounds such as MgFe2(PO4)3 and MgV2(PO4)3, Olivine structured compounds such as MgMnSiO4 and MgFe2(PO4)2, Tavorite structured compounds such as Mg0.5VPO4F, pyrophosphates such as TiP2O7 and VP2O2, and fluorides such as MgMnF4 and FeF3.
  • In some embodiments, the positive electrode layer further comprises an electronically conductive additive. Non-limiting examples of electronically conductive additives include carbon black, Super P, Super C65, Ensaco black, Ketjen black, acetylene black, synthetic graphite such as Timrex SFG-6, Timrex SFG-15, Timrex SFG-44, Timrex KS-6, Timrex KS-15, Timrex KS-44, natural flake graphite, carbon nanotubes, fullerenes, hard carbon, or mesocarbon microbeads.
  • In some embodiments, the positive electrode layer further comprises a polymer binder. Non-limiting examples of polymer binders include poly-vinylidene fluoride (PVdF), poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), Polytetrafluoroethylene (PTFE), Kynar Flex 2801, Kynar Powerflex LBG, and Kynar HSV 900, or Teflon.
  • Negative electrodes used in conjunction with the present invention comprise a negative electrode active material that can accept Mg-ions. Non-limiting examples of negative electrode active material for the Mg battery include Mg, Mg alloys such as AZ31, AZ61, AZ63, AZ80, AZ81, AZ91, AM50, AM60, Elektron 675, ZK51, ZK60, ZK61, ZC63, M1A, ZC71, Elektron 21, Elektron 675, Elektron, Magnox, or insertion materials such as Anatase TiO2, ruble TiO2, Mo6S8, FeS2, TiS2, MoS2.
  • In some embodiments, the negative electrode layer further comprises an electronically conductive additive. Non-limiting examples of electronically conductive additives include carbon black, Super P, Super C65, Ensaco black, Ketjen black, acetylene black, synthetic graphite such as Timrex SFG-6, Timrex SFG-15, Timrex SFG-44, Timrex KS-6, Timrex KS-15, Timrex KS-44, natural flake graphite, carbon nanotubes, fullerenes, hard carbon, or mesocarbon microbeads.
  • In some embodiments, the negative electrode layer further comprises a polymer binder. Non-limiting examples of polymer binders include poly-vinylidene fluoride (PVdF), poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), Polytetrafluoroethylene (PTFE), Kynar Flex 2801, Kynar Powerflex LBG, and Kynar HSV 900, or Teflon.
  • In some embodiments, the Mg battery used in conjunction with the electrolyte described herein comprises a positive electrode current collector comprising carbonaceous material, or a current collector comprising a metal substrate coated with an over-layer to prevent corrosion in the electrolyte. In some embodiments, the Mg battery described herein comprises a negative electrode current collector comprising carbonaceous material. In other embodiments, the Mg battery described herein comprises positive and negative electrode current collectors comprising carbonaceous material.
  • In some embodiments, the Mg battery disclosed herein is a button or coin cell battery consisting of a stack of negative electrode, porous polypropylene or glass fiber separator, and positive electrode disks sit in a can base onto which the can lid is crimped. In other embodiments, the Mg battery used in conjunction with the electrolyte disclosed herein is a stacked cell battery. In other embodiments, the Mg battery disclosed herein is a prismatic, or pouch, cell consisting of one or more stacks of negative electrode, porous polypropylene or glass fiber separator, and positive electrode sandwiched between current collectors wherein one or both current collectors comprise carbonaceous materials, or a metal substrate coated with an over-layer to prevent corrosion in the electrolyte. The stack(s) are folded within a polymer coated aluminum foil pouch, vacuum and heat dried, filled with electrolyte, and vacuum and heat sealed. In other embodiments, the Mg battery disclosed herein is a prismatic, or pouch, bi-cell consisting of one or more stacks of a positive electrode which is coated with active material on both sides and wrapped in porous polypropylene or glass fiber separator, and a negative electrode folded around the positive electrode wherein one or both current collectors comprise carbonaceous materials. The stack(s) are folded within a polymer coated aluminum foil pouch, dried under heat and/or vacuum, filled with electrolyte, and vacuum and heat sealed. In some embodiments of the prismatic or pouch cells used in conjunction with the electrolyte described herein, an additional tab composed of a metal foil or carbonaceous material of the same kind as current collectors described herein, is affixed to the current collector by laser or ultrasonic welding, adhesive, or mechanical contact, in order to connect the electrodes to the device outside the packaging.
  • In other embodiments, the Mg battery used in conjunction with the electrolyte disclosed herein is a wound or cylindrical cell consisting of wound layers of one or more stacks of a positive electrode which is coated with active material on one or both sides, sandwiched between layers of porous polypropylene or glass fiber separator, and a negative electrode wherein one or both current collectors comprise carbonaceous materials. The stack(s) are wound into cylindrical roll, inserted into the can, dried under heat and/or vacuum, filled with electrolyte, and vacuum and welded shut. In some embodiments of the cylindrical cells described herein, an additional tab composed of a metal foil or carbonaceous material of the same kind as current collectors described herein, is affixed to the current collector by laser or ultrasonic welding, adhesive, or mechanical contact, in order to connect the electrodes to the device outside the packaging.
  • Theoretical Discussion
  • Although the theoretical description given herein is thought to be correct, the operation of the devices described and claimed herein does not depend upon the accuracy or validity of the theoretical description. That is, later theoretical developments that may explain the observed results on a basis different from the theory presented herein will not detract from the inventions described herein.
  • Any patent, patent application, or publication identified in the specification is hereby incorporated by reference herein in its entirety. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material explicitly set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the present disclosure material. In the event of a conflict, the conflict is to be resolved in favor of the present disclosure as the preferred disclosure.
  • While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by the claims.

Claims (17)

What is claimed is:
1. A method of preparing a non-aqueous electrolyte solution for use in an electrochemical cell, comprising the step of reacting a magnesium halide and a magnesium salt of formula MgZ2, where Z is a polyatomic monovalent anion, in a solvent.
2. The method of claim 1, wherein Z is a polyatomic monovalent anion selected from the group of polyatomic monovalent anions described in Table I, or mixtures thereof.
3. The method of claim 1, wherein said magnesium halide is magnesium chloride, said magnesium salt is Mg[N(CF3SO2)2]2, and said solvent is THF, DME, ethyl diglyme, butyl diglyme, or a mixture thereof.
4. The method of claim 1, wherein a magnesium halide:MgZ2 ratio is in the range from 4:1 to 1:4.
5. The non-aqueous electrolyte solution of claim 1, wherein a magnesium halide:MgZ2 ratio is in any proportion between 4:1 and 1:1.
6. The method of claim 1, further comprising the step of conditioning said non-aqueous electrolyte solution by electrochemical polarization.
7. An electrochemical cell, comprising:
a non-aqueous electrolyte solution comprising:
at least one organic solvent; and
at least one electrolytically active, soluble, inorganic Magnesium (Mg) salt complex represented by the formula Mgn+1X(2*n)Z2 in which n is in the range from one-quarter to four, X is a halide, and Z is an inorganic polyatomic monovalent anion;
a magnesium anode and
a cathode capable of magnesium intercalation, conversion, or displacement reaction.
8. The electrochemical cell of claim 7, wherein said magnesium anode is selected from the group consisting of Mg metal, Anatase TiO2, rutile TiO2, Mo6S8, FeS2, TiS2, and MoS2.
9. The electrochemical cell of claim 7, wherein said Mg alloy is selected from the group of Mg alloys consisting of AZ31, AZ61, AZ63, AZ80, AZ81, AZ91, AM50, AM60, Elektron 675, ZK51, ZK60, ZK61, ZC63, M1A, ZC71, Elektron 21, Elektron 675, Elektron, and Magnox.
10. The electrochemical cell of claim 7, wherein said magnesium intercalation cathode is selected from the group consisting of Chevrel phase Mo6S8, MnO2, CuS, Cu2S, Ag2S, CrS2, VOPO4, a layered structure compound, a spinel structured compound, a zinc blende structure, a rock salt structured compound, a NASICON structured compound, a Cadmium iodide structured compound, an Olivine structured compound, a Tavorite structured compound, a pyrophosphate, a monoclinic structured compound, and a fluoride.
11. The electrochemical cell of claim 10, wherein said layered structure compound is selected from the group consisting of TiS2, V2O5, MgVO3, MoS2, MgV2O5, and MoO3.
12. The electrochemical cell of claim 10, wherein said spinel structured compound is selected from the group consisting of CuCr2S4, MgCr2S4, MgMn2O4, MgNiMnO4, and Mg2MnO4.
13. The electrochemical cell of claim 10, wherein said NASICON structured compound is selected from the group consisting of MgFe2(PO4)3 and MgV2(PO4)3.
14. The electrochemical cell of claim 10, wherein said Olivine structured compound is selected from the group consisting of MgMnSiO4 and MgFe2(PO4)2.
15. The electrochemical cell of claim 10, wherein said Tavorite structured compound is Mg0.5VPO4F.
16. The electrochemical cell of claim 10, wherein said pyrophosphate is selected from the group consisting of TiP2O7 and VP2O7.
17. The electrochemical cell of claim 10, wherein said fluoride is selected from the group consisting of MgMnF4 and FeF3.
US13/803,382 2012-03-20 2013-03-14 High voltage rechargeable magnesium cells having a non-aqueous electrolyte Abandoned US20130252114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/803,382 US20130252114A1 (en) 2012-03-20 2013-03-14 High voltage rechargeable magnesium cells having a non-aqueous electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261613063P 2012-03-20 2012-03-20
US13/803,382 US20130252114A1 (en) 2012-03-20 2013-03-14 High voltage rechargeable magnesium cells having a non-aqueous electrolyte

Publications (1)

Publication Number Publication Date
US20130252114A1 true US20130252114A1 (en) 2013-09-26

Family

ID=49212134

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/803,382 Abandoned US20130252114A1 (en) 2012-03-20 2013-03-14 High voltage rechargeable magnesium cells having a non-aqueous electrolyte
US13/803,321 Expired - Fee Related US9293790B2 (en) 2012-03-20 2013-03-14 High voltage rechargeable magnesium batteries having a non-aqueous electrolyte
US13/803,456 Expired - Fee Related US8951676B2 (en) 2011-12-22 2013-03-14 Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/803,321 Expired - Fee Related US9293790B2 (en) 2012-03-20 2013-03-14 High voltage rechargeable magnesium batteries having a non-aqueous electrolyte
US13/803,456 Expired - Fee Related US8951676B2 (en) 2011-12-22 2013-03-14 Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

Country Status (3)

Country Link
US (3) US20130252114A1 (en)
EP (1) EP2828919B1 (en)
WO (1) WO2013180807A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105140A1 (en) * 2014-01-08 2015-07-16 国立大学法人京都大学 Secondary battery
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130252114A1 (en) * 2012-03-20 2013-09-26 Pellion Technologies, Inc. High voltage rechargeable magnesium cells having a non-aqueous electrolyte
US9240612B2 (en) * 2012-03-29 2016-01-19 Pellion Technologies, Inc. Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
US10903487B2 (en) * 2013-04-25 2021-01-26 Toyota Motor Engineering & Manufacturing North America, Inc. Metal-metal battery
US9225023B2 (en) * 2013-10-04 2015-12-29 Toyota Motor Engineering & Manufacturing North America, Inc. Fullerenes as high capacity cathode materials for a rechargeable magnesium battery
JP6305202B2 (en) * 2014-05-16 2018-04-04 キヤノン株式会社 Electrophotographic member, process cartridge, and electrophotographic apparatus
US10566632B2 (en) * 2014-06-16 2020-02-18 The Research Foundation For The State University Of New York Hybrid electrolytes for group 2 cation-based electrochemical energy storage device
US9601801B2 (en) 2014-07-18 2017-03-21 Uchicago Argonne, Llc Electrolytes comprising metal amide and metal chlorides for multivalent battery
JP6613573B2 (en) * 2015-02-06 2019-12-04 株式会社村田製作所 Electrode, method for producing the same, and electrochemical device
US9698448B2 (en) 2015-04-20 2017-07-04 Uchicago Argonne, Llc Electrolytes for magnesium electrochemical cells
US20180183038A1 (en) * 2015-06-19 2018-06-28 University Of Houston System Method of activating two-dimensional materials for multivalent/polyatomic-ion intercalation battery electrodes
WO2017113053A1 (en) * 2015-12-28 2017-07-06 中国科学院苏州纳米技术与纳米仿生研究所 Mononuclear magnesium cationized salt, preparation method and use thereof
US9997815B2 (en) * 2016-08-05 2018-06-12 Toyota Motor Engineering & Manufacturing North America, Inc. Non-aqueous magnesium-air battery
US10910672B2 (en) * 2016-11-28 2021-02-02 Toyota Motor Engineering & Manufacturing North America, Inc. High concentration electrolyte for magnesium battery having carboranyl magnesium salt in mixed ether solvent
JP7112084B2 (en) * 2017-01-31 2022-08-03 学校法人 関西大学 Electrolyte, secondary battery, and method for producing electrolyte
CN110301063A (en) * 2017-02-21 2019-10-01 株式会社村田制作所 Electrolyte and electrochemical appliance
KR102618946B1 (en) 2017-03-27 2023-12-29 하이드로-퀘벡 Salts for use in electrolyte compositions or as electrode additives
CN110998958B (en) * 2018-02-12 2022-10-14 株式会社Lg新能源 Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN112534621B (en) * 2018-08-01 2024-07-16 株式会社村田制作所 Electrolyte and electrochemical device
WO2020027099A1 (en) 2018-08-01 2020-02-06 株式会社村田製作所 Electrolytic solution and electrochemical device
CN112970131A (en) 2018-10-30 2021-06-15 株式会社村田制作所 Electrolyte solution and electrochemical device
CN109921094B (en) * 2019-01-30 2022-05-03 中国石油大学(华东) Novel polymethoxy dialkyl ether lithium battery electrolyte and application thereof
CN109950537A (en) * 2019-03-26 2019-06-28 宁波职业技术学院 A kind of anode of magnesium ion battery material and preparation method thereof adulterating silicic acid nickel magnesium
US20220293929A1 (en) * 2020-05-28 2022-09-15 Asahi Kasei Kabushiki Kaisha Non-Aqueous Secondary Battery and Non-Aqueous Electrolyte
CN115295884A (en) * 2022-07-21 2022-11-04 厦门大学 Organic system rechargeable magnesium battery electrolyte, preparation method thereof and battery
CN115498329B (en) * 2022-10-13 2024-04-09 东北大学 Magnesium battery compound electrolyte and preparation and use methods thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4417472B2 (en) * 1999-06-08 2010-02-17 パナソニック株式会社 Non-aqueous electrolyte magnesium secondary battery
US6316141B1 (en) 1999-10-18 2001-11-13 Bar Ilan University High-energy, rechargeable, electrochemical cells with non-aqueous electrolytes
US20020110739A1 (en) * 2000-05-26 2002-08-15 Mcewen Alan B. Non-flammable electrolytes
US20040137324A1 (en) * 2002-12-27 2004-07-15 Masaharu Itaya Electrolyte for nanaqueous battery, method for producing the same, and electrolytic solution for nonaqueous battery
JP2005251516A (en) * 2004-03-03 2005-09-15 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5245108B2 (en) * 2007-07-11 2013-07-24 ソニー株式会社 Magnesium ion-containing non-aqueous electrolyte, method for producing the same, and electrochemical device
JP5034799B2 (en) 2007-09-07 2012-09-26 ソニー株式会社 Magnesium ion-containing non-aqueous electrolyte, method for producing the same, and electrochemical device
WO2009107362A1 (en) 2008-02-26 2009-09-03 パナソニック株式会社 Desulfurizer, hydrogen generation apparatus, fuel cell power generating system, and desulfurizing agent cartridge
JP2013533577A (en) * 2010-05-25 2013-08-22 ペリオン テクノロジーズ インク. Electrode material for magnesium battery
US8541133B2 (en) * 2010-10-27 2013-09-24 Toyota Motor Engineering & Manufacturing North America, Inc. Electrochemical device with a magnesium anode and a stable, safe electrolyte compatible with sulfur
US8361661B2 (en) * 2011-03-08 2013-01-29 Pellion Technologies Inc. Rechargeable magnesium ion cell components and assembly
US20130252114A1 (en) * 2012-03-20 2013-09-26 Pellion Technologies, Inc. High voltage rechargeable magnesium cells having a non-aqueous electrolyte

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105140A1 (en) * 2014-01-08 2015-07-16 国立大学法人京都大学 Secondary battery
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US11271248B2 (en) 2015-03-27 2022-03-08 New Dominion Enterprises, Inc. All-inorganic solvents for electrolytes
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
US11894550B2 (en) 2016-06-28 2024-02-06 The Research Foundation For The State University Of New York VOPO4 cathode for sodium ion batteries
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US12119452B1 (en) 2016-09-27 2024-10-15 New Dominion Enterprises, Inc. All-inorganic solvents for electrolytes
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
US12002957B2 (en) 2018-03-05 2024-06-04 The Research Foundation For The State University Of New York ε-VOPO4 cathode for lithium ion batteries

Also Published As

Publication number Publication date
EP2828919A2 (en) 2015-01-28
WO2013180807A2 (en) 2013-12-05
US8951676B2 (en) 2015-02-10
WO2013180807A3 (en) 2014-03-06
US20130252112A1 (en) 2013-09-26
US9293790B2 (en) 2016-03-22
EP2828919B1 (en) 2017-05-24
EP2828919A4 (en) 2016-01-20
US20140099557A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US9293790B2 (en) High voltage rechargeable magnesium batteries having a non-aqueous electrolyte
US9752245B2 (en) Non-aqueous electrolyte for rechargeable magnesium ion cell
US11901504B2 (en) Rechargeable battery cell having an SO2-based electrolyte
US20140220450A1 (en) Non-aqueous electrolyte for rechargeable magnesium ion cell
US12100803B2 (en) Aqueous zinc-metal batteries comprising “water-in-salt” electrolyte
US9240612B2 (en) Layered materials with improved magnesium intercalation for rechargeable magnesium ion cells
US20140125292A1 (en) Lithium energy storage device
US9601801B2 (en) Electrolytes comprising metal amide and metal chlorides for multivalent battery
JP2016062821A (en) Electrolytic solution for fluoride ion batteries and fluoride ion battery
JP6050290B2 (en) Electrolyte for fluoride ion battery and fluoride ion battery
JP2017216208A (en) Electrolyte solution for fluoride ion battery, and fluoride ion battery
WO2023079317A1 (en) Non-aqueous electrolyte compositions
EP4018506A1 (en) An electrolyte solution comprising an alkali metal bis (oxalato)borate salt
US20190355992A1 (en) Cathode stabilization method using electrochemical oxidative additives in aqueous alkali-ion batteries
KR101799693B1 (en) Anode current collectors, conductive material, and fluoride ion battery
Mwemezi et al. Dendrite-free reversible Li plating/stripping in adiponitrile-based electrolytes for high-voltage Li metal batteries
US20240113337A1 (en) High voltage aqueous electrolyte system for lithium metal or graphite anode
US20210336254A1 (en) Metal and metal-alloy based batteries
JP2009021060A (en) Lithium-ion secondary battery using ionic liquid
JP2012104268A (en) Lithium-ion secondary battery

Legal Events

Date Code Title Description
AS Assignment

Owner name: PELLION TECHNOLOGIES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOE, ROBERT ELLIS;LANE, GEORGE HAMILTON;JILEK, ROBERT E.;AND OTHERS;SIGNING DATES FROM 20130328 TO 20130418;REEL/FRAME:030355/0730

AS Assignment

Owner name: U.S. DEPARTMENT OF ENERGY, DISTRICT OF COLUMBIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:PELLION TECHNOLOGIES;REEL/FRAME:030572/0195

Effective date: 20130327

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION