WO2015105140A1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
WO2015105140A1
WO2015105140A1 PCT/JP2015/050360 JP2015050360W WO2015105140A1 WO 2015105140 A1 WO2015105140 A1 WO 2015105140A1 JP 2015050360 W JP2015050360 W JP 2015050360W WO 2015105140 A1 WO2015105140 A1 WO 2015105140A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
cluster
compound
atom
formula
Prior art date
Application number
PCT/JP2015/050360
Other languages
French (fr)
Japanese (ja)
Inventor
哲 市坪
松原 英一郎
俊介 八木
邦明 邑瀬
北田 敦
Original Assignee
国立大学法人京都大学
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 公立大学法人大阪府立大学 filed Critical 国立大学法人京都大学
Priority to JP2015556828A priority Critical patent/JPWO2015105140A1/en
Publication of WO2015105140A1 publication Critical patent/WO2015105140A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery. More specifically, the present invention relates to a secondary battery that can be suitably used as a power source for transportation equipment, mobile equipment, and the like; a secondary battery for storing power. Since the secondary battery of the present invention can secure a high electromotive force, the secondary battery for transportation equipment such as an aircraft, a hybrid vehicle, and an electric vehicle; the secondary battery for mobile equipment; and the secondary battery for storing power. It is expected to be used for secondary batteries.
  • lithium ion secondary batteries can be used as power storage devices for transportation equipment, mobile devices, power storage, etc., because they can ensure high voltage and have high energy density among power storage devices. It has been.
  • the lithium ion secondary battery may cause oxidative decomposition of the positive electrode active material due to overcharge.
  • a magnesium secondary battery including a positive electrode containing a chevrel compound as a positive electrode active material and an electrolytic solution made of a solution obtained by dissolving a Grignard reagent and aluminum chloride in tetrahydrofuran has been proposed (for example, see Non-Patent Document 1). ).
  • Non-Patent Document 1 has a drawback that it can obtain only an electromotive force that is practically insufficient and has a small charge capacity per unit mass.
  • This invention is made
  • the present invention comprises a negative electrode, a positive electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode,
  • the positive electrode has the formula (I):
  • the electrolytic solution is an electrolytic solution containing a liquid capable of transferring carrier ions between the positive electrode and the negative electrode,
  • the present invention relates to a secondary battery characterized in that the liquid is prevented from entering the voids of the atomic arrangement structure of the cluster compound.
  • the secondary battery according to the present embodiment includes a positive electrode including the cluster compound, and the liquid intrusion into the void of the atomic arrangement structure of the cluster compound is suppressed. Insertion and desorption of carrier ions from the positive electrode are not hindered by the liquid and are performed smoothly. Therefore, according to the secondary battery according to the present embodiment, a high electromotive force can be ensured.
  • the liquid may be an ionic liquid or a mixture obtained by mixing at least two kinds of ionic liquids.
  • the ionic liquid is an ionic liquid containing an anion having a halogen atom and an organic cation or a metal cation, because the charge / discharge reaction in the negative electrode can be performed more efficiently and a higher electromotive force can be secured. It is preferable. Furthermore, since the ionic liquid can perform charge / discharge reaction in the negative electrode more efficiently and secure a higher electromotive force, as the anion, a non-coordinating halide anion, a metal halide complex anion, formula (III) :
  • R 3 represents a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom
  • an anion selected from the group consisting of sulfonate anions represented by formula (VII):
  • R 12 represents an alkyl group having 1 to 8 carbon atoms
  • the liquid may be a compound having a bulky enough to prevent the cluster compound from entering the voids of the atomic arrangement structure.
  • the compound is preferably a glycol ether compound because the compound has a sufficient bulkiness to suppress the entry of the atomic arrangement structure of the cluster compound into the voids.
  • the cluster compound is preferably a chevrel compound from the viewpoint of securing a higher mass energy density.
  • the chevrel compound has the formula (II):
  • each p 1 is independently an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, a 3d transition metal atom, or a 4d transition metal.
  • Atoms, 6 M are the same as above, A is the same as above, p is a number from 0 to 4)
  • the chevrel compound which has the composition represented by these may be sufficient.
  • Example 1 an X-ray diffraction diagram showing the results of examining the X-ray diffraction powder Mo 6 S 8 cluster compound (Sample A) and Mo 6 S 8 cluster compound containing tetrahydrofuran (Sample B).
  • Experimental example 2 it is an X-ray-diffraction figure which shows the result of having investigated the X-ray diffraction of the powder (sample A) of a copper chevrel compound, and the copper chevrel compound containing tetrahydrofuran (sample B).
  • 2 is a schematic explanatory diagram illustrating a configuration of a three-electrode cell in Example 1.
  • Test Example 1 a working electrode in the case of using an electrolytic solution containing PP13-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a magnesium sheet It is a graph which shows the result of having investigated the relationship between terminal potential of this and electric current.
  • Test Example 2 it is an X-ray diffraction diagram showing the results of examining the X-ray diffraction of the active material of the working electrode after discharge. It is a schematic explanatory drawing which shows the structure of the beaker cell in Example 2.
  • (A) is a graph showing the results of examining time-dependent changes in the terminal potential and current of the working electrode in Test Example 3, and (B) is a time-dependent change in the electric capacity of the beaker cell in Test Example 3. It is a graph which shows a result.
  • (A) is the measurement target portion of the positive electrode active material existing in the positive electrode after discharge used in SEM-EDX analysis in Test Example 4, and (b) is used in SEM-EDX analysis in Test Example 4. It is a drawing substitute photograph which shows the measurement object part of the non-existing location of the positive electrode active material in the positive electrode after discharge.
  • Experiment 4 it is an X-ray diffraction diagram which shows the result of having investigated the X-ray diffraction of the positive electrode active material which exists in the positive electrode after discharge.
  • Test Example 5 an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. Cyclic voltammogram of the case.
  • Test Example 6 an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. It is a graph which shows the result of having investigated the charge / discharge characteristic in a case.
  • Test Example 7 an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a magnesium sheet were used.
  • Test Example 8 an electrolytic solution containing Cs-TFSI, Li-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode comprising a counter electrode made of a lithium sheet
  • a graph which shows the result of having investigated the relationship between the terminal electric potential of a working electrode at the time of performing cyclic voltammetry at 150 degreeC, and electric current.
  • It is a schematic explanatory drawing which shows the structure of the beaker cell in Example 6.
  • Test Example 10 an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material
  • A is a graph showing the results of examining time-dependent changes in the terminal potential and current of the working electrode in Test Example 10
  • (B) is a graph showing the results of examining time-dependent changes in the electric capacity of the beaker cell. is there.
  • (A) is the measurement target part of the location of the positive electrode active material in the positive electrode after discharge used in SEM-EDX analysis in Test Example 11, and (b) is used in SEM-EDX analysis in Test Example 11.
  • It is a drawing substitute photograph which shows the measurement object part of the non-existing location of the positive electrode active material in the positive electrode after discharge.
  • Experiment 11 it is an X-ray diffraction diagram which shows the result of having investigated the X-ray diffraction of the positive electrode active material of each of the positive electrode after charge, and the positive electrode after discharge.
  • Test Example 13 it is a cyclic voltammogram when using the three-electrode cell obtained in Example 9.
  • FIG. 25 is a cyclic voltammogram showing the result of converting the relationship between the potential and current shown in FIG. 24 to the Mg 2+ / Mg standard.
  • Test example 14 it is a graph which shows the result of having investigated the relationship between the terminal potential of a working electrode at the time of using the three-electrode-type cell obtained in Experimental example 3, and an electric current.
  • Test example 14 it is a graph which shows the result of having investigated the relationship between the terminal potential of a working electrode at the time of using the three-electrode-type cell obtained in Experimental example 4, and an electric current.
  • the present invention includes a positive electrode, a negative electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode, wherein the positive electrode has the formula (I):
  • the electrolytic solution is an electrolytic solution containing a liquid capable of transferring carrier ions between the positive electrode and the negative electrode,
  • the present invention relates to a secondary battery characterized in that intrusion of the solvent into the voids of the atomic arrangement structure of the cluster compound is suppressed.
  • the secondary battery according to the present embodiment includes a positive electrode including the cluster compound, and the liquid is prevented from entering the voids of the atomic arrangement structure of the cluster compound. Therefore, in the secondary battery according to this embodiment, the insertion of carrier ions into the gap and the detachment of carrier ions from the positive electrode are not hindered by the liquid and can be performed smoothly. Therefore, according to the secondary battery according to the present embodiment, carrier ions can be efficiently inserted into and removed from the voids in the atomic arrangement structure of the cluster compound constituting the positive electrode active material of the positive electrode. Therefore, a high electromotive force can be secured.
  • the positive electrode is an electrode including a cluster compound having a cluster represented by the formula (I).
  • the cluster compound has a cluster represented by the formula (I).
  • the cluster is a cluster in which the binding force of cations as carrier ions is weak. Therefore, a cation as a carrier ion can easily move within the atomic arrangement structure of the cluster compound. Therefore, since the secondary battery according to this embodiment includes the positive electrode including the cluster compound, a charge / discharge reaction at a high potential can be performed.
  • M's each independently represent a chromium atom, a molybdenum atom or a tungsten atom.
  • the chromium atom, the molybdenum atom, and the tungsten atom maintain the atomic arrangement structure of the cluster compound and behave electrochemically in the same manner.
  • the M from the viewpoint of securing a higher mass energy density, a chromium atom and a molybdenum atom are preferable, and a chromium atom is more preferable.
  • A is a chalcogen atom.
  • the chalcogen atom include a sulfur atom, a selenium atom, and a tellurium atom. These chalcogen atoms have properties similar to each other, and in the cluster compound having a cluster represented by the formula (I), the atomic arrangement structure of the cluster compound is maintained, and the electrochemically similar behavior to each other is maintained. Indicates.
  • the eight A's may each independently be a sulfur atom, a selenium atom or a tellurium atom.
  • a sulfur atom and a selenium atom are preferable, and a sulfur atom is more preferable.
  • the cluster represented by the formula (I) include Mo 6 S 8 cluster, Mo 5 CrS 8 cluster, Mo 4 Cr 2 S 8 cluster, Mo 3 Cr 3 S 8 cluster, and Mo 2 Cr. 4 S 8 cluster, MoCr 5 S 8 cluster, Mo 6 Se 8 cluster, Mo 5 CrSe 8 cluster, Mo 4 Cr 2 Se 8 cluster, Mo 3 Cr 3 Se 8 cluster, Mo 2 Cr 4 Se 8 cluster, MoCr 5 Se 8 clusters, Mo 6 Te 8 clusters, Mo 5 CrTe 8 clusters, Mo 4 Cr 2 Te 8 clusters, Mo 3 Cr 3 Te 8 clusters, Mo 2 Cr 4 Te 8 clusters, MoCr 5 Te 8 clusters, Mo 5 WS 8 clusters , Mo 4 W 2 S 8 cluster, Mo 3 W 3 S 8 cluster, Mo 2 W 4 S 8 cluster, MoW 5 S 8 class , Mo 6 Se 8 cluster, Mo 5 WSe 8 cluster, Mo 4 W 2 Se 8 cluster, Mo 3 W 3 Se 8 cluster, Mo 2 W 4 Se 8 cluster, MoW 5 Se 8 cluster, Mo 6 Te 8 cluster, Mo 5 WT
  • Mo 6 S 8 cluster, Mo 5 CrS 8 cluster, Mo 4 Cr 2 S 8 cluster, and Mo 3 Cr 3 S are used from the viewpoint of ensuring sufficient chemical stability and higher mass energy density. Eight clusters, Mo 2 Cr 4 S 8 clusters and MoCr 5 S 8 clusters are preferred.
  • the cluster compound may have a cluster represented by the formula (I) and further have a cation.
  • Examples of the cluster compound include a chevrel compound; a Mo 6 S 8 compound having iron, gallium, silver, cadmium, indium, tin, lead and the like as a cation, but the present invention is limited only to such examples. It is not something.
  • the chevrel compound has the formula (II):
  • each p 1 is independently an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, a 3d transition metal atom, or a 4d transition metal.
  • Atoms, 6 M are the same as above, A is the same as above, p is a number from 0 to 4)
  • the chevrel compound which has a composition represented by these is mentioned.
  • p X 1 s independently represent an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, or a 3d transition metal atom. Or a 4d transition metal atom.
  • These alkali metal atoms, alkaline earth metal atoms, Group 12 typical metal atoms, Group 13 typical metal atoms, Group 14 typical metal atoms, 3d transition metal atoms, and 4d transition metal atoms are atoms that can form a Chevrel phase. High electromotive force and high capacity can be secured.
  • Examples of the alkali metal atom include a lithium atom, a sodium atom, and a potassium atom, but the present invention is not limited to such illustration.
  • Examples of the alkaline earth metal atom include a magnesium atom and a calcium atom, but the present invention is not limited to such illustration.
  • Examples of the group 12 typical metal atom include a zinc atom and a cadmium atom, but the present invention is not limited to such examples.
  • Examples of the group 13 typical metal atom include an aluminum atom, a gallium atom, and an indium atom, but the present invention is not limited to such examples.
  • Examples of the group 14 typical metal atom include a tin atom and a lead atom, but the present invention is not limited to such illustration.
  • Examples of the 3d transition metal atom include an iron atom, a cobalt atom, a nickel atom, and a copper atom. However, the present invention is not limited to such examples.
  • Examples of the 4d transition metal atom include silver, but the present invention is not limited to such examples.
  • X 1 can be appropriately selected according to the type of secondary battery, the use of the secondary battery, and the like.
  • lithium atom, sodium atom, a magnesium atom, a zinc atom, cadmium atom, aluminum atom, a gallium atom, an indium atom, tin Atom, lead atom, iron atom, cobalt atom, nickel atom, copper atom and silver atom are preferable, and lithium atom, sodium atom and magnesium atom are more preferable from the viewpoint of securing high electromotive force.
  • p is a number from 0 to 4. Since p differs depending on the valence of X 1 (the valence of the element), it is preferable that p is appropriately determined according to the valence of X 1 . For example, when the valence of X 1 is 1, p is preferably a number from 0 to 4. Further, when the valence of X 1 is 2, p is preferably a number from 0 to 2. Further, when the valence of X 1 is 3, p is preferably a number from 0 to 1.3.
  • Examples of the chevrel compound represented by the formula (II) include Mg 2 Mo 6 S 8 , Mg 2 Mo 5 CrS 8 , Mg 2 Mo 4 Cr 2 S 8 , Mg 2 Mo 3 Cr 3 S 8 , and Mg 2 Mo.
  • chevrel compounds compounds containing a large amount of chromium atoms and / or sulfur atoms having a small atomic weight are preferable from the viewpoint of securing a higher mass energy density.
  • Mg 2 Mo 6 S 8 , Mg 2 Mo 5 CrS 8 , Mg 2 Mo 4 Cr 2 S 8 , Mg 2 Mo 3 Cr 3 S 8 from the viewpoint of securing a higher mass energy density, Mg 2 Mo 2 Cr 4 S 8 , Mg 2 MoCr 5 S 8 and Mg 2 Cr 6 S 8 are more preferred.
  • the positive electrode may be an electrode made of a cluster compound having a cluster represented by formula (I), or an electrode in which a positive electrode material containing a positive electrode active material made of the cluster compound is supported on a current collector. Also good.
  • the positive electrode is an electrode in which the positive electrode material is supported on a current collector, the positive electrode is directly applied by, for example, applying the positive electrode material to the current collector, pulse laser deposition, sputtering, liquid phase synthesis, or the like.
  • the positive electrode material can be deposited on the current collector.
  • the positive electrode material contains a positive electrode active material made of the cluster compound. Further, the positive electrode material may further contain a conductive additive and a binder as necessary.
  • the conductive aid examples include carbon powder, oxygen-deficient titanium oxide, and metal fine powder, but the present invention is not limited to such examples. Since the content rate of the conductive auxiliary agent in the positive electrode material varies depending on the type of conductive auxiliary agent and the like, it is preferable to determine appropriately according to the type of conductive auxiliary agent.
  • binder examples include thermoplastic fluororesin bodies such as polyvinylidene fluoride and styrene-butadiene rubber, but the present invention is not limited to such examples. Since the content of the binder in the positive electrode material varies depending on the type of the binder and the like, it is preferable to appropriately determine the content according to the type of the binder and the like.
  • Examples of the material constituting the current collector include platinum, aluminum, palladium, copper, aluminum, nickel, niobium, molybdenum, stainless steel, and a carbon material. However, the present invention is limited to only such examples. It is not something. Since the material constituting the current collector varies depending on the type of secondary battery, the usage of the secondary battery, the type of the cluster compound, the type of the electrolyte, etc., the type of the secondary battery, the usage of the secondary battery, It is preferable to select appropriately according to the type of the cluster compound, the type of the electrolytic solution, and the like. Examples of the shape of the current collector include a porous body, a plate, and a roll-shaped thin plate. However, the present invention is not limited to such an example.
  • the negative electrode is an electrode including a negative electrode active material.
  • the negative electrode active material include metals such as s-block metal and p-block metal; alloys containing the metal as a base metal; compounds of the metal; carbon materials; silicon or a compound thereof.
  • the present invention is not limited to such examples.
  • the s block metal include alkali metals such as lithium, sodium, and potassium; alkaline earth metals such as beryllium, magnesium, and calcium; however, the present invention is not limited to such examples.
  • the p-block metal include aluminum, gallium, germanium, indium, tin, lead, and the like, but the present invention is not limited to such examples.
  • Examples of the alloy include Mg 2 Sn, but the present invention is not limited to such examples.
  • Examples of the metal compound include metal oxides such as titanium, but the present invention is not limited to such examples.
  • Examples of the carbon material include acetylene black, graphite, and glassy carbon. However, the present invention is not limited to such examples.
  • Examples of the silicon include amorphous silicon, but the present invention is not limited to such examples.
  • Examples of the silicon compound include silicon dioxide and magnesium silicide (Mg 2 Si), but the present invention is not limited to such examples.
  • the negative electrode active material varies depending on the type of secondary battery, the usage of the secondary battery, the type of the cluster compound, the type of the electrolyte, etc., the type of the secondary battery, the usage of the secondary battery, It is preferable to select appropriately according to the type and the type of the electrolytic solution.
  • the energy density is required to be 200 Wh / kg or more, among the negative electrode active materials, from the viewpoint of securing a higher mass energy density, magnesium simple substance, tin simple substance and silicon simple substance are preferable, and magnesium simple substance is preferable. More preferred.
  • the negative electrode may be an electrode made of the negative electrode active material, or an electrode in which a negative electrode material containing the negative electrode active material is supported on a current collector.
  • the negative electrode can be produced, for example, by applying the negative electrode material to a current collector.
  • the negative electrode material contains the negative electrode active material.
  • the negative electrode material may further contain a conductive auxiliary and a binder as necessary.
  • the conductive assistant and binder in the negative electrode material are the same as the conductive assistant and binder in the positive electrode material.
  • the electrolyte solution varies depending on the mode of suppression of penetration of the liquid into the voids of the atomic arrangement structure of the cluster compound, the type of the secondary battery, the use of the secondary battery, the type of the cluster compound, etc. It is preferable to determine appropriately according to the mode of suppressing the penetration of the liquid into the voids of the atomic arrangement structure of the cluster compound, the type of the secondary battery, the use of the secondary battery, the type of the cluster compound, and the like.
  • the intrusion of the liquid into the gap is, for example, (A) A liquid having a chemical property that is difficult to enter the voids of the atomic arrangement structure of the cluster compound as a liquid capable of transferring carrier ions between the positive electrode and the negative electrode (hereinafter also referred to as “liquid A”).
  • liquid As a liquid capable of transferring carrier ions between the positive electrode and the negative electrode, a liquid made of a compound having a bulkiness sufficient to prevent the cluster compound from entering the voids of the atomic arrangement structure (hereinafter referred to as “liquid”) , Also referred to as “liquid B”), (C) It is suppressed by covering the surface of the positive electrode active material of the positive electrode with a coating material that allows carrier ions to pass but does not allow the liquid to pass.
  • the liquid A is a liquid having a chemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound.
  • Examples of the liquid A include an ionic liquid and a mixture obtained by mixing at least two kinds of the ionic liquids, but the present invention is not limited to such examples.
  • Examples of the ionic liquid include an ionic liquid containing an anion having a halogen atom and an organic cation or a metal cation. However, the present invention is not limited to such examples.
  • an ionic liquid containing an organic cation, an anion having a halogen atom, and an organic cation or a metal cation is used from the viewpoint of more efficiently performing a charge / discharge reaction in the negative electrode and ensuring a higher electromotive force.
  • the ionic liquid for example, an ionic liquid containing at least two types of anions and at least two types of organic cations; an ionic liquid containing at least two types of anions and at least two types of metal cations; Examples of the ionic liquid include both types of anions and both an organic cation and a metal cation.
  • the present invention is not limited to such examples.
  • the anion is an anion having a halogen atom.
  • the anion having a halogen atom include a non-coordinating halide anion, a metal halogen complex anion, and the formula (III):
  • R 3 represents a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom
  • the sulfonate anion etc. which are represented by these are mentioned, However, This invention is not limited only to this illustration. These anions have a halogen atom and can constitute an ionic liquid capable of securing a sufficient mass energy density together with a cation described later.
  • non-coordinating halide anion examples include, for example, a hydrogen halide anion [for example, the formula (VI):
  • X 3 represents a halogen atom, and r represents a number of 1 to 4
  • a hydrogen halide anion for example, HF 2 ⁇ , H 2 F 3 ⁇ , H 3 F 4 ⁇ etc.
  • PF 6 ⁇ hexafluorophosphate anion
  • BF 4 ⁇ tetrafluoroborate anion
  • this invention is not limited only to this illustration.
  • X 3 is a halogen atom.
  • r is a number from 1 to 4.
  • the halogen atom in formula (VI) is the same as the halogen atom in formula (III).
  • a hydrogen halide anion and a tetrafluoroborate anion are preferable, and a hydrogen halide anion is more preferable from the viewpoint of securing a higher mass energy density.
  • metal halide complex anion examples include hexafluoroarsenate anion (AsF 6 ⁇ ), hexafluoroniobate anion (NbF 6 ⁇ ), hexafluoro tantalate anion (TaF 6 ⁇ ), heptafluorotungstateate anion (WF). 7 -), hexafluoro back anion (UF 6 -), tetrafluoro oxovanadium anions (VOF 4 -), pentafluorophenyl oxo molybdenum anions (MoOF 5 -) but the like, the present invention is only to those exemplified It is not limited.
  • a tetrafluorooxovanadium anion (VOF 4 ⁇ ) and a hexafluoroarsenate anion (AsF 6 ⁇ ) are preferable, and the tetrafluorooxovanadium anion ( VOF 4 ⁇ ) is more preferable.
  • X 2 represents a halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the present invention is not limited to such examples.
  • a fluorine atom and a chlorine atom are preferable, and a chlorine atom is more preferable from the viewpoint of reducing the weight and ensuring the corrosion resistance.
  • q is a number from 1 to 2.
  • halogenoaluminate anion represented by the formula (III) examples include a tetrachloroaluminate anion (AlCl 4 ⁇ ) and a heptachlorodialuminate anion (Al 2 Cl 7 ⁇ ). It is not limited only to such illustration. Among the halogenoaluminate anions represented by the formula (III), AlCl 4 ⁇ and Al 2 Cl 7 ⁇ are preferable.
  • R 1 and R 2 are each independently a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, but the present invention is not limited only to such illustration.
  • a fluorine atom is preferable from the viewpoint of securing a higher mass energy density.
  • the number of carbon atoms in the alkyl group having 1 to 8 carbon atoms having a halogen atom ensures hydrophobicity and sufficient thermal stability suitable for suppressing the penetration of the solvent into the voids of the atomic arrangement structure of the cluster compound. From the viewpoint, it is 1 or more, and from the viewpoint of ensuring the viscosity of the electrolyte suitable for obtaining a high electromotive force, it is 8 or less, preferably 2 or less.
  • alkyl group having 1 to 8 carbon atoms having a halogen atom examples include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluoroheptyl group, and a perfluorohexyl group.
  • Perfluoroalkyl group having 1 to 8 carbon atoms such as perfluorooctyl group, perchloromethyl group, perchloroethyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchloroheptyl group, Perchloroalkyl groups having 1 to 8 carbon atoms such as chlorohexyl group and perchlorooctyl group; perbromomethyl group, perbromoethyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromoheptyl group , Perbromohexyl group, perbromooctyl A perbromoalkyl group having 1 to 8 carbon atoms, such as periodomethyl group, periodoethyl group, periodiopropyl group, periodiobutyl group, periodiopentyl group, periodio
  • perfluoroalkyl groups having 1 to 8 carbon atoms are preferable from the viewpoint of ensuring the viscosity of an electrolyte suitable for obtaining a high electromotive force.
  • a perfluoroalkyl group having 1 to 4 carbon atoms is more preferred, and a perfluoromethyl group is more preferred.
  • Examples of the sulfonylamide anion represented by the formula (IV) include bis (halogenosulfonyl) amide anion such as bis (fluorosulfonyl) amide anion; bis (halogenoalkylsulfonyl) amide such as bis (trifluoromethylsulfonyl) amide anion Although an anion etc. are mentioned, this invention is not limited only to this illustration.
  • R 3 is a C 1-8 alkyl group having a halogen atom.
  • the number of carbon atoms of the alkyl group in the formula (V) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 in order to ensure the viscosity of the electrolytic solution suitable for obtaining a high electromotive force.
  • the alkyl group having 1 to 8 carbon atoms having a halogen atom in the formula (V) is the same as the alkyl group having 1 to 8 carbon atoms having a halogen atom in the formula (IV).
  • Examples of the sulfonate anion represented by the formula (V) include halogenoalkyl sulfonate anions such as a trifluoromethyl sulfonate anion and a pentafluoroethyl sulfonate anion, but the present invention is limited only to such examples. Is not to be done.
  • the viscosity of the electrolyte suitable for obtaining a high electromotive force the hydrophobicity suitable for suppressing the penetration of the solvent into the voids of the atomic arrangement structure of the cluster compound, and sufficient chemical stability
  • bis (halogenosulfonyl) amide anion, bis (halogenoalkylsulfonyl) amide anion and halogenoalkylsulfo A narate anion is more preferable, and a bis (fluorosulfonyl) amide anion, a bis (trifluoromethylsulfonyl) amide anion, and a trifluoromethylsulfonate anion are more preferable.
  • the cation is a metal cation or an organic cation. These cations have a halogen atom and can form an ionic liquid capable of securing a sufficient mass energy density together with the anion.
  • Examples of the metal cation include an alkali metal cation and an alkaline earth metal cation, but the present invention is not limited to such examples.
  • Examples of the alkali metal cation include a lithium cation, a sodium cation, a potassium cation, and a cesium cation, but the present invention is not limited to such examples.
  • Examples of the alkaline earth metal cation include beryllium cation, magnesium cation, and calcium cation, but the present invention is not limited to such examples.
  • lithium cation, sodium cation, magnesium cation and cesium cation are preferable when a rocking chair type storage battery is constructed.
  • organic cation examples include formula (VII):
  • R 12 represents an alkyl group having 1 to 8 carbon atoms
  • R 4 , R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group having 1 to 8 carbon atoms or alkyloxyalkyl having 1 to 8 carbon atoms. It is a group.
  • the number of carbon atoms of the alkyl group which may have a substituent in the formula (VII) is 1 to 8, preferably 1 to 6, from the viewpoint of securing the viscosity of the electrolyte suitable for obtaining a high electromotive force. More preferably, it is 1 to 4.
  • alkyl group having 1 to 8 carbon atoms in the alkyl group which may have a substituent examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, and a pentyl group.
  • a straight or branched alkyl group having 1 to 8 carbon atoms such as hexyl group, heptyl group and octyl group; carbon such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group Examples thereof include alicyclic alkyl groups of 1 to 8, but the present invention is not limited to such examples.
  • substituents examples include a hydroxyl group, a carbonyl group, a phenyl group, a benzyl group, a nitric acid group (—NO 3 group), a sulfuric acid group, and a sulfone group, but the present invention is limited only to such examples. is not.
  • the carbon number of the alkyloxyalkyl group in formula (VII) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte.
  • alkyloxyalkyl group having 1 to 8 carbon atoms examples include methoxymethyl group, 2-methoxyethyl group, ethoxymethyl group, 2-ethoxyethyl group, 2- (n-propoxy) ethyl group, 2- (n- Examples include isopropoxy) ethyl group, 2- (n-butoxy) ethyl group, 2-isobutoxyethyl group, 2- (tert-butoxy) ethyl group, 1-ethyl-2-methoxyethyl group and the like. Is not limited to such examples.
  • Examples of the quaternary ammonium cation represented by the formula (VII) include N, N, N-trimethyl-N-propylammonium cation, N, N, N-trimethyl-N-hexylammonium cation, N, N, N— Examples include trimethyl-N- (2-hydroxymethyl) ammonium cation and N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation, but the present invention is limited to such examples only. It is not a thing.
  • N, N, N-trimethyl-N— is used from the viewpoint of securing sufficient conductivity and viscosity of an electrolyte suitable for obtaining a high electromotive force.
  • Propyl ammonium cation, N, N, N-trimethyl-N-hexyl ammonium cation, N, N, N-trimethyl-N- (2-hydroxymethyl) ammonium cation and N, N-diethyl-N-methyl-N- ( 2-Methoxyethyl) ammonium cation is preferred.
  • R 8 and R 9 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the number of carbon atoms of the alkyl group in the formula (VIII) is 1 to 8, preferably 1 to 6, more preferably 1 from the viewpoint of securing sufficient conductivity and viscosity of the electrolyte suitable for obtaining a high electromotive force.
  • ⁇ 4 The alkyl group having 1 to 8 carbon atoms in the formula (VIII) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (VII).
  • A is a direct bond or a methylene group.
  • pyrrolidinium cation represented by the formula (VIIIa) examples include N, N-dimethylpyrrolidinium cation, N-methyl-N-ethylpyrrolidinium cation, N-methyl-N-propylpyrrolidinium cation, N-methyl-N-butylpyrrolidinium cation, N-methyl-N-pentylpyrrolidinium cation, N-methyl-N-hexylpyrrolidinium cation, N-methyl-N-octylpyrrolidinium cation, N- Examples include ethyl-N-butylpyrrolidinium cation, but the present invention is not limited to such examples.
  • Examples of the piperidinium cation represented by the formula (VIIIb) include N, N-dimethylpiperidinium cation, N-methyl-N-ethylpiperidinium cation, N-methyl-N-propylpiperidinium cation, N-methyl-N-butylpiperidinium cation, N-methyl-N-pentylpiperidinium cation, N-methyl-N-hexylpiperidinium cation, N-methyl-N-octylpiperidinium cation, N- Examples include ethyl-N-propylpiperidinium cation, but the present invention is not limited to such examples.
  • R 10 and R 11 each independently represents an alkyl group having 1 to 8 carbon atoms.
  • the number of carbon atoms of the alkyl group in the formula (IX) is 1 to 8, preferably 1 to 6, more preferably 1 from the viewpoint of ensuring sufficient conductivity and viscosity of the electrolyte suitable for obtaining a high electromotive force.
  • ⁇ 4 The alkyl group having 1 to 8 carbon atoms in the formula (IX) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (VII).
  • Examples of the imidazolium cation represented by the formula (IX) include 1,3-dimethylimidazolium cation, 1-methyl-3-ethylimidazolium cation, 1-methyl-3-propylimidazolium cation, 1-methyl- 3-butylimidazolium cation, 1-methyl-3-pentylimidazolium cation, 1-methyl-3-hexylimidazolium cation, 1-methyl-3-heptylimidazolium cation, 1-methyl-3-octylimidazolium cation 1,3-diethylimidazolium cation, 1-ethyl-3-propylimidazolium cation, 1-ethyl-3-butylimidazolium cation, etc., but the present invention is not limited to such examples. Absent.
  • R 12 is an alkyl group having 1 to 8 carbon atoms.
  • the number of carbon atoms of the alkyl group in the formula (X) is 1 to 8, preferably 1 to 6, more preferably 1 from the viewpoint of securing sufficient conductivity and viscosity of the electrolyte suitable for obtaining a high electromotive force.
  • ⁇ 4 The alkyl group having 1 to 8 carbon atoms in the formula (X) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (VII).
  • Examples of the pyridinium cation represented by the formula (X) include N-methylpyridinium cation, N-ethylpyridinium cation, N-propylpyridinium cation, N-butylpyridinium cation, N-pentylpyridinium cation, N-hexylpyridinium cation, Examples include N-heptylpyridinium cation and N-octylpyridinium cation, but the present invention is not limited to such examples.
  • an alkali metal cation, an alkaline earth metal cation, a quaternary ammonium cation represented by the formula (VII) and a cation represented by the formula (VIII) are preferable, and a lithium cation, a sodium cation, a cesium cation, and a magnesium cation.
  • N-trimethyl-N-propylammonium cation N-trimethyl-N-hexylammonium cation, N, N, N-trimethyl-N- (2-hydroxymethyl) ammonium cation, N, N-diethyl-N-methyl- N- (2-methoxyethyl) ammonium cation, N-methyl-N-propylpyrrolidinium cation and N-methyl-N-propylpiperidinium cation are more preferred.
  • the combination of anion and cation differs depending on the type of secondary battery, the use of the secondary battery, the type of the cluster compound, etc., the type of secondary battery, the use of the secondary battery, the type of the cluster compound, etc. It is preferable to determine appropriately.
  • the liquid B is a liquid made of a compound having a sufficient bulk to prevent the cluster compound from entering the voids of the atomic arrangement structure.
  • “bulky enough to prevent entry into the gap” means a bulkiness larger than the size of the inlet portion of the gap.
  • liquid B examples include glycol ether compounds such as a glyme compound, but the present invention is not limited to such examples.
  • the “glyme compound” refers to a symmetric glycol ether in which hydroxyl groups at both ends of alkyl glycol are substituted with the same substituent.
  • examples of the substituent include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, but the present invention is not limited only to such examples. .
  • glycol ether compound examples include monoglyme (ethylene glycol dimethyl ether), ethyl monoglyme (ethylene glycol diethyl ether), butyl monoglyme (ethylene glycol dibutyl ether), methyl diglyme (diethylene glycol dimethyl ether), ethyl diglyme (diethylene glycol diethyl).
  • butyl diglyme (diethylene glycol dibutyl ether), methyl triglyme (triethylene glycol dimethyl ether), ethyl triglyme (triethylene glycol diethyl ether), butyl triglyme (triethylene glycol diethyl ether), methyl tetraglyme (tetraethylene) Glycol dimethyl ether), ethyl tetraglyme (Te La ethylene glycol diethyl ether), although glyme compound, such as butyl tetraglyme (tetraethylene glycol dibutyl ether) and the like, and the present invention is not limited only to those exemplified.
  • liquids B the viewpoint of ensuring the viscosity of the electrolyte solution that is sufficiently bulky to prevent the cluster compound from entering the voids of the atomic arrangement structure and that is suitable for obtaining a high electromotive force.
  • the glyme compound is preferred, and methyltetraglyme is more preferred.
  • the covering material is a compound that allows carrier ions to pass but does not allow the liquid to pass.
  • Examples of the covering material include vinylidene glycol and magnesium oxide, but the present invention is not limited to such examples.
  • the positive electrode active material can be coated with the coating material by, for example, a sputtering method. Since the amount of the coating material used for coating the positive electrode active material varies depending on the type of the coating material, the type of the positive electrode active material, the amount of the positive electrode active material, etc., the type of the coating material, the type of the positive electrode active material, and the positive electrode active material It is preferable to determine appropriately according to the amount of the amount.
  • the secondary battery according to the present embodiment has a high electromotive force. Therefore, the secondary battery according to the present embodiment is developed with an energy supply and demand system capable of optimizing energy supply and demand, with development of a hybrid vehicle and an electric vehicle with higher fuel efficiency, more downsized and higher performance. This is useful for developing mobile devices.
  • FIG. 1 shows the results of examining the X-ray diffraction of Mo 6 S 8 cluster compound powder (sample A) and Mo 6 S 8 cluster compound-containing tetrahydrofuran (sample B) in Experimental Example 1.
  • (A) is an X-ray diffraction pattern of Mo 6 S 8 cluster compound powder (sample A)
  • (B) is an X-ray diffraction pattern of Mo 6 S 8 cluster compound-containing tetrahydrofuran (sample B)
  • (C ) Is the X-ray diffraction pattern of Cu 2 Mo 6 S 8 in the Inorganic Crystal Structure Database (hereinafter referred to as “ICSD”)
  • (D) is the X-ray diffraction pattern of the Mo 6 S 8 cluster compound of ICSD. Show. The dotted line indicates the position of the impurity peak for position confirmation.
  • Experimental example 2 An impurity for confirming the position was mixed in the powder of the copper chevrel compound to obtain a sample A. Moreover, the copper chevrel compound was immersed in tetrahydrofuran to obtain a copper chevrel compound-containing tetrahydrofuran. Impurities for confirming the position were mixed in the obtained copper chevrel compound-containing tetrahydrofuran to obtain Sample B. X-ray diffraction of Sample A and Sample B was examined using an X-ray diffractometer [manufactured by Rigaku Corporation, trade name: SMART LAB].
  • FIG. 2 shows the results of examining the X-ray diffraction of the copper chevrel compound powder (sample A) and the copper chevrel compound-containing tetrahydrofuran (sample B) in Experimental Example 2.
  • (A) is an X-ray diffraction pattern of a copper chevrel compound powder (sample A)
  • (B) is an X-ray diffraction pattern of a copper chevrel compound (sample B)
  • (C) is an ICSD copper chevrel compound.
  • An X-ray diffraction pattern is shown.
  • the dotted line indicates the position of the impurity peak for position confirmation, and the solid line indicates the peak derived from the copper chevrel compound.
  • the results shown in FIG. 2 show that the position of the impurity peak in the X-ray diffraction pattern of the copper chevrel compound powder and the position of the impurity peak in the X-ray diffraction pattern of the copper chevrel compound-containing tetrahydrofuran are the same ( (See peaks P1 and P2 in the figure). However, the peak derived from the copper chevrel compound in the X-ray diffraction pattern of the powder of the copper chevrel compound (eg, see peaks A1 to A8 in the figure) is derived from the copper chevrel compound in the X-ray diffraction pattern of the copper chevrel compound-containing tetrahydrofuran.
  • Example 1 Production of three-electrode cell body A three-electrode cell body 10a shown in Fig. 3 was constructed in a glove box maintained in an argon gas atmosphere.
  • the constructed three-electrode cell body 10a includes a container 11, a working electrode 13 having a Mo 6 S 8 cluster compound as an active material, a counter electrode 14 made of a magnesium sheet, and a reference electrode 15.
  • a hole portion 11b for providing the counter electrode 14 and a hole portion 11c for providing the reference electrode 15 are formed on the upper surface portion of the container 11, and a hole portion for providing the working electrode 13 on the bottom portion. 11a is formed.
  • An electrolytic solution 16 is accommodated in the container 11.
  • the working electrode 13 is an electrode coated on the surface of an aluminum sheet so that the Mo 6 S 8 cluster compound is 1 to 10 mg / cm 2 .
  • the Mo 6 S 8 cluster compound serves as an active material for ion insertion and desorption during the oxidation-reduction reaction.
  • the reference electrode 15 is formed integrally with a reference electrode main body 15a made of a magnesium rod, a glass tube portion 15b that isolates the reference electrode main body 15a from the electrolyte solution 16, and the glass tube portion 15b. It consists of a porous glass portion 15c for ensuring electrical connection between the inside and the outside of 15b, and a reference electrode electrolyte 15d accommodated in the glass tube portion 15b. Therefore, the reference electrode main body 15 a is electrically connected to the working electrode 13 and the counter electrode 14, but is configured not to directly contact the electrolyte solution 16.
  • N-methyl-N-propylpiperidinium-bis (trifluoromethanesulfonyl) imide hereinafter referred to as “PP13-TFSI”
  • Mg magnesium bis (trifluoromethylsulfonyl) imide
  • Test example 1 Cyclic voltammetry was performed at a scanning speed of 0.5 mV / s using the three-electrode cell obtained in Example 1 and an electrochemical measuring device (trade name: SP-300, manufactured by BioLogic). I did it.
  • Test Example 1 a working electrode in the case of using an electrolytic solution containing PP13-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a magnesium sheet The result of investigating the relationship between the terminal potential and the current is shown in FIG.
  • Test example 2 Using the three-electrode cell obtained in Example 1 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the working electrode 13 and the counter electrode 14 in the three-electrode cell Chronopotentiometry was carried out by applying a current of 0.02 mA for 120 minutes (discharging only 1/20 of the maximum capacity). The active material of the working electrode after discharge was collected and analyzed by X-ray diffraction. As a control, the powder of the Mo 6 S 8 cluster compound obtained in Experimental Example 1 was analyzed by X-ray diffraction.
  • Test Example 2 the result of examining the X-ray diffraction of the active material of the working electrode after discharge is shown in FIG.
  • (A) is an X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1
  • (B) is an X-ray diffraction pattern of the active material of the working electrode after discharge
  • (C) is an inorganic crystal.
  • Platinum data in a structural database hereinafter referred to as “ICSD”)
  • D) is aluminum data in ICSD
  • E) is Mg 2 Mo 6 S 8 data in ICSD
  • (F) is MgMo 6 S 8 in ICSD.
  • (G) shows data of Mo 6 S 8 in ICSD
  • (H) shows data of Cu 2 Mo 6 S 8 in ICSD
  • (I) shows data of Cu 2 Mo 6 S 8 in ICSD.
  • Example 2 (1) Preparation of Electrolytic Solution N-methyl-N-propylpyrrolidinium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “P13-TFSI”) and Mg (TFSI) 2 are combined with P13-TFSI / Mg ( TFSI) 2 (molar ratio) was mixed to be 6.7 / 1 to obtain an electrolytic solution.
  • P13-TFSI N-methyl-N-propylpyrrolidinium-bis (trifluoromethanesulfonyl) imide
  • TFSI trifluoromethanesulfonyl
  • the constructed beaker cell 20 shown in FIG. 6 was constructed in a glove box maintained in an argon gas atmosphere.
  • the constructed beaker cell 20 includes a container 21, a positive electrode 22 having a Mo 6 S 8 cluster compound as an active material, and a mixture of magnesium tin and tin (hereinafter referred to as “Mg 2 Sn / Sn”) as an active material.
  • the anode 23 is composed of a reference electrode 24 made of polished metal magnesium, and an electrolytic solution 25.
  • the positive electrode 22 is an electrode coated on the surface of an aluminum sheet so that the Mo 6 S 8 cluster compound is 1 to 10 mg / cm 2 .
  • the negative electrode 23 is an electrode coated on the surface of a platinum sheet so that Mg 2 Sn / Sn is 1 to 10 mg / cm 2 .
  • Test example 3 Using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the cut-off potential was set to 0.5 V, and the charge / discharge characteristics were examined. It was.
  • Test Example 3 the results of examining the time-dependent changes in the terminal potential and current of the working electrode are shown in FIG. 7A, and the results of examining the time-dependent change in the electric capacity of the beaker cell are shown in FIG. 7B.
  • FIG. 7 (a) shows the terminal potential of the working electrode, and (b) shows the current.
  • the initial potential is about 2.5V.
  • Such an initial potential is that of a conventional magnesium secondary battery (Non-patent Document 1) including a positive electrode containing a chevrel compound as a positive electrode active material, and an electrolytic solution made of a solution obtained by dissolving a Grignard reagent and aluminum chloride in tetrahydrofuran. The value is about twice as high as the initial potential.
  • P13-TFSI like PP13-TFSI, is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound.
  • Test example 4 The charge / discharge reaction was performed using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic). Next, the positive electrode active material present in the positive electrode after discharge was collected and analyzed by X-ray diffraction. As a control, the powder of the Mo 6 S 8 cluster compound obtained in Experimental Example 1 was analyzed by X-ray diffraction.
  • the amount of the element in the location where the positive electrode active material exists in the positive electrode after discharge (see the circled portion (A region) in FIG. 8A) and the location where the positive electrode active material does not exist in the positive electrode after discharge (conducting aid).
  • the amount of the element in the location where the agent and the binder are present is measured with a scanning electron microscope-energy dispersive X-ray analysis method (acceleration voltage: 15. 0 kV and irradiation current: 4.4 nA), and the ratio (composition ratio) of each element at the location where the positive electrode active material was present to the amount of each element where the positive electrode active material was absent in the positive electrode after discharge was examined.
  • Test Example 4 the results of examining the X-ray diffraction of the positive electrode active material present in the positive electrode after discharge are shown in FIG. 9, (A) is an X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, (B) is an X-ray diffraction pattern of the positive electrode active material present in the positive electrode after discharge, and (C).
  • the peak a2 is lower than the peak b2 in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after discharge.
  • the peak a1 in the X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1 is higher than the peak b1.
  • a peak c2 was observed, but in the X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, the peak c2 It can be seen that no peak is observed at the position corresponding to (see c1).
  • composition ratio composition ratio of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is not present in the positive electrode after discharge exceeds 1.
  • Composition ratio: 5.0645 suggests that the positive electrode active material contains magnesium atoms.
  • Test Example 5 Using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), cyclic voltammetry was performed at a scanning speed of 1 mV / s.
  • Test Example 5 an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used.
  • a cyclic voltammogram in this case is shown in FIG.
  • (A) shows the relationship between the terminal potential of the positive electrode and the current
  • (B) shows the relationship between the terminal potential of the positive electrode and the terminal potential of the negative electrode.
  • Test Example 6 The charge / discharge characteristics were examined using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic).
  • FIG. 12 shows the result of examining the charge / discharge characteristics in this case.
  • (A) shows the change over time in the potential difference (Ewe-Ece) between the positive electrode and the negative electrode
  • (B) shows the change over time in the current
  • (C) shows the change over time in the terminal potential of the negative electrode
  • (D ) Indicates the change with time of the terminal potential of the positive electrode.
  • Example 3 Working electrode made of aluminum sheet coated with 1 to 10 mg / cm 2 of Cu 2 Mo 6 S 8 cluster compound in a glove box maintained in an argon gas atmosphere, and reference electrode made of lithium rod A three-electrode cell comprising a counter electrode made of a magnesium sheet and an electrolyte was constructed.
  • the electrolytic solution includes cesium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “Cs-TFSI”), lithium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “Li-TFSI”), and Mg (TFSI).
  • Cs-TFSI cesium-bis (trifluoromethanesulfonyl) imide
  • Li-TFSI lithium-bis (trifluoromethanesulfonyl) imide
  • Mg TFSI
  • Test Example 7 Using the three-electrode cell obtained in Example 3 and an electrochemical measuring device (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 180 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
  • FIG. 13 shows the result of examining the relationship between the terminal potential of the working electrode and the current when cyclic voltammetry was performed at 180 ° C.
  • Example 4 Working electrode made of a platinum sheet coated with a Cu 2 Mo 6 S 8 cluster compound in an amount of 1 to 10 mg / cm 2 in a glove box kept in an argon gas atmosphere, and a reference electrode made of a lithium rod And a three-electrode cell comprising a counter electrode made of a lithium sheet and an electrolyte. Note that the electrolyte was mixed with Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 so that Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) was 8/1/1. It is the electrolyte solution obtained by doing.
  • Test Example 8 Using the three-electrode cell obtained in Example 4 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 150 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
  • FIG. 14 shows the result of examining the relationship between the terminal potential of the working electrode and the current when cyclic voltammetry was performed at 150 ° C.
  • Example 5 In a glove box maintained in an argon gas atmosphere, a working electrode made of a platinum sheet coated with a Mo 6 S 8 cluster compound of 1 to 10 mg / cm 2 , a reference electrode made of a lithium rod, A three-electrode cell having a counter electrode made of a lithium sheet and an electrolyte was constructed. Note that the electrolyte was mixed with Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 so that Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) was 8/1/1. It is the electrolyte solution obtained by doing.
  • Test Example 9 Using the three-electrode cell obtained in Example 5 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 150 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
  • FIG. 15 shows the results of examining the relationship between the terminal potential of the working electrode and the current when cyclic voltammetry was performed at 150 ° C.
  • Example 6 Preparation of electrolyte solution Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 are adjusted so that Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) is 8/1/1. Mixing was performed to obtain an electrolytic solution.
  • a beaker cell 30 shown in FIG. 16 was constructed in a glove box maintained in an argon gas atmosphere.
  • the constructed beaker cell 30 includes a container 31, a positive electrode 32 having a Mo 6 S 8 cluster compound as an active material, a negative electrode 33 having Mg 2 Sn / Sn as an active material, and a reference electrode 33 made of polished metallic lithium. And an electrolytic solution 35.
  • the negative electrode 33 is an electrode coated on the surface of a platinum sheet so that the negative electrode material made of Mg 2 Sn / Sn is 1 to 10 mg / cm 2 .
  • Test Example 10 The charge / discharge characteristics were examined using the beaker cell obtained in Example 6 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic).
  • FIG. 17 shows the result of investigating the charge / discharge characteristics when using.
  • (A) shows the change over time in the potential difference (Ewe-Ece) between the positive electrode and the negative electrode
  • (B) shows the change over time in the current
  • (C) shows the change over time in the terminal potential of the negative electrode
  • (D ) Shows the terminal potential change with time of the positive electrode.
  • FIG. 18A shows the results of examining the time-dependent changes in the terminal potential and current of the working electrode
  • FIG. 18B shows the results of examining the time-dependent change in the electric capacity of the beaker cell. Show.
  • FIG. 18 shows the change over time in the potential difference (Ewe-Ece) between the positive electrode and the negative electrode
  • (b) shows the change over time in the terminal potential of the positive electrode
  • (c) shows the change over time in the terminal potential of the negative electrode.
  • D shows changes in current over time.
  • Test Example 11 The charge / discharge reaction was carried out using the beaker cell obtained in Example 6 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic). The positive electrode active material of the positive electrode after charge and the positive electrode after discharge was collected and analyzed by X-ray diffraction. As a control, powders of Cu 2 Mo 6 S 8 , LiMo 6 S 8 , Li 3 Mo 6 S 8 and Li 4 Mo 6 S 8 were analyzed by X-ray diffraction method.
  • the amount of the element in the location where the positive electrode active material exists in the positive electrode after discharge (see the circled portion (A region) in FIG. 19A) and the location where the positive electrode active material does not exist in each positive electrode after discharge (conductivity)
  • the amount of the element in the presence of the auxiliary agent and the binder was determined by scanning electron microscope-energy dispersive X-ray analysis (acceleration voltage: 15 0.0 kV and irradiation current: 4.4 nA), and the ratio (composition ratio) of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is absent in the positive electrode after discharge was examined. .
  • 20 and 21 show the results of examining the X-ray diffraction of the positive electrode active material of each of the positive electrode after charging and the positive electrode after discharging in Test Example 11.
  • (A) is an X-ray diffraction pattern of Cu 2 Mo 6 S 8
  • (B) is an X-ray diffraction pattern of a positive electrode active material of a positive electrode after charging
  • (C) is a positive electrode active material of a positive electrode after discharging.
  • D) is platinum data in ICSD
  • E) is aluminum data in ICSD
  • (F) is Mg 2 Mo 6 S 8 data in ICSD
  • (G) is MgMo 6 S in ICSD.
  • (H) shows Mo 6 S 8 data in ICSD
  • (I) shows Cu 2 Mo 6 S 8 data in ICSD
  • (J) shows Cu 2 Mo 6 S 8 data in ICSD.
  • (A) is an X-ray diffraction pattern of Cu 2 Mo 6 S 8
  • (B) is an X-ray diffraction pattern of a positive electrode active material of the positive electrode after charging
  • (C) is a positive electrode of the positive electrode after discharging.
  • the peak a2 is from the position of the peak a1, which is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8. You can see that it has shifted to the left. Further, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after charging, the peak b2 is shifted to the left from the position of the peak b1, which is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8 . I understand. On the other hand, from the results shown in FIG.
  • the peak a3 is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8 . It can be seen that it can be seen at almost the same position.
  • the peak b3 is found at substantially the same position as the peak b1, which is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8. I understand. Therefore, these results suggest that magnesium is inserted into and desorbed from the positive electrode active material constituting the positive electrode during the charge / discharge reaction.
  • the peak a1 is the position of the peak a2 in the X-ray diffraction pattern of LiMo 6 S 8 and Li 3 Mo 6 S it can be seen that seen in a position different from the position of the peak a4 in the X-ray diffraction pattern of the position and Li 4 Mo 6 S 8 peak a3 in the X-ray diffraction pattern of 8.
  • the peak b1 is the position of the peak b2 in the X-ray diffraction pattern of LiMo 6 S 8 and the peak b3 in the X-ray diffraction pattern of Li 3 Mo 6 S 8. It can be seen that this is seen at a position different from the position of the peak b4 in the X-ray diffraction pattern of Li 4 Mo 6 S 8 . Therefore, it can be seen from these results that lithium is not inserted into the positive electrode active material constituting the positive electrode in the charge / discharge reaction.
  • composition ratio composition ratio of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is not present in the positive electrode after discharge exceeds 1.
  • Example 7 A working electrode made of an aluminum sheet coated with a Mo 6 S 8 cluster compound in an amount of 1 to 10 mg / cm 2 in a glove box kept in an argon gas atmosphere, a reference electrode made of a magnesium rod, A three-electrode cell comprising a counter electrode made of a magnesium sheet and an electrolyte was constructed.
  • the electrolytic solution is Mg (TFSI) 2 , PP13-TFSI, and P13-TFSI, and Mg (TFSI) 2 / PP13-TFSI / P13-TFSI (volume ratio) is 0.3 / 1/1. It is the electrolyte solution obtained by mixing.
  • Example 8 A working electrode made of an aluminum sheet coated with a Mo 6 S 8 cluster compound in an amount of 1 to 10 mg / cm 2 in a glove box kept in an argon gas atmosphere, a reference electrode made of a magnesium rod, A three-electrode cell comprising a counter electrode made of a magnesium sheet and an electrolyte was constructed.
  • the electrolytic solution is an electrolytic solution obtained by mixing Mg (TFSI) 2 and PP13-TFSI so that Mg (TFSI) 2 / PP13-TFSI (molar ratio) is 1 / 6.7. is there.
  • Test Example 12 Using the three-electrode cell obtained in Example 7 or Example 8 and an electrochemical measurement device (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 25 ° C. and scanning Speed: Cyclic voltammetry was performed at 20 mV / s.
  • Test Example 12 the results of examining the relationship between the potential and the current density when using the three-electrode cell obtained in Example 7 and Example 8 are shown in FIG.
  • the solid line shows the relationship between the potential and current density when the three-electrode cell obtained in Example 7 is used
  • the broken line shows the potential and current when the three-electrode cell obtained in Example 8 is used. The relationship with density is shown.
  • the electrodeposition current [see (A1)] when the three-electrode cell obtained in Example 7 was used was the same as that of the eight-electrode cell obtained in Example 8. It can be seen that it is larger than the electrodeposition current in the case [see (A2)]. Further, the anode current [see (B1)] when using the three-electrode cell obtained in Example 7 is larger than the anode current when using the three-electrode cell obtained in Example 8. It can be seen [see (B2)]. Furthermore, when the three-electrode cell obtained in Example 7 is used, the decomposition of the electrolytic solution tends to be further suppressed as compared with the case where the three-electrode cell obtained in Example 8 is used.
  • an electrode including the cluster compound having the cluster represented by the formula (I) is an electrochemical solution that does not easily enter the voids of the atomic arrangement structure of the cluster compound. It is suggested that a high electromotive force can be ensured by using an electrolyte containing a liquid having a property and capable of transferring carrier ions between the positive electrode and the negative electrode.
  • Example 9 A working electrode composed of an aluminum sheet coated with 1 to 10 mg / cm 2 of Mo 6 S 8 cluster compound in a glove box maintained in an argon gas atmosphere, a reference electrode composed of a magnesium rod, magnesium A three-electrode cell comprising a counter electrode made of a sheet made of sheet and an electrolyte was constructed.
  • the electrolytic solution is an electrolytic solution composed of a 0.5 M Mg (TFSI) 2 methyltriglyme solution.
  • Test Example 13 Using the three-electrode cell obtained in Example 9 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 25 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
  • FIG. 13 a cyclic voltammogram when using the three-electrode cell obtained in Example 9 is shown in FIG.
  • (A) shows the relationship between the potential and the current
  • (B) shows the relationship between the potential and the terminal potential of the counter electrode.
  • FIG. 25 shows the result of converting the relationship between the potential and current shown in FIG. 24 to the Mg 2+ / Mg standard.
  • an electrolytic solution a liquid (for example, methyl diglyme, methyl triglyme, It is suggested that the charge / discharge reaction can be carried out satisfactorily by using an electrolytic solution containing methyltetraglyme and the like.
  • vinylene carbonate forms a film on the surface of the copper chevrel compound constituting the positive electrode active material of the positive electrode, thereby suppressing the intrusion of the liquid component of the electrolyte into the voids of the atomic arrangement structure of the copper chevrel compound. Is.
  • Test Example 14 Using the three-electrode cell obtained in Experimental Example 3 or Experimental Example 4 and an electrochemical measuring device (trade name: SP-300, manufactured by BioLogic), the scanning speed was 0.5 mV / s. Click voltammetry measurement was performed.
  • FIG. 26 shows the results of investigating the relationship between the terminal potential of the working electrode and the current when using.
  • (A1) is a peak indicating elimination of lithium cations from the A site of the copper chevrel compound
  • A2) is a peak indicating insertion of lithium cations into the A site of the copper chevrel compound
  • (B1) is copper.
  • a peak indicating elimination of a lithium cation from the B site of the chevrel compound (B2) is a peak indicating insertion of a lithium cation into the B site of the copper chevrel compound, and (C1) is a copper cation from the A site of the copper chevrel compound. (B2) is a peak indicating insertion of a copper cation into the B site of the copper chevrel compound.
  • a secondary battery as a positive electrode, an electrode including a cluster compound having a cluster represented by the formula (I), and as an electrolyte, a liquid capable of transferring carrier ions between the positive electrode and the negative electrode And by suppressing the intrusion of the liquid into the voids of the atomic arrangement structure of the cluster compound, a high electromotive force can be ensured. Therefore, a secondary battery for storing power, a hybrid vehicle, It is suggested that it is suitable as an in-vehicle secondary battery used for automobiles, a secondary battery for mobile devices, and the like.
  • Electrolytic solution 20 Beaker cell 21 Container 22 Positive electrode 23 Negative electrode 24 Reference electrode 25
  • Electrolytic solution 30 Beaker cell 31 Container 32 Positive electrode 33 Negative electrode 33 Reference electrode 35
  • Electrolytic solution 20 Beaker cell 21 Container 22 Positive electrode 23 Negative electrode 24
  • Electrolytic solution 30 Beaker cell 31 Container 32 Positive electrode 33 Negative electrode 33 Reference electrode 35
  • Electrolytic solution 20 Beaker cell 21 Container 22 Positive electrode 23 Negative electrode 24
  • Electrolytic solution 30 Beaker cell 31
  • Container 32 Positive electrode 33 Negative electrode 33 Reference electrode 35 Electrolytic solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A secondary battery is provided with a negative electrode, a positive electrode, and an electrolyte solution that is interposed between the positive electrode and the negative electrode. The positive electrode contains a cluster compound that comprises a cluster that is represented by formula (1) (in the formula, the six M each independently represent a chrome atom, a molybdenum atom, or a tungsten atom, and each A independently represents a chalcogen atom). The electrolyte solution contains a fluid that makes it possible for carrier ions to be transferred between the positive electrode and the negative electrode. The entry of the fluid into gaps in the atomic arrangement structure of the cluster compound is minimized.

Description

二次電池Secondary battery
 本発明は、二次電池に関する。さらに詳しくは、本発明は、輸送機器、モバイル機器などの電源;電力の貯蔵用の二次電池などに好適に用いることができる二次電池に関する。本発明の二次電池は、高い起電力を確保することができることから、航空機、ハイブリッド車、電気自動車などの輸送機器用の二次電池;モバイル機器用の二次電池;電力の貯蔵用の二次電池などに用いられることが期待されるものである。 The present invention relates to a secondary battery. More specifically, the present invention relates to a secondary battery that can be suitably used as a power source for transportation equipment, mobile equipment, and the like; a secondary battery for storing power. Since the secondary battery of the present invention can secure a high electromotive force, the secondary battery for transportation equipment such as an aircraft, a hybrid vehicle, and an electric vehicle; the secondary battery for mobile equipment; and the secondary battery for storing power. It is expected to be used for secondary batteries.
 近年、エネルギー需給の最適化、環境への負荷の低減などの観点から、二次電池などの蓄電デバイスの高性能化が求められている。そこで、蓄電デバイスのエネルギー密度の向上が図られている。現在、蓄電デバイスのなかでも、リチウムイオン二次電池は、高い電圧を確保することができ、かつ高いエネルギー密度を有することから、輸送機器、モバイル機器、電力の貯蔵などのための蓄電デバイスとして用いられている。しかし、リチウムイオン二次電池は、過充電によって正極活物質の酸化分解を生じることがある。 In recent years, there has been a demand for higher performance of power storage devices such as secondary batteries from the viewpoint of optimization of energy supply and demand and reduction of environmental load. Therefore, improvement of the energy density of the electricity storage device is attempted. Currently, lithium ion secondary batteries can be used as power storage devices for transportation equipment, mobile devices, power storage, etc., because they can ensure high voltage and have high energy density among power storage devices. It has been. However, the lithium ion secondary battery may cause oxidative decomposition of the positive electrode active material due to overcharge.
 一方、正極活物質としてシェブレル化合物を含む正極と、グリニャール試薬と塩化アルミニウムとをテトラヒドロフランに溶解させた溶液からなる電解液とを備えるマグネシウム二次電池が提案されている(例えば、非特許文献1参照)。 On the other hand, a magnesium secondary battery including a positive electrode containing a chevrel compound as a positive electrode active material and an electrolytic solution made of a solution obtained by dissolving a Grignard reagent and aluminum chloride in tetrahydrofuran has been proposed (for example, see Non-Patent Document 1). ).
 しかし、非特許文献1に記載のマグネシウム二次電池は、実用上不十分な起電力しか得ることができず、単位質量当たりの電荷容量が小さいという欠点がある。 However, the magnesium secondary battery described in Non-Patent Document 1 has a drawback that it can obtain only an electromotive force that is practically insufficient and has a small charge capacity per unit mass.
 本発明は、前記従来技術に鑑みてなされたものであり、より高い起電力を確保することができる二次電池を提供することを課題とする。 This invention is made | formed in view of the said prior art, and makes it a subject to provide the secondary battery which can ensure a higher electromotive force.
 本発明は、1つの側面では、負極と、正極と、前記正極と負極との間に介在する電解液とを備え、
 前記正極が、式(I):
In one aspect, the present invention comprises a negative electrode, a positive electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode,
The positive electrode has the formula (I):
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、6個のMはそれぞれ独立してクロム原子、モリブデン原子またはタングステン原子、Aはそれぞれ独立してカルコゲン原子を示す)
で表わされるクラスターを有するクラスター化合物を含む電極であり、
 前記電解液が、前記正極と負極との間にキャリアイオンを移送可能な液体を含有する電解液であり、
 前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入が抑制されていることを特徴とする二次電池に関する。本実施形態に係る二次電池は、前記クラスター化合物を含む正極を備え、かつ前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入が抑制されているので、前記空隙へのキャリアイオンの挿入および正極からのキャリアイオンの脱離が当該液体によって妨げられず、円滑に行なわれる。したがって、本実施形態に係る二次電池によれば、高い起電力を確保することができる。
(In the formula, 6 M's are each independently a chromium atom, a molybdenum atom or a tungsten atom, and A's are each independently a chalcogen atom)
An electrode including a cluster compound having a cluster represented by:
The electrolytic solution is an electrolytic solution containing a liquid capable of transferring carrier ions between the positive electrode and the negative electrode,
The present invention relates to a secondary battery characterized in that the liquid is prevented from entering the voids of the atomic arrangement structure of the cluster compound. The secondary battery according to the present embodiment includes a positive electrode including the cluster compound, and the liquid intrusion into the void of the atomic arrangement structure of the cluster compound is suppressed. Insertion and desorption of carrier ions from the positive electrode are not hindered by the liquid and are performed smoothly. Therefore, according to the secondary battery according to the present embodiment, a high electromotive force can be ensured.
 本実施形態に係る二次電池においては、前記液体が、イオン液体または少なくとも2種類の前記イオン液体を混合した混合物であってもよい。この場合、前記イオン液体は、負極における充放電反応をより効率よく行ない、より高い起電力を確保することができることから、ハロゲン原子を有するアニオンと、有機カチオンまたは金属カチオンとを含むイオン液体であることが好ましい。さらに、前記イオン液体は、負極における充放電反応をより効率よく行ない、より高い起電力を確保することができることから、アニオンとして、非配位性ハロゲン化物アニオン、金属ハロゲン錯アニオン、式(III): In the secondary battery according to the present embodiment, the liquid may be an ionic liquid or a mixture obtained by mixing at least two kinds of ionic liquids. In this case, the ionic liquid is an ionic liquid containing an anion having a halogen atom and an organic cation or a metal cation, because the charge / discharge reaction in the negative electrode can be performed more efficiently and a higher electromotive force can be secured. It is preferable. Furthermore, since the ionic liquid can perform charge / discharge reaction in the negative electrode more efficiently and secure a higher electromotive force, as the anion, a non-coordinating halide anion, a metal halide complex anion, formula (III) :
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、X2はハロゲン原子、qは1~2の数を示す)
で表わされるハロゲノアミネートアニオン、式(IV):
(Wherein X 2 represents a halogen atom and q represents a number of 1 to 2)
A halogenoamate anion represented by formula (IV):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、R1およびR2はそれぞれ独立してハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基を示す)
で表わされるスルホニルアミドアニオン、式(V):
(Wherein R 1 and R 2 each independently represents a halogen atom or a C 1-8 alkyl group having a halogen atom)
A sulfonylamide anion represented by formula (V):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R3はハロゲン原子または当該ハロゲン原子を有する炭素数1~8のアルキル基を示す)
で表わされるスルホナートアニオンからなる群より選ばれたアニオンを含み、かつ、カチオンとして、アルカリ金属カチオン、アルカリ土類金属カチオン、式(VII):
(Wherein R 3 represents a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom)
And an anion selected from the group consisting of sulfonate anions represented by formula (VII):
Figure JPOXMLDOC01-appb-C000014
(式中、R4、R5、R6およびR7はそれぞれ独立して置換基を有していてもよい炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基を示す)
で表わされる四級アンモニウムカチオン、式(VIII):
Figure JPOXMLDOC01-appb-C000014
(Wherein R 4 , R 5 , R 6 and R 7 each independently represents an optionally substituted alkyl group having 1 to 8 carbon atoms or an alkyloxyalkyl group having 1 to 8 carbon atoms) )
A quaternary ammonium cation represented by formula (VIII):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、R8およびR9はそれぞれ独立して炭素数1~8のアルキル基、Yは直接結合またはメチレン基を示す)
で表わされるカチオン、式(IX):
(Wherein R 8 and R 9 are each independently an alkyl group having 1 to 8 carbon atoms, Y represents a direct bond or a methylene group)
A cation represented by formula (IX):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中、R10およびR11はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるイミダゾリウムカチオンおよび式(X):
(Wherein R 10 and R 11 each independently represents an alkyl group having 1 to 8 carbon atoms)
And an imidazolium cation represented by the formula (X):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、R12は炭素数1~8のアルキル基を示す)
で表わされるピリジニウムカチオンからなる群より選ばれたカチオンを含むイオン液体であることがより好ましい。
(Wherein R 12 represents an alkyl group having 1 to 8 carbon atoms)
An ionic liquid containing a cation selected from the group consisting of pyridinium cations represented by
 また、本実施形態に係る二次電池においては、前記液体は、クラスター化合物の原子配列構造の空隙内への侵入が抑制されるのに十分な嵩高さを有する化合物であってもよい。この場合、前記化合物は、クラスター化合物の原子配列構造の空隙内への侵入が抑制されるのに十分な嵩高さを有することから、グリコールエーテル化合物であることが好ましい。 Also, in the secondary battery according to the present embodiment, the liquid may be a compound having a bulky enough to prevent the cluster compound from entering the voids of the atomic arrangement structure. In this case, the compound is preferably a glycol ether compound because the compound has a sufficient bulkiness to suppress the entry of the atomic arrangement structure of the cluster compound into the voids.
 本実施形態に係る二次電池においては、前記クラスター化合物は、より高い質量エネルギー密度を確保する観点から、シェブレル化合物であることが好ましい。この場合、前記シェブレル化合物は、式(II): In the secondary battery according to the present embodiment, the cluster compound is preferably a chevrel compound from the viewpoint of securing a higher mass energy density. In this case, the chevrel compound has the formula (II):
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、p個のX1はそれぞれ独立してアルカリ金属原子、アルカリ土類金属原子、12族典型金属原子、13族典型金属原子、14族典型金属原子、3d遷移金属原子または4d遷移金属原子、6個のMは前記と同じ、Aは前記と同じ、pは0~4の数を示す)
で表わされる組成を有するシェブレル化合物であってもよい。
(In the formula, each p 1 is independently an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, a 3d transition metal atom, or a 4d transition metal. Atoms, 6 M are the same as above, A is the same as above, p is a number from 0 to 4)
The chevrel compound which has the composition represented by these may be sufficient.
 本発明の多価金属二次電池によれば、より高い起電力を確保することができるという優れた効果が奏される。 According to the multivalent metal secondary battery of the present invention, there is an excellent effect that a higher electromotive force can be secured.
実験例1において、Mo68クラスター化合物の粉末(試料A)およびMo68クラスター化合物含有テトラヒドロフラン(試料B)のX線回折を調べた結果を示すX線回折図である。In Experimental Example 1, an X-ray diffraction diagram showing the results of examining the X-ray diffraction powder Mo 6 S 8 cluster compound (Sample A) and Mo 6 S 8 cluster compound containing tetrahydrofuran (Sample B). 実験例2において、銅シェブレル化合物の粉末(試料A)および銅シェブレル化合物含有テトラヒドロフラン(試料B)のX線回折を調べた結果を示すX線回折図である。In Experimental example 2, it is an X-ray-diffraction figure which shows the result of having investigated the X-ray diffraction of the powder (sample A) of a copper chevrel compound, and the copper chevrel compound containing tetrahydrofuran (sample B). 実施例1における三電極式セルの構成を示す概略説明図である。2 is a schematic explanatory diagram illustrating a configuration of a three-electrode cell in Example 1. FIG. 試験例1において、PP13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する作用電極と、マグネシウム製シートからなる対極とを用いた場合の作用電極のターミナル電位と電流との関係を調べた結果を示すグラフである。In Test Example 1, a working electrode in the case of using an electrolytic solution containing PP13-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a magnesium sheet It is a graph which shows the result of having investigated the relationship between terminal potential of this and electric current. 試験例2において、放電後の作用電極の活物質のX線回折を調べた結果を示すX線回折図である。In Test Example 2, it is an X-ray diffraction diagram showing the results of examining the X-ray diffraction of the active material of the working electrode after discharge. 実施例2におけるビーカーセルの構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the beaker cell in Example 2. FIG. (A)は試験例3において、作用電極のターミナル電位および電流それぞれの経時的変化を調べた結果を示すグラフ、(B)は試験例3において、ビーカーセルの電気容量の経時的変化を調べた結果を示すグラフである。(A) is a graph showing the results of examining time-dependent changes in the terminal potential and current of the working electrode in Test Example 3, and (B) is a time-dependent change in the electric capacity of the beaker cell in Test Example 3. It is a graph which shows a result. (a)は試験例4において、SEM-EDX分析に用いられた放電後の正極における正極活物質の存在箇所の測定対象部分、(b)は試験例4において、SEM-EDX分析に用いられた放電後の正極における正極活物質の非存在箇所の測定対象部分を示す図面代用写真である。(A) is the measurement target portion of the positive electrode active material existing in the positive electrode after discharge used in SEM-EDX analysis in Test Example 4, and (b) is used in SEM-EDX analysis in Test Example 4. It is a drawing substitute photograph which shows the measurement object part of the non-existing location of the positive electrode active material in the positive electrode after discharge. 試験例4において、放電後の正極に存在する正極活物質のX線回折を調べた結果を示すX線回折図である。In Experiment 4, it is an X-ray diffraction diagram which shows the result of having investigated the X-ray diffraction of the positive electrode active material which exists in the positive electrode after discharge. 試験例4において、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)を調べた結果を示すグラフである。In Experiment 4, it is a graph which shows the result of having investigated ratio (composition ratio) of each element of the location where a positive electrode active material exists with respect to the quantity of each element of the location where the positive electrode active material does not exist in the positive electrode after discharge. 試験例5において、P13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合のサイクリックボルタモグラムである。In Test Example 5, an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. Cyclic voltammogram of the case. 試験例6において、P13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合の充放電特性を調べた結果を示すグラフである。In Test Example 6, an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. It is a graph which shows the result of having investigated the charge / discharge characteristic in a case. 試験例7において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Cu2Mo68を活物質として有する作用電極と、マグネシウム製シートからなる対極とを用い、180℃でサイクリックボルタンメトリーを行なった場合の作用電極のターミナル電位と電流との関係を調べた結果を示すグラフである。In Test Example 7, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a magnesium sheet were used. It is a graph which shows the result of having investigated the relationship between the terminal potential of a working electrode at the time of performing cyclic voltammetry at 180 degreeC, and an electric current. 試験例8において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Cu2Mo68を活物質として有する作用電極と、リチウム製シートからなる対極とを用い、150℃でサイクリックボルタンメトリーを行なった場合の作用電極のターミナル電位と電流との関係を調べた結果を示すグラフである。In Test Example 8, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a lithium sheet were used. It is a graph which shows the result of having investigated the relationship between the terminal potential of a working electrode at the time of performing cyclic voltammetry at 150 degreeC, and an electric current. 試験例8において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する作用電極と、リチウム製シートからなる対極からなる対極とを用い、150℃でサイクリックボルタンメトリーを行なった場合の作用電極のターミナル電位と電流との関係を調べた結果を示すグラフである。In Test Example 8, an electrolytic solution containing Cs-TFSI, Li-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode comprising a counter electrode made of a lithium sheet It is a graph which shows the result of having investigated the relationship between the terminal electric potential of a working electrode at the time of performing cyclic voltammetry at 150 degreeC, and electric current. 実施例6におけるビーカーセルの構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the beaker cell in Example 6. FIG. 試験例10において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合の充放電特性を調べた結果を示すグラフである。In Test Example 10, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material It is a graph which shows the result of having investigated the charge / discharge characteristic at the time of using. (A)は試験例10において、作用電極のターミナル電位および電流それぞれの経時的変化を調べた結果を示すグラフ、(B)はビーカーセルの電気容量の経時的変化を調べた結果を示すグラフである。(A) is a graph showing the results of examining time-dependent changes in the terminal potential and current of the working electrode in Test Example 10, and (B) is a graph showing the results of examining time-dependent changes in the electric capacity of the beaker cell. is there. (a)は試験例11において、SEM-EDX分析に用いられた放電後の正極における正極活物質の存在箇所の測定対象部分、(b)は試験例11において、SEM-EDX分析に用いられた放電後の正極における正極活物質の非存在箇所の測定対象部分を示す図面代用写真である。(A) is the measurement target part of the location of the positive electrode active material in the positive electrode after discharge used in SEM-EDX analysis in Test Example 11, and (b) is used in SEM-EDX analysis in Test Example 11. It is a drawing substitute photograph which shows the measurement object part of the non-existing location of the positive electrode active material in the positive electrode after discharge. 試験例11において、充電後の正極および放電後の正極それぞれの正極活物質のX線回折を調べた結果を示すX線回折図である。In Experiment 11, it is an X-ray diffraction diagram which shows the result of having investigated the X-ray diffraction of the positive electrode active material of each of the positive electrode after charge, and the positive electrode after discharge. 試験例11において、充電後の正極および放電後の正極それぞれの正極活物質のX線回折を調べた結果を示すX線回折図である。In Experiment 11, it is an X-ray diffraction diagram which shows the result of having investigated the X-ray diffraction of the positive electrode active material of each of the positive electrode after charge, and the positive electrode after discharge. 試験例11において、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)を調べた結果を示すグラフである。In Experiment 11, it is a graph which shows the result of having investigated ratio (composition ratio) of each element of the location where a positive electrode active material exists with respect to the quantity of each element of the location where the positive electrode active material does not exist in the positive electrode after discharge. 試験例12において、実施例7および実施例8で得られた三電極式セルを用いた場合の電位と電流密度との関係を調べた結果を示すグラフである。In Test example 12, it is a graph which shows the result of having investigated the relationship between the electric potential and current density at the time of using the three-electrode-type cell obtained in Example 7 and Example 8. FIG. 試験例13において、実施例9で得られた三電極式セルを用いた場合のサイクリックボルタモグラムである。In Test Example 13, it is a cyclic voltammogram when using the three-electrode cell obtained in Example 9. 図24に示された電位と電流との関係をMg2+/Mg基準に換算した結果を示すサイクリックボルタモグラムである。FIG. 25 is a cyclic voltammogram showing the result of converting the relationship between the potential and current shown in FIG. 24 to the Mg 2+ / Mg standard. 試験例14において、実験例3で得られた三電極式セルを用いた場合の作用電極のターミナル電位と電流との関係を調べた結果を示すグラフである。In Test example 14, it is a graph which shows the result of having investigated the relationship between the terminal potential of a working electrode at the time of using the three-electrode-type cell obtained in Experimental example 3, and an electric current. 試験例14において、実験例4で得られた三電極式セルを用いた場合の作用電極のターミナル電位と電流との関係を調べた結果を示すグラフである。In Test example 14, it is a graph which shows the result of having investigated the relationship between the terminal potential of a working electrode at the time of using the three-electrode-type cell obtained in Experimental example 4, and an electric current.
 本発明は、1つの側面では、正極と、負極と、前記正極と負極との間に介在する電解液とを備え、前記正極が、式(I): In one aspect, the present invention includes a positive electrode, a negative electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode, wherein the positive electrode has the formula (I):
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、6個のMはそれぞれ独立してモリブデン原子、クロム原子またはタングステン原子、Aはカルコゲン原子を示す)
で表わされるクラスターを有するクラスター化合物を含む電極であり、
 前記電解液が、前記正極と負極との間にキャリアイオンを移送可能な液体を含有する電解液であり、
 前記クラスター化合物の原子配列構造の空隙内への前記溶媒の侵入が抑制されていることを特徴とする二次電池に関する。
(In the formula, 6 M's are each independently a molybdenum atom, a chromium atom or a tungsten atom, and A is a chalcogen atom)
An electrode including a cluster compound having a cluster represented by:
The electrolytic solution is an electrolytic solution containing a liquid capable of transferring carrier ions between the positive electrode and the negative electrode,
The present invention relates to a secondary battery characterized in that intrusion of the solvent into the voids of the atomic arrangement structure of the cluster compound is suppressed.
 本実施形態に係る二次電池は、前記クラスター化合物を含む正極を備え、かつ前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入が抑制されている。そのため、本実施形態に係る二次電池では、前記空隙へのキャリアイオンの挿入および正極からのキャリアイオンの脱離は、当該液体によって妨げられず、円滑に行なわれ得る。したがって、本実施形態に係る二次電池によれば、正極の正極活物質を構成するクラスター化合物の原子配列構造の空隙へのキャリアイオンの挿入および正極からのキャリアイオンの脱離を効率よく行なうことができるので、高い起電力を確保することができる。 The secondary battery according to the present embodiment includes a positive electrode including the cluster compound, and the liquid is prevented from entering the voids of the atomic arrangement structure of the cluster compound. Therefore, in the secondary battery according to this embodiment, the insertion of carrier ions into the gap and the detachment of carrier ions from the positive electrode are not hindered by the liquid and can be performed smoothly. Therefore, according to the secondary battery according to the present embodiment, carrier ions can be efficiently inserted into and removed from the voids in the atomic arrangement structure of the cluster compound constituting the positive electrode active material of the positive electrode. Therefore, a high electromotive force can be secured.
 前記正極は、式(I)で表わされるクラスターを有するクラスター化合物を含む電極である。前記クラスター化合物は、前記式(I)で表わされるクラスターを有している。前記クラスターは、キャリアイオンとしてのカチオンの拘束力が弱いクラスターである。そのため、キャリアイオンとしてのカチオンは、当該クラスター化合物の原子配列構造内を容易に移動することができる。したがって、本実施形態に係る二次電池は、前記クラスター化合物を含む正極を備えているので、高電位での充放電反応を行なうことができる。 The positive electrode is an electrode including a cluster compound having a cluster represented by the formula (I). The cluster compound has a cluster represented by the formula (I). The cluster is a cluster in which the binding force of cations as carrier ions is weak. Therefore, a cation as a carrier ion can easily move within the atomic arrangement structure of the cluster compound. Therefore, since the secondary battery according to this embodiment includes the positive electrode including the cluster compound, a charge / discharge reaction at a high potential can be performed.
 式(I)において、6個のMは、それぞれ独立してクロム原子、モリブデン原子またはタングステン原子を示す。クロム原子、モリブデン原子およびタングステン原子は、式(I)で表わされるクラスターを有するクラスター化合物において、当該クラスター化合物の原子配列構造を維持するとともに、電気化学的に互いに同様の挙動を示す。前記Mのなかでは、より高い質量エネルギー密度を確保する観点から、クロム原子およびモリブデン原子が好ましく、クロム原子がより好ましい。 In formula (I), six M's each independently represent a chromium atom, a molybdenum atom or a tungsten atom. In the cluster compound having the cluster represented by the formula (I), the chromium atom, the molybdenum atom, and the tungsten atom maintain the atomic arrangement structure of the cluster compound and behave electrochemically in the same manner. Among the M, from the viewpoint of securing a higher mass energy density, a chromium atom and a molybdenum atom are preferable, and a chromium atom is more preferable.
 また、式(I)において、Aは、カルコゲン原子である。前記カルコゲン原子としては、例えば、硫黄原子、セレン原子、テルル原子などが挙げられる。これらのカルコゲン原子は、互いに類似する性質を有しており、式(I)で表わされるクラスターを有するクラスター化合物において、当該クラスター化合物の原子配列構造を維持するとともに、電気化学的に互いに同様の挙動を示す。8個のAは、それぞれ独立して硫黄原子、セレン原子またはテルル原子であってもよい。前記カルコゲン原子のなかでは、より高い質量エネルギー密度を確保する観点から、硫黄原子およびセレン原子が好ましく、硫黄原子がより好ましい。 In the formula (I), A is a chalcogen atom. Examples of the chalcogen atom include a sulfur atom, a selenium atom, and a tellurium atom. These chalcogen atoms have properties similar to each other, and in the cluster compound having a cluster represented by the formula (I), the atomic arrangement structure of the cluster compound is maintained, and the electrochemically similar behavior to each other is maintained. Indicates. The eight A's may each independently be a sulfur atom, a selenium atom or a tellurium atom. Among the chalcogen atoms, from the viewpoint of securing a higher mass energy density, a sulfur atom and a selenium atom are preferable, and a sulfur atom is more preferable.
 前記式(I)で表わされるクラスターとしては、具体的には、例えば、Mo68クラスター、Mo5CrS8クラスター、Mo4Cr28クラスター、Mo3Cr38クラスター、Mo2Cr48クラスター、MoCr58クラスター、Mo6Se8クラスター、Mo5CrSe8クラスター、Mo4Cr2Se8クラスター、Mo3Cr3Se8クラスター、Mo2Cr4Se8クラスター、MoCr5Se8クラスター、Mo6Te8クラスター、Mo5CrTe8クラスター、Mo4Cr2Te8クラスター、Mo3Cr3Te8クラスター、Mo2Cr4Te8クラスター、MoCr5Te8クラスター、Mo5WS8クラスター、Mo428クラスター、Mo338クラスター、Mo248クラスター、MoW58クラスター、Mo6Se8クラスター、Mo5WSe8クラスター、Mo42Se8クラスター、Mo33Se8クラスター、Mo24Se8クラスター、MoW5Se8クラスター、Mo6Te8クラスター、Mo5WTe8クラスター、Mo42Te8クラスター、Mo33Te8クラスター、Mo24Te8クラスター、MoW5Te8クラスター、Mo4CrWS8クラスター、Mo3Cr2WS8クラスター、Mo3CrW28クラスター、Mo2Cr3WS8クラスター、Mo2Cr228クラスター、Mo2CrW38クラスター、MoCr4WS8クラスター、MoCr328クラスター、MoCr238クラスター、MoCrW48クラスター、Mo4CrWSe8クラスター、Mo3Cr2WSe8クラスター、Mo3CrW2Se8クラスター、Mo2Cr3WSe8クラスター、Mo2Cr22Se8クラスター、Mo2CrW3Se8クラスター、MoCr4WSe8クラスター、MoCr32Se8クラスター、MoCr23Se8クラスター、MoCrW4Se8クラスター、Mo4CrWTe8クラスター、Mo3Cr2WTe8クラスター、Mo3CrW2Te8クラスター、Mo2Cr3WTe8クラスター、Mo2Cr22Te8クラスター、Mo2CrW3Te8クラスター、MoCr4WTe8クラスター、MoCr32Te8クラスター、MoCr23Te8クラスター、MoCrW4Te8クラスター、Cr68クラスター、Cr5WS8クラスター、Cr428クラスター、Cr338クラスター、Cr248クラスター、CrW58クラスター、Cr6Se8クラスター、CrWSe8クラスター、Cr42Se8クラスター、Cr33Se8クラスター、Cr24Se8クラスター、CrW5Se8クラスター、Cr6Te8クラスター、Cr5WTe8クラスター、Cr42Te8クラスター、Cr33Te8クラスター、Cr24Te8クラスター、CrW5Te8クラスターなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのクラスターのなかでは、十分な化学的安定性およびより高い質量エネルギー密度を確保する観点から、Mo68クラスター、Mo5CrS8クラスター、Mo4Cr28クラスター、Mo3Cr38クラスター、Mo2Cr48クラスターおよびMoCr58クラスターが好ましい。 Specific examples of the cluster represented by the formula (I) include Mo 6 S 8 cluster, Mo 5 CrS 8 cluster, Mo 4 Cr 2 S 8 cluster, Mo 3 Cr 3 S 8 cluster, and Mo 2 Cr. 4 S 8 cluster, MoCr 5 S 8 cluster, Mo 6 Se 8 cluster, Mo 5 CrSe 8 cluster, Mo 4 Cr 2 Se 8 cluster, Mo 3 Cr 3 Se 8 cluster, Mo 2 Cr 4 Se 8 cluster, MoCr 5 Se 8 clusters, Mo 6 Te 8 clusters, Mo 5 CrTe 8 clusters, Mo 4 Cr 2 Te 8 clusters, Mo 3 Cr 3 Te 8 clusters, Mo 2 Cr 4 Te 8 clusters, MoCr 5 Te 8 clusters, Mo 5 WS 8 clusters , Mo 4 W 2 S 8 cluster, Mo 3 W 3 S 8 cluster, Mo 2 W 4 S 8 cluster, MoW 5 S 8 class , Mo 6 Se 8 cluster, Mo 5 WSe 8 cluster, Mo 4 W 2 Se 8 cluster, Mo 3 W 3 Se 8 cluster, Mo 2 W 4 Se 8 cluster, MoW 5 Se 8 cluster, Mo 6 Te 8 cluster, Mo 5 WTe 8 cluster, Mo 4 W 2 Te 8 cluster, Mo 3 W 3 Te 8 cluster, Mo 2 W 4 Te 8 cluster, MoW 5 Te 8 cluster, Mo 4 CrWS 8 cluster, Mo 3 Cr 2 WS 8 cluster, Mo 3 CrW 2 S 8 cluster, Mo 2 Cr 3 WS 8 cluster, Mo 2 Cr 2 W 2 S 8 cluster, Mo 2 CrW 3 S 8 cluster, MoCr 4 WS 8 cluster, MoCr 3 W 2 S 8 cluster, MoCr 2 W 3 S 8 cluster, MoCrW 4 S 8 cluster, Mo 4 CrWSe 8 cluster, Mo 3 Cr 2 WSe 8 cluster Mo 3 CrW 2 Se 8 cluster, Mo 2 Cr 3 WSe 8 cluster, Mo 2 Cr 2 W 2 Se 8 cluster, Mo 2 CrW 3 Se 8 cluster, MoCr 4 WSe 8 cluster, MoCr 3 W 2 Se 8 cluster, MoCr 2 W 3 Se 8 cluster, MoCrW 4 Se 8 cluster, Mo 4 Cr WTe 8 cluster, Mo 3 Cr 2 WTe 8 cluster, Mo 3 CrW 2 Te 8 cluster, Mo 2 Cr 3 WTe 8 cluster, Mo 2 Cr 2 W 2 Te 8 Cluster, Mo 2 CrW 3 Te 8 cluster, MoCr 4 WTe 8 cluster, MoCr 3 W 2 Te 8 cluster, MoCr 2 W 3 Te 8 cluster, MoCrW 4 Te 8 cluster, Cr 6 S 8 cluster, Cr 5 WS 8 cluster, Cr 4 W 2 S 8 cluster, Cr 3 W 3 S 8 cluster, Cr 2 W 4 S 8 clusters, CrW 5 S 8 clusters, Cr 6 Se 8 clusters, Cr 5 WSe 8 clusters, Cr 4 W 2 Se 8 clusters, Cr 3 W 3 Se 8 clusters, Cr 2 W 4 Se 8 clusters, CrW 5 Se 8 clusters , Cr 6 Te 8 cluster, Cr 5 WTe 8 cluster, Cr 4 W 2 Te 8 cluster, Cr 3 W 3 Te 8 cluster, Cr 2 W 4 Te 8 cluster, CrW 5 Te 8 cluster, and the like. Is not limited to such examples. Among these clusters, Mo 6 S 8 cluster, Mo 5 CrS 8 cluster, Mo 4 Cr 2 S 8 cluster, and Mo 3 Cr 3 S are used from the viewpoint of ensuring sufficient chemical stability and higher mass energy density. Eight clusters, Mo 2 Cr 4 S 8 clusters and MoCr 5 S 8 clusters are preferred.
 前記クラスター化合物は、式(I)で表わされるクラスターを有するとともにカチオンをさらに有する化合物であってもよい。前記クラスター化合物としては、例えば、シェブレル化合物;鉄、ガリウム、銀、カドミウム、インジウム、スズ、鉛などをカチオンとして有するMo68化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The cluster compound may have a cluster represented by the formula (I) and further have a cation. Examples of the cluster compound include a chevrel compound; a Mo 6 S 8 compound having iron, gallium, silver, cadmium, indium, tin, lead and the like as a cation, but the present invention is limited only to such examples. It is not something.
 前記シェブレル化合物としては、式(II): The chevrel compound has the formula (II):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、p個のX1はそれぞれ独立してアルカリ金属原子、アルカリ土類金属原子、12族典型金属原子、13族典型金属原子、14族典型金属原子、3d遷移金属原子または4d遷移金属原子、6個のMは前記と同じ、Aは前記と同じ、pは0~4の数を示す)
で表わされる組成を有するシェブレル化合物が挙げられる。
(In the formula, each p 1 is independently an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, a 3d transition metal atom, or a 4d transition metal. Atoms, 6 M are the same as above, A is the same as above, p is a number from 0 to 4)
The chevrel compound which has a composition represented by these is mentioned.
 式(II)において、p個のX1は、それぞれ独立して、アルカリ金属原子、アルカリ土類金属原子、12族典型金属原子、13族典型金属原子、14族典型金属原子、3d遷移金属原子または4d遷移金属原子である。これらのアルカリ金属原子、アルカリ土類金属原子、12族典型金属原子、13族典型金属原子、14族典型金属原子、3d遷移金属原子および4d遷移金属原子は、シェブレル相を形成し得る原子であり、高起電力かつ高容量を確保することができる。前記アルカリ金属原子としては、例えば、リチウム原子、ナトリウム原子、カリウム原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記アルカリ土類金属原子としては、例えば、マグネシウム原子、カルシウム原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記12族典型金属原子としては、例えば、亜鉛原子、カドミウム原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記13族典型金属原子としては、例えば、アルミニウム原子、ガリウム原子、インジウム原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記14族典型金属原子としては、例えば、スズ原子、鉛原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記3d遷移金属原子としては、例えば、鉄原子、コバルト原子、ニッケル原子、銅原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記4d遷移金属原子としては、例えば、銀などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記X1は、二次電池の種類、二次電池の用途などに応じて適宜選択することができる。X1のなかでは、高起電力かつ高容量を有するロッキングチェアー型の蓄電池を構築する観点から、リチウム原子、ナトリウム原子、マグネシウム原子、亜鉛原子、カドミウム原子、アルミニウム原子、ガリウム原子、インジウム原子、スズ原子、鉛原子、鉄原子、コバルト原子、ニッケル原子、銅原子および銀原子が好ましく、高起電力を確保する観点からリチウム原子、ナトリウム原子およびマグネシウム原子がより好ましい。 In the formula (II), p X 1 s independently represent an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, or a 3d transition metal atom. Or a 4d transition metal atom. These alkali metal atoms, alkaline earth metal atoms, Group 12 typical metal atoms, Group 13 typical metal atoms, Group 14 typical metal atoms, 3d transition metal atoms, and 4d transition metal atoms are atoms that can form a Chevrel phase. High electromotive force and high capacity can be secured. Examples of the alkali metal atom include a lithium atom, a sodium atom, and a potassium atom, but the present invention is not limited to such illustration. Examples of the alkaline earth metal atom include a magnesium atom and a calcium atom, but the present invention is not limited to such illustration. Examples of the group 12 typical metal atom include a zinc atom and a cadmium atom, but the present invention is not limited to such examples. Examples of the group 13 typical metal atom include an aluminum atom, a gallium atom, and an indium atom, but the present invention is not limited to such examples. Examples of the group 14 typical metal atom include a tin atom and a lead atom, but the present invention is not limited to such illustration. Examples of the 3d transition metal atom include an iron atom, a cobalt atom, a nickel atom, and a copper atom. However, the present invention is not limited to such examples. Examples of the 4d transition metal atom include silver, but the present invention is not limited to such examples. X 1 can be appropriately selected according to the type of secondary battery, the use of the secondary battery, and the like. Among X 1, from the viewpoint of constructing a rocking chair type battery having a high electromotive force and high capacity, lithium atom, sodium atom, a magnesium atom, a zinc atom, cadmium atom, aluminum atom, a gallium atom, an indium atom, tin Atom, lead atom, iron atom, cobalt atom, nickel atom, copper atom and silver atom are preferable, and lithium atom, sodium atom and magnesium atom are more preferable from the viewpoint of securing high electromotive force.
 式(II)において、6個のMは、式(I)における6個のMと同じである。また、式(II)において、Aは、式(I)におけるAと同じである。 In the formula (II), six M are the same as the six M in the formula (I). In Formula (II), A is the same as A in Formula (I).
 式(II)において、pは、0~4の数である。前記pは、X1の価数(元素の価数)によって異なることから、X1の価数に応じて適宜決定することが好ましい。例えば、X1の価数が1である場合、pは0~4の数であることが望ましい。また、X1の価数が2である場合、pは0~2の数であることが望ましい。さらに、X1の価数が3である場合、pは0~1.3の数であることが望ましい。 In the formula (II), p is a number from 0 to 4. Since p differs depending on the valence of X 1 (the valence of the element), it is preferable that p is appropriately determined according to the valence of X 1 . For example, when the valence of X 1 is 1, p is preferably a number from 0 to 4. Further, when the valence of X 1 is 2, p is preferably a number from 0 to 2. Further, when the valence of X 1 is 3, p is preferably a number from 0 to 1.3.
 前記式(II)で表わされるシェブレル化合物としては、例えば、Mg2Mo68、MgMoCrS、MgMoCr、MgMoCr、MgMoCr、MgMoCr、Mg2Cr68、Mg2Mo6Se8、MgMoCrSe、MgMoCrSe、MgMoCrSe、MgMoCrSe、MgMoCrSe、Mg2Mo6Te8、MgMoCrTe、MgMoCrTe、MgMoCrTe、MgMoCrTe、MgMoCrTeなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記シェブレル化合物のなかでは、より高い質量エネルギー密度を確保する観点から、原子量の小さいクロム原子および/または硫黄原子を多く含む化合物が好ましい。前記シェブレル化合物のなかでは、より高い質量エネルギー密度を確保する観点から、Mg2Mo68、Mg2Mo5CrS8、Mg2Mo4Cr28、Mg2Mo3Cr38、Mg2Mo2Cr48、Mg2MoCr58およびMg2Cr68がより好ましい。 Examples of the chevrel compound represented by the formula (II) include Mg 2 Mo 6 S 8 , Mg 2 Mo 5 CrS 8 , Mg 2 Mo 4 Cr 2 S 8 , Mg 2 Mo 3 Cr 3 S 8 , and Mg 2 Mo. 2 Cr 4 S 8, Mg 2 MoCr 5 S 8, Mg 2 Cr 6 S 8, Mg 2 Mo 6 Se 8, Mg 2 Mo 5 CrSe 8, Mg 2 Mo 4 Cr 2 Se 8, Mg 2 Mo 3 Cr 3 Se 8 , Mg 2 Mo 2 Cr 4 Se 8 , Mg 2 MoCr 5 Se 8 , Mg 2 Mo 6 Te 8 , Mg 2 Mo 5 CrTe 8 , Mg 2 Mo 4 Cr 2 Te 8 , Mg 2 Mo 3 Cr 3 Te 8 , mg 2 Mo 2 Cr 4 Te 8 , mg 2 MoCr 5 the like Te 8 and the like, and the present invention is not limited only to those exemplified. Among the chevrel compounds, compounds containing a large amount of chromium atoms and / or sulfur atoms having a small atomic weight are preferable from the viewpoint of securing a higher mass energy density. Among the chevrel compounds, Mg 2 Mo 6 S 8 , Mg 2 Mo 5 CrS 8 , Mg 2 Mo 4 Cr 2 S 8 , Mg 2 Mo 3 Cr 3 S 8 , from the viewpoint of securing a higher mass energy density, Mg 2 Mo 2 Cr 4 S 8 , Mg 2 MoCr 5 S 8 and Mg 2 Cr 6 S 8 are more preferred.
 前記正極は、式(I)で表わされるクラスターを有するクラスター化合物からなる電極であってもよく、前記クラスター化合物からなる正極活物質を含有する正極材料を集電体に担持させた電極であってもよい。正極が前記正極材料を集電体に担持させた電極である場合、前記正極は、例えば、前記正極材料を集電体に塗布すること、パルスレーザー堆積法、スパッタリング、液相合成法などによって直接的に集電体に正極材料を堆積させることによって製造することができる。 The positive electrode may be an electrode made of a cluster compound having a cluster represented by formula (I), or an electrode in which a positive electrode material containing a positive electrode active material made of the cluster compound is supported on a current collector. Also good. When the positive electrode is an electrode in which the positive electrode material is supported on a current collector, the positive electrode is directly applied by, for example, applying the positive electrode material to the current collector, pulse laser deposition, sputtering, liquid phase synthesis, or the like. In particular, the positive electrode material can be deposited on the current collector.
 前記正極材料は、前記クラスター化合物からなる正極活物質を含有する。また、前記正極材料は、必要により、導電助剤および結着剤をさらに含有していてもよい。 The positive electrode material contains a positive electrode active material made of the cluster compound. Further, the positive electrode material may further contain a conductive additive and a binder as necessary.
 前記導電助剤としては、例えば、炭素粉末、酸素欠損型チタン酸化物、金属微粉末などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記正極材料中における導電助剤の含有率は、導電助剤の種類などによって異なることから、導電助剤の種類などに応じて適宜決定することが好ましい。 Examples of the conductive aid include carbon powder, oxygen-deficient titanium oxide, and metal fine powder, but the present invention is not limited to such examples. Since the content rate of the conductive auxiliary agent in the positive electrode material varies depending on the type of conductive auxiliary agent and the like, it is preferable to determine appropriately according to the type of conductive auxiliary agent.
 前記結着剤としては、例えば、ポリフッ化ビニリデンなどの熱可塑性フッ素樹脂体、スチレン-ブタジエンゴムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記正極材料中における結着剤の含有率は、結着剤の種類などによって異なることから、結着剤の種類などに応じて適宜決定することが好ましい。 Examples of the binder include thermoplastic fluororesin bodies such as polyvinylidene fluoride and styrene-butadiene rubber, but the present invention is not limited to such examples. Since the content of the binder in the positive electrode material varies depending on the type of the binder and the like, it is preferable to appropriately determine the content according to the type of the binder and the like.
 前記集電体を構成する材料としては、例えば、白金、アルミニウム、パラジウム、銅、アルミニウム、ニッケル、ニオブ、モリブデン、ステンレス鋼、炭素材料などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記集電体を構成する材料は、二次電池の種類、二次電池の用途、前記クラスター化合物の種類、電解液の種類などによって異なることから、二次電池の種類、二次電池の用途、前記クラスター化合物の種類、電解液の種類などに応じて適宜選択することが好ましい。前記集電体の形状としては、例えば、多孔質体、板、ロール状薄板などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the material constituting the current collector include platinum, aluminum, palladium, copper, aluminum, nickel, niobium, molybdenum, stainless steel, and a carbon material. However, the present invention is limited to only such examples. It is not something. Since the material constituting the current collector varies depending on the type of secondary battery, the usage of the secondary battery, the type of the cluster compound, the type of the electrolyte, etc., the type of the secondary battery, the usage of the secondary battery, It is preferable to select appropriately according to the type of the cluster compound, the type of the electrolytic solution, and the like. Examples of the shape of the current collector include a porous body, a plate, and a roll-shaped thin plate. However, the present invention is not limited to such an example.
 前記負極は、負極活物質を含む電極である。前記負極活物質としては、例えば、sブロック金属、pブロック金属などの金属;前記金属を母体金属として含む合金;前記金属の化合物;炭素材料;ケイ素またはその化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記sブロック金属としては、例えば、リチウム、ナトリウム、カリウムなどのアルカリ金属;ベリリウム、マグネシウム、カルシウムなどのアルカリ土類金属などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記pブロック金属としては、例えば、アルミニウム、ガリウム、ゲルマニウム、インジウム、スズ、鉛などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記合金としては、例えば、Mg2Snなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記金属の化合物としては、例えば、チタンなどの金属酸化物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記炭素材料としては、例えば、アセチレンブラック、グラファイト、グラッシーカーボンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記ケイ素としては、例えば、アモルファスケイ素などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。ケイ素の化合物としては、二酸化ケイ素、マグネシウムシリサイド(Mg2Si)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記負極活物質は、二次電池の種類、二次電池の用途、前記クラスター化合物の種類、電解液の種類などによって異なることから、二次電池の種類、二次電池の用途、前記クラスター化合物の種類、電解液の種類などに応じて適宜選択することが好ましい。例えば、エネルギー密度が200Wh/kg以上であることが求められる場合、前記負極活物質のなかでは、より高い質量エネルギー密度を確保する観点から、マグネシウム単体、スズ単体およびケイ素単体が好ましく、マグネシウム単体がより好ましい。 The negative electrode is an electrode including a negative electrode active material. Examples of the negative electrode active material include metals such as s-block metal and p-block metal; alloys containing the metal as a base metal; compounds of the metal; carbon materials; silicon or a compound thereof. However, the present invention is not limited to such examples. Examples of the s block metal include alkali metals such as lithium, sodium, and potassium; alkaline earth metals such as beryllium, magnesium, and calcium; however, the present invention is not limited to such examples. . Examples of the p-block metal include aluminum, gallium, germanium, indium, tin, lead, and the like, but the present invention is not limited to such examples. Examples of the alloy include Mg 2 Sn, but the present invention is not limited to such examples. Examples of the metal compound include metal oxides such as titanium, but the present invention is not limited to such examples. Examples of the carbon material include acetylene black, graphite, and glassy carbon. However, the present invention is not limited to such examples. Examples of the silicon include amorphous silicon, but the present invention is not limited to such examples. Examples of the silicon compound include silicon dioxide and magnesium silicide (Mg 2 Si), but the present invention is not limited to such examples. Since the negative electrode active material varies depending on the type of secondary battery, the usage of the secondary battery, the type of the cluster compound, the type of the electrolyte, etc., the type of the secondary battery, the usage of the secondary battery, It is preferable to select appropriately according to the type and the type of the electrolytic solution. For example, when the energy density is required to be 200 Wh / kg or more, among the negative electrode active materials, from the viewpoint of securing a higher mass energy density, magnesium simple substance, tin simple substance and silicon simple substance are preferable, and magnesium simple substance is preferable. More preferred.
 前記負極は、前記負極活物質からなる電極であってもよく、前記負極活物質を含有する負極材料を集電体に担持させた電極であってもよい。前記負極が前記負極材料を集電体に担持させた電極である場合、前記負極は、例えば、前記負極材料を集電体に塗布することなどによって製造することができる。前記負極材料は、前記負極活物質を含有する。また、前記負極材料は、必要により、導電助剤および結着剤をさらに含有していてもよい。負極材料における導電助剤および結着剤は、正極材料における導電助剤および結着剤と同じである。 The negative electrode may be an electrode made of the negative electrode active material, or an electrode in which a negative electrode material containing the negative electrode active material is supported on a current collector. When the negative electrode is an electrode in which the negative electrode material is supported on a current collector, the negative electrode can be produced, for example, by applying the negative electrode material to a current collector. The negative electrode material contains the negative electrode active material. The negative electrode material may further contain a conductive auxiliary and a binder as necessary. The conductive assistant and binder in the negative electrode material are the same as the conductive assistant and binder in the positive electrode material.
 前記電解液は、前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入の抑制の様式、二次電池の種類、二次電池の用途、前記クラスター化合物の種類などによって異なることから、前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入の抑制の様式、二次電池の種類、二次電池の用途、前記クラスター化合物の種類などに応じて適宜決定することが好ましい。 The electrolyte solution varies depending on the mode of suppression of penetration of the liquid into the voids of the atomic arrangement structure of the cluster compound, the type of the secondary battery, the use of the secondary battery, the type of the cluster compound, etc. It is preferable to determine appropriately according to the mode of suppressing the penetration of the liquid into the voids of the atomic arrangement structure of the cluster compound, the type of the secondary battery, the use of the secondary battery, the type of the cluster compound, and the like.
 本実施形態に係る二次電池において、前記空隙内への前記液体の侵入は、例えば、
(a) 前記前記正極と負極との間にキャリアイオンを移送可能な液体として、前記クラスター化合物の原子配列構造の空隙に侵入しにくい化学的性質を有する液体(以下、「液体A」ともいう)を用いること、
(b) 前記前記正極と負極との間にキャリアイオンを移送可能な液体として、前記クラスター化合物の原子配列構造の空隙内への侵入が妨げられるに十分な嵩高さを有する化合物からなる液体(以下、「液体B」ともいう)を用いること、
(c) キャリアイオンを通過させるが前記液体を通過させない被覆材によって正極の正極活物質の表面を被覆すること
などによって抑制されている。
In the secondary battery according to the present embodiment, the intrusion of the liquid into the gap is, for example,
(A) A liquid having a chemical property that is difficult to enter the voids of the atomic arrangement structure of the cluster compound as a liquid capable of transferring carrier ions between the positive electrode and the negative electrode (hereinafter also referred to as “liquid A”). Using
(B) As a liquid capable of transferring carrier ions between the positive electrode and the negative electrode, a liquid made of a compound having a bulkiness sufficient to prevent the cluster compound from entering the voids of the atomic arrangement structure (hereinafter referred to as “liquid”) , Also referred to as “liquid B”),
(C) It is suppressed by covering the surface of the positive electrode active material of the positive electrode with a coating material that allows carrier ions to pass but does not allow the liquid to pass.
 前記液体Aは、前記クラスター化合物の原子配列構造の空隙に侵入しにくい化学的性質を有する液体である。前記液体Aとしては、例えば、イオン液体、少なくとも2種類の前記イオン液体を混合した混合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記イオン液体としては、例えば、ハロゲン原子を有するアニオンと、有機カチオンまたは金属カチオンとを含むイオン液体などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記液体Aのなかでは、負極における充放電反応をより効率よく行ない、より高い起電力を確保する観点から、有機カチオンと、ハロゲン原子を有するアニオンと、有機カチオンまたは金属カチオンとを含むイオン液体が好ましい。前記イオン液体としては、例えば、少なくとも2種類の前記アニオンと、少なくとも2種類の有機カチオンとを含むイオン液体;少なくとも2種類の前記アニオンと、少なくとも2種類の金属カチオンとを含むイオン液体;少なくとも2種類の前記アニオンと、有機カチオンおよび金属カチオンの双方とを含むイオン液体などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The liquid A is a liquid having a chemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Examples of the liquid A include an ionic liquid and a mixture obtained by mixing at least two kinds of the ionic liquids, but the present invention is not limited to such examples. Examples of the ionic liquid include an ionic liquid containing an anion having a halogen atom and an organic cation or a metal cation. However, the present invention is not limited to such examples. Among the liquids A, an ionic liquid containing an organic cation, an anion having a halogen atom, and an organic cation or a metal cation is used from the viewpoint of more efficiently performing a charge / discharge reaction in the negative electrode and ensuring a higher electromotive force. preferable. As the ionic liquid, for example, an ionic liquid containing at least two types of anions and at least two types of organic cations; an ionic liquid containing at least two types of anions and at least two types of metal cations; Examples of the ionic liquid include both types of anions and both an organic cation and a metal cation. However, the present invention is not limited to such examples.
 前記アニオンは、ハロゲン原子を有するアニオンである。前記ハロゲン原子を有するアニオンとしては、例えば、非配位性ハロゲン化物アニオン、金属ハロゲン錯アニオン、式(III): The anion is an anion having a halogen atom. Examples of the anion having a halogen atom include a non-coordinating halide anion, a metal halogen complex anion, and the formula (III):
(式中、X2はハロゲン原子、qは1~2の数を示す)
で表わされるハロゲノアミネートアニオン、式(IV):
(Wherein X 2 represents a halogen atom and q represents a number of 1 to 2)
A halogenoamate anion represented by formula (IV):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、R1およびR2はそれぞれ独立してハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基を示す)
で表わされるスルホニルアミドアニオン、式(V):
(Wherein R 1 and R 2 each independently represents a halogen atom or a C 1-8 alkyl group having a halogen atom)
A sulfonylamide anion represented by formula (V):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(式中、R3はハロゲン原子または当該ハロゲン原子を有する炭素数1~8のアルキル基を示す)
で表わされるスルホナートアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのアニオンは、ハロゲン原子を有しており、後述のカチオンとともに、十分な質量エネルギー密度を確保することができるイオン液体を構成することができる。
(Wherein R 3 represents a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom)
The sulfonate anion etc. which are represented by these are mentioned, However, This invention is not limited only to this illustration. These anions have a halogen atom and can constitute an ionic liquid capable of securing a sufficient mass energy density together with a cation described later.
 前記非配位性ハロゲン化物アニオンとしては、例えば、ハロゲン化水素アニオン〔例えば、式(VI): Examples of the non-coordinating halide anion include, for example, a hydrogen halide anion [for example, the formula (VI):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(式中、X3はハロゲン原子、rは1~4の数を示す)
で表わされるハロゲン化水素アニオン(例えば、HF2 -、H23 -、H34 -など)〕、ヘキサフルオロホスフェートアニオン(PF6 -)、テトラフルオロボレートアニオン(BF4 -)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。式(VI)において、X3は、ハロゲン原子である。また、式(VI)において、rは、1~4の数である。式(VI)におけるハロゲン原子は、式(III)におけるハロゲン原子と同様である。前記非配位性ハロゲン化物アニオンのなかでは、より高い質量エネルギー密度を確保する観点から、ハロゲン化水素アニオン、およびテトラフルオロボレートアニオン(BF4 -)が好ましく、ハロゲン化水素アニオンがより好ましい。
(Wherein X 3 represents a halogen atom, and r represents a number of 1 to 4)
A hydrogen halide anion (for example, HF 2 , H 2 F 3 , H 3 F 4 etc.)], a hexafluorophosphate anion (PF 6 ), a tetrafluoroborate anion (BF 4 ), etc. Although mentioned, this invention is not limited only to this illustration. In the formula (VI), X 3 is a halogen atom. In the formula (VI), r is a number from 1 to 4. The halogen atom in formula (VI) is the same as the halogen atom in formula (III). Among the non-coordinating halide anions, a hydrogen halide anion and a tetrafluoroborate anion (BF 4 ) are preferable, and a hydrogen halide anion is more preferable from the viewpoint of securing a higher mass energy density.
 前記金属ハロゲン錯アニオンとしては、例えば、ヘキサフルオロアルセナートアニオン(AsF6 -)、ヘキサフルオロニオベートアニオン(NbF6 -)、ヘキサフルオロタンタレートアニオン(TaF6 -)、ヘプタフルオロタングステネートアニオン(WF7 -)、ヘキサフルオロウラネートアニオン(UF6 -)、テトラフルオロオキソバナジウムアニオン(VOF4 -)、ペンタフルオロオキソモリブデンアニオン(MoOF5 -)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記金属ハロゲン錯アニオンのなかでは、十分な質量エネルギー密度を確保する観点から、テトラフルオロオキソバナジウムアニオン(VOF4 -)およびヘキサフルオロアルセナートアニオン(AsF6 -)が好ましく、テトラフルオロオキソバナジウムアニオン(VOF4 -)がより好ましい。 Examples of the metal halide complex anion include hexafluoroarsenate anion (AsF 6 ), hexafluoroniobate anion (NbF 6 ), hexafluoro tantalate anion (TaF 6 ), heptafluorotungstateate anion (WF). 7 -), hexafluoro back anion (UF 6 -), tetrafluoro oxovanadium anions (VOF 4 -), pentafluorophenyl oxo molybdenum anions (MoOF 5 -) but the like, the present invention is only to those exemplified It is not limited. Among the metal halide complex anions, from the viewpoint of securing a sufficient mass energy density, a tetrafluorooxovanadium anion (VOF 4 ) and a hexafluoroarsenate anion (AsF 6 ) are preferable, and the tetrafluorooxovanadium anion ( VOF 4 ) is more preferable.
 式(III)において、X2は、ハロゲン原子を示す。前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記ハロゲン原子のなかでは、軽量化を図るとともに耐腐食性を確保する観点から、フッ素原子および塩素原子が好ましく、塩素原子がより好ましい。式(III)において、qは、1~2の数である。式(III)で表わされるハロゲノアルミネートアニオンとしては、例えば、テトラクロロアルミネートアニオン(AlCl4 -)、ヘプタクロロジアルミネートアニオン(Al2Cl7 -)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記式(III)で表わされるハロゲノアルミネートアニオンのなかでは、AlCl4 -およびAl2Cl7 -が好ましい。 In the formula (III), X 2 represents a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. However, the present invention is not limited to such examples. Among the halogen atoms, a fluorine atom and a chlorine atom are preferable, and a chlorine atom is more preferable from the viewpoint of reducing the weight and ensuring the corrosion resistance. In the formula (III), q is a number from 1 to 2. Examples of the halogenoaluminate anion represented by the formula (III) include a tetrachloroaluminate anion (AlCl 4 ) and a heptachlorodialuminate anion (Al 2 Cl 7 ). It is not limited only to such illustration. Among the halogenoaluminate anions represented by the formula (III), AlCl 4 and Al 2 Cl 7 are preferable.
 式(IV)において、R1およびR2は、それぞれ独立してハロゲン原子または当該ハロゲン原子を有する炭素数1~8のアルキル基である。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記ハロゲン原子のなかでは、より高い質量エネルギー密度を確保する観点から、フッ素原子が好ましい。ハロゲン原子を有する炭素数1~8のアルキル基における炭素数は、クラスター化合物の原子配列構造の空隙内への溶媒の侵入を抑制するのに適した疎水性および十分な熱的安定性を確保する観点から、1以上であり、高い起電力を得るのに適した電解液の粘性を確保する観点から、8以下、好ましくは2以下である。ハロゲン原子を有する炭素数1~8のアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘプチル基、パーフルオロヘキシル基、パーフルオロオクチル基などの炭素数1~8のパーフルオロアルキル基;パークロロメチル基、パークロロエチル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘプチル基、パークロロヘキシル基、パークロロオクチル基などの炭素数1~8のパークロロアルキル基;パーブロモメチル基、パーブロモエチル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘプチル基、パーブロモヘキシル基、パーブロモオクチル基などの炭素数1~8のパーブロモアルキル基;パーヨードメチル基、パーヨードエチル基、パーヨードプロピル基、パーヨードブチル基、パーヨードペンチル基、パーヨードヘプチル基、パーヨードヘキシル基、パーヨードオクチル基などの炭素数1~8のパーヨードアルキル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのハロゲン原子を有する炭素数1~8のアルキル基のなかでは、高い起電力を得るのに適した電解液の粘性を確保する観点から、炭素数1~8のパーフルオロアルキル基が好ましく、炭素数1~4のパーフルオロアルキル基がより好ましく、パーフルオロメチル基がさらに好ましい。式(IV)で表わされるスルホニルアミドアニオンとしては、例えば、ビス(フルオロスルホニル)アミドアニオンなどのビス(ハロゲノスルホニル)アミドアニオン;ビス(トリフルオロメチルスルホニル)アミドアニオンなどのビス(ハロゲノアルキルスルホニル)アミドアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the formula (IV), R 1 and R 2 are each independently a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, but the present invention is not limited only to such illustration. Among the halogen atoms, a fluorine atom is preferable from the viewpoint of securing a higher mass energy density. The number of carbon atoms in the alkyl group having 1 to 8 carbon atoms having a halogen atom ensures hydrophobicity and sufficient thermal stability suitable for suppressing the penetration of the solvent into the voids of the atomic arrangement structure of the cluster compound. From the viewpoint, it is 1 or more, and from the viewpoint of ensuring the viscosity of the electrolyte suitable for obtaining a high electromotive force, it is 8 or less, preferably 2 or less. Examples of the alkyl group having 1 to 8 carbon atoms having a halogen atom include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluoroheptyl group, and a perfluorohexyl group. Perfluoroalkyl group having 1 to 8 carbon atoms such as perfluorooctyl group, perchloromethyl group, perchloroethyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchloroheptyl group, Perchloroalkyl groups having 1 to 8 carbon atoms such as chlorohexyl group and perchlorooctyl group; perbromomethyl group, perbromoethyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromoheptyl group , Perbromohexyl group, perbromooctyl A perbromoalkyl group having 1 to 8 carbon atoms, such as periodomethyl group, periodoethyl group, periodiopropyl group, periodiobutyl group, periodiopentyl group, periodioheptyl group, periodiohexyl group, periodiod Examples thereof include a C 1-8 alkyl group such as an octyl group, but the present invention is not limited to such examples. Among these alkyl groups having 1 to 8 carbon atoms having a halogen atom, perfluoroalkyl groups having 1 to 8 carbon atoms are preferable from the viewpoint of ensuring the viscosity of an electrolyte suitable for obtaining a high electromotive force. A perfluoroalkyl group having 1 to 4 carbon atoms is more preferred, and a perfluoromethyl group is more preferred. Examples of the sulfonylamide anion represented by the formula (IV) include bis (halogenosulfonyl) amide anion such as bis (fluorosulfonyl) amide anion; bis (halogenoalkylsulfonyl) amide such as bis (trifluoromethylsulfonyl) amide anion Although an anion etc. are mentioned, this invention is not limited only to this illustration.
 式(V)において、R3は、ハロゲン原子を有する炭素数1~8のアルキル基である。式(V)におけるアルキル基の炭素数は、高い起電力を得るのに適した電解液の粘性を確保するから、1~8、好ましくは1~6、より好ましくは1~4である。式(V)におけるハロゲン原子を有する炭素数1~8のアルキル基は、式(IV)におけるハロゲン原子を有する炭素数1~8のアルキル基と同様である。式(V)で表わされるスルホナートアニオンとしては、例えば、トリフルオロメチルスルホナートアニオン、ペンタフルオロエチルスルホナートアニオンなどのハロゲノアルキルスルホナートアニオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the formula (V), R 3 is a C 1-8 alkyl group having a halogen atom. The number of carbon atoms of the alkyl group in the formula (V) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 in order to ensure the viscosity of the electrolytic solution suitable for obtaining a high electromotive force. The alkyl group having 1 to 8 carbon atoms having a halogen atom in the formula (V) is the same as the alkyl group having 1 to 8 carbon atoms having a halogen atom in the formula (IV). Examples of the sulfonate anion represented by the formula (V) include halogenoalkyl sulfonate anions such as a trifluoromethyl sulfonate anion and a pentafluoroethyl sulfonate anion, but the present invention is limited only to such examples. Is not to be done.
 前記アニオンのなかでは、高い起電力を得るのに適した電解液の粘性、クラスター化合物の原子配列構造の空隙内への溶媒の侵入を抑制するのに適した疎水性および十分な化学的安定性を確保する観点から、式(IV)で表わされるスルホニルアミドアニオンおよび式(V)で表わされるスルホナートアニオンが好ましく、ビス(ハロゲノスルホニル)アミドアニオン、ビス(ハロゲノアルキルスルホニル)アミドアニオンおよびハロゲノアルキルスルホナートアニオンがより好ましく、ビス(フルオロスルホニル)アミドアニオン、ビス(トリフルオロメチルスルホニル)アミドアニオンおよびトリフルオロメチルスルホナートアニオンがさらに好ましい。 Among the anions, the viscosity of the electrolyte suitable for obtaining a high electromotive force, the hydrophobicity suitable for suppressing the penetration of the solvent into the voids of the atomic arrangement structure of the cluster compound, and sufficient chemical stability From the viewpoint of securing the sulfonylamide anion represented by formula (IV) and the sulfonate anion represented by formula (V), bis (halogenosulfonyl) amide anion, bis (halogenoalkylsulfonyl) amide anion and halogenoalkylsulfo A narate anion is more preferable, and a bis (fluorosulfonyl) amide anion, a bis (trifluoromethylsulfonyl) amide anion, and a trifluoromethylsulfonate anion are more preferable.
 前記カチオンは、金属カチオンまたは有機カチオンである。これらのカチオンは、ハロゲン原子を有しており、前記アニオンとともに、十分な質量エネルギー密度を確保することができるイオン液体を構成することができる。 The cation is a metal cation or an organic cation. These cations have a halogen atom and can form an ionic liquid capable of securing a sufficient mass energy density together with the anion.
 前記金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。アルカリ金属カチオンとしては、例えば、リチウムカチオン、ナトリウムカチオン、カリウムカチオン、セシウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。アルカリ土類金属カチオンとしては、ベリリウムカチオン、マグネシウムカチオン、カルシウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記金属カチオンのなかでは、ロッキングチェアー型の蓄電池を構築する場合には、リチウムカチオン、ナトリウムカチオン、マグネシウムカチオンおよびセシウムカチオンが好ましい。 Examples of the metal cation include an alkali metal cation and an alkaline earth metal cation, but the present invention is not limited to such examples. Examples of the alkali metal cation include a lithium cation, a sodium cation, a potassium cation, and a cesium cation, but the present invention is not limited to such examples. Examples of the alkaline earth metal cation include beryllium cation, magnesium cation, and calcium cation, but the present invention is not limited to such examples. Among the metal cations, lithium cation, sodium cation, magnesium cation and cesium cation are preferable when a rocking chair type storage battery is constructed.
 前記有機カチオンとしては、例えば、式(VII): Examples of the organic cation include formula (VII):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、R4、R5、R6およびR7はそれぞれ独立して置換基を有していてもよい炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基を示す)
で表わされる四級アンモニウムカチオン、式(VIII):
(Wherein R 4 , R 5 , R 6 and R 7 each independently represents an optionally substituted alkyl group having 1 to 8 carbon atoms or an alkyloxyalkyl group having 1 to 8 carbon atoms) )
A quaternary ammonium cation represented by formula (VIII):
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(式中、R8およびR9はそれぞれ独立して炭素数1~8のアルキル基、Yは直接結合またはメチレン基を示す)
で表わされるカチオン、式(IX):
(Wherein R 8 and R 9 are each independently an alkyl group having 1 to 8 carbon atoms, Y represents a direct bond or a methylene group)
A cation represented by formula (IX):
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、R10およびR11はそれぞれ独立して炭素数1~8のアルキル基を示す)
で表わされるイミダゾリウムカチオン、式(X):
(Wherein R 10 and R 11 each independently represents an alkyl group having 1 to 8 carbon atoms)
An imidazolium cation represented by the formula (X):
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、R12は炭素数1~8のアルキル基を示す)
で表わされるピリジニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
(Wherein R 12 represents an alkyl group having 1 to 8 carbon atoms)
Although the pyridinium cation represented by these is mentioned, this invention is not limited only to this illustration.
 式(VII)において、R4、R5、R6およびR7は、それぞれ独立して置換基を有していてもよい炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基である。式(VII)における置換基を有していてもよいアルキル基の炭素数は、高い起電力を得るのに適した電解液の粘性を確保する観点から、1~8、好ましくは1~6、より好ましくは1~4である。置換基を有していてもよいアルキル基における炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などの直鎖または分岐鎖を有する炭素数1~8のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などの炭素数1~8の脂環式アルキル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。置換基としては、例えば、水酸基、カルボニル基、フェニル基、ベンジル基、硝酸基(-NO3基)、硫酸基、スルホン基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。式(VII)におけるアルキルオキシアルキル基の炭素数は、電解質の耐熱性を向上させる観点から、1~8、好ましくは1~6、より好ましくは1~4である。炭素数1~8のアルキルオキシアルキル基としては、例えば、メトキシメチル基、2-メトキシエチル基、エトキシメチル基、2-エトキシエチル基、2-(n-プロポキシ)エチル基、2-(n-イソプロポキシ)エチル基、2-(n-ブトキシ)エチル基、2-イソブトキシエチル基、2-(tert-ブトキシ)エチル基、1-エチル-2-メトキシエチル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the formula (VII), R 4 , R 5 , R 6 and R 7 are each independently an optionally substituted alkyl group having 1 to 8 carbon atoms or alkyloxyalkyl having 1 to 8 carbon atoms. It is a group. The number of carbon atoms of the alkyl group which may have a substituent in the formula (VII) is 1 to 8, preferably 1 to 6, from the viewpoint of securing the viscosity of the electrolyte suitable for obtaining a high electromotive force. More preferably, it is 1 to 4. Examples of the alkyl group having 1 to 8 carbon atoms in the alkyl group which may have a substituent include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, and a pentyl group. A straight or branched alkyl group having 1 to 8 carbon atoms such as hexyl group, heptyl group and octyl group; carbon such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group Examples thereof include alicyclic alkyl groups of 1 to 8, but the present invention is not limited to such examples. Examples of the substituent include a hydroxyl group, a carbonyl group, a phenyl group, a benzyl group, a nitric acid group (—NO 3 group), a sulfuric acid group, and a sulfone group, but the present invention is limited only to such examples. is not. The carbon number of the alkyloxyalkyl group in formula (VII) is 1 to 8, preferably 1 to 6, and more preferably 1 to 4 from the viewpoint of improving the heat resistance of the electrolyte. Examples of the alkyloxyalkyl group having 1 to 8 carbon atoms include methoxymethyl group, 2-methoxyethyl group, ethoxymethyl group, 2-ethoxyethyl group, 2- (n-propoxy) ethyl group, 2- (n- Examples include isopropoxy) ethyl group, 2- (n-butoxy) ethyl group, 2-isobutoxyethyl group, 2- (tert-butoxy) ethyl group, 1-ethyl-2-methoxyethyl group and the like. Is not limited to such examples.
 式(VII)で表わされる四級アンモニウムカチオンとしては、例えば、N,N,N-トリメチル-N-プロピルアンモニウムカチオン、N,N,N-トリメチル-N-ヘキシルアンモニウムカチオン、N,N,N-トリメチル-N-(2-ヒドロキシメチル)アンモニウムカチオン、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記式(VII)で表わされる四級アンモニウムカチオンのなかでは、十分な導電率および高い起電力を得るのに適した電解液の粘性を確保する観点から、N,N,N-トリメチル-N-プロピルアンモニウムカチオン、N,N,N-トリメチル-N-ヘキシルアンモニウムカチオン、N,N,N-トリメチル-N-(2-ヒドロキシメチル)アンモニウムカチオンおよびN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオンが好ましい。 Examples of the quaternary ammonium cation represented by the formula (VII) include N, N, N-trimethyl-N-propylammonium cation, N, N, N-trimethyl-N-hexylammonium cation, N, N, N— Examples include trimethyl-N- (2-hydroxymethyl) ammonium cation and N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium cation, but the present invention is limited to such examples only. It is not a thing. Among the quaternary ammonium cations represented by the formula (VII), N, N, N-trimethyl-N— is used from the viewpoint of securing sufficient conductivity and viscosity of an electrolyte suitable for obtaining a high electromotive force. Propyl ammonium cation, N, N, N-trimethyl-N-hexyl ammonium cation, N, N, N-trimethyl-N- (2-hydroxymethyl) ammonium cation and N, N-diethyl-N-methyl-N- ( 2-Methoxyethyl) ammonium cation is preferred.
 式(VIII)において、R8およびR9は、それぞれ独立して炭素数1~8のアルキル基である。式(VIII)におけるアルキル基の炭素数は、十分な導電率および高い起電力を得るのに適した電解液の粘性を確保する観点から、1~8、好ましくは1~6、より好ましくは1~4である。式(VIII)における炭素数1~8のアルキル基は、式(VII)における炭素数1~8のアルキル基と同様である。また、式(VIII)において、Aは、直接結合またはメチレン基である。 In the formula (VIII), R 8 and R 9 are each independently an alkyl group having 1 to 8 carbon atoms. The number of carbon atoms of the alkyl group in the formula (VIII) is 1 to 8, preferably 1 to 6, more preferably 1 from the viewpoint of securing sufficient conductivity and viscosity of the electrolyte suitable for obtaining a high electromotive force. ~ 4. The alkyl group having 1 to 8 carbon atoms in the formula (VIII) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (VII). In Formula (VIII), A is a direct bond or a methylene group.
 式(VIII)において、Yが直接結合であるカチオンは、式(VIIIa): In formula (VIII), the cation in which Y is a direct bond is represented by formula (VIIIa):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、R8およびR9は前記と同じ)
で表わされるピロリジニウムカチオンである。式(VIIIa)で表わされるピロリジニウムカチオンとしては、例えば、N,N-ジメチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオン、N-メチル-N-ブチルピロリジニウムカチオン、N-メチル-N-ペンチルピロリジニウムカチオン、N-メチル-N-ヘキシルピロリジニウムカチオン、N-メチル-N-オクチルピロリジニウムカチオン、N-エチル-N-ブチルピロリジニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
(Wherein R 8 and R 9 are the same as above)
It is a pyrrolidinium cation represented by Examples of the pyrrolidinium cation represented by the formula (VIIIa) include N, N-dimethylpyrrolidinium cation, N-methyl-N-ethylpyrrolidinium cation, N-methyl-N-propylpyrrolidinium cation, N-methyl-N-butylpyrrolidinium cation, N-methyl-N-pentylpyrrolidinium cation, N-methyl-N-hexylpyrrolidinium cation, N-methyl-N-octylpyrrolidinium cation, N- Examples include ethyl-N-butylpyrrolidinium cation, but the present invention is not limited to such examples.
 式(VIII)において、Yがメチレン基であるカチオンは、式(VIIIb): In the formula (VIII), the cation where Y is a methylene group is the formula (VIIIb):
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、R8およびR9は前記と同じ)
で表わされるピペリジニウムカチオンである。式(VIIIb)で表わされるピペリジニウムカチオンとしては、例えば、N,N-ジメチルピペリジニウムカチオン、N-メチル-N-エチルピペリジニウムカチオン、N-メチル-N-プロピルピペリジニウムカチオン、N-メチル-N-ブチルピペリジニウムカチオン、N-メチル-N-ペンチルピペリジニウムカチオン、N-メチル-N-ヘキシルピペリジニウムカチオン、N-メチル-N-オクチルピペリジニウムカチオン、N-エチル-N-プロピルピペリジニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。
(Wherein R 8 and R 9 are the same as above)
A piperidinium cation represented by: Examples of the piperidinium cation represented by the formula (VIIIb) include N, N-dimethylpiperidinium cation, N-methyl-N-ethylpiperidinium cation, N-methyl-N-propylpiperidinium cation, N-methyl-N-butylpiperidinium cation, N-methyl-N-pentylpiperidinium cation, N-methyl-N-hexylpiperidinium cation, N-methyl-N-octylpiperidinium cation, N- Examples include ethyl-N-propylpiperidinium cation, but the present invention is not limited to such examples.
 式(IX)において、R10およびR11は、それぞれ独立して炭素数1~8のアルキル基を示す。式(IX)におけるアルキル基の炭素数は、十分な導電率および高い起電力を得るのに適した電解液の粘性を確保する観点から、1~8、好ましくは1~6、より好ましくは1~4である。式(IX)における炭素数1~8のアルキル基は、式(VII)における炭素数1~8のアルキル基と同様である。式(IX)で表わされるイミダゾリウムカチオンとしては、例えば、1,3-ジメチルイミダゾリウムカチオン、1-メチル-3-エチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-メチル-3-ブチルイミダゾリウムカチオン、1-メチル-3-ペンチルイミダゾリウムカチオン、1-メチル-3-ヘキシルイミダゾリウムカチオン、1-メチル-3-ヘプチルイミダゾリウムカチオン、1-メチル-3-オクチルイミダゾリウムカチオン、1,3-ジエチルイミダゾリウムカチオン、1-エチル-3-プロピルイミダゾリウムカチオン、1-エチル-3-ブチルイミダゾリウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the formula (IX), R 10 and R 11 each independently represents an alkyl group having 1 to 8 carbon atoms. The number of carbon atoms of the alkyl group in the formula (IX) is 1 to 8, preferably 1 to 6, more preferably 1 from the viewpoint of ensuring sufficient conductivity and viscosity of the electrolyte suitable for obtaining a high electromotive force. ~ 4. The alkyl group having 1 to 8 carbon atoms in the formula (IX) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (VII). Examples of the imidazolium cation represented by the formula (IX) include 1,3-dimethylimidazolium cation, 1-methyl-3-ethylimidazolium cation, 1-methyl-3-propylimidazolium cation, 1-methyl- 3-butylimidazolium cation, 1-methyl-3-pentylimidazolium cation, 1-methyl-3-hexylimidazolium cation, 1-methyl-3-heptylimidazolium cation, 1-methyl-3-octylimidazolium cation 1,3-diethylimidazolium cation, 1-ethyl-3-propylimidazolium cation, 1-ethyl-3-butylimidazolium cation, etc., but the present invention is not limited to such examples. Absent.
 式(X)において、R12は炭素数1~8のアルキル基である。式(X)におけるアルキル基の炭素数は、十分な導電率および高い起電力を得るのに適した電解液の粘性を確保する観点から、1~8、好ましくは1~6、より好ましくは1~4である。式(X)における炭素数1~8のアルキル基は、式(VII)における炭素数1~8のアルキル基と同様である。式(X)で表わされるピリジニウムカチオンとしては、例えば、N-メチルピリジニウムカチオン、N-エチルピリジニウムカチオン、N-プロピルピリジニウムカチオン、N-ブチルピリジニウムカチオン、N-ペンチルピリジニウムカチオン、N-ヘキシルピリジニウムカチオン、N-ヘプチルピリジニウムカチオン、N-オクチルピリジニウムカチオンなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 In the formula (X), R 12 is an alkyl group having 1 to 8 carbon atoms. The number of carbon atoms of the alkyl group in the formula (X) is 1 to 8, preferably 1 to 6, more preferably 1 from the viewpoint of securing sufficient conductivity and viscosity of the electrolyte suitable for obtaining a high electromotive force. ~ 4. The alkyl group having 1 to 8 carbon atoms in the formula (X) is the same as the alkyl group having 1 to 8 carbon atoms in the formula (VII). Examples of the pyridinium cation represented by the formula (X) include N-methylpyridinium cation, N-ethylpyridinium cation, N-propylpyridinium cation, N-butylpyridinium cation, N-pentylpyridinium cation, N-hexylpyridinium cation, Examples include N-heptylpyridinium cation and N-octylpyridinium cation, but the present invention is not limited to such examples.
 前記カチオンのなかでは、アルカリ金属カチオン、アルカリ土類金属カチオン、式(VII)で表わされる四級アンモニウムカチオンおよび式(VIII)で表わされるカチオンが好ましく、リチウムカチオン、ナトリウムカチオン、セシウムカチオン、マグネシウムカチオン、N-トリメチル-N-プロピルアンモニウムカチオン、N-トリメチル-N-ヘキシルアンモニウムカチオン、N,N,N-トリメチル-N-(2-ヒドロキシメチル)アンモニウムカチオン、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオン、N-メチル-N-プロピルピロリジニウムカチオンおよびN-メチル-N-プロピルピペリジニウムカチオンがより好ましい。 Among the cations, an alkali metal cation, an alkaline earth metal cation, a quaternary ammonium cation represented by the formula (VII) and a cation represented by the formula (VIII) are preferable, and a lithium cation, a sodium cation, a cesium cation, and a magnesium cation. N-trimethyl-N-propylammonium cation, N-trimethyl-N-hexylammonium cation, N, N, N-trimethyl-N- (2-hydroxymethyl) ammonium cation, N, N-diethyl-N-methyl- N- (2-methoxyethyl) ammonium cation, N-methyl-N-propylpyrrolidinium cation and N-methyl-N-propylpiperidinium cation are more preferred.
 アニオンとカチオンとの組み合わせは、二次電池の種類、二次電池の用途、前記クラスター化合物の種類などによって異なることから、二次電池の種類、二次電池の用途、前記クラスター化合物の種類などに応じて適宜決定することが好ましい。 Since the combination of anion and cation differs depending on the type of secondary battery, the use of the secondary battery, the type of the cluster compound, etc., the type of secondary battery, the use of the secondary battery, the type of the cluster compound, etc. It is preferable to determine appropriately.
 前記液体Bは、前記クラスター化合物の原子配列構造の空隙内への侵入が妨げられるに十分な嵩高さを有する化合物からなる液体である。なお、本明細書において、「空隙内への侵入が妨げられるに十分な嵩高さ」とは、前記空隙の入口部分の大きさよりも大きい嵩高さをいう。 The liquid B is a liquid made of a compound having a sufficient bulk to prevent the cluster compound from entering the voids of the atomic arrangement structure. In the present specification, “bulky enough to prevent entry into the gap” means a bulkiness larger than the size of the inlet portion of the gap.
 前記液体Bとしては、例えば、グライム化合物などのグリコールエーテル化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。なお、本明細書において、「グライム化合物」とは、アルキルグリコールの両末端の水酸基が同一の置換基で置換された対称グリコールエーテルをいう。ここで、前記置換基としては、メチル基、エチル基、プロピル基、ブチル基などの炭素数1~4のアルキル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the liquid B include glycol ether compounds such as a glyme compound, but the present invention is not limited to such examples. In the present specification, the “glyme compound” refers to a symmetric glycol ether in which hydroxyl groups at both ends of alkyl glycol are substituted with the same substituent. Here, examples of the substituent include an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group, but the present invention is not limited only to such examples. .
 前記グリコールエーテル化合物としては、例えば、モノグライム(エチレングリコールジメチルエーテル)、エチルモノグライム(エチレングリコールジエチルエーテル)、ブチルモノグライム(エチレングリコールジブチルエーテル)、メチルジグライム(ジエチレングリコールジメチルエーテル)、エチルジグライム(ジエチレングリコールジエチルエーテル)、ブチルジグライム(ジエチレングリコールジブチルエーテル)、メチルトリグライム(トリエチレングリコールジメチルエーテル)、エチルトリグライム(トリエチレングリコールジエチルエーテル)、ブチルトリグライム(トリエチレングリコールジエチルエーテル)、メチルテトラグライム(テトラエチレングリコールジメチルエーテル)、エチルテトラグライム(テトラエチレングリコールジエチルエーテル)、ブチルテトラグライム(テトラエチレングリコールジブチルエーテル)などのグライム化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the glycol ether compound include monoglyme (ethylene glycol dimethyl ether), ethyl monoglyme (ethylene glycol diethyl ether), butyl monoglyme (ethylene glycol dibutyl ether), methyl diglyme (diethylene glycol dimethyl ether), ethyl diglyme (diethylene glycol diethyl). Ether), butyl diglyme (diethylene glycol dibutyl ether), methyl triglyme (triethylene glycol dimethyl ether), ethyl triglyme (triethylene glycol diethyl ether), butyl triglyme (triethylene glycol diethyl ether), methyl tetraglyme (tetraethylene) Glycol dimethyl ether), ethyl tetraglyme (Te La ethylene glycol diethyl ether), although glyme compound, such as butyl tetraglyme (tetraethylene glycol dibutyl ether) and the like, and the present invention is not limited only to those exemplified.
 前記液体Bのなかでは、前記クラスター化合物の原子配列構造の空隙内への侵入が妨げられるに十分な嵩高さを有し、かつ高い起電力を得るのに適した電解液の粘性を確保する観点から、前記グライム化合物が好ましく、メチルテトラグライムがより好ましい。 Among the liquids B, the viewpoint of ensuring the viscosity of the electrolyte solution that is sufficiently bulky to prevent the cluster compound from entering the voids of the atomic arrangement structure and that is suitable for obtaining a high electromotive force. From the above, the glyme compound is preferred, and methyltetraglyme is more preferred.
 前記被覆材は、キャリアイオンを通過させるが前記液体を通過させない化合物である。前記被覆材としては、例えば、ビニリデングリコール、酸化マグネシウムなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。被覆材による正極活物質の被覆は、例えば、スパッタリング法によって行なうことができる。正極活物質の被覆に際して用いられる被覆材の量は、被覆材の種類、正極活物質の種類、正極活物質の量などによって異なることから、被覆材の種類、正極活物質の種類、正極活物質の量などに応じて適宜決定することが好ましい。 The covering material is a compound that allows carrier ions to pass but does not allow the liquid to pass. Examples of the covering material include vinylidene glycol and magnesium oxide, but the present invention is not limited to such examples. The positive electrode active material can be coated with the coating material by, for example, a sputtering method. Since the amount of the coating material used for coating the positive electrode active material varies depending on the type of the coating material, the type of the positive electrode active material, the amount of the positive electrode active material, etc., the type of the coating material, the type of the positive electrode active material, and the positive electrode active material It is preferable to determine appropriately according to the amount of the amount.
 以上説明したように、本実施形態に係る二次電池は、高い起電力を有している。したがって、本実施形態に係る二次電池は、エネルギー需給を最適化することができるエネルギー需給システムの開発、より燃費に優れたハイブリッド車、電気自動車などの開発、より小型化され、高性能化されたモバイル機器の開発などに有用である。 As described above, the secondary battery according to the present embodiment has a high electromotive force. Therefore, the secondary battery according to the present embodiment is developed with an energy supply and demand system capable of optimizing energy supply and demand, with development of a hybrid vehicle and an electric vehicle with higher fuel efficiency, more downsized and higher performance. This is useful for developing mobile devices.
 つぎに、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to such examples.
実験例1
 酸素をバブリングさせながら、銅シェブレル化合物(Cu2Mo68)から銅イオンを除去し、Mo68クラスターを有する化合物(以下、「Mo68クラスター化合物」という)の粉末を得た。得られたMo68クラスター化合物の粉末に位置確認のための不純物を混入させ、試料Aを得た。また、前記Mo68クラスター化合物の粉末をテトラヒドロフラン中に浸し、Mo68クラスター化合物含有テトラヒドロフランを得た。得られたMo68クラスター化合物含有テトラヒドロフランに位置確認のための不純物を混入させ、試料Bを得た。X線回折装置〔株式会社リガク製、商品名:SMART LAB〕を用い、試料Aおよび試料BのX線回折を調べた。
Experimental example 1
While oxygen bubbling, copper Chevrel compound (Cu 2 Mo 6 S 8) to remove the copper ions from a compound having a Mo 6 S 8 clusters (hereinafter referred to as "Mo 6 S 8 cluster compounds") to obtain a powder . Impurities for confirming the position were mixed into the obtained powder of the Mo 6 S 8 cluster compound to obtain a sample A. In addition, the Mo 6 S 8 cluster compound powder was immersed in tetrahydrofuran to obtain a Mo 6 S 8 cluster compound-containing tetrahydrofuran. Impurities for confirming the position were mixed in the resulting Mo 6 S 8 cluster compound-containing tetrahydrofuran to obtain Sample B. X-ray diffraction of Sample A and Sample B was examined using an X-ray diffractometer [manufactured by Rigaku Corporation, trade name: SMART LAB].
 実験例1において、Mo68クラスター化合物の粉末(試料A)およびMo68クラスター化合物含有テトラヒドロフラン(試料B)のX線回折を調べた結果を図1に示す。図1中、(A)はMo68クラスター化合物の粉末(試料A)のX線回折パターン、(B)はMo68クラスター化合物含有テトラヒドロフラン(試料B)のX線回折パターン、(C)は無機結晶構造データベース(Inorganic Crystal Structure Database;以下、「ICSD」という)のCu2Mo68のX線回折パターン、(D)はICSDのMo68クラスター化合物のX線回折パターンを示す。また、点線は、位置確認のための不純物のピークの位置を示す。 FIG. 1 shows the results of examining the X-ray diffraction of Mo 6 S 8 cluster compound powder (sample A) and Mo 6 S 8 cluster compound-containing tetrahydrofuran (sample B) in Experimental Example 1. In FIG. 1, (A) is an X-ray diffraction pattern of Mo 6 S 8 cluster compound powder (sample A), (B) is an X-ray diffraction pattern of Mo 6 S 8 cluster compound-containing tetrahydrofuran (sample B), (C ) Is the X-ray diffraction pattern of Cu 2 Mo 6 S 8 in the Inorganic Crystal Structure Database (hereinafter referred to as “ICSD”), and (D) is the X-ray diffraction pattern of the Mo 6 S 8 cluster compound of ICSD. Show. The dotted line indicates the position of the impurity peak for position confirmation.
 図1に示された結果から、Mo68クラスター化合物の粉末のX線回折パターンにおける不純物のピークの位置とMo68クラスター化合物含有テトラヒドロフランのX線回折パターンにおける不純物のピークの位置は同じであることがわかる(図中、ピークP1~P7参照)。しかしながら、Mo68クラスター化合物含有テトラヒドロフランのX線回折パターンにおけるMo68クラスター化合物に由来するピークは、Mo68クラスター化合物の粉末のX線回折パターンにおけるMo68クラスター化合物に由来するピークと異なっていることがわかる。これらの結果から、Mo68クラスター化合物の粉末の構造とMo68クラスター化合物含有テトラヒドロフランの構造が互いに異なっていることがわかる。したがって、これらの結果から、式(I)で表わされるクラスターを有するクラスター化合物、例えば、Mo68クラスター化合物などのシェブレル化合物の構造は、溶媒が当該クラスター化合物の構造内に侵入することによって変化することが示唆される。 From the results shown in Figure 1, the position of the peak of the impurity in the X-ray diffraction pattern of the position and the Mo 6 S 8 cluster compounds containing tetrahydrofuran peak of an impurity in the X-ray diffraction pattern of the powder of Mo 6 S 8 cluster compound identical (See peaks P1 to P7 in the figure). However, a peak derived from the Mo 6 S 8 cluster compound in the X-ray diffraction pattern of the Mo 6 S 8 cluster compounds containing tetrahydrofuran, derived from Mo 6 S 8 cluster compound in the X-ray diffraction pattern of the powder of Mo 6 S 8 cluster compounds It can be seen that the peak is different from the peak. These results show that the structure of the powder and Mo 6 S 8 cluster compounds containing the structure of tetrahydrofuran Mo 6 S 8 cluster compounds are different from each other. Therefore, from these results, the structure of a cluster compound having a cluster represented by the formula (I), for example, a chevrel compound such as a Mo 6 S 8 cluster compound is changed by the penetration of the solvent into the structure of the cluster compound. It is suggested to do.
実験例2
 銅シェブレル化合物の粉末に位置確認のための不純物を混入させ、試料Aを得た。また、前記銅シェブレル化合物をテトラヒドロフラン中に浸し、銅シェブレル化合物含有テトラヒドロフランを得た。得られた銅シェブレル化合物含有テトラヒドロフランに位置確認のための不純物を混入させ、試料Bを得た。X線回折装置〔株式会社リガク製、商品名:SMART LAB〕を用い、試料Aおよび試料BのX線回折を調べた。
Experimental example 2
An impurity for confirming the position was mixed in the powder of the copper chevrel compound to obtain a sample A. Moreover, the copper chevrel compound was immersed in tetrahydrofuran to obtain a copper chevrel compound-containing tetrahydrofuran. Impurities for confirming the position were mixed in the obtained copper chevrel compound-containing tetrahydrofuran to obtain Sample B. X-ray diffraction of Sample A and Sample B was examined using an X-ray diffractometer [manufactured by Rigaku Corporation, trade name: SMART LAB].
 実験例2において、銅シェブレル化合物の粉末(試料A)および銅シェブレル化合物含有テトラヒドロフラン(試料B)のX線回折を調べた結果を図2に示す。図2中、(A)は銅シェブレル化合物の粉末(試料A)のX線回折パターン、(B)は銅シェブレル化合物(試料B)のX線回折パターン、(C)はICSDの銅シェブレル化合物のX線回折パターンを示す。また、点線は、位置確認のための不純物のピークの位置、実線は銅シェブレル化合物に由来するピークを示す。 FIG. 2 shows the results of examining the X-ray diffraction of the copper chevrel compound powder (sample A) and the copper chevrel compound-containing tetrahydrofuran (sample B) in Experimental Example 2. In FIG. 2, (A) is an X-ray diffraction pattern of a copper chevrel compound powder (sample A), (B) is an X-ray diffraction pattern of a copper chevrel compound (sample B), and (C) is an ICSD copper chevrel compound. An X-ray diffraction pattern is shown. The dotted line indicates the position of the impurity peak for position confirmation, and the solid line indicates the peak derived from the copper chevrel compound.
 図2に示された結果から、銅シェブレル化合物の粉末のX線回折パターンにおける不純物のピークの位置と銅シェブレル化合物含有テトラヒドロフランのX線回折パターンにおける不純物のピークの位置は同じであることがわかる(図中、ピークP1~P2参照)。しかしながら、銅シェブレル化合物の粉末のX線回折パターンにおける銅シェブレル化合物に由来するピーク(例えば、図中、ピークA1~A8参照)は、銅シェブレル化合物含有テトラヒドロフランのX線回折パターンにおける銅シェブレル化合物に由来するピーク(例えば、図中、ピークB1~B8参照)よりも左にシフトしていることがわかる。これらの結果から、銅シェブレル化合物の格子定数が、溶媒であるテトラヒドロフランの存在下では大きくなっていることが示唆される。したがって、これらの結果から、式(I)で表わされるクラスターを有するクラスター化合物である銅シェブレル化合物の構造は、溶媒が当該構造に侵入することによって変化することが示唆される。 The results shown in FIG. 2 show that the position of the impurity peak in the X-ray diffraction pattern of the copper chevrel compound powder and the position of the impurity peak in the X-ray diffraction pattern of the copper chevrel compound-containing tetrahydrofuran are the same ( (See peaks P1 and P2 in the figure). However, the peak derived from the copper chevrel compound in the X-ray diffraction pattern of the powder of the copper chevrel compound (eg, see peaks A1 to A8 in the figure) is derived from the copper chevrel compound in the X-ray diffraction pattern of the copper chevrel compound-containing tetrahydrofuran. It can be seen that the peak is shifted to the left from the peak (for example, see peaks B1 to B8 in the figure). From these results, it is suggested that the lattice constant of the copper chevrel compound is increased in the presence of tetrahydrofuran as a solvent. Therefore, these results suggest that the structure of the copper chevrel compound, which is a cluster compound having a cluster represented by the formula (I), changes as the solvent enters the structure.
実施例1
(1)三電極式セル本体の作製
 アルゴンガス雰囲気に保たれたグローブボックス内で、図3に示される三電極式セル本体10aを構築した。構築された三電極式セル本体10aは、容器11と、Mo68クラスター化合物を活物質として有する作用電極13と、マグネシウム製シートからなる対極14と、参照電極15とから構成されている。容器11の上面部には、対極14を設けるための孔部11bと、参照電極15を設けるための孔部11c対局とが形成されており、底部には、作用電極13を設けるための孔部11aが形成されている。容器11の内部には、電解液16が収容される。作用電極13は、Mo68クラスター化合物が1~10mg/cm2となるようにアルミニウム製シートの表面に塗布された電極である。作用電極13において、Mo68クラスター化合物は、酸化還元反応時のイオンの挿入および脱離のための活物質として働く。また、参照電極15は、マグネシウム製ロッドからなる参照電極本体15aと、参照電極本体15aを電解液16から隔離するガラス管部15bと、ガラス管部15bと一体的に形成され、当該ガラス管部15bの内部と外部との間の電気的接続を確保するための多孔質ガラス部15cと、ガラス管部15bに収容される参照電極用電解液15dとから構成されている。したがって、参照電極本体15aは、作用電極13および対極14と電気的に接続しているが、電解液16と直接接触しないように構成されている。
Example 1
(1) Production of three-electrode cell body A three-electrode cell body 10a shown in Fig. 3 was constructed in a glove box maintained in an argon gas atmosphere. The constructed three-electrode cell body 10a includes a container 11, a working electrode 13 having a Mo 6 S 8 cluster compound as an active material, a counter electrode 14 made of a magnesium sheet, and a reference electrode 15. A hole portion 11b for providing the counter electrode 14 and a hole portion 11c for providing the reference electrode 15 are formed on the upper surface portion of the container 11, and a hole portion for providing the working electrode 13 on the bottom portion. 11a is formed. An electrolytic solution 16 is accommodated in the container 11. The working electrode 13 is an electrode coated on the surface of an aluminum sheet so that the Mo 6 S 8 cluster compound is 1 to 10 mg / cm 2 . In the working electrode 13, the Mo 6 S 8 cluster compound serves as an active material for ion insertion and desorption during the oxidation-reduction reaction. The reference electrode 15 is formed integrally with a reference electrode main body 15a made of a magnesium rod, a glass tube portion 15b that isolates the reference electrode main body 15a from the electrolyte solution 16, and the glass tube portion 15b. It consists of a porous glass portion 15c for ensuring electrical connection between the inside and the outside of 15b, and a reference electrode electrolyte 15d accommodated in the glass tube portion 15b. Therefore, the reference electrode main body 15 a is electrically connected to the working electrode 13 and the counter electrode 14, but is configured not to directly contact the electrolyte solution 16.
(2)電解液の調製
 N-メチル-N-プロピルピペリジニウム-ビス(トリフルオロメタンスルホニル)イミド(以下、「PP13-TFSI」という)とマグネシウムビス(トリフルオロメチルスルホニル)イミド(以下、「Mg(TFSI)2」という)とを、PP13-TFSI/Mg(TFSI)2(モル比)が6.7/1となるように混合し、電解液を得た。
(2) Preparation of electrolyte solution N-methyl-N-propylpiperidinium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “PP13-TFSI”) and magnesium bis (trifluoromethylsulfonyl) imide (hereinafter referred to as “Mg”) (TFSI) 2 ”) was mixed so that PP13-TFSI / Mg (TFSI) 2 (molar ratio) was 6.7 / 1 to obtain an electrolytic solution.
(3)三電極式セルの作製
 前記(2)で得られた電解液を前記(1)で得られた三電極式セル本体10aの容器11内に入れ、三電極式セル10を得た。
(3) Production of three-electrode cell The electrolytic solution obtained in (2) above was placed in the container 11 of the three-electrode cell body 10a obtained in (1) to obtain a three-electrode cell 10.
試験例1
 実施例1で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、走査速度:0.5mV/sでサイクリックボルタンメトリーを行なった。
Test example 1
Cyclic voltammetry was performed at a scanning speed of 0.5 mV / s using the three-electrode cell obtained in Example 1 and an electrochemical measuring device (trade name: SP-300, manufactured by BioLogic). I did it.
 試験例1において、PP13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する作用電極と、マグネシウム製シートからなる対極とを用いた場合の作用電極のターミナル電位と電流との関係を調べた結果を図4に示す。 In Test Example 1, a working electrode in the case of using an electrolytic solution containing PP13-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a magnesium sheet The result of investigating the relationship between the terminal potential and the current is shown in FIG.
 図4に示された結果から、PP13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する作用電極と、マグネシウム製シートからなる対極とを用いた場合、3V付近にピーク電位が見られることがわかる。なお、PP13-TFSIは、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有することが推測される。したがって、これらの結果から、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有するイオン液体を含む電解液を用いて、クラスター化合物の原子配列構造の空隙内への液体の侵入を抑制することにより、高い起電力を確保することができることが示唆される。 From the results shown in FIG. 4, an electrolytic solution containing PP13-TFSI and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a magnesium sheet were used. In this case, it can be seen that a peak potential is observed in the vicinity of 3V. Note that PP13-TFSI is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Therefore, from these results, using an electrolyte containing an ionic liquid that has an electrochemical property that does not easily penetrate into the voids of the atomic arrangement structure of the cluster compound, the liquid can penetrate into the voids of the atomic arrangement structure of the cluster compound. By suppressing, it is suggested that a high electromotive force can be secured.
試験例2
 実施例1で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、前記三電極式セルにおける作用電極13と対極14との間に0.02mAの電流を120分間印加(最大容量の1/20だけ放電)することにより、クロノポテンショメトリーを行なった。放電後の作用電極の活物質を採取し、X線回折法によって分析した。なお、対照として、実験例1で得られたMo68クラスター化合物の粉末をX線回折法によって分析した。
Test example 2
Using the three-electrode cell obtained in Example 1 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the working electrode 13 and the counter electrode 14 in the three-electrode cell Chronopotentiometry was carried out by applying a current of 0.02 mA for 120 minutes (discharging only 1/20 of the maximum capacity). The active material of the working electrode after discharge was collected and analyzed by X-ray diffraction. As a control, the powder of the Mo 6 S 8 cluster compound obtained in Experimental Example 1 was analyzed by X-ray diffraction.
 試験例2において、放電後の作用電極の活物質のX線回折を調べた結果を図5に示す。図中、(A)は実験例1で得られたMo68クラスター化合物のX線回折パターン、(B)は放電後の作用電極の活物質のX線回折パターン、(C)は無機結晶構造データベース(以下、「ICSD」という)における白金のデータ、(D)はICSDにおけるアルミニウムのデータ、(E)はICSDにおけるMg2Mo68のデータ、(F)はICSDにおけるMgMo68のデータ、(G)はICSDにおけるMo68のデータ、(H)はICSDにおけるCu2Mo68のデータ、(I)はICSDにおけるCu2Mo68のデータを示す。 In Test Example 2, the result of examining the X-ray diffraction of the active material of the working electrode after discharge is shown in FIG. In the figure, (A) is an X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, (B) is an X-ray diffraction pattern of the active material of the working electrode after discharge, and (C) is an inorganic crystal. Platinum data in a structural database (hereinafter referred to as “ICSD”), (D) is aluminum data in ICSD, (E) is Mg 2 Mo 6 S 8 data in ICSD, and (F) is MgMo 6 S 8 in ICSD. (G) shows data of Mo 6 S 8 in ICSD, (H) shows data of Cu 2 Mo 6 S 8 in ICSD, and (I) shows data of Cu 2 Mo 6 S 8 in ICSD.
 図5に示された結果から、放電後の作用電極の活物質のX線回折パターンにおいて、ピークa2の高さは、ピークb2の高さとほぼ同程度であることがわかる。これに対し、実験例1で得られたMo68クラスター化合物のX線回折パターンにおいて、ピークa1は、ピークb1と比べて高いことがわかる。また、放電後の作用電極の活物質のX線回折パターンにおいては、ピークc2が見られたが、実験例1で得られたMo68クラスター化合物のX線回折パターンにおいては、前記ピークc2に対応する位置(c1参照)にピークが見られないことがわかる。ICSDにおけるMg2Mo68のデータにおいては、前記ピークc2に対応する位置にピークが見られるものの、ICSDにおけるMo68のデータにおいては、前記ピークc2に対応する位置にピークが見られない。したがって、これらの結果から、放電後の作用電極の活物質には、マグネシウム原子が含まれていることが示唆される。 From the results shown in FIG. 5, it can be seen that in the X-ray diffraction pattern of the active material of the working electrode after discharge, the height of the peak a2 is approximately the same as the height of the peak b2. In contrast, in the X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, it can be seen that the peak a1 is higher than the peak b1. Moreover, in the X-ray diffraction pattern of the active material of the working electrode after discharge, a peak c2 was observed, but in the X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, the peak c2 It can be seen that no peak is observed at the position corresponding to (see c1). In the data of Mg 2 Mo 6 S 8 in ICSD, a peak is seen at the position corresponding to the peak c2, but in the data of Mo 6 S 8 in ICSD, a peak is seen at the position corresponding to the peak c2. Absent. Therefore, these results suggest that the active material of the working electrode after discharge contains magnesium atoms.
実施例2
(1)電解液の調製
 N-メチル-N-プロピルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(以下、「P13-TFSI」という)とMg(TFSI)2とを、P13-TFSI/Mg(TFSI)2(モル比)が6.7/1となるように混合し、電解液を得た。
Example 2
(1) Preparation of Electrolytic Solution N-methyl-N-propylpyrrolidinium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “P13-TFSI”) and Mg (TFSI) 2 are combined with P13-TFSI / Mg ( TFSI) 2 (molar ratio) was mixed to be 6.7 / 1 to obtain an electrolytic solution.
(2)ビーカーセルの作製
 アルゴンガス雰囲気に保たれたグローブボックス内で、図6に示されるビーカーセル20を構築した。構築されたビーカーセル20は、容器21と、Mo68クラスター化合物を活物質として有する正極22と、マグネシウムスズとスズとの混合物(以下、「MgSn/Sn」という)を活物質として有するからなる負極23と、研磨した金属マグネシウムからなる参照電極24と、電解液25とから構成されている。正極22は、Mo68クラスター化合物が1~10mg/cm2となるようにアルミニウム製シートの表面に塗布された電極である。負極23は、MgSn/Snが1~10mg/cm2となるように白金製シートの表面に塗布された電極である。
(2) Production of Beaker Cell A beaker cell 20 shown in FIG. 6 was constructed in a glove box maintained in an argon gas atmosphere. The constructed beaker cell 20 includes a container 21, a positive electrode 22 having a Mo 6 S 8 cluster compound as an active material, and a mixture of magnesium tin and tin (hereinafter referred to as “Mg 2 Sn / Sn”) as an active material. The anode 23 is composed of a reference electrode 24 made of polished metal magnesium, and an electrolytic solution 25. The positive electrode 22 is an electrode coated on the surface of an aluminum sheet so that the Mo 6 S 8 cluster compound is 1 to 10 mg / cm 2 . The negative electrode 23 is an electrode coated on the surface of a platinum sheet so that Mg 2 Sn / Sn is 1 to 10 mg / cm 2 .
試験例3
 実施例2で得られたビーカーセルと電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、カットオフ電位を0.5Vに設定し、充放電特性を調べた。
Test example 3
Using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the cut-off potential was set to 0.5 V, and the charge / discharge characteristics were examined. It was.
 試験例3において、作用電極のターミナル電位および電流それぞれの経時的変化を調べた結果を図7(A)、ビーカーセルの電気容量の経時的変化を調べた結果を図7(B)に示す。図7中、(a)は作用電極のターミナル電位、(b)は電流を示す。 In Test Example 3, the results of examining the time-dependent changes in the terminal potential and current of the working electrode are shown in FIG. 7A, and the results of examining the time-dependent change in the electric capacity of the beaker cell are shown in FIG. 7B. In FIG. 7, (a) shows the terminal potential of the working electrode, and (b) shows the current.
 図7に示された結果から、初期電位は、約2.5Vであることがわかる。かかる初期電位は、正極活物質としてシェブレル化合物を含む正極と、グリニャール試薬と塩化アルミニウムとをテトラヒドロフランに溶解させた溶液からなる電解液とを備えた従来のマグネシウム二次電池(非特許文献1)の初期電位と比べて約2倍高い値である。なお、P13-TFSIは、PP13-TFSIと同様に、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有することが推測される。したがって、これらの結果から、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有するイオン液体を含む電解液を用いて、クラスター化合物の原子配列構造の空隙内への液体の侵入を抑制することにより、高い起電力を確保することができることが示唆される。 From the result shown in FIG. 7, it can be seen that the initial potential is about 2.5V. Such an initial potential is that of a conventional magnesium secondary battery (Non-patent Document 1) including a positive electrode containing a chevrel compound as a positive electrode active material, and an electrolytic solution made of a solution obtained by dissolving a Grignard reagent and aluminum chloride in tetrahydrofuran. The value is about twice as high as the initial potential. Note that P13-TFSI, like PP13-TFSI, is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Therefore, from these results, using an electrolyte containing an ionic liquid that has an electrochemical property that does not easily penetrate into the voids of the atomic arrangement structure of the cluster compound, the liquid can penetrate into the voids of the atomic arrangement structure of the cluster compound. By suppressing, it is suggested that a high electromotive force can be secured.
試験例4
 実施例2で得られたビーカーセルと電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、充放電反応を行なった。つぎに、放電後の正極に存在する正極活物質を採取し、X線回折法によって分析した。なお、対照として、実験例1で得られたMo68クラスター化合物の粉末をX線回折法によって分析した。
Test example 4
The charge / discharge reaction was performed using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic). Next, the positive electrode active material present in the positive electrode after discharge was collected and analyzed by X-ray diffraction. As a control, the powder of the Mo 6 S 8 cluster compound obtained in Experimental Example 1 was analyzed by X-ray diffraction.
 また、放電後の正極における正極活物質の存在箇所〔図8(a)の丸囲み部分(A領域)参照〕の元素の量と、放電後の正極における正極活物質の非存在箇所(導電助剤および結着剤の存在箇所)〔図8(b)の丸囲み部分(B領域)参照〕の元素の量とを、走査型電子顕微鏡-エネルギー分散型X線分析法(加速電圧:15.0kVおよび照射電流:4.4nA)によって測定し、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)を調べた。 In addition, the amount of the element in the location where the positive electrode active material exists in the positive electrode after discharge (see the circled portion (A region) in FIG. 8A) and the location where the positive electrode active material does not exist in the positive electrode after discharge (conducting aid). The amount of the element in the location where the agent and the binder are present (see the encircled portion (B region) in FIG. 8B) is measured with a scanning electron microscope-energy dispersive X-ray analysis method (acceleration voltage: 15. 0 kV and irradiation current: 4.4 nA), and the ratio (composition ratio) of each element at the location where the positive electrode active material was present to the amount of each element where the positive electrode active material was absent in the positive electrode after discharge was examined.
 試験例4において、放電後の正極に存在する正極活物質のX線回折を調べた結果を図9に示す。図9中、(A)は実験例1で得られたMo68クラスター化合物のX線回折パターン、(B)は放電後の正極に存在する正極活物質のX線回折パターン、(C)はICSDにおける白金のデータ、(D)はICSDにおけるアルミニウムのデータ、(E)はICSDにおけるMg2Mo68のデータ、(F)はICSDにおけるMgMo68のデータ、(G)はICSDにおけるMo68のデータ、(H)はICSDにおけるCu2Mo68のデータ、(I)はICSDにおけるCu2Mo68のデータを示す。また、試験例4において、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)を調べた結果を図10に示す。 In Test Example 4, the results of examining the X-ray diffraction of the positive electrode active material present in the positive electrode after discharge are shown in FIG. 9, (A) is an X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, (B) is an X-ray diffraction pattern of the positive electrode active material present in the positive electrode after discharge, and (C). Is the data of platinum in ICSD, (D) is the data of aluminum in ICSD, (E) is the data of Mg 2 Mo 6 S 8 in ICSD, (F) is the data of MgMo 6 S 8 in ICSD, (G) is the ICSD data, of Cu 2 Mo 6 S 8 data Mo 6 S 8, in (H) is ICSD in (I) shows the data of the Cu 2 Mo 6 S 8 in ICSD. Moreover, in Test Example 4, the result of examining the ratio (composition ratio) of each element at the location where the positive electrode active material is present to the amount of each element where the positive electrode active material is absent in the positive electrode after discharge is shown in FIG.
 図9に示された結果から、放電後の正極の正極活物質のX線回折パターンにおいて、ピークa2は、ピークb2と比べて低いことがわかる。これに対し、実験例1で得られたMo68クラスター化合物のX線回折パターンにおけるピークa1は、ピークb1と比べて高いことがわかる。また、放電後の正極の正極活物質のX線回折パターンにおいては、ピークc2が見られたが、実験例1で得られたMo68クラスター化合物のX線回折パターンにおいては、前記ピークc2に対応する位置(c1参照)にピークが見られないことがわかる。なお、ICSDにおけるMg2Mo68のデータにおいては、前記ピークc2に対応する位置にピークが見られるものの、ICSDにおけるMo68のデータにおいては、前記ピークc2に対応する位置にピークが見られない。したがって、これらの結果から、放電後の正極の正極活物質には、マグネシウム原子が含まれていることが示唆される。 From the results shown in FIG. 9, it can be seen that the peak a2 is lower than the peak b2 in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after discharge. In contrast, it can be seen that the peak a1 in the X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1 is higher than the peak b1. Moreover, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after discharge, a peak c2 was observed, but in the X-ray diffraction pattern of the Mo 6 S 8 cluster compound obtained in Experimental Example 1, the peak c2 It can be seen that no peak is observed at the position corresponding to (see c1). In the data of Mg 2 Mo 6 S 8 in ICSD, a peak is observed at the position corresponding to the peak c2, but in the data of Mo 6 S 8 in ICSD, a peak is present in the position corresponding to the peak c2. can not see. Therefore, these results suggest that the positive electrode active material of the positive electrode after discharge contains magnesium atoms.
 また、図10に示された結果から、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)は、1を超えている(組成比:5.0645)ことから、正極活物質にマグネシウム原子が含まれていることが示唆される。 Further, from the results shown in FIG. 10, the ratio (composition ratio) of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is not present in the positive electrode after discharge exceeds 1. (Composition ratio: 5.0645) suggests that the positive electrode active material contains magnesium atoms.
試験例5
 実施例2で得られたビーカーセルと電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、走査速度:1mV/sでサイクリックボルタンメトリーを行なった。
Test Example 5
Using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), cyclic voltammetry was performed at a scanning speed of 1 mV / s.
 試験例5において、P13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合のサイクリックボルタモグラムを図11に示す。図中、(A)は正極のターミナル電位と電流との関係、(B)は正極のターミナル電位と負極のターミナル電位との関係を示す。 In Test Example 5, an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. A cyclic voltammogram in this case is shown in FIG. In the figure, (A) shows the relationship between the terminal potential of the positive electrode and the current, and (B) shows the relationship between the terminal potential of the positive electrode and the terminal potential of the negative electrode.
 図11に示された結果から、正極においては、酸化還元電位付近に2つのピーク(a1およびa2)が見られることがわかる。したがって、これらの結果から、P13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合、酸化還元反応を行なうことができることがわかる。 From the results shown in FIG. 11, it can be seen that two peaks (a1 and a2) are observed near the oxidation-reduction potential in the positive electrode. Therefore, from these results, an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material are obtained. It can be seen that when used, a redox reaction can be performed.
試験例6
 実施例2で得られたビーカーセルと電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、充放電特性を調べた。
Test Example 6
The charge / discharge characteristics were examined using the beaker cell obtained in Example 2 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic).
 試験例6において、P13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合の充放電特性を調べた結果を図12に示す。図中、(A)は正極と負極との間の電位差(Ewe-Ece)の経時的変化、(B)は電流の経時的変化、(C)は負極のターミナル電位の経時的変化、(D)は正極のターミナル電位の経時的変化を示す。 In Test Example 6, an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. FIG. 12 shows the result of examining the charge / discharge characteristics in this case. In the figure, (A) shows the change over time in the potential difference (Ewe-Ece) between the positive electrode and the negative electrode, (B) shows the change over time in the current, (C) shows the change over time in the terminal potential of the negative electrode, (D ) Indicates the change with time of the terminal potential of the positive electrode.
 図12に示された結果から、正極では、充電放電反応が良好に行なわれており、約3Vの高い起電力が得られていることがわかる(図中、矢印a1を参照)。負極では、マグネシウムの電析が見られるものの(図中、矢印a2を参照)、マグネシウムが不動態化する傾向が見られることがわかる。これらの結果から、P13-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合、充放電反応に際し、不動態マグネシウムが生成しているにもかかわらず、高い起電力が得られることがわかる。 From the results shown in FIG. 12, it can be seen that the positive electrode is well charged and discharged and a high electromotive force of about 3 V is obtained (see arrow a1 in the figure). In the negative electrode, although magnesium electrodeposition is observed (see arrow a2 in the figure), it can be seen that the magnesium tends to passivate. From these results, an electrolytic solution containing P13-TFSI and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material were used. In this case, it can be seen that a high electromotive force can be obtained in the charge / discharge reaction despite the formation of passive magnesium.
実施例3
 アルゴンガス雰囲気に保たれたグローブボックス内で、Cu2Mo68クラスター化合物が1~10mg/cm2となるように塗布されたアルミニウム製シートからなる作用電極と、リチウム製ロッドからなる参照電極と、マグネシウム製シートからなる対極と、電解液とを備えた三電極式セルを構築した。なお、電解液は、セシウム-ビス(トリフルオロメタンスルホニル)イミド(以下、「Cs-TFSI」という)とリチウム-ビス(トリフルオロメタンスルホニル)イミド(以下、「Li-TFSI」という)とMg(TFSI)2とを、Cs-TFSI/Li-TFSI/Mg(TFSI)2(体積比)が8/1/1となるように混合して得られた電解液である。
Example 3
Working electrode made of aluminum sheet coated with 1 to 10 mg / cm 2 of Cu 2 Mo 6 S 8 cluster compound in a glove box maintained in an argon gas atmosphere, and reference electrode made of lithium rod A three-electrode cell comprising a counter electrode made of a magnesium sheet and an electrolyte was constructed. Note that the electrolytic solution includes cesium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “Cs-TFSI”), lithium-bis (trifluoromethanesulfonyl) imide (hereinafter referred to as “Li-TFSI”), and Mg (TFSI). 2 is an electrolytic solution obtained by mixing Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) to 8/1/1.
試験例7
 実施例3で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、電解液の温度:180℃および走査速度:5mV/sの条件でサイクリックボルタンメトリーを行なった。
Test Example 7
Using the three-electrode cell obtained in Example 3 and an electrochemical measuring device (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 180 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
 試験例7において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Cu2Mo68を活物質として有する作用電極と、マグネシウム製シートからなる対極とを用い、180℃でサイクリックボルタンメトリーを行なった場合の作用電極のターミナル電位と電流との関係を調べた結果を図13に示す。 In Test Example 7, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a magnesium sheet were used. FIG. 13 shows the result of examining the relationship between the terminal potential of the working electrode and the current when cyclic voltammetry was performed at 180 ° C.
 図13に示された結果から、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Cu2Mo68を活物質として有する作用電極と、マグネシウム製シートからなる対極とを180℃で用いた場合、Cu2Mo68からの銅の脱離が見られ、かつ走査電子顕微鏡・エネルギー分散型X線組成分析の結果より銅が完全にぬけていることがわかるので、銅の脱離が3.7V程度で起こっていることがわかる。なお、Cs-TFSIは、PP13-TFSIおよびP13-TFSIと同様に、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有することが推測される。したがって、これらの結果から、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有するイオン液体を含む電解液を用いて、クラスター化合物の原子配列構造の空隙内への液体の侵入を抑制することにより、充放電反応を高電位で行なうことができることが示唆される。 From the results shown in FIG. 13, an electrolyte containing Cs-TFSI, Li-TFSI and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a magnesium sheet Is used at 180 ° C., copper is desorbed from Cu 2 Mo 6 S 8 , and the result of scanning electron microscope / energy dispersive X-ray composition analysis shows that copper is completely removed. Therefore, it can be seen that the desorption of copper occurs at about 3.7V. Note that Cs-TFSI, like PP13-TFSI and P13-TFSI, is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Therefore, from these results, using an electrolyte containing an ionic liquid that has an electrochemical property that does not easily penetrate into the voids of the atomic arrangement structure of the cluster compound, the liquid can penetrate into the voids of the atomic arrangement structure of the cluster compound. By suppressing, it is suggested that the charge / discharge reaction can be performed at a high potential.
実施例4
 アルゴンガス雰囲気に保たれたグローブボックス内で、Cu2Mo68クラスター化合物が1~10mg/cm2となるように塗布された白金製シートからなる作用電極と、リチウム製ロッドからなる参照電極と、リチウム製シートからなる対極と、電解液とを備えた三電極式セルを構築した。なお、電解液は、Cs-TFSIとLi-TFSIとMg(TFSI)2とを、Cs-TFSI/Li-TFSI/Mg(TFSI)2(体積比)が8/1/1となるように混合して得られた電解液である。
Example 4
Working electrode made of a platinum sheet coated with a Cu 2 Mo 6 S 8 cluster compound in an amount of 1 to 10 mg / cm 2 in a glove box kept in an argon gas atmosphere, and a reference electrode made of a lithium rod And a three-electrode cell comprising a counter electrode made of a lithium sheet and an electrolyte. Note that the electrolyte was mixed with Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 so that Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) was 8/1/1. It is the electrolyte solution obtained by doing.
試験例8
 実施例4で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、電解液の温度:150℃および走査速度:5mV/sの条件でサイクリックボルタンメトリーを行なった。
Test Example 8
Using the three-electrode cell obtained in Example 4 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 150 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
 試験例8において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Cu2Mo68を活物質として有する作用電極と、リチウム製シートからなる対極とを用い、150℃でサイクリックボルタンメトリーを行なった場合の作用電極のターミナル電位と電流との関係を調べた結果を図14に示す。 In Test Example 8, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a lithium sheet were used. FIG. 14 shows the result of examining the relationship between the terminal potential of the working electrode and the current when cyclic voltammetry was performed at 150 ° C.
 図14に示された結果から、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Cu2Mo68を活物質として有する作用電極と、リチウム製シートからなる対極とを150℃で用いた場合、Mo68クラスター化合物からの銅の脱離が見られ、かつ走査電子顕微鏡・エネルギー分散型X線組成分析の結果より、銅が完全にぬけていることがわかるので、銅の脱離が3.7V程度で起こっていることがわかる。なお、Cs-TFSIは、前記したように、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有することが推測される。したがって、これらの結果から、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有するイオン液体を含む電解液を用いて、クラスター化合物の原子配列構造の空隙内への液体の侵入を抑制することにより、充放電反応を高電位で行なうことができることが示唆される。 From the results shown in FIG. 14, an electrolyte containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having Cu 2 Mo 6 S 8 as an active material, and a counter electrode made of a lithium sheet Is used at 150 ° C., copper is desorbed from the Mo 6 S 8 cluster compound, and copper is completely removed from the results of scanning electron microscope and energy dispersive X-ray composition analysis. As can be seen, it can be seen that the desorption of copper occurs at about 3.7V. As described above, Cs-TFSI is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Therefore, from these results, using an electrolyte containing an ionic liquid that has an electrochemical property that does not easily penetrate into the voids of the atomic arrangement structure of the cluster compound, the liquid can penetrate into the voids of the atomic arrangement structure of the cluster compound. By suppressing, it is suggested that the charge / discharge reaction can be performed at a high potential.
実施例5
 アルゴンガス雰囲気に保たれたグローブボックス内で、Mo68クラスター化合物が1~10mg/cm2となるように塗布された白金製シートからなる作用電極と、リチウム製ロッドからなる参照電極と、リチウム製シートからなる対極と、電解液とを備えた三電極式セルを構築した。なお、電解液は、Cs-TFSIとLi-TFSIとMg(TFSI)2とを、Cs-TFSI/Li-TFSI/Mg(TFSI)2(体積比)が8/1/1となるように混合して得られた電解液である。
Example 5
In a glove box maintained in an argon gas atmosphere, a working electrode made of a platinum sheet coated with a Mo 6 S 8 cluster compound of 1 to 10 mg / cm 2 , a reference electrode made of a lithium rod, A three-electrode cell having a counter electrode made of a lithium sheet and an electrolyte was constructed. Note that the electrolyte was mixed with Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 so that Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) was 8/1/1. It is the electrolyte solution obtained by doing.
試験例9
 実施例5で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、電解液の温度:150℃および走査速度:5mV/sの条件でサイクリックボルタンメトリーを行なった。
Test Example 9
Using the three-electrode cell obtained in Example 5 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 150 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
 試験例8において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する作用電極と、リチウム製シートからなる対極とを用い、150℃でサイクリックボルタンメトリーを行なった場合の作用電極のターミナル電位と電流との関係を調べた結果を図15に示す。 In Test Example 8, using an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a lithium sheet, FIG. 15 shows the results of examining the relationship between the terminal potential of the working electrode and the current when cyclic voltammetry was performed at 150 ° C.
 図15に示された結果から、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する作用電極と、リチウム製シートからなる対極とを150℃で用いた場合、Mo68クラスター化合物からの銅の脱離が見られており、かつ走査電子顕微鏡・エネルギー分散型X線組成分析の結果により、銅が完全にぬけていることが示されているので、銅の脱離が3.7V程度で起こっていることがわかる。なお、Cs-TFSIは、前記したように、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有することが推測される。したがって、これらの結果から、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有するイオン液体を含む電解液を用いて、クラスター化合物の原子配列構造の空隙内への液体の侵入を抑制することにより、充放電反応を高電位で行なうことができることが示唆される。 From the results shown in FIG. 15, an electrolyte solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a working electrode having a Mo 6 S 8 cluster compound as an active material, and a counter electrode made of a lithium sheet Is used at 150 ° C., copper is desorbed from the Mo 6 S 8 cluster compound, and copper is completely removed by the results of scanning electron microscope and energy dispersive X-ray composition analysis. It can be seen that copper desorption occurs at about 3.7V. As described above, Cs-TFSI is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Therefore, from these results, using an electrolyte containing an ionic liquid that has an electrochemical property that does not easily penetrate into the voids of the atomic arrangement structure of the cluster compound, the liquid can penetrate into the voids of the atomic arrangement structure of the cluster compound. By suppressing, it is suggested that the charge / discharge reaction can be performed at a high potential.
実施例6
(1)電解液の調製
 Cs-TFSIとLi-TFSIとMg(TFSI)2とを、Cs-TFSI/Li-TFSI/Mg(TFSI)2(体積比)が8/1/1となるように混合し、電解液を得た。
Example 6
(1) Preparation of electrolyte solution Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 are adjusted so that Cs-TFSI / Li-TFSI / Mg (TFSI) 2 (volume ratio) is 8/1/1. Mixing was performed to obtain an electrolytic solution.
(2)ビーカーセルの作製
 アルゴンガス雰囲気に保たれたグローブボックス内で、図16に示されるビーカーセル30を構築した。構築されたビーカーセル30は、容器31と、Mo68クラスター化合物を活物質として有する正極32と、MgSn/Snを活物質として有する負極33と、研磨した金属リチウムからなる参照電極33と、電解液35とから構成されている。正極32は、Mo68クラスター化合物と導電助剤と結着剤とを含有する正極材料(組成:Mo68クラスター化合物/導電助剤/結着剤(体積比)=8:1:1)が1~10mg/cm2となるようにアルミニウム製シートの表面に塗布された電極である。負極33は、MgSn/Snからなる負極材料が1~10mg/cm2となるように白金製シートの表面に塗布された電極である。
(2) Production of Beaker Cell A beaker cell 30 shown in FIG. 16 was constructed in a glove box maintained in an argon gas atmosphere. The constructed beaker cell 30 includes a container 31, a positive electrode 32 having a Mo 6 S 8 cluster compound as an active material, a negative electrode 33 having Mg 2 Sn / Sn as an active material, and a reference electrode 33 made of polished metallic lithium. And an electrolytic solution 35. The positive electrode 32 is made of a positive electrode material containing a Mo 6 S 8 cluster compound, a conductive auxiliary agent, and a binder (composition: Mo 6 S 8 cluster compound / conductive auxiliary agent / binder (volume ratio) = 8: 1: 1) is an electrode applied on the surface of an aluminum sheet so that it is 1 to 10 mg / cm 2 . The negative electrode 33 is an electrode coated on the surface of a platinum sheet so that the negative electrode material made of Mg 2 Sn / Sn is 1 to 10 mg / cm 2 .
試験例10
 実施例6で得られたビーカーセルと電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、充放電特性を調べた。
Test Example 10
The charge / discharge characteristics were examined using the beaker cell obtained in Example 6 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic).
 試験例10において、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いた場合の充放電特性を調べた結果を図17に示す。図中、(A)は正極と負極との間の電位差(Ewe-Ece)の経時的変化、(B)は電流の経時的変化、(C)は負極のターミナル電位の経時的変化、(D)は正極のターミナル電位経時的変化を示す。また、試験例10において、作用電極のターミナル電位および電流それぞれの経時的変化を調べた結果を図18(A)、ビーカーセルの電気容量の経時的変化を調べた結果を図18(B)に示す。図18中、(a)は正極と負極との間の電位差(Ewe-Ece)の経時的変化、(b)は正極のターミナル電位経時的変化、(c)は負極のターミナル電位の経時的変化、(D)は電流の経時的変化を示す。 In Test Example 10, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and a negative electrode having Mg 2 Sn / Sn as an active material FIG. 17 shows the result of investigating the charge / discharge characteristics when using. In the figure, (A) shows the change over time in the potential difference (Ewe-Ece) between the positive electrode and the negative electrode, (B) shows the change over time in the current, (C) shows the change over time in the terminal potential of the negative electrode, (D ) Shows the terminal potential change with time of the positive electrode. Further, in Test Example 10, the results of examining the time-dependent changes in the terminal potential and current of the working electrode are shown in FIG. 18A, and the results of examining the time-dependent change in the electric capacity of the beaker cell are shown in FIG. 18B. Show. In FIG. 18, (a) shows the change over time in the potential difference (Ewe-Ece) between the positive electrode and the negative electrode, (b) shows the change over time in the terminal potential of the positive electrode, and (c) shows the change over time in the terminal potential of the negative electrode. , (D) shows changes in current over time.
 図17に示された結果から、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いることにより、正極では、約3Vの高い起電力が得られていることがわかる(図中、囲み部分a1を参照)。一方、負極では、マグネシウムの電析が見られるものの、マグネシウムが不動態化する傾向が見られることがわかる(図中、囲み部分a2を参照)。また、図18に示された結果から、Cs-TFSIとLi-TFSIとMg(TFSI)2とを含む電解液と、Mo68クラスター化合物を活物質として有する正極と、MgSn/Snを活物質として有する負極とを用いることにより、約20mAh/gの放電容量が得られることがわかる。なお、Cs-TFSIは、前記したように、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有することが推測される。したがって、これらの結果から、クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有するイオン液体を含む電解液を用いて、クラスター化合物の原子配列構造の空隙内への液体の侵入を抑制することにより、高い放電容量を確保することができることが示唆される。 From the results shown in FIG. 17, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and Mg 2 Sn / Sn active. It can be seen that a high electromotive force of about 3 V is obtained at the positive electrode by using the negative electrode as the substance (see the enclosed part a1 in the figure). On the other hand, in the negative electrode, although the electrodeposition of magnesium is observed, it can be seen that the magnesium tends to passivate (see the enclosed part a2 in the figure). Further, from the results shown in FIG. 18, an electrolytic solution containing Cs-TFSI, Li-TFSI, and Mg (TFSI) 2 , a positive electrode having a Mo 6 S 8 cluster compound as an active material, and Mg 2 Sn / Sn It can be seen that a discharge capacity of about 20 mAh / g can be obtained by using a negative electrode having an active material. As described above, Cs-TFSI is presumed to have an electrochemical property that hardly penetrates into the voids of the atomic arrangement structure of the cluster compound. Therefore, from these results, using an electrolyte containing an ionic liquid that has an electrochemical property that does not easily penetrate into the voids of the atomic arrangement structure of the cluster compound, the liquid can penetrate into the voids of the atomic arrangement structure of the cluster compound. It is suggested that a high discharge capacity can be secured by the suppression.
試験例11
 実施例6で得られたビーカーセルと電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、充放電反応を行なった。充電後の正極および放電後の正極の正極活物質を採取し、X線回折法によって分析した。なお、対照として、Cu2Mo68、LiMo68、Li3Mo68およびLi4Mo68それぞれの粉末をX線回折法によって分析した。
Test Example 11
The charge / discharge reaction was carried out using the beaker cell obtained in Example 6 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic). The positive electrode active material of the positive electrode after charge and the positive electrode after discharge was collected and analyzed by X-ray diffraction. As a control, powders of Cu 2 Mo 6 S 8 , LiMo 6 S 8 , Li 3 Mo 6 S 8 and Li 4 Mo 6 S 8 were analyzed by X-ray diffraction method.
 また、放電後の正極における正極活物質の存在箇所〔図19(a)の丸囲み部分(A領域)参照〕の元素の量と、放電後の正極それぞれにおける正極活物質の非存在箇所(導電助剤および結着剤の存在箇所)〔図19(b)の丸囲み部分(B領域)参照〕の元素の量とを、走査型電子顕微鏡-エネルギー分散型X線分析法(加速電圧:15.0kVおよび照射電流:4.4nA)によって測定し、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)を調べた。 Further, the amount of the element in the location where the positive electrode active material exists in the positive electrode after discharge (see the circled portion (A region) in FIG. 19A) and the location where the positive electrode active material does not exist in each positive electrode after discharge (conductivity) The amount of the element in the presence of the auxiliary agent and the binder (see the circled portion (B region) in FIG. 19 (b)) was determined by scanning electron microscope-energy dispersive X-ray analysis (acceleration voltage: 15 0.0 kV and irradiation current: 4.4 nA), and the ratio (composition ratio) of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is absent in the positive electrode after discharge was examined. .
 試験例11において、充電後の正極および放電後の正極それぞれの正極活物質のX線回折を調べた結果を図20および図21に示す。図20中、(A)はCu2Mo68のX線回折パターン、(B)は充電後の正極の正極活物質のX線回折パターン、(C)は放電後の正極の正極活物質のX線回折パターン、(D)はICSDにおける白金のデータ、(E)はICSDにおけるアルミニウムのデータ、(F)はICSDにおけるMg2Mo68のデータ、(G)はICSDにおけるMgMo68のデータ、(H)はICSDにおけるMo68のデータ、(I)はICSDにおけるCu2Mo68のデータ、(J)はICSDにおけるCu2Mo68のデータを示す。また、図21中、(A)はCu2Mo68のX線回折パターン、(B)は充電後の正極の正極活物質のX線回折パターン、(C)は放電後の正極の正極活物質のX線回折パターン、(D)はLiMo68のX線回折パターン、(E)はLi3Mo68のX線回折パターン、(F)はLi4Mo68のX線回折パターン、(G)はICSDにおける白金のデータ、(H)はICSDにおけるアルミニウムのデータ、(I)はICSDにおけるMg2Mo68のデータ、(J)はICSDにおけるMgMo68のデータ、(K)はICSDにおけるMo68のデータ、(L)はICSDにおけるCu2Mo68のデータ、(M)はICSDにおけるCu2Mo68のデータを示す。また、試験例11において、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)を調べた結果を図22に示す。 20 and 21 show the results of examining the X-ray diffraction of the positive electrode active material of each of the positive electrode after charging and the positive electrode after discharging in Test Example 11. 20, (A) is an X-ray diffraction pattern of Cu 2 Mo 6 S 8 , (B) is an X-ray diffraction pattern of a positive electrode active material of a positive electrode after charging, and (C) is a positive electrode active material of a positive electrode after discharging. (D) is platinum data in ICSD, (E) is aluminum data in ICSD, (F) is Mg 2 Mo 6 S 8 data in ICSD, and (G) is MgMo 6 S in ICSD. 8 data, (H) shows Mo 6 S 8 data in ICSD, (I) shows Cu 2 Mo 6 S 8 data in ICSD, and (J) shows Cu 2 Mo 6 S 8 data in ICSD. In FIG. 21, (A) is an X-ray diffraction pattern of Cu 2 Mo 6 S 8 , (B) is an X-ray diffraction pattern of a positive electrode active material of the positive electrode after charging, and (C) is a positive electrode of the positive electrode after discharging. X-ray diffraction pattern of active material, (D) X-ray diffraction pattern of LiMo 6 S 8 , (E) X-ray diffraction pattern of Li 3 Mo 6 S 8 , (F) X of Li 4 Mo 6 S 8 Line diffraction pattern, (G) is platinum data in ICSD, (H) is aluminum data in ICSD, (I) is Mg 2 Mo 6 S 8 data in ICSD, and (J) is MgMo 6 S 8 data in ICSD. Data, (K) shows Mo 6 S 8 data in ICSD, (L) shows Cu 2 Mo 6 S 8 data in ICSD, and (M) shows Cu 2 Mo 6 S 8 data in ICSD. Moreover, in Test Example 11, the result of examining the ratio (composition ratio) of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is not present in the positive electrode after discharge is shown in FIG.
 図20に示された結果から、充電後の正極の正極活物質のX線回折パターンにおいて、ピークa2は、Cu2Mo68のX線回折パターンにおける対応するピークであるピークa1の位置から左側にシフトしていることがわかる。また、充電後の正極の正極活物質のX線回折パターンにおいて、ピークb2は、Cu2Mo68のX線回折パターンにおける対応するピークであるピークb1の位置から左側にシフトしていることがわかる。一方、図20に示された結果から、放電後の正極の正極活物質のX線回折パターンにおいて、ピークa3は、Cu2Mo68のX線回折パターンにおける対応するピークであるピークa1の位置とほぼ同じ位置に見られることがわかる。また、放電後の正極の正極活物質のX線回折パターンにおいて、ピークb3は、Cu2Mo68のX線回折パターンにおける対応するピークであるピークb1の位置とほぼ同じ位置に見られることがわかる。したがって、これらの結果から、充放電反応に際し、正極を構成する正極活物質へのマグネシウムの挿入および当該正極活物質からのマグネシウムの脱離が起こっていることが示唆される。 From the results shown in FIG. 20, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after charging, the peak a2 is from the position of the peak a1, which is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8. You can see that it has shifted to the left. Further, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after charging, the peak b2 is shifted to the left from the position of the peak b1, which is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8 . I understand. On the other hand, from the results shown in FIG. 20, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after discharge, the peak a3 is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8 . It can be seen that it can be seen at almost the same position. In addition, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after discharge, the peak b3 is found at substantially the same position as the peak b1, which is the corresponding peak in the X-ray diffraction pattern of Cu 2 Mo 6 S 8. I understand. Therefore, these results suggest that magnesium is inserted into and desorbed from the positive electrode active material constituting the positive electrode during the charge / discharge reaction.
 また、図21に示された結果から、充電後の正極の正極活物質のX線回折パターンにおいて、ピークa1は、LiMo68のX線回折パターンにおけるピークa2の位置、Li3Mo68のX線回折パターンにおけるピークa3の位置およびLi4Mo68のX線回折パターンにおけるピークa4の位置とは異なる位置に見られることがわかる。さらに、充電後の正極の正極活物質のX線回折パターンにおいて、ピークb1は、LiMo68のX線回折パターンにおけるピークb2の位置、Li3Mo68のX線回折パターンにおけるピークb3の位置およびLi4Mo68のX線回折パターンにおけるピークb4の位置とは異なる位置に見られることがわかる。したがって、これらの結果から、充放電反応に際し、正極を構成する正極活物質にはリチウムが挿入されないことがわかる。 Further, from the results shown in FIG. 21, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after charging, the peak a1 is the position of the peak a2 in the X-ray diffraction pattern of LiMo 6 S 8 and Li 3 Mo 6 S it can be seen that seen in a position different from the position of the peak a4 in the X-ray diffraction pattern of the position and Li 4 Mo 6 S 8 peak a3 in the X-ray diffraction pattern of 8. Furthermore, in the X-ray diffraction pattern of the positive electrode active material of the positive electrode after charging, the peak b1 is the position of the peak b2 in the X-ray diffraction pattern of LiMo 6 S 8 and the peak b3 in the X-ray diffraction pattern of Li 3 Mo 6 S 8. It can be seen that this is seen at a position different from the position of the peak b4 in the X-ray diffraction pattern of Li 4 Mo 6 S 8 . Therefore, it can be seen from these results that lithium is not inserted into the positive electrode active material constituting the positive electrode in the charge / discharge reaction.
 また、図22に示された結果から、放電後の正極における正極活物質の非存在箇所の各元素の量に対する正極活物質の存在箇所の各元素の比(組成比)は、1を超えている(組成比:4.0769)ことがわかる。したがって、これらの結果から、正極活物質にマグネシウム原子が含まれていることが示唆される。 Further, from the results shown in FIG. 22, the ratio (composition ratio) of each element in the location where the positive electrode active material is present to the amount of each element in the location where the positive electrode active material is not present in the positive electrode after discharge exceeds 1. (Composition ratio: 4.0769). Therefore, these results suggest that the positive electrode active material contains magnesium atoms.
実施例7
 アルゴンガス雰囲気に保たれたグローブボックス内で、Mo68クラスター化合物が1~10mg/cm2となるように塗布されたアルミニウム製シートからなる作用電極と、マグネシウム製棒からなる参照電極と、マグネシウム製シートからなる対極と、電解液とを備えた三電極式セルを構築した。なお、電解液は、Mg(TFSI)2とPP13-TFSIとP13-TFSIとを、Mg(TFSI)2/PP13-TFSI/P13-TFSI(体積比)が0.3/1/1となるように混合して得られた電解液である。
Example 7
A working electrode made of an aluminum sheet coated with a Mo 6 S 8 cluster compound in an amount of 1 to 10 mg / cm 2 in a glove box kept in an argon gas atmosphere, a reference electrode made of a magnesium rod, A three-electrode cell comprising a counter electrode made of a magnesium sheet and an electrolyte was constructed. The electrolytic solution is Mg (TFSI) 2 , PP13-TFSI, and P13-TFSI, and Mg (TFSI) 2 / PP13-TFSI / P13-TFSI (volume ratio) is 0.3 / 1/1. It is the electrolyte solution obtained by mixing.
実施例8
 アルゴンガス雰囲気に保たれたグローブボックス内で、Mo68クラスター化合物が1~10mg/cm2となるように塗布されたアルミニウム製シートからなる作用電極と、マグネシウム製棒からなる参照電極と、マグネシウム製シートからなる対極と、電解液とを備えた三電極式セルを構築した。なお、電解液は、Mg(TFSI)2とPP13-TFSIとを、Mg(TFSI)2/PP13-TFSI(モル比)が1/6.7となるように混合して得られた電解液である。
Example 8
A working electrode made of an aluminum sheet coated with a Mo 6 S 8 cluster compound in an amount of 1 to 10 mg / cm 2 in a glove box kept in an argon gas atmosphere, a reference electrode made of a magnesium rod, A three-electrode cell comprising a counter electrode made of a magnesium sheet and an electrolyte was constructed. The electrolytic solution is an electrolytic solution obtained by mixing Mg (TFSI) 2 and PP13-TFSI so that Mg (TFSI) 2 / PP13-TFSI (molar ratio) is 1 / 6.7. is there.
試験例12
 実施例7または実施例8で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、電解液の温度:25℃および走査速度:20mV/sの条件でサイクリックボルタンメトリーを行なった。
Test Example 12
Using the three-electrode cell obtained in Example 7 or Example 8 and an electrochemical measurement device (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 25 ° C. and scanning Speed: Cyclic voltammetry was performed at 20 mV / s.
 試験例12において、実施例7および実施例8で得られた三電極式セルを用いた場合の電位と電流密度との関係を調べた結果を図23に示す。図中、実線は実施例7で得られた三電極式セルを用いた場合の電位と電流密度との関係、破線は実施例8で得られた三電極式セルを用いた場合の電位と電流密度との関係を示す。 In Test Example 12, the results of examining the relationship between the potential and the current density when using the three-electrode cell obtained in Example 7 and Example 8 are shown in FIG. In the figure, the solid line shows the relationship between the potential and current density when the three-electrode cell obtained in Example 7 is used, and the broken line shows the potential and current when the three-electrode cell obtained in Example 8 is used. The relationship with density is shown.
 図23に示された結果から、実施例7で得られた三電極式セルを用いた場合の電析電流〔(A1)参照〕は、実施例8で得られた三電極式セルを用いた場合の電析電流と比べて大きいことがわかる〔(A2)参照〕。また、実施例7で得られた三電極式セルを用いた場合のアノード電流〔(B1)参照〕は、実施例8で得られた三電極式セルを用いた場合のアノード電流と比べて大きいことがわかる〔(B2)参照〕。さらに、実施例7で得られた三電極式セルを用いた場合、実施例8で得られた三電極式セルを用いた場合と比べて電解液の分解がより一層抑制される傾向が見られることがわかる〔(C)参照〕。これらの結果から、互いに異なるカチオンを有する少なくとも2種類のイオン液体を混合し、キャリアイオン(マグネシウムカチオン)に加え、2種類のカチオン(N-メチル-N-プロピルピペリジニウムカチオンおよびチル-N-プロピルピロリジニウムカチオン)を用いることにより、不動態マグネシウムの生成を抑制し、より効率よく充放電反応を行なうことができることが示唆される。 From the results shown in FIG. 23, the electrodeposition current [see (A1)] when the three-electrode cell obtained in Example 7 was used was the same as that of the eight-electrode cell obtained in Example 8. It can be seen that it is larger than the electrodeposition current in the case [see (A2)]. Further, the anode current [see (B1)] when using the three-electrode cell obtained in Example 7 is larger than the anode current when using the three-electrode cell obtained in Example 8. It can be seen [see (B2)]. Furthermore, when the three-electrode cell obtained in Example 7 is used, the decomposition of the electrolytic solution tends to be further suppressed as compared with the case where the three-electrode cell obtained in Example 8 is used. You can see [see (C)]. From these results, at least two kinds of ionic liquids having different cations are mixed, and in addition to carrier ions (magnesium cations), two kinds of cations (N-methyl-N-propylpiperidinium cation and til-N— By using propylpyrrolidinium cation), it is suggested that the formation of passive magnesium can be suppressed and the charge / discharge reaction can be performed more efficiently.
 以上の結果から、二次電池において、正極として、式(I)で表わされるクラスターを有するクラスター化合物を含む電極と、電解液として、前記クラスター化合物の原子配列構造の空隙に侵入しにくい電気化学的性質を有し、かつ前記正極と負極との間にキャリアイオンを移送可能な液体を含有する電解液とを用いることにより、高い起電力を確保することができることが示唆される。 From the above results, in the secondary battery, as the positive electrode, an electrode including the cluster compound having the cluster represented by the formula (I), and the electrolyte is an electrochemical solution that does not easily enter the voids of the atomic arrangement structure of the cluster compound. It is suggested that a high electromotive force can be ensured by using an electrolyte containing a liquid having a property and capable of transferring carrier ions between the positive electrode and the negative electrode.
実施例9
 アルゴンガス雰囲気に保たれたグローブボックス内でMo68クラスター化合物が1~10mg/cm2となるように塗布されたアルミニウム製シートからなる作用電極と、マグネシウム製棒からなる参照電極と、マグネシウム製シートからなる対極と、電解液とを備えた三電極式セルを構築した。なお、電解液は、0.5M Mg(TFSI)2のメチルトリグライム溶液からなる電解液である。
Example 9
A working electrode composed of an aluminum sheet coated with 1 to 10 mg / cm 2 of Mo 6 S 8 cluster compound in a glove box maintained in an argon gas atmosphere, a reference electrode composed of a magnesium rod, magnesium A three-electrode cell comprising a counter electrode made of a sheet made of sheet and an electrolyte was constructed. The electrolytic solution is an electrolytic solution composed of a 0.5 M Mg (TFSI) 2 methyltriglyme solution.
試験例13
 実施例9で得られた三電極式セルと、電気化学測定装置〔バイオロジック(BioLogic)社製、商品名:SP-300〕とを用い、電解液の温度:25℃および走査速度:5mV/sの条件でサイクリックボルタンメトリーを行なった。
Test Example 13
Using the three-electrode cell obtained in Example 9 and an electrochemical measurement apparatus (trade name: SP-300, manufactured by BioLogic), the temperature of the electrolyte: 25 ° C. and the scanning speed: 5 mV / Cyclic voltammetry was performed under the conditions of s.
 試験例13において、実施例9で得られた三電極式セルを用いた場合のサイクリックボルタモグラムを図24に示す。図中、(A)は電位と電流との関係、(B)は電位と対極のターミナル電位との関係を示す。また、図24に示された電位と電流との関係をMg2+/Mg基準に換算した結果を図25に示す。 In Test Example 13, a cyclic voltammogram when using the three-electrode cell obtained in Example 9 is shown in FIG. In the figure, (A) shows the relationship between the potential and the current, and (B) shows the relationship between the potential and the terminal potential of the counter electrode. FIG. 25 shows the result of converting the relationship between the potential and current shown in FIG. 24 to the Mg 2+ / Mg standard.
 図24および図25に示された結果から、マグネシウムイオンの挿入・脱離が約3V vs マグネシウム棒参照極で起こっていることが確認できるため、電解液として、クラスター化合物の原子配列構造の空隙内への侵入が抑制されるのに十分な嵩高さを有する化合物からなる液体(例えば、メチルトリグライムなど)を含有する電解液を用いることにより、良好に充放電反応を行なうことができることが示唆される。なお、メチルトリグライムは、クラスター化合物の原子配列構造の空隙内への侵入が抑制されるのに十分な嵩高さを有すると推測される。したがって、これらの結果から、電解液として、クラスター化合物の原子配列構造の空隙内への侵入が抑制されるのに十分な嵩高さを有する化合物からなる液体(例えば、メチルジグライム、メチルトリグライム、メチルテトラグライムなど)を含有する電解液を用いることにより、良好に充放電反応を行なうことができることが示唆される。 From the results shown in FIG. 24 and FIG. 25, it can be confirmed that the insertion / extraction of magnesium ions occurs at about 3 V vs. the magnesium pole reference electrode. It is suggested that the charge / discharge reaction can be carried out satisfactorily by using an electrolytic solution containing a liquid (for example, methyltriglyme, etc.) made of a compound having a bulkiness sufficient to prevent penetration into The In addition, it is estimated that methyltriglyme is sufficiently bulky to suppress the penetration of the atomic arrangement structure of the cluster compound into the voids. Therefore, from these results, as an electrolytic solution, a liquid (for example, methyl diglyme, methyl triglyme, It is suggested that the charge / discharge reaction can be carried out satisfactorily by using an electrolytic solution containing methyltetraglyme and the like.
実験例3
 アルゴンガス雰囲気に保たれたグローブボックス内で、銅シェブレル化合物が1~10mg/cm2となるように塗布されたアルミニウム製シートからなる作用電極と、金属リチウムからなる参照電極と、金属リチウムからなる対極と、電解液〔1Mリチウムヘキサフルオロホスフェートを含むエチレンカーボネートとジメチルカーボネートとの混合物(エチレンカーボネート/ジメチルカーボネートの体積比=1/2)〕とを備えた三電極式セルを構築した。
Experimental example 3
In a glove box maintained in an argon gas atmosphere, a working electrode made of an aluminum sheet coated with a copper chevrel compound at 1 to 10 mg / cm 2 , a reference electrode made of metallic lithium, and made of metallic lithium A three-electrode cell having a counter electrode and an electrolytic solution [a mixture of ethylene carbonate and dimethyl carbonate containing 1M lithium hexafluorophosphate (volume ratio of ethylene carbonate / dimethyl carbonate = 1/2)] was constructed.
実験例4
 アルゴンガス雰囲気に保たれたグローブボックス内で、銅シェブレル化合物が1~10mg/cm2となるように塗布されたアルミニウム製シートからなる作用電極と、金属リチウムからなる参照電極と、金属リチウムからなる対極と、電解液〔1Mリチウムヘキサフルオロホスフェートと3質量%ビニレンカーボネートとを含むエチレンカーボネートとジメチルカーボネートとの混合物(エチレンカーボネート/ジメチルカーボネート(体積比)=1/2)〕とを備えた三電極式セルを構築した。なお、ビニレンカーボネートは、正極の正極活物質を構成する銅シェブレル化合物の表面に膜を形成することにより、当該銅シェブレル化合物の原子配列構造の空隙内への電解液の液体成分の侵入を抑制するものである。
Experimental Example 4
In a glove box maintained in an argon gas atmosphere, a working electrode made of an aluminum sheet coated with a copper chevrel compound at 1 to 10 mg / cm 2 , a reference electrode made of metallic lithium, and made of metallic lithium Three electrodes provided with a counter electrode and an electrolytic solution [a mixture of ethylene carbonate and dimethyl carbonate containing 1M lithium hexafluorophosphate and 3% by mass vinylene carbonate (ethylene carbonate / dimethyl carbonate (volume ratio) = 1/2)] A formula cell was constructed. In addition, vinylene carbonate forms a film on the surface of the copper chevrel compound constituting the positive electrode active material of the positive electrode, thereby suppressing the intrusion of the liquid component of the electrolyte into the voids of the atomic arrangement structure of the copper chevrel compound. Is.
試験例14
 実験例3または実験例4で得られた三電極式セルと電気化学測定装置(バイオロジック(BioLogic)社製、商品名:SP-300)とを用い、走査速度:0.5mV/sでサイクリックボルタンメトリー測定を行なった。
Test Example 14
Using the three-electrode cell obtained in Experimental Example 3 or Experimental Example 4 and an electrochemical measuring device (trade name: SP-300, manufactured by BioLogic), the scanning speed was 0.5 mV / s. Click voltammetry measurement was performed.
 試験例14において、実験例3で得られた三電極式セルを用いた場合の作用電極のターミナル電位と電流との関係を調べた結果を図26、実験例14で得られた三電極式セルを用いた場合の作用電極のターミナル電位と電流との関係を調べた結果を図27に示す。図26中、(A1)は銅シェブレル化合物のAサイトからのリチウムカチオンの脱離を示すピーク、(A2)は銅シェブレル化合物のAサイトへのリチウムカチオンの挿入を示すピーク、(B1)は銅シェブレル化合物のBサイトからのリチウムカチオンの脱離を示すピーク、(B2)は銅シェブレル化合物のBサイトへのリチウムカチオンの挿入を示すピーク、(C1)は銅シェブレル化合物のAサイトからの銅カチオンの脱離を示すピーク、(B2)は銅シェブレル化合物のBサイトへの銅カチオンの挿入を示すピークである。 In Test Example 14, the results of examining the relationship between the terminal potential of the working electrode and the current when the three-electrode cell obtained in Experimental Example 3 was used are shown in FIG. 26 and the three-electrode cell obtained in Experimental Example 14 FIG. 27 shows the result of investigating the relationship between the terminal potential of the working electrode and the current when using. In FIG. 26, (A1) is a peak indicating elimination of lithium cations from the A site of the copper chevrel compound, (A2) is a peak indicating insertion of lithium cations into the A site of the copper chevrel compound, and (B1) is copper. A peak indicating elimination of a lithium cation from the B site of the chevrel compound, (B2) is a peak indicating insertion of a lithium cation into the B site of the copper chevrel compound, and (C1) is a copper cation from the A site of the copper chevrel compound. (B2) is a peak indicating insertion of a copper cation into the B site of the copper chevrel compound.
 図26に示された結果から、ビニレンカーボネートを含まない電解液を用いた場合(実験例3)、銅シェブレル化合物のAサイトにおけるリチウムカチオンの脱離および挿入を示すピーク〔図中、(A1)および(A2)を参照〕ならびに銅シェブレル化合物のBサイトにおけるリチウムカチオンの脱離および挿入を示すピーク〔図中、(B1)および(B2)を参照〕が見られることがわかる。しかし、銅シェブレル化合物のAサイトからの銅カチオンの脱離を示すピーク〔図中、(C1)を参照〕ならびに銅シェブレル化合物のBサイトからの銅カチオンの脱離を示すピーク〔図中、(D1)を参照〕が見られるが、銅シェブレル化合物のAサイトおよびBサイトへの銅カチオンの挿入を示すピークが見られないことがわかる。 From the results shown in FIG. 26, when an electrolytic solution not containing vinylene carbonate was used (Experimental Example 3), a peak indicating lithium cation desorption and insertion at the A site of the copper chevrel compound [(A1) in the figure] And (A2)] and a peak (see (B1) and (B2) in the figure) indicating the desorption and insertion of the lithium cation at the B site of the copper chevrel compound. However, the peak indicating the detachment of the copper cation from the A site of the copper chevrel compound (see (C1) in the figure) and the peak indicating the detachment of the copper cation from the B site of the copper chevrel compound (in the figure, ( D1)] can be seen, but it can be seen that no peaks indicating the insertion of copper cations at the A and B sites of the copper chevrel compound are observed.
 一方、図27に示された結果から、ビニレンカーボネートを含む電解液を用いた場合(実験例4)、銅シェブレル化合物のBサイトにおけるリチウムカチオンの脱離および挿入を示すピーク〔図中、(B1)および(B2)を参照〕が見られることがわかる。しかし、銅シェブレル化合物のAサイトにおける銅カチオンの脱離および挿入を示すピークならびに銅シェブレル化合物のBサイトにおける銅カチオンの脱離および挿入を示すピークのいずれもが見られることがわかる。また、図26に示された結果と比較すると、3.7Vおよび3.3V付近からリチウムイオンの挿入による還元電流が観察されることから、ビニレンカーボネートの添加によって還元生成膜が形成されていることがわかる。さらに、図示していないが、実験例3で得られた三電極式セルを用いた場合、銅シェブレル化合物のAサイトにおけるリチウムカチオンの脱離および挿入を示すピークならびに銅シェブレル化合物のBサイトにおけるリチウムカチオンの脱離および挿入を示すピークが見られた。 On the other hand, from the results shown in FIG. 27, when an electrolytic solution containing vinylene carbonate was used (Experimental Example 4), peaks indicating lithium cation desorption and insertion at the B site of the copper chevrel compound [(B1 ) And (B2)]. However, it can be seen that both a peak indicating the desorption and insertion of the copper cation at the A site of the copper chevrel compound and a peak indicating the desorption and insertion of the copper cation at the B site of the copper chevrel compound are observed. In addition, when compared with the results shown in FIG. 26, a reduction current due to insertion of lithium ions is observed from around 3.7 V and 3.3 V, and therefore a reduction product film is formed by the addition of vinylene carbonate. I understand. Furthermore, although not shown, when the three-electrode cell obtained in Experimental Example 3 is used, a peak indicating the detachment and insertion of a lithium cation at the A site of the copper chevrel compound and the lithium at the B site of the copper chevrel compound Peaks indicating cation desorption and insertion were observed.
 なお、ビニレンカーボネートは、正極の正極活物質を構成する銅シェブレル化合物の表面に膜を形成することにより、当該銅シェブレル化合物の原子配列構造の空隙内への電解液の液体成分の侵入を抑制すると考えられる。したがって、これらの結果から、二次電池において、正極として、式(I)で表わされるクラスターを有するクラスター化合物を含有し、かつ前記クラスター化合物の表面が被覆された電極を用いることにより、高い起電力を確保することができることが示唆される。 In addition, when vinylene carbonate forms a film on the surface of the copper chevrel compound that constitutes the positive electrode active material of the positive electrode, the penetration of the liquid component of the electrolytic solution into the voids of the atomic arrangement structure of the copper chevrel compound is suppressed. Conceivable. Therefore, from these results, in the secondary battery, a high electromotive force was obtained by using, as the positive electrode, an electrode containing a cluster compound having a cluster represented by the formula (I) and having the surface of the cluster compound coated. It is suggested that can be secured.
 以上説明したように、二次電池において、正極として、式(I)で表わされるクラスターを有するクラスター化合物を含む電極と、電解液として、前記正極と負極との間にキャリアイオンを移送可能な液体とを用い、前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入を抑制することにより、高い起電力を確保することができることから、電力の貯蔵用の二次電池、ハイブリッド車、電気自動車などに用いられる車載用の二次電池、モバイル機器用の二次電池などとして好適であることが示唆される。 As described above, in a secondary battery, as a positive electrode, an electrode including a cluster compound having a cluster represented by the formula (I), and as an electrolyte, a liquid capable of transferring carrier ions between the positive electrode and the negative electrode And by suppressing the intrusion of the liquid into the voids of the atomic arrangement structure of the cluster compound, a high electromotive force can be ensured. Therefore, a secondary battery for storing power, a hybrid vehicle, It is suggested that it is suitable as an in-vehicle secondary battery used for automobiles, a secondary battery for mobile devices, and the like.
 10 三電極式セル
 10a 三電極式セル本体
 11 容器
 11b 孔部
 11c 孔部
 11a 孔部
 13 作用電極
 14 対極
 15 参照電極
 15a 参照電極本体
 15b ガラス管部
 15c 多孔質ガラス部
 15d 参照電極用電解液
 16 電解液
 20 ビーカーセル
 21 容器
 22 正極
 23 負極
 24 参照電極
 25 電解液
 30 ビーカーセル
 31 容器
 32 正極
 33 負極
 33 参照電極
 35 電解液
DESCRIPTION OF SYMBOLS 10 Three electrode type cell 10a Three electrode type cell main body 11 Container 11b Hole part 11c Hole part 11a Hole part 13 Working electrode 14 Counter electrode 15 Reference electrode 15a Reference electrode main body 15b Glass tube part 15c Porous glass part 15d Electrolyte for reference electrode 16 Electrolytic solution 20 Beaker cell 21 Container 22 Positive electrode 23 Negative electrode 24 Reference electrode 25 Electrolytic solution 30 Beaker cell 31 Container 32 Positive electrode 33 Negative electrode 33 Reference electrode 35 Electrolytic solution

Claims (8)

  1.  負極と、正極と、前記正極と負極との間に介在する電解液とを備え、
     前記正極が、式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、6個のMはそれぞれ独立してクロム原子、モリブデン原子またはタングステン原子、Aはそれぞれ独立してカルコゲン原子を示す)
    で表わされるクラスターを有するクラスター化合物を含む電極であり、
     前記電解液が、前記正極と負極との間にキャリアイオンを移送可能な液体を含有しており、
     前記クラスター化合物の原子配列構造の空隙内への前記液体の侵入が抑制されていることを特徴とする二次電池。
    A negative electrode, a positive electrode, and an electrolyte solution interposed between the positive electrode and the negative electrode,
    The positive electrode has the formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, 6 M's are each independently a chromium atom, a molybdenum atom or a tungsten atom, and A's are each independently a chalcogen atom)
    An electrode including a cluster compound having a cluster represented by:
    The electrolyte contains a liquid capable of transferring carrier ions between the positive electrode and the negative electrode;
    A secondary battery, wherein the liquid is prevented from entering the voids of the atomic arrangement structure of the cluster compound.
  2.  前記液体が、イオン液体または少なくとも2種類の前記イオン液体を混合した混合物である請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the liquid is an ionic liquid or a mixture obtained by mixing at least two kinds of the ionic liquids.
  3.  前記イオン液体が、ハロゲン原子を有するアニオンと、有機カチオンまたは金属カチオンとを含むイオン液体である請求項2に記載の二次電池。 The secondary battery according to claim 2, wherein the ionic liquid is an ionic liquid containing an anion having a halogen atom and an organic cation or a metal cation.
  4.  前記イオン液体が、アニオンとして、非配位性ハロゲン化物アニオン、金属ハロゲン錯アニオン、式(III):
    Figure JPOXMLDOC01-appb-C000002
    (式中、X2はハロゲン原子、qは1~2の数を示す)
    で表わされるハロゲノアミネートアニオン、式(IV):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1およびR2はそれぞれ独立してハロゲン原子またはハロゲン原子を有する炭素数1~8のアルキル基を示す)
    で表わされるスルホニルアミドアニオン、式(V):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R3はハロゲン原子または当該ハロゲン原子を有する炭素数1~8のアルキル基を示す)
    で表わされるスルホナートアニオンからなる群より選ばれたアニオンを含み、かつ、カチオンとして、アルカリ金属カチオン、アルカリ土類金属カチオン、式(VII):
    Figure JPOXMLDOC01-appb-C000005
    (式中、R4、R5、R6およびR7はそれぞれ独立して置換基を有していてもよい炭素数1~8のアルキル基または炭素数1~8のアルキルオキシアルキル基を示す)
    で表わされる四級アンモニウムカチオン、式(VIII):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R8およびR9はそれぞれ独立して炭素数1~8のアルキル基、Yは直接結合またはメチレン基を示す)
    で表わされるカチオン、式(IX):
    Figure JPOXMLDOC01-appb-C000007
    (式中、R10およびR11はそれぞれ独立して炭素数1~8のアルキル基を示す)
    で表わされるイミダゾリウムカチオンおよび式(X):
    Figure JPOXMLDOC01-appb-C000008
    (式中、R12は炭素数1~8のアルキル基を示す)
    で表わされるピリジニウムカチオンからなる群より選ばれたカチオンを含むイオン液体である請求項3に記載の二次電池。
    The ionic liquid may be used as an anion as a non-coordinating halide anion, a metal halide complex anion, and
    Figure JPOXMLDOC01-appb-C000002
    (Wherein X 2 represents a halogen atom and q represents a number of 1 to 2)
    A halogenoamate anion represented by formula (IV):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 and R 2 each independently represents a halogen atom or a C 1-8 alkyl group having a halogen atom)
    A sulfonylamide anion represented by formula (V):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 3 represents a halogen atom or an alkyl group having 1 to 8 carbon atoms having the halogen atom)
    And an anion selected from the group consisting of sulfonate anions represented by formula (VII):
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 4 , R 5 , R 6 and R 7 each independently represents an optionally substituted alkyl group having 1 to 8 carbon atoms or an alkyloxyalkyl group having 1 to 8 carbon atoms) )
    A quaternary ammonium cation represented by formula (VIII):
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 8 and R 9 are each independently an alkyl group having 1 to 8 carbon atoms, Y represents a direct bond or a methylene group)
    A cation represented by formula (IX):
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 10 and R 11 each independently represents an alkyl group having 1 to 8 carbon atoms)
    And an imidazolium cation represented by the formula (X):
    Figure JPOXMLDOC01-appb-C000008
    (Wherein R 12 represents an alkyl group having 1 to 8 carbon atoms)
    The secondary battery according to claim 3, which is an ionic liquid containing a cation selected from the group consisting of pyridinium cations represented by:
  5.  前記液体が、クラスター化合物の原子配列構造の空隙内への侵入が抑制されるのに十分な嵩高さを有する化合物である請求項1に記載の二次電池。 2. The secondary battery according to claim 1, wherein the liquid is a compound having a bulkiness sufficient to prevent entry of the atomic arrangement structure of the cluster compound into the voids.
  6.  前記化合物が、グリコールエーテル化合物である請求項5に記載の二次電池。 The secondary battery according to claim 5, wherein the compound is a glycol ether compound.
  7.  前記クラスター化合物が、シェブレル化合物である請求項1~6のいずれかに記載の二次電池。 The secondary battery according to any one of claims 1 to 6, wherein the cluster compound is a chevrel compound.
  8.  前記シェブレル化合物が、式(II):
    Figure JPOXMLDOC01-appb-C000009
    (式中、p個のX1はそれぞれ独立してアルカリ金属原子、アルカリ土類金属原子、12族典型金属原子、13族典型金属原子、14族典型金属原子、3d遷移金属原子または4d遷移金属原子、6個のMは前記と同じ、Aは前記と同じ、pは0~4の数を示す)
    で表わされる組成を有するシェブレル化合物である請求項7に記載の二次電池。
    The chevrel compound has the formula (II):
    Figure JPOXMLDOC01-appb-C000009
    (In the formula, each p 1 is independently an alkali metal atom, an alkaline earth metal atom, a group 12 typical metal atom, a group 13 typical metal atom, a group 14 typical metal atom, a 3d transition metal atom, or a 4d transition metal. Atoms, 6 M are the same as above, A is the same as above, p is a number from 0 to 4)
    The secondary battery according to claim 7, which is a chevrel compound having a composition represented by:
PCT/JP2015/050360 2014-01-08 2015-01-08 Secondary battery WO2015105140A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015556828A JPWO2015105140A1 (en) 2014-01-08 2015-01-08 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-001914 2014-01-08
JP2014001914 2014-01-08

Publications (1)

Publication Number Publication Date
WO2015105140A1 true WO2015105140A1 (en) 2015-07-16

Family

ID=53523965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050360 WO2015105140A1 (en) 2014-01-08 2015-01-08 Secondary battery

Country Status (2)

Country Link
JP (1) JPWO2015105140A1 (en)
WO (1) WO2015105140A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096463A (en) * 2017-11-22 2019-06-20 Tdk株式会社 Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery
JPWO2018174087A1 (en) * 2017-03-23 2020-04-02 国立大学法人静岡大学 Magnesium secondary battery and negative electrode for magnesium secondary battery with inorganic material
CN112038590A (en) * 2019-06-04 2020-12-04 中国科学院物理研究所 Novel solid-state battery and positive electrode material thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512704A (en) * 1999-10-18 2003-04-02 バル・イラン・ユニバーシティ High energy, rechargeable, non-aqueous electrolyte for electrochemical cells
JP2004265675A (en) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
WO2012122080A1 (en) * 2011-03-08 2012-09-13 Pellion Technologies Inc. Rechargeable magnesium ion cell components and assembly
US20130252114A1 (en) * 2012-03-20 2013-09-26 Pellion Technologies, Inc. High voltage rechargeable magnesium cells having a non-aqueous electrolyte
WO2014168218A1 (en) * 2013-04-11 2014-10-16 国立大学法人京都大学 Polyvalent metal secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003512704A (en) * 1999-10-18 2003-04-02 バル・イラン・ユニバーシティ High energy, rechargeable, non-aqueous electrolyte for electrochemical cells
JP2004265675A (en) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
WO2012122080A1 (en) * 2011-03-08 2012-09-13 Pellion Technologies Inc. Rechargeable magnesium ion cell components and assembly
US20130252114A1 (en) * 2012-03-20 2013-09-26 Pellion Technologies, Inc. High voltage rechargeable magnesium cells having a non-aqueous electrolyte
WO2014168218A1 (en) * 2013-04-11 2014-10-16 国立大学法人京都大学 Polyvalent metal secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018174087A1 (en) * 2017-03-23 2020-04-02 国立大学法人静岡大学 Magnesium secondary battery and negative electrode for magnesium secondary battery with inorganic material
JP7111937B2 (en) 2017-03-23 2022-08-03 国立大学法人静岡大学 Magnesium secondary battery and negative electrode for magnesium secondary battery with inorganic material
JP2019096463A (en) * 2017-11-22 2019-06-20 Tdk株式会社 Electrolyte solution for lithium ion secondary battery and lithium ion secondary battery
JP6992436B2 (en) 2017-11-22 2022-01-13 Tdk株式会社 Lithium-ion secondary battery electrolyte and lithium-ion secondary battery
CN112038590A (en) * 2019-06-04 2020-12-04 中国科学院物理研究所 Novel solid-state battery and positive electrode material thereof
CN112038590B (en) * 2019-06-04 2023-05-02 中国科学院物理研究所 Novel solid-state battery and positive electrode material thereof

Also Published As

Publication number Publication date
JPWO2015105140A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
Cao et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries
Zhao-Karger et al. Toward highly reversible magnesium–sulfur batteries with efficient and practical Mg [B (hfip) 4] 2 electrolyte
Kopač Lautar et al. Electrolyte reactivity in the double layer in mg batteries: an interface potential-dependent DFT study
KR101495938B1 (en) Magnesium ion-containing nonaqueous electrolyte, process for producing the nonaqueous electrolyte, and electrochemical device
Peng et al. Constructing fast-ion-conductive disordered interphase for high-performance zinc-ion and zinc-iodine batteries
US9991560B2 (en) Liquid electrolyte for fluoride ion battery and fluoride ion battery
CN104781977B (en) Electrochemical energy storage device
KR101395156B1 (en) Ambient temperature molten salt, electrode, battery, agent for preventing charge-up, and method for observing sample
AU2015201888B2 (en) Electrolytic solution for fluoride ion battery and fluoride ion battery
Qiu et al. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode
Perez et al. Proton ion exchange reaction in Li3IrO4: A way to new H3+ xIrO4 phases electrochemically active in both aqueous and nonaqueous electrolytes
JP4984535B2 (en) battery
US9935338B2 (en) Liquid electrolyte for fluoride ion battery and fluoride ion battery
Ejigu et al. Optimization of electrolytes for high-performance aqueous aluminum-ion batteries
US9755276B2 (en) Liquid electrolyte for fluoride ion battery and fluoride ion battery
JP6262680B2 (en) Electrolyte for fluoride ion battery and fluoride ion battery
JP6285264B2 (en) Electrolyte for fluoride ion battery and fluoride ion battery
Karkera et al. An Inorganic Electrolyte Li–O2 Battery with High Rate and Improved Performance
JP2014186940A (en) Electrolyte
Groß Fundamental challenges for modeling electrochemical energy storage systems at the atomic scale
WO2015105140A1 (en) Secondary battery
JP2017022024A (en) Electrolyte and magnesium secondary battery
Kreissl et al. Electrochemical lithiation/delithiation of ZnO in 3D-structured electrodes: elucidating the mechanism and the solid electrolyte interphase formation
JP6502804B2 (en) Negative electrode current collector and fluoride ion battery
JP6529005B2 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735345

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015556828

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735345

Country of ref document: EP

Kind code of ref document: A1