US20130250514A1 - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
US20130250514A1
US20130250514A1 US13/762,370 US201313762370A US2013250514A1 US 20130250514 A1 US20130250514 A1 US 20130250514A1 US 201313762370 A US201313762370 A US 201313762370A US 2013250514 A1 US2013250514 A1 US 2013250514A1
Authority
US
United States
Prior art keywords
area
heat
heat dissipation
casing
electronic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/762,370
Inventor
Kai-Hsiang Tsao
Chang-Yuan Wu
Jia-Yu Hung
Hsiang-Tien Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compal Electronics Inc
Original Assignee
Compal Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compal Electronics Inc filed Critical Compal Electronics Inc
Priority to US13/762,370 priority Critical patent/US20130250514A1/en
Assigned to COMPAL ELECTRONICS, INC. reassignment COMPAL ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUNG, JIA-YU, TSAO, KAI-HSIANG, WU, CHANG-YUAN, WU, HSIANG-TIEN
Publication of US20130250514A1 publication Critical patent/US20130250514A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides

Definitions

  • the invention relates to an electronic apparatus. More particularly, the invention relates to an electronic apparatus having a fan.
  • Heat dissipation holes are generally formed on a casing of the electronic product to ensure the electronic apparatus to operate normally, a heat dissipation airflow is adapted to carry away heat generated during operations of the electronic apparatuses through said heat dissipation holes.
  • the central processing unit (CPU) or other heat generating elements therein may generate heat during operations, thus it is required to have a fan and a heat conducting module disposed within the notebook computer for a heat dissipation.
  • said heat conducting module may include a heat pipe and a heat dissipation fin set, the heat pipe is connected between the heat generating element and the heat dissipation fin set, so as to conduct heat generated by the heat generating elements to the heat dissipation fin set, and the fan may generate a heat dissipation airflow to perform the heat dissipation to the heat dissipation fin set.
  • the heat dissipation fin set is disposed between the fan and an air outlet of the casing so the fan may move air in the casing to flow towards the heat dissipation fin set and exhaust outside of the air outlet, such that the air in the casing may be utilized to perform the heat dissipation to the heat dissipation fin set.
  • a temperature of the air in the casing of the notebook computer is generally higher than a temperature of air outside of the casing, so it is difficult to acquire a favorable heat dissipation efficiency when the heat dissipation is performed to the heat dissipation fin set by using the air in the casing.
  • FIG. 1 illustrates an electronic apparatus having a fan in conventional art (U.S. Pat. No. 6,111,748).
  • a heat pipe 320 is connected between a heat generating element 315 and a fan 200 , the fan 200 brings the air from the outside into the casing through an air inlet 330 of the casing of the electronic apparatus, so as to perform the heat dissipation to the heat pipe 320 by utilizing the air from the outside.
  • said technology in conventional art may improve a heat dissipation effectiveness by performing the heat dissipation to the heat pipe 320 using the air from the outside with a lower temperature, the heat dissipation airflow flowed through the heat pipe 320 is then exhausted through an air outlet 340 of the casing immediately, so that the heat dissipation airflow may no longer flow inside of the casing and continue to perform the heat dissipation to the heat generating element 315 or other heat generating sources, resulting a poor efficiency in utilizing the heat dissipation airflow.
  • the invention is directed to an electronic apparatus having a favorable heat dissipation effectiveness, which may efficiently utilize a heat dissipation airflow.
  • the invention provides an electronic apparatus including a casing, a separation structure, a fan, a first heat generating element and a heat conducting module.
  • the casing has an air inlet and an air outlet.
  • An inner portion of the casing includes a first area and a second area. The first area is connected to the air inlet, and the second area is connected to the air outlet.
  • the separation structure is disposed at a border between the first area and the second area to separate the first area and the second area.
  • the fan is disposed in the first area and adjacent to the air inlet.
  • the fan is adapted to provide a heat dissipation airflow.
  • the heat dissipation airflow flows through the air inlet, the first area, the second area and the air outlet sequentially.
  • the first heat generating element is disposed in the second area.
  • the heat conducting module is connected between the fan and the first heat generating element.
  • the heat dissipation airflow flows through the heat conducting module, the first heat generating element and the air outlet sequentially.
  • the heat conducting module includes a heat dissipation fin set and a heat pipe, the heat dissipation fin set is disposed at an exhaust side of the fan, and the heat pipe is connected between the heat dissipation fin set and the first heat generating element.
  • the first heat generating element is a central processing unit or a graphic chip.
  • the casing has a sidewall, and the air inlet and the air outlet are formed on the sidewall.
  • the separation structure is disposed in the casing to surround and define a flow channel, the flow channel is connected between the air inlet and the fan.
  • the separation structure is disposed in the casing to surround and define a flow channel, the flow channel is connected between the fan and the air outlet.
  • the electronic apparatus further includes a second heat generating element, in which the second heat generating element is disposed inside of the flow channel.
  • the first heat generating element is disposed outside of the flow channel.
  • the fan of the invention is disposed in the first area and adjacent to the air inlet of the casing, and the first heat generating element is disposed in the second area instead of the first area, so the fan may form the heat dissipation airflow by using air with a lower temperature from the outside or in the first area, such that the heat dissipation may be performed to the heat conducting module in the casing by using the heat dissipation airflow with the lower temperature, so as to improve the heat dissipation efficiency of the electronic apparatus.
  • the heat dissipation airflow may flow through the second area in the casing before being exhausted from the casing through the air outlet.
  • the heat dissipation airflow may perform the heat dissipation to the first heat generating element or other heat generating sources located at the second area in the casing, so as to utilize the heat dissipation airflow more efficiently.
  • FIG. 1 illustrates an electronic apparatus having a fan in conventional art.
  • FIG. 2 is a schematic top view of an electronic apparatus according to an embodiment of the invention.
  • FIG. 3 is a schematic top view of an electronic apparatus according to another embodiment of the invention.
  • FIG. 4 is a schematic top view of an electronic apparatus according to another embodiment of the invention.
  • FIG. 2 is a schematic top view of an electronic apparatus according to an embodiment of the invention.
  • an electronic apparatus 100 of the present embodiment includes a casing 110 , a fan 120 , a first heat generating element 130 and a heat conducting module 140 .
  • the electronic apparatus 100 may be, for example, a host of a pad computer or a notebook computer
  • the first heat generating element 130 may be, for example, a central processing unit (CPU) on a motherboard 50 of the notebook computer.
  • the electronic apparatus 100 may also be other electronic apparatuses
  • the first heat generating element 130 may be a graphic chip or other heat generating elements, the invention is not limited thereto.
  • the casing 110 has an air inlet 110 a and an air outlet 110 b.
  • An inner portion of the casing 110 includes a first area 110 c and a second area 110 d.
  • the first area 110 c is connected to the air inlet 110 a and the second area 110 d is connected to the air outlet 110 b.
  • the fan 120 is disposed in the first area 100 c and adjacent to the air inlet 110 a.
  • the first heat generating element 130 is disposed in the second area 110 d.
  • the heat conducting module 140 is connected between the fan 120 and the first heat generating element 130 .
  • the fan 120 is adapted to provide a heat dissipation airflow.
  • the heat dissipation airflow may flow through the air inlet 110 a, the first area 110 c, the second area 110 d and the air outlet 110 b sequentially, as indicated by an arrow illustrated in FIG. 2 .
  • the heat dissipation airflow provided by the fan 120 may flow through the heat conducting module 140 , the first heat generating element 130 and the air outlet 110 b sequentially.
  • the fan 120 is disposed in the first area 110 c and adjacent to the air inlet 110 a of the casing 110 , and the first heat generating element 130 is disposed in the second area 110 d instead of the first area 110 c so the fan 120 may form the heat dissipation airflow by using air with a lower temperature from the outside or in the first area 110 c, such that a heat dissipation efficiency of the electronic apparatus 100 may be improved by performing the heat dissipation to the inner portion of the casing 110 using the heat dissipation airflow with the lower temperature.
  • the air since air from the outside has the lower temperature, the air may have a temperature lower than the heat generating sources (e.g., the first heat generating element 130 ) in the casing 110 after the air performs the heat dissipation to the heat conducting module 140 . Also, after being flowed through the fan 120 of the first area 110 c in the casing 110 , the heat dissipation airflow may flow through the second area 110 d in the casing 110 before being exhausted from the casing 110 through the air outlet 110 b.
  • the heat generating sources e.g., the first heat generating element 130
  • the heat dissipation airflow may perform the heat dissipation to the first heat generating element 130 or other heat generating sources located at the second area 110 d in the casing 110 , so as to utilize the heat dissipation airflow more efficiently.
  • the heat dissipation airflow may further reduce a temperature of the casing 110 , so as to prevent a discomfort one user may feel due to the casing 110 being too hot when the casing 110 is touched by the user.
  • the heat conducting module 140 of the present embodiment includes a heat dissipation fin set 142 and a heat pipe 144 .
  • the heat pipe 144 is connected between the heat dissipation fin set 142 and the first heat generating element 130 , so as to conduct heat generated by the first heat generating element 130 to the heat dissipation fin set 142 .
  • the heat dissipation fin set 142 is disposed at an exhaust side of the fan 120 , so the heat dissipation airflow provided by the fan 120 may perform the heat dissipation to the heat dissipation fin set 142 .
  • the casing 110 has a sidewall 112 , the air inlet 110 a and the air outlet 110 b are both formed on the sidewall 112 instead of a bottom portion of the casing 110 . Accordingly, since the bottom portion of the casing 110 is not disposed with any openings, a modern design concept in preventing an overall appearance of the casing 110 being damaged may also be achieved.
  • the electronic apparatus 100 of the present embodiment includes a separation structure 160 .
  • the separation structure 160 is disposed at a border between the first area 110 c and the second area 110 d to separate the first area 110 c and the second area 110 d. Based on above, the first area 110 c and the second area 110 d may be reliably separated, so the second area 110 d having the first heating element 130 may become a hot area with a higher temperature while the first area 110 c not having the first heat generating element 130 may become a cool area with a lower temperature, thereby ensuring that airflow sucked in by the fan 120 may have the lower temperature.
  • a material of the separation structure 160 may be, for example, a sponge, in which an elastic deformation characteristic of the sponge may be used to separate the first area 110 c and the second area 110 d, reliably.
  • the separation structure 160 may also be other suitable materials, the invention is not limited thereto.
  • FIG. 3 is a schematic top view of an electronic apparatus according to another embodiment of the invention.
  • disposition of the casing 110 , the fan 120 , the first heat generating element 130 and the heat conducting module 140 are identical to the same in the electronic apparatus 100 depicted in FIG. 1 , so related description is omitted herein.
  • a difference between the electronic apparatus 100 ′ and the electronic apparatus 100 lies where: a separation structure 160 ′ of the electronic apparatus 100 ′ is disposed in the casing 110 surrounding the fan 120 and the air inlet 110 a, so as to surround and define a flow channel 160 a.
  • the flow channel 160 a is connected between the air inlet 110 a and the fan 120 to ensure the airflow that enters the fan 120 is a cool air from the outside of casing 110 , so as to further improve the heat dissipation efficiency of the fan 120 .
  • FIG. 4 is a schematic top view of an electronic apparatus according to another embodiment of the invention.
  • disposition of the casing 110 , the fan 120 , the first heat generating element 130 , the heat conducting module 140 and the separation structure 160 ′ are identical to the same in the electronic apparatus 100 ′ depicted in FIG. 3 , so it is omitted herein.
  • a difference between the electronic apparatus 100 ′′ and the electronic apparatus 100 ′ lies where: A separation structure 160 ′′ is disposed in the casing 110 to surround and define a flow channel 160 b.
  • the flow channel 160 b is connected between the fan 120 and the air outlet 110 b, so the heat dissipation airflow may be directed to reach the air outlet 110 b along a specific path to be exhausted from the casing 110 . Accordingly, the heat dissipation airflow is prevented from being exhausted from an unexpected position (e.g., a keypad area) of the electronic apparatus 100 ′′ which may discomfort the user.
  • an unexpected position e.g., a keypad area
  • the electronic apparatus 100 ′′ may further include a second heat generating element 130 ′, the second heat generating element 130 ′ is disposed inside of the flow channel 160 b whereas the first heat generating element 130 is disposed outside of the flow channel 160 b, and the heat dissipation airflow being directed by the separation structure 160 ′′ is adapted to perform the heat dissipation to the second heat generating element 130 ′.
  • a fan of the invention is disposed in a first area and adjacent to an air inlet of a casing, and a first heat generating element is disposed in a second area instead of the first area, so the fan may form a heat dissipation airflow by using air with a lower temperature from the outside or in the first area, such that a heat dissipation may be performed to a heat conducting module in the casing by using the heat dissipation airflow with the lower temperature, so as to improve a heat dissipation efficiency of an electronic apparatus.
  • the heat dissipation airflow may flow through the second area in the casing before being exhausted from the casing through the air outlet.
  • the heat dissipation airflow may perform the heat dissipation to the first heat generating element or other heat generating sources located at the second area in the casing, so as to utilize the heat dissipation airflow more efficiently.
  • the heat dissipation airflow may further reduce a temperature of the casing, so as to prevent a discomfort the user may feel due to the casing being too hot when the casing is touched by the user.
  • the air inlet and the air outlet are both formed on the sidewall instead of the bottom portion of the casing. Accordingly, air may not enter the electronic apparatus from the bottom portion of the electronic apparatus, so as to prevent dust from the outside to flow and gather at the bottom of the electronic apparatus along with flowing of the airflow.

Abstract

An electronic apparatus includes a casing, a separation structure, a fan, a first heat generating element and a heat conducting module. The casing has an air inlet and an air outlet. An inner portion of the casing includes first and second areas connected to the air inlet and the air outlet respectively. The separation structure is disposed at a border between the first and the second areas to separate the first and second areas. The fan is disposed in the first area adjacent to the air inlet and adapted to provide a heat dissipation airflow. The heat dissipation airflow flows through the air inlet, the first area, the second area and the air outlet sequentially. The first heat generating element is disposed in the second area. The heat conducting module is connected between the fan and the first heat generating element.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims the priority benefits of U.S. provisional application Ser. No. 61/614,498, filed on Mar. 22, 2012. The entirety of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to an electronic apparatus. More particularly, the invention relates to an electronic apparatus having a fan.
  • 2. Description of Related Art
  • With the advance of electronic technology, various electronic products have been widely used in different industries and consumer products. Electronic apparatuses in the electronic products may generate heat during operations. Heat dissipation holes are generally formed on a casing of the electronic product to ensure the electronic apparatus to operate normally, a heat dissipation airflow is adapted to carry away heat generated during operations of the electronic apparatuses through said heat dissipation holes. Take a notebook computer for instance, the central processing unit (CPU) or other heat generating elements therein may generate heat during operations, thus it is required to have a fan and a heat conducting module disposed within the notebook computer for a heat dissipation.
  • More specifically, said heat conducting module may include a heat pipe and a heat dissipation fin set, the heat pipe is connected between the heat generating element and the heat dissipation fin set, so as to conduct heat generated by the heat generating elements to the heat dissipation fin set, and the fan may generate a heat dissipation airflow to perform the heat dissipation to the heat dissipation fin set. In come specific designs of the notebook computer, the heat dissipation fin set is disposed between the fan and an air outlet of the casing so the fan may move air in the casing to flow towards the heat dissipation fin set and exhaust outside of the air outlet, such that the air in the casing may be utilized to perform the heat dissipation to the heat dissipation fin set. However, in the notebook computer, a temperature of the air in the casing of the notebook computer is generally higher than a temperature of air outside of the casing, so it is difficult to acquire a favorable heat dissipation efficiency when the heat dissipation is performed to the heat dissipation fin set by using the air in the casing.
  • FIG. 1 illustrates an electronic apparatus having a fan in conventional art (U.S. Pat. No. 6,111,748). As shown in FIG. 1, a heat pipe 320 is connected between a heat generating element 315 and a fan 200, the fan 200 brings the air from the outside into the casing through an air inlet 330 of the casing of the electronic apparatus, so as to perform the heat dissipation to the heat pipe 320 by utilizing the air from the outside. Although said technology in conventional art may improve a heat dissipation effectiveness by performing the heat dissipation to the heat pipe 320 using the air from the outside with a lower temperature, the heat dissipation airflow flowed through the heat pipe 320 is then exhausted through an air outlet 340 of the casing immediately, so that the heat dissipation airflow may no longer flow inside of the casing and continue to perform the heat dissipation to the heat generating element 315 or other heat generating sources, resulting a poor efficiency in utilizing the heat dissipation airflow.
  • SUMMARY OF THE INVENTION
  • The invention is directed to an electronic apparatus having a favorable heat dissipation effectiveness, which may efficiently utilize a heat dissipation airflow.
  • The invention provides an electronic apparatus including a casing, a separation structure, a fan, a first heat generating element and a heat conducting module. The casing has an air inlet and an air outlet. An inner portion of the casing includes a first area and a second area. The first area is connected to the air inlet, and the second area is connected to the air outlet. The separation structure is disposed at a border between the first area and the second area to separate the first area and the second area. The fan is disposed in the first area and adjacent to the air inlet. The fan is adapted to provide a heat dissipation airflow. The heat dissipation airflow flows through the air inlet, the first area, the second area and the air outlet sequentially. The first heat generating element is disposed in the second area. The heat conducting module is connected between the fan and the first heat generating element.
  • According to the present embodiment, the heat dissipation airflow flows through the heat conducting module, the first heat generating element and the air outlet sequentially.
  • According to an embodiment of the invention, the heat conducting module includes a heat dissipation fin set and a heat pipe, the heat dissipation fin set is disposed at an exhaust side of the fan, and the heat pipe is connected between the heat dissipation fin set and the first heat generating element.
  • According to an embodiment of the invention, the first heat generating element is a central processing unit or a graphic chip.
  • According to an embodiment of the invention, the casing has a sidewall, and the air inlet and the air outlet are formed on the sidewall.
  • According to an embodiment of the invention, the separation structure is disposed in the casing to surround and define a flow channel, the flow channel is connected between the air inlet and the fan.
  • According to an embodiment of the invention, the separation structure is disposed in the casing to surround and define a flow channel, the flow channel is connected between the fan and the air outlet.
  • According to an embodiment of the invention, the electronic apparatus further includes a second heat generating element, in which the second heat generating element is disposed inside of the flow channel.
  • According to an embodiment of the invention, the first heat generating element is disposed outside of the flow channel.
  • Based on above, the fan of the invention is disposed in the first area and adjacent to the air inlet of the casing, and the first heat generating element is disposed in the second area instead of the first area, so the fan may form the heat dissipation airflow by using air with a lower temperature from the outside or in the first area, such that the heat dissipation may be performed to the heat conducting module in the casing by using the heat dissipation airflow with the lower temperature, so as to improve the heat dissipation efficiency of the electronic apparatus. Moreover, after flowing through the fan located at the first area in the casing, the heat dissipation airflow may flow through the second area in the casing before being exhausted from the casing through the air outlet. Accordingly, before being exhausted from the electronic apparatus, the heat dissipation airflow may perform the heat dissipation to the first heat generating element or other heat generating sources located at the second area in the casing, so as to utilize the heat dissipation airflow more efficiently.
  • To make the above features and advantages of the invention more comprehensible, several embodiments accompanied with drawings are described in detail as follows.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an electronic apparatus having a fan in conventional art.
  • FIG. 2 is a schematic top view of an electronic apparatus according to an embodiment of the invention.
  • FIG. 3 is a schematic top view of an electronic apparatus according to another embodiment of the invention.
  • FIG. 4 is a schematic top view of an electronic apparatus according to another embodiment of the invention.
  • DESCRIPTION OF THE EMBODIMENTS
  • FIG. 2 is a schematic top view of an electronic apparatus according to an embodiment of the invention. Referring to FIG. 2, an electronic apparatus 100 of the present embodiment includes a casing 110, a fan 120, a first heat generating element 130 and a heat conducting module 140. According to the present embodiment, the electronic apparatus 100 may be, for example, a host of a pad computer or a notebook computer, the first heat generating element 130 may be, for example, a central processing unit (CPU) on a motherboard 50 of the notebook computer. In other embodiments, the electronic apparatus 100 may also be other electronic apparatuses, and the first heat generating element 130 may be a graphic chip or other heat generating elements, the invention is not limited thereto.
  • The casing 110 has an air inlet 110 a and an air outlet 110 b. An inner portion of the casing 110 includes a first area 110 c and a second area 110 d. The first area 110 c is connected to the air inlet 110 a and the second area 110 d is connected to the air outlet 110 b. The fan 120 is disposed in the first area 100 c and adjacent to the air inlet 110 a. The first heat generating element 130 is disposed in the second area 110 d. The heat conducting module 140 is connected between the fan 120 and the first heat generating element 130. The fan 120 is adapted to provide a heat dissipation airflow.
  • After the heat dissipation airflow is flowed into the first area 110 c in the casing 110 through the air inlet 110 a, the heat dissipation airflow may flow through the air inlet 110 a, the first area 110 c, the second area 110 d and the air outlet 110 b sequentially, as indicated by an arrow illustrated in FIG. 2. In other words, according to the present embodiment, the heat dissipation airflow provided by the fan 120 may flow through the heat conducting module 140, the first heat generating element 130 and the air outlet 110 b sequentially.
  • With above-said disposition, the fan 120 is disposed in the first area 110 c and adjacent to the air inlet 110 a of the casing 110, and the first heat generating element 130 is disposed in the second area 110 d instead of the first area 110 c so the fan 120 may form the heat dissipation airflow by using air with a lower temperature from the outside or in the first area 110 c, such that a heat dissipation efficiency of the electronic apparatus 100 may be improved by performing the heat dissipation to the inner portion of the casing 110 using the heat dissipation airflow with the lower temperature. In addition, since air from the outside has the lower temperature, the air may have a temperature lower than the heat generating sources (e.g., the first heat generating element 130) in the casing 110 after the air performs the heat dissipation to the heat conducting module 140. Also, after being flowed through the fan 120 of the first area 110 c in the casing 110, the heat dissipation airflow may flow through the second area 110 d in the casing 110 before being exhausted from the casing 110 through the air outlet 110 b. Accordingly, before being exhausted from the electronic apparatus 100, the heat dissipation airflow may perform the heat dissipation to the first heat generating element 130 or other heat generating sources located at the second area 110 d in the casing 110, so as to utilize the heat dissipation airflow more efficiently. In addition, besides performing the heat dissipation to the heat conducting module 140 and the first heat generating element 130 as described above, the heat dissipation airflow may further reduce a temperature of the casing 110, so as to prevent a discomfort one user may feel due to the casing 110 being too hot when the casing 110 is touched by the user.
  • More specifically, the heat conducting module 140 of the present embodiment includes a heat dissipation fin set 142 and a heat pipe 144. The heat pipe 144 is connected between the heat dissipation fin set 142 and the first heat generating element 130, so as to conduct heat generated by the first heat generating element 130 to the heat dissipation fin set 142. The heat dissipation fin set 142 is disposed at an exhaust side of the fan 120, so the heat dissipation airflow provided by the fan 120 may perform the heat dissipation to the heat dissipation fin set 142.
  • According to the present embodiment, the casing 110 has a sidewall 112, the air inlet 110 a and the air outlet 110 b are both formed on the sidewall 112 instead of a bottom portion of the casing 110. Accordingly, since the bottom portion of the casing 110 is not disposed with any openings, a modern design concept in preventing an overall appearance of the casing 110 being damaged may also be achieved.
  • As illustrated in FIG. 2, the electronic apparatus 100 of the present embodiment includes a separation structure 160. The separation structure 160 is disposed at a border between the first area 110 c and the second area 110 d to separate the first area 110 c and the second area 110 d. Based on above, the first area 110 c and the second area 110 d may be reliably separated, so the second area 110 d having the first heating element 130 may become a hot area with a higher temperature while the first area 110 c not having the first heat generating element 130 may become a cool area with a lower temperature, thereby ensuring that airflow sucked in by the fan 120 may have the lower temperature. A material of the separation structure 160 may be, for example, a sponge, in which an elastic deformation characteristic of the sponge may be used to separate the first area 110 c and the second area 110 d, reliably. In other embodiments, the separation structure 160 may also be other suitable materials, the invention is not limited thereto.
  • FIG. 3 is a schematic top view of an electronic apparatus according to another embodiment of the invention. Referring to FIG. 3, in an electronic apparatus 100′ of the present embodiment, disposition of the casing 110, the fan 120, the first heat generating element 130 and the heat conducting module 140 are identical to the same in the electronic apparatus 100 depicted in FIG. 1, so related description is omitted herein.
  • A difference between the electronic apparatus 100′ and the electronic apparatus 100 lies where: a separation structure 160′ of the electronic apparatus 100′ is disposed in the casing 110 surrounding the fan 120 and the air inlet 110 a, so as to surround and define a flow channel 160 a. The flow channel 160 a is connected between the air inlet 110 a and the fan 120 to ensure the airflow that enters the fan 120 is a cool air from the outside of casing 110, so as to further improve the heat dissipation efficiency of the fan 120.
  • FIG. 4 is a schematic top view of an electronic apparatus according to another embodiment of the invention. Referring to FIG. 4, in an electronic apparatus 100″ of the present embodiment, disposition of the casing 110, the fan 120, the first heat generating element 130, the heat conducting module 140 and the separation structure 160′ are identical to the same in the electronic apparatus 100′ depicted in FIG. 3, so it is omitted herein. A difference between the electronic apparatus 100″ and the electronic apparatus 100′ lies where: A separation structure 160″ is disposed in the casing 110 to surround and define a flow channel 160 b. The flow channel 160 b is connected between the fan 120 and the air outlet 110 b, so the heat dissipation airflow may be directed to reach the air outlet 110 b along a specific path to be exhausted from the casing 110. Accordingly, the heat dissipation airflow is prevented from being exhausted from an unexpected position (e.g., a keypad area) of the electronic apparatus 100″ which may discomfort the user. In addition, the electronic apparatus 100″ may further include a second heat generating element 130′, the second heat generating element 130′ is disposed inside of the flow channel 160 b whereas the first heat generating element 130 is disposed outside of the flow channel 160 b, and the heat dissipation airflow being directed by the separation structure 160″ is adapted to perform the heat dissipation to the second heat generating element 130′.
  • In view of above, a fan of the invention is disposed in a first area and adjacent to an air inlet of a casing, and a first heat generating element is disposed in a second area instead of the first area, so the fan may form a heat dissipation airflow by using air with a lower temperature from the outside or in the first area, such that a heat dissipation may be performed to a heat conducting module in the casing by using the heat dissipation airflow with the lower temperature, so as to improve a heat dissipation efficiency of an electronic apparatus. Moreover, after flowing through the fan located at the first area in the casing, the heat dissipation airflow may flow through the second area in the casing before being exhausted from the casing through the air outlet. Accordingly, before being exhausted from the electronic apparatus, the heat dissipation airflow may perform the heat dissipation to the first heat generating element or other heat generating sources located at the second area in the casing, so as to utilize the heat dissipation airflow more efficiently. In addition, besides performing the heat dissipation to the heat conducting module and the first heat generating element as described above, the heat dissipation airflow may further reduce a temperature of the casing, so as to prevent a discomfort the user may feel due to the casing being too hot when the casing is touched by the user. Furthermore, the air inlet and the air outlet are both formed on the sidewall instead of the bottom portion of the casing. Accordingly, air may not enter the electronic apparatus from the bottom portion of the electronic apparatus, so as to prevent dust from the outside to flow and gather at the bottom of the electronic apparatus along with flowing of the airflow.
  • Although the present invention has been described with reference to the above embodiments, it will be apparent to one of ordinary skill in the art that modifications to the described embodiments may be made without departing from the spirit of the invention. Accordingly, the scope of the invention will be defined by the attached claims and not by the above detailed descriptions.

Claims (9)

What is claimed is:
1. An electronic apparatus, comprising:
a casing having an air inlet and an air outlet, wherein an inner portion of the casing comprises a first area and a second area, the first area is connected to the air inlet, and the second area is connected to the air outlet;
a separation structure disposed at a border between the first area and the second area to separate the first area and second area;
a fan disposed in the first area and adjacent to the air inlet, wherein the fan is adapted to provide a heat dissipation airflow, the heat dissipation airflow flows through the air inlet, the first area, the second area and the air outlet sequentially;
a first heat generating element disposed in the second area; and
a heat conducting module connected between the fan and the first heat generating element.
2. The electronic apparatus of claim 1, wherein the heat dissipation airflow flows through the heat conducting module, the first heat generating element and the air outlet sequentially;
3. The electronic apparatus of claim 1, wherein the heat conducting module comprises a heat dissipation fin set and a heat pipe, the heat dissipation fin set is disposed at an exhaust side of the fan, and the heat pipe is connected between the heat dissipation fin set and the first heat generating element.
4. The electronic apparatus of claim 1, wherein the first heat generating element is a central processing unit or a graphic chip.
5. The electronic apparatus of claim 1, wherein the casing has a sidewall, the air inlet and the air outlet are formed on the sidewall.
6. The electronic apparatus of claim 1, wherein the separation structure is disposed in the casing to surround and define a flow channel, the flow channel is connected between the air inlet and the fan.
7. The electronic apparatus of claim 1, wherein the separation structure is disposed in the casing to surround and define a flow channel, the flow channel is connected between the fan and the air outlet.
8. The electronic apparatus of claim 7, further comprising a second heat generating element, wherein the second heat generating element is disposed inside of the flow channel.
9. The electronic apparatus of claim 7, wherein the first heat generating element is disposed outside of the flow channel.
US13/762,370 2012-03-22 2013-02-08 Electronic apparatus Abandoned US20130250514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/762,370 US20130250514A1 (en) 2012-03-22 2013-02-08 Electronic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261614498P 2012-03-22 2012-03-22
US13/762,370 US20130250514A1 (en) 2012-03-22 2013-02-08 Electronic apparatus

Publications (1)

Publication Number Publication Date
US20130250514A1 true US20130250514A1 (en) 2013-09-26

Family

ID=49196224

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/762,370 Abandoned US20130250514A1 (en) 2012-03-22 2013-02-08 Electronic apparatus
US13/794,809 Expired - Fee Related US9013871B2 (en) 2012-03-22 2013-03-12 Electronic device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/794,809 Expired - Fee Related US9013871B2 (en) 2012-03-22 2013-03-12 Electronic device

Country Status (3)

Country Link
US (2) US20130250514A1 (en)
CN (2) CN103327787A (en)
TW (2) TWI505073B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166057A1 (en) * 2016-12-14 2018-06-14 Samsung Electronics Co., Ltd. Electronic device with soundproof structure
CN111867319A (en) * 2019-04-28 2020-10-30 北京小米移动软件有限公司 Electronic equipment
US10969838B2 (en) * 2019-09-05 2021-04-06 Dell Products, L.P. Hybrid cooling system with multiple outlet blowers

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845805B2 (en) * 2010-07-29 2017-12-19 Dell Products, L.P. Dual operation centrifugal fan apparatus and methods of using same
CN110347229A (en) * 2014-02-18 2019-10-18 联想(北京)有限公司 Electronic equipment
CN204014385U (en) * 2014-07-17 2014-12-10 中兴通讯股份有限公司 A kind of heat abstractor
CN105451515A (en) * 2015-11-17 2016-03-30 杭州创联电子技术有限公司 Air channel heat dissipation device and heat dissipation method thereof
CN106812725B (en) * 2015-11-27 2019-07-23 英业达科技有限公司 Radiating subassembly
CN105357937A (en) * 2015-11-30 2016-02-24 英业达科技有限公司 Electronic device
US10433464B1 (en) * 2016-06-06 2019-10-01 ZT Group Int'l, Inc. Air duct for cooling a rear-mounted switch in a rack
SG10201609616TA (en) * 2016-09-06 2018-04-27 Apple Inc Electronic device with cooling fan
KR102613515B1 (en) * 2018-01-05 2023-12-13 삼성전자주식회사 Solid state drive apparatus and data storage system having the same
CN112739169B (en) * 2020-12-30 2022-09-16 深圳市荣力精密工业有限公司 Protective shell for electronic product easy to radiate heat
TWI763256B (en) * 2021-01-15 2022-05-01 宏碁股份有限公司 Heat dissipation system of portable electronic device
CN112817393B (en) * 2021-02-03 2022-10-11 东北石油大学 Petroleum geology and geophysical figure processing device and using method thereof
EP4096376A1 (en) * 2021-05-24 2022-11-30 Aptiv Technologies Limited Cooling device and heatsink assembly incorporating the same
JP7268124B1 (en) 2021-12-09 2023-05-02 レノボ・シンガポール・プライベート・リミテッド Electronics and cooling modules

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813149B2 (en) * 2001-06-29 2004-11-02 Intel Corporation High capacity air-cooling systems for electronic apparatus and associated methods
US7255532B2 (en) * 2004-10-08 2007-08-14 Wen-Chun Zheng Bi-directional blowers for cooling computers

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5704419A (en) * 1995-06-30 1998-01-06 International Business Machines Corporation Air flow distribution in integrated circuit spot coolers
US6459576B1 (en) * 1996-09-30 2002-10-01 Intel Corporation Fan based heat exchanger
US6111748A (en) * 1997-05-15 2000-08-29 Intel Corporation Flat fan heat exchanger and use thereof in a computing device
CN2459692Y (en) * 2000-11-30 2001-11-14 施水源 Flow guiding structure for fan
JP3530151B2 (en) * 2001-06-08 2004-05-24 株式会社東芝 Electronic device with built-in heating element and cooling device used for this electronic device
CN2530080Y (en) * 2001-12-03 2003-01-08 英业达股份有限公司 Heat radiation air guider for electronic device
JP4675666B2 (en) * 2005-04-15 2011-04-27 株式会社東芝 Electronics
CN2800357Y (en) * 2005-04-28 2006-07-26 仁宝电脑工业股份有限公司 Heat radiation module
CN2800356Y (en) * 2005-04-28 2006-07-26 仁宝电脑工业股份有限公司 Heat radiation module
TWI267346B (en) 2005-09-23 2006-11-21 Foxconn Tech Co Ltd Thermal module
US20080112127A1 (en) * 2006-11-09 2008-05-15 Michael Sean June Cooling system with angled blower housing and centrifugal, frusto-conical impeller
TWI378761B (en) * 2008-09-12 2012-12-01 Pegatron Corp Heat-dissipating device and method
TWM363612U (en) * 2008-11-05 2009-08-21 Power Data Comm Co Ltd Heat dissipating apparatus of laptop computer
TWI365254B (en) * 2009-09-08 2012-06-01 Sunonwealth Electr Mach Ind Co Dissipating fan comprises a frame, a stator, a fan
TW201230939A (en) * 2010-11-08 2012-07-16 Compal Electronics Inc Electronic apparatus
TWI479984B (en) * 2011-01-05 2015-04-01 Asustek Comp Inc Portable electronic device
CN202035251U (en) * 2011-04-25 2011-11-09 建准电机工业股份有限公司 Cooling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813149B2 (en) * 2001-06-29 2004-11-02 Intel Corporation High capacity air-cooling systems for electronic apparatus and associated methods
US7079388B2 (en) * 2001-06-29 2006-07-18 Intel Corporation Baffles for high capacity air-cooling systems for electronics apparatus
US7255532B2 (en) * 2004-10-08 2007-08-14 Wen-Chun Zheng Bi-directional blowers for cooling computers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180166057A1 (en) * 2016-12-14 2018-06-14 Samsung Electronics Co., Ltd. Electronic device with soundproof structure
EP3336655A1 (en) * 2016-12-14 2018-06-20 Samsung Electronics Co., Ltd. Electronic device with soundproof structure
KR20180068608A (en) * 2016-12-14 2018-06-22 삼성전자주식회사 Electronic device with soundproof structure
CN108227835A (en) * 2016-12-14 2018-06-29 三星电子株式会社 Electronic equipment with sound-insulating structure
US10741157B2 (en) * 2016-12-14 2020-08-11 Samsung Electronics Co., Ltd. Electronic device with soundproof structure
KR102568676B1 (en) * 2016-12-14 2023-08-22 삼성전자주식회사 Electronic device with soundproof structure
CN111867319A (en) * 2019-04-28 2020-10-30 北京小米移动软件有限公司 Electronic equipment
US10969838B2 (en) * 2019-09-05 2021-04-06 Dell Products, L.P. Hybrid cooling system with multiple outlet blowers

Also Published As

Publication number Publication date
TWI488031B (en) 2015-06-11
CN103327788B (en) 2015-12-02
CN103327788A (en) 2013-09-25
TW201351112A (en) 2013-12-16
CN103327787A (en) 2013-09-25
US9013871B2 (en) 2015-04-21
US20130250515A1 (en) 2013-09-26
TW201339813A (en) 2013-10-01
TWI505073B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
US20130250514A1 (en) Electronic apparatus
US8305758B2 (en) Heat-dissipating module
US9367104B2 (en) Electronic device and heat dissipation method
US8659891B2 (en) Heat dissipation system
US9179576B2 (en) Computer power supply
US11452232B2 (en) Electronic device
US8760862B2 (en) Heat dissipating device and portable electronic device using the same
TW201324097A (en) Heat dissipating system
CN105549699B (en) The connection expansion type computer installation to be radiated using heat dissipation channel
CN102316700A (en) Air guiding cover suitable for simultaneously dissipating heat of a plurality of electronic components and electronic device having air guiding cover
TWI651039B (en) Heat dissipation module and electronic device
US20140102670A1 (en) Heat dissipating apparatus
TW201325418A (en) Electronic device
US20090195981A1 (en) Heat dissipating air flow channel structure of electronic device
TWI555464B (en) Electronic device
JP2014085973A (en) Heat dissipation device and portable information equipment
CN102724851A (en) Heat-radiating device and heat-radiating system
US20140338868A1 (en) Heat dissipating system
TWM377851U (en) Portable electronic device and dissipation structure thereof
US20140363315A1 (en) Electronic device and air blower
TW201427582A (en) Heat dissipating apparatus for extending base
CN102933044B (en) Electronic installation and casing thereof
TW201407314A (en) Electronic device and heat dissipation module
US9600043B2 (en) Signal input device
JP2019021117A (en) Information processing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: COMPAL ELECTRONICS, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TSAO, KAI-HSIANG;WU, CHANG-YUAN;HUNG, JIA-YU;AND OTHERS;REEL/FRAME:029835/0255

Effective date: 20130206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION