US20130224462A1 - Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof - Google Patents

Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof Download PDF

Info

Publication number
US20130224462A1
US20130224462A1 US13/780,430 US201313780430A US2013224462A1 US 20130224462 A1 US20130224462 A1 US 20130224462A1 US 201313780430 A US201313780430 A US 201313780430A US 2013224462 A1 US2013224462 A1 US 2013224462A1
Authority
US
United States
Prior art keywords
units
composition
formula
independently
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/780,430
Other languages
English (en)
Inventor
Mark Adrianus Johannes van der Mee
Robert Dirk van de Grampel
Roland Sebastian Assink
Paul Dean Sybert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
SABIC Innovative Plastics IP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SABIC Innovative Plastics IP BV filed Critical SABIC Innovative Plastics IP BV
Priority to US13/780,430 priority Critical patent/US20130224462A1/en
Publication of US20130224462A1 publication Critical patent/US20130224462A1/en
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Assigned to SABIC GLOBAL TECHNOLOGIES B.V. reassignment SABIC GLOBAL TECHNOLOGIES B.V. CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: SABIC INNOVATIVE PLASTICS IP B.V.
Priority to US15/061,514 priority patent/US9994709B2/en
Priority to US15/989,572 priority patent/US20180273751A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • thermoplastic compositions having unexpectedly low smoke density, their methods of manufacture, and methods of use thereof.
  • the compositions are especially useful in the manufacture of components for mass transportation applications, such as rail.
  • Polycarbonates are useful in a wide variety of applications at least in part because of their good balance of properties, such as moldability, heat resistance and impact properties among others.
  • standards for flame retardancy properties such as flame spread, heat release, and smoke generation upon burning have become increasingly stringent, particularly in applications used in mass transportation (aircraft, trains, and ships), as well as building and construction.
  • EN-45545 a new harmonized fire standard for rail applications
  • This norm will impose stringent requirements on smoke density and heat release properties allowed for materials used in these applications.
  • Smoke density (Ds-4) in EN-45545 is the smoke density after 4 minutes determined in accordance with ISO 5659-2
  • heat release in EN-45545 is the maximum average rate of heat emission (MAHRE) determined in accordance with ISO 5660-1.
  • thermoplastic compositions that have excellent low smoke properties. It would be a further advantage if the compositions could be rendered low smoke without a significant properties detrimental effect on one or more of material cost, processability, and mechanical properties. It would be a still further advantage if the materials could be readily thermoformed or injection molded.
  • thermoplastic composition comprises, based on the total weight of the thermoplastic composition, 70 to 95 wt % of a polycarbonate copolymer comprising first repeating units and second repeating units, wherein the first repeating units are not the same as the second repeating units, and wherein the first repeating units are bisphenol carbonate units of the formula
  • R a and R b are each independently C 1-12 alkyl, C 1-12 alkenyl, C 3-8 cycloalkyl, or C 1-12 alkoxy, p and q are each independently 0 to 4, and X a is a single bond, —O—, —S—, —S(O)—, —S(O) 2 —, —C(O)—, a C 1-11 alkylidene of formula —C(R c )(R d )— wherein R c and R d are each independently hydrogen or C 1-10 alkyl, or a group of the formula —C( ⁇ R e )— wherein R e is a divalent C 1-10 hydrocarbon group; and the second repeating units comprise bisphenol carbonate units that are not the same as the first repeating bisphenol carbonate units, siloxane units, arylate ester units, or a combination of arylate ester units and siloxane units; and 5 to wt %
  • thermoplastic composition has a multiaxial impact energy, as measured according to ISO 6603 on a 3.2 mm thick disc within 20% of the same composition without the polyetherimide.
  • thermoplastic compositions comprises extruding or melt blending the components of the thermoplastic compositions to form the thermoplastic compositions.
  • an article comprises the thermoplastic compositions.
  • the article can be a component of a mass transportation vehicle, in particular a rail, aircraft, or marine vehicle.
  • a method of manufacture of an article comprises molding, extruding, or shaping the above-described thermoplastic composition to form the article.
  • FIG. 1 shows the effect of an increase in fractional concentration (wt %) of a polyetherimide in an ITR-PC copolymer on smoke density (Ds-4), indicating an interaction behavior;
  • FIG. 2 shows the effect of an increase in fractional concentration (wt %) of a poly(phenylsulfone) (PPSU) in an ITR-PC copolymer on smoke density (Ds-4), indicating the absence of interaction behavior;
  • PPSU poly(phenylsulfone)
  • FIG. 3 shows the effect of an increase in fractional concentration (wt %) of a polyetherimide in a PPPBP-BPA copolymer on smoke density (Ds-4), indicating an interaction behavior;
  • FIG. 4 shows the effect of the increase in fractional concentration (wt %) of a polyetherimide in a transparent PC-siloxane copolymer on smoke density (Ds-4), indicating an interaction behavior;
  • FIG. 5 shows the effect of the increase in fractional concentration (wt %) of a polyetherimide in a homopolycarbonate on smoke density (Ds-4), indicating an interaction behavior
  • FIG. 6 the effect of the increase in fractional concentration (wt %) of a polyetherimide in a combination of a PC-siloxane copolymer and a homopolycarbonate on smoke density (Ds-4), indicating an interaction behavior
  • FIG. 7 shows the effect of an increase in fractional concentration (wt %) of a polyetherimide in a combination of an ITR-PC copolymer and an ITR-PC-Si copolymer on smoke density (Ds-4), indicating an interaction behavior.
  • thermoplastic compositions having very low smoke density as well as low heat release can unexpectedly be obtained by combining certain polycarbonate copolymers with a small amount of a polyetherimide.
  • the inventors have discovered that the combination of the small amount of polyetherimide to certain polycarbonate copolymers results in a non-linear decrease in the smoke density (Ds-4) of the copolymers as determined in accordance with ISO 5659-2, in addition to decreasing the heat release (MAHRE) as determined in accordance with ISO 5660-1.
  • Ds-4 smoke density
  • MAHRE heat release
  • the thermoplastic composition can have a smoke density (Ds-4) of less than 300 as determined in accordance with ISO 5659-2, despite the much higher Ds-4 of the composition without polyetherimide.
  • the thermoplastic compositions can further have a heat release (MAHRE) of less than 90 as determined in accordance with ISO 5660-1.
  • thermoplastic compositions can further have excellent impact strength.
  • the thermoplastic compositions can also be formulated to have low melt viscosities, which renders them suitable for injection molding.
  • the compositions can further have very low color, and in particular white compositions can be obtained.
  • Such compositions are especially useful in the manufacture of large, low smoke, low heat release polycarbonate sheets that can be used, for example, in the manufacture of components in aircraft, train, marine, or other mass transportation applications, as well as components in high occupancy, low supervision structures.
  • the thermoplastic compositions contain a polycarbonate copolymer comprising first carbonate units and second units that are different from the first carbonate units.
  • the first carbonate units are bisphenol carbonate units derived from a bisphenol-type compound.
  • the second units can be bisphenol carbonate units different from the first units, siloxane units, arylate ester units, or a combination comprising at least one of the foregoing types of units.
  • a combination of first bisphenol carbonate units, arylate ester units, and siloxane units can be present as the second units.
  • the thermoplastic compositions further contain 10 to 30 wt % of a polyetherimide, present in an amount effective to provide a smoke density (Ds-4) of less than 300 as determined in accordance with ISO 5659-2 on 3 mm thick plaques.
  • polycarbonate and “polycarbonate copolymer” refers to compounds having first repeating first units that are bisphenol carbonate units of formula (1)
  • R a and R b are each independently C 1-12 alkyl, C 1-12 alkenyl, C 3-8 cycloalkyl, or C 1-12 alkoxy, p and q are each independently 0 to 4, and X a is a bridging group between the two arylene groups, and is a single bond, —O—, —S—, —S(O)—, —S(O) 2 —, —C(O)—, a C 1-11 alkylidene of the formula —C(R c )(R d )— wherein R c and R d are each independently hydrogen or C 1-10 alkyl, or a group of the formula —C( ⁇ R e )— wherein R e is a divalent C 1-10 hydrocarbon group.
  • Exemplary X a groups include methylene, ethylidene, neopentylidene, and isopropylidene.
  • the bridging group X a and the carbonate oxygen atoms of each C 6 arylene group can be disposed ortho, meta, or para (specifically para) to each other on the C 6 arylene group.
  • R a and R b are each independently a C 1-3 alkyl group, p and q are each independently 0 to 1, and X a is a single bond, —O—, —S(O)—, —S(O) 2 —, —C(O)—, a C 1-9 alkylidene of formula —C(R c )(R d )— wherein R c and R d are each independently hydrogen or C 1-8 alkyl, or a group of the formula —C( ⁇ R e )— wherein R e is a divalent C 1-9 hydrocarbon group.
  • R a and R b are each independently a methyl group
  • p and q are each independently 0 to 1
  • X a is a single bond, a C 1-7 alkylidene of formula —C(R c )(R d )— wherein R c and R d are each independently hydrogen or C 1-6 alkyl.
  • p and q is each 1
  • R c and R b are each a C 1-3 alkyl group, specifically methyl, disposed meta to the oxygen on each ring.
  • the bisphenol carbonate units (1) can be derived from bisphenol-A, where p and q are both 0 and X a is isopropylidene.
  • the polycarbonate units in the copolymers can be produced from dihydroxy compounds of the formula (2)
  • the bisphenol carbonate units (1) are generally produced from the corresponding bisphenol compounds of formula (3)
  • R a and R b , p and q, and X a are the same as in formula (1).
  • Some illustrative examples of specific bisphenol compounds that can be used to produce units (1) include 4,4′-dihydroxybiphenyl, bis(4-hydroxyphenyl)methane, 1,2-bis(4-hydroxyphenyl)ethane, 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane, 1,2,2-bis(3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3-ethyl-4-hydroxyphenyl)propane, 2,2-bis(3-n-propyl-4-hydroxyphenyl)propane, 2,2-bis(3-isopropyl-4-hydroxyphenyl)propane, 2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-t-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 2,2-bis(3-allyl-4-hydroxyphenyl)propane
  • bisphenol compounds that can be used in the production of bisphenol carbonate units (1) include 1,1-bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane (“bisphenol-A” or “BPA”), 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)n-butane, 2,2-bis(4-hydroxy-2-methylphenyl)propane, 1,1-bis(4-hydroxy-t-butylphenyl)propane, and combinations comprising at least one of the foregoing bisphenol compounds.
  • the polycarbonate copolymer further comprises second repeating units.
  • the second repeating units can be bisphenol carbonate units (provided that they are different from the bisphenol carbonate units (1)), arylate ester units, siloxane units, or a combination of arylate ester units and siloxane units.
  • the second units can be bisphenol carbonate units of formula (4)
  • R a and R b are each independently C 1-12 alkenyl, C 3-8 cycloalkyl, or C 1-12 alkoxy
  • p and q are each independently integers of 0 to 4
  • X b is C 2-32 bridging hydrocarbon group that is not the same as the X a in the polycarbonate copolymer.
  • the bridging group X b and the carbonate oxygen atoms of each C 6 arylene group can be disposed ortho, meta, or para (specifically para) to each other on the C 6 arylene group.
  • X b is a substituted or unsubstituted C 3-18 cycloalkylidene, a substituted or unsubstituted C 3-18 cycloalkylene, a substituted or unsubstituted C 12-25 alkylidene of formula —C(R c )R d )— wherein R c and R d are each independently hydrogen, C 1-24 alkyl, C 4-12 cycloalkyl, C 6-12 aryl, C 7-12 arylalkylene, C 1-12 heteroalkyl, or cyclic C 7-12 heteroarylalkyl, or a group of the formula —C( ⁇ R e )— wherein R e is a divalent C 12-31 hydrocarbon group.
  • Exemplary X b groups include cyclohexylmethylidene, 1,1-ethene, 2-[2.2.1]-bicycloheptylidene, cyclohexylidene, cyclopentylidene, cyclododecylidene, and adamantylidene.
  • X b is a substituted or unsubstituted C 5-32 alkylidene of formula —C(R c )(R d )— wherein R c and R d are each independently hydrogen, C 4-12 cycloalkyl, C 6-12 aryl, C 7-12 arylalkylene, C 1-12 heteroalkyl, a substituted or unsubstituted group of the formula —C( ⁇ R e )— wherein R e is a divalent C 12-31 hydrocarbyl, a substituted or unsubstituted C 5-18 cycloalkylidene, a substituted or unsubstituted C 5-18 cycloalkylene, a substituted or unsubstituted C 3-18 heterocycloalkylidene, or a group of the formula —B 1 -G-B 2 — wherein B 1 and B 2 are the same or different C 1-6 alkylene group and G is a C 3-12 cyclo
  • X b can be a substituted C 3-18 heterocycloalkylidene of formula (4a)
  • R r , R p , R q , and R t are each independently hydrogen, oxygen, or C 1-12 organic groups;
  • I is a direct bond, a carbon, or a divalent oxygen, sulfur, or —N(Z)— where Z is hydrogen, halogen, hydroxy, C 1-12 alkyl, C 1-12 alkoxy, or C 1-12 acyl;
  • h is 0 to 2
  • j is 1 or 2
  • i is an integer of 0 or 1
  • k is an integer of 0 to 3, with the proviso that at least two of R r , R p , R q , and R t taken together are a fused cycloaliphatic, aromatic, or heteroaromatic ring.
  • the ring as shown in formula (3) will have an unsaturated carbon-carbon linkage where the ring is fused.
  • the ring as shown in formula (6) contains 4 carbon atoms, when k is 2, the ring contains 5 carbon atoms, and when k is 3, the ring contains 6 carbon atoms.
  • two adjacent groups e.g., R q and R t taken together
  • R q and R t taken together form one aromatic group
  • R r and R p taken together form a second aromatic group.
  • R p can be a double-bonded oxygen atom, i.e., a ketone.
  • R a , R b , p, and q are as in formula (4), R 3 is each independently a C 1-6 alkyl group, j is 0 to 4, and R 4 is hydrogen, C 1-6 alkyl, phenyl optionally substituted with 1 to 5 C 1-6 alkyl groups.
  • the phthalimidine carbonate units are of formula (4c)
  • R 5 is hydrogen, phenyl optionally substituted with 1 to 5 C 1-6 alkyl groups, or C 1-6 alkyl.
  • R 5 is hydrogen, phenyl or methyl.
  • Carbonate units (4a) wherein R 5 is phenyl can be derived from 2-phenyl-3,3′-bis(4-hydroxy phenyl)phthalimidine (also known as N-phenyl phenolphthalein bisphenol, or “PPPBP”) (also known as 3,3-bis(4-hydroxyphenyl)-2-phenylisoindolin-1-one).
  • R a and R b are each independently C 1-12 alkyl, p and q are each independently 0 to 4, and R i is C 1-12 alkyl, phenyl, optionally substituted with 1 5 to C 1-10 alkyl, or benzyl optionally substituted with 1 to 5 C 1-10 alkyl.
  • R a and R b are each methyl, p and q are each independently 0 or 1, and R i is C 1-4 alkyl or phenyl.
  • Examples of bisphenol carbonate units (4) wherein X b is a substituted or unsubstituted C 3-18 cycloalkylidene include the cyclohexylidene-bridged, alkyl-substituted bisphenol of formula (4f)
  • R a and R b are each independently C 1-12 alkyl, R g is C 1-12 alkyl, p and q are each independently 0 to 4, and t is 0 to 10.
  • at least one of each of R a and R b are disposed meta to the cyclohexylidene bridging group.
  • R a and R b are each independently C 1-4 alkyl, R g is C 1-4 alkyl, p and q are each 0 or 1, and t is 0 to 5.
  • R a , R b , and R g are each methyl, r and s are each 0 or 1, and t is 0 or 3, specifically 0.
  • Examples of other bisphenol carbonate units (4) wherein X b is a substituted or unsubstituted C 3-18 cycloalkylidene include adamantyl units (4g) and units (4h)
  • R a and R b are each independently C 1-12 alkyl, and p and q are each independently 1 to 4. In a specific embodiment, at least one of each of R a and R b are disposed meta to the cycloalkylidene bridging group. In an embodiment, R a and R b are each independently C 1-3 alkyl, and p and q are each 0 or 1. In another specific embodiment, R a , R b are each methyl, p and q are each 0 or 1. Carbonates containing units (4b) to (4h) are useful for making polycarbonates with high glass transition temperatures (Tg) and high heat distortion temperatures.
  • Tg glass transition temperatures
  • Bisphenol carbonate units (4) are generally produced from the corresponding bisphenol compounds of formula (5)
  • R a , R b , p, q, and X b are the same as in formula (4).
  • bisphenol compounds of formula (5) include bis(4-hydroxyphenyl)diphenylmethane, 1,1-bis(4-hydroxy-t-butylphenyl)propane, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 6,6′-dihydroxy-3,3,3′,3′-tetramethylspiro(bis)indane (“spirobiindane bisphenol”), 2,6-dihydroxydibenzo-p-dioxin, 2,6-dihydroxythianthrene, 2,7-dihydroxyphenoxathiin, 2,7-dihydroxy-9,10-dimethylphenazine, 3,6-dihydroxydibenzofuran, 3,6-dihydroxydibenzothiophene, 2,7-dihydroxycarbazole, and 2,6-dihydroxythianthrene 3,3-bis(4-hydroxyphenyl)phthalimidine, 2-phenyl-3,3-bis(4-hydroxyphenyl)
  • the relative mole ratio of first bisphenol carbonate units (1) and second bisphenol carbonate units (4) can vary from 99:1 to 1:99, depending on the desired characteristics of the thermoplastic composition, including glass transition temperature (“Tg”), impact strength, ductility, flow, and like considerations.
  • Tg glass transition temperature
  • the mole ratio of units (1):units (4) can be from 90:10 to 10:90, from 80:20 to 20:80, from 70:30 to 30:70, or from 60:40 to 40:60.
  • the bisphenol-A units are generally present in an amount from 50 to 99 mole %, based on the total moles of units in the polycarbonate copolymer.
  • the mole ration of units (1) to units (4) can be from 99:1 to 50:50, or from 90:10 to 55:45.
  • carbonate units can be present in any of the polycarbonate copolymers described herein, in relatively small amounts, for example less than 20 mole %, less than 10 mole %, or less than 5 mole %, based on the total moles of units in the polycarbonate copolymer.
  • the other carbonate units can be derived from aliphatic or aromatic dihydroxy compounds having 1 to 32 carbon atoms, for example 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 6,6′-dihydroxy-3,3,3′,3′-tetramethylspiro(bis)indane (“spirobiindane bisphenol”), 2,6-dihydroxydibenzo-p-dioxin, 2,6-dihydroxythianthrene, 2,7-dihydroxyphenoxathin, 2,7-dihydroxy-9,10-dimethylphenazine, 3,6-dihydroxydibenzofuran, 3,6-dihydroxydibenzothiophene, 2,7-dihydroxycarbazole, and 2,6-dihydroxythianthrene.
  • a specific aromatic dihydroxy compound includes the monoaryl dihydroxy compounds of formula (6)
  • each R h is independently a halogen atom, a C 1-10 hydrocarbyl such as a C 1-10 alkyl group, a halogen-substituted C 1-10 alkyl group, a C 6-10 aryl group, or a halogen-substituted C 6-10 aryl group, and n is 0 to 4.
  • the halogen is usually bromine. In an embodiment, no halogens are present.
  • Specific monoaryl dihydroxy compounds (6) include resorcinol, substituted resorcinol compounds such as 5-methyl resorcinol, 5-ethyl resorcinol, 5-propyl resorcinol, 5-butyl resorcinol, 5-t-butyl resorcinol, 5-phenyl resorcinol, 5-cumyl resorcinol, 2,4,5,6-tetrafluoro resorcinol, 2,4,5,6-tetrabromo resorcinol, and the like; catechol; hydroquinone; and substituted hydroquinones such as 2-methyl hydroquinone, 2-ethyl hydroquinone, 2-propyl hydroquinone, 2-butyl hydroquinone, 2-t-butyl hydroquinone, 2-phenyl hydroquinone, 2-cumyl hydroquinone, 2,3,5,6-tetramethyl hydroquinone, 2,3,5,6-tetra-t-butyl
  • the polycarbonate copolymer comprises carbonate units of formulas (1) and (4), and less than 10 mole % of units derived from monoaryl dihydroxy compounds (6), i.e., monoaryl carbonate units of the formula (6a)
  • each R h is independently a halogen or C 1-10 hydrocarbon group, and n is 0 to 4. Specifically, each R h is independently a C 1-3 alkyl group, and n is 0 to 1, or n is 0. In another embodiment, no carbonate units other than units of formulas (1) and (4) are present in the polycarbonate copolymer.
  • Polycarbonates can be manufactured by processes such as interfacial polymerization and melt polymerization.
  • reaction conditions for interfacial polymerization can vary, an exemplary process generally involves dissolving or dispersing a dihydric phenol reactant in aqueous caustic soda or potash, adding the resulting mixture to a water-immiscible solvent medium, and contacting the reactants with a carbonate precursor in the presence of a catalyst such as, for example, a tertiary amine or a phase transfer catalyst, under controlled pH conditions, e.g., 8 to 10.
  • the water immiscible solvent can be, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, toluene, and the like.
  • Exemplary carbonate precursors include a carbonyl halide such as carbonyl bromide or carbonyl chloride, or a haloformate such as a bishaloformates of a dihydric phenol (e.g., the bischloroformates of bisphenol A, hydroquinone, or the like) or a glycol (e.g., the bishaloformate of ethylene glycol, neopentyl glycol, polyethylene glycol, or the like). Combinations comprising at least one of the foregoing types of carbonate precursors can also be used.
  • an interfacial polymerization reaction to form carbonate linkages uses phosgene as a carbonate precursor, and is referred to as a phosgenation reaction.
  • tertiary amines that can be used are aliphatic tertiary amines such as triethylamine and tributylamine, cycloaliphatic tertiary amines such as N,N-diethyl-cyclohexylamine, and aromatic tertiary amines such as N,N-dimethylaniline.
  • phase transfer catalysts that can be used are catalysts of the formula (R 3 ) 4 Q + X ⁇ , wherein each R 3 is the same or different, and is a C 1-10 alkyl group; Q is a nitrogen or phosphorus atom; and X is a halogen atom or a C 1-8 alkoxy group or C 6-18 aryloxy group.
  • phase transfer catalysts include (CH 3 (CH 2 ) 3 ) 4 N + X ⁇ , (CH 3 (CH 2 ) 3 ) 4 P + X ⁇ , (CH 3 (CH 2 ) 5 ) 4 N + X ⁇ , (CH 3 (CH 2 ) 6 ) 4 N + X ⁇ , (CH 3 (CH 2 ) 4 ) 4 N + X ⁇ , CH 3 (CH 3 (CH 2 ) 3 ) 3 N + X ⁇ , and CH 3 (CH 3 (CH 2 ) 2 ) 3 N + X ⁇ , wherein X is Cl ⁇ , Br ⁇ , a C 1-8 alkoxy group or a C 6-18 aryloxy group.
  • An effective amount of a phase transfer catalyst can be 0.1 to 10 wt %, or 0.5 to 2 wt %, each based on the weight of bisphenol in the phosgenation mixture.
  • melt processes can be used to make the polycarbonates.
  • Melt polymerization may be conducted as a batch process or as a continuous process.
  • the melt polymerization conditions used may comprise two or more distinct reaction stages, for example, a first reaction stage in which the starting dihydroxy aromatic compound and diaryl carbonate are converted into an oligomeric polycarbonate and a second reaction stage wherein the oligomeric polycarbonate formed in the first reaction stage is converted to high molecular weight polycarbonate.
  • Such “staged” polymerization reaction conditions are especially suitable for use in continuous polymerization systems wherein the starting monomers are oligomerized in a first reaction vessel and the oligomeric polycarbonate formed therein is continuously transferred to one or more downstream reactors in which the oligomeric polycarbonate is converted to high molecular weight polycarbonate.
  • the oligomeric polycarbonate produced has a number average molecular weight of about 1,000 to about 7,500 Daltons.
  • Mn number average molecular weight of the polycarbonate is increased to between about 8,000 and about 25,000 Daltons (using polycarbonate standard).
  • melt polymerization conditions is understood to mean those conditions necessary to effect reaction between a dihydroxy aromatic compound and a diaryl carbonate in the presence of a transesterification catalyst. Typically, solvents are not used in the process, and the reactants dihydroxy aromatic compound and the diaryl carbonate are in a molten state.
  • the reaction temperature can be about 100° C. to about 350° C., specifically about 180° C. to about 310° C.
  • the pressure may be at atmospheric pressure, supra-atmospheric pressure, or a range of pressures from atmospheric pressure to about 15 torr in the initial stages of the reaction, and at a reduced pressure at later stages, for example about 0.2 to about torr.
  • the reaction time is generally about 0.1 hours to about 10 hours.
  • the diaryl carbonate ester can be diphenyl carbonate, or an activated diphenyl carbonate having electron-withdrawing substituents on the aryl groups, such as bis(4-nitrophenyl)carbonate, bis(2-chlorophenyl)carbonate, bis(4-chlorophenyl)carbonate, bis(methyl salicyl)carbonate, bis(4-methylcarboxylphenyl)carbonate, bis(2-acetylphenyl)carboxylate, bis(4-acetylphenyl)carboxylate, or a combination comprising at least one of the foregoing.
  • an activated diphenyl carbonate having electron-withdrawing substituents on the aryl groups such as bis(4-nitrophenyl)carbonate, bis(2-chlorophenyl)carbonate, bis(4-chlorophenyl)carbonate, bis(methyl salicyl)carbonate, bis(4-methylcarboxylphenyl)carbonate, bis(2-ace
  • Catalysts used in the melt polymerization of polycarbonates can include alpha or beta catalysts.
  • Beta catalysts are typically volatile and degrade at elevated temperatures. Beta catalysts are therefore preferred for use at early low-temperature polymerization stages.
  • Alpha catalysts are typically more thermally stable and less volatile than beta catalysts.
  • the alpha catalyst can comprise a source of alkali or alkaline earth ions.
  • the sources of these ions include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, as well as alkaline earth hydroxides such as magnesium hydroxide and calcium hydroxide.
  • alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide
  • alkaline earth hydroxides such as magnesium hydroxide and calcium hydroxide.
  • Other possible sources of alkali and alkaline earth metal ions include the corresponding salts of carboxylic acids (such as sodium acetate) and derivatives of ethylene diamine tetraacetic acid (EDTA) (such as EDTA tetrasodium salt, and EDTA magnesium disodium salt).
  • carboxylic acids such as sodium acetate
  • EDTA ethylene diamine tetraacetic acid
  • alpha transesterification catalysts include alkali or alkaline earth metal salts of a non-volatile inorganic acid such as NaH 2 PO 3 , NaH 2 PO 4 , Na 2 HPO 3 , KH 2 PO 4 , CsH 2 PO 4 , Cs 2 HPO 4 , and the like, or mixed salts of phosphoric acid, such as NaKHPO 4 , CsNaHPO 4 , CsKHPO 4 , and the like. Combinations comprising at least one of any of the foregoing catalysts can be used.
  • a non-volatile inorganic acid such as NaH 2 PO 3 , NaH 2 PO 4 , Na 2 HPO 3 , KH 2 PO 4 , CsH 2 PO 4 , Cs 2 HPO 4 , and the like
  • mixed salts of phosphoric acid such as NaKHPO 4 , CsNaHPO 4 , CsKHPO 4 , and the like.
  • Possible beta catalysts can comprise a quaternary ammonium compound, a quaternary phosphonium compound, or a combination comprising at least one of the foregoing.
  • the quaternary ammonium compound can be a compound of the structure (R 4 ) 4 N + X ⁇ , wherein each R 4 is the same or different, and is a C 1-20 alkyl group, a C 4-20 cycloalkyl group, or a C 4-20 aryl group; and X ⁇ is an organic or inorganic anion, for example a hydroxide, halide, carboxylate, sulfonate, sulfate, formate, carbonate, or bicarbonate.
  • organic quaternary ammonium compounds include tetramethyl ammonium hydroxide, tetrabutyl ammonium hydroxide, tetramethyl ammonium acetate, tetramethyl ammonium formate, tetrabutyl ammonium acetate, and combinations comprising at least one of the foregoing. Tetramethyl ammonium hydroxide is often used.
  • the quaternary phosphonium compound can be a compound of the structure (R) 4 P + X ⁇ , wherein each R 5 is the same or different, and is a C 1-20 alkyl group, a C 4-20 cycloalkyl group, or a C 4-20 aryl group; and X ⁇ is an organic or inorganic anion, for example a hydroxide, halide, carboxylate, sulfonate, sulfate, formate, carbonate, or bicarbonate. Where X ⁇ is a polyvalent anion such as carbonate or sulfate it is understood that the positive and negative charges in the quaternary ammonium and phosphonium structures are properly balanced.
  • organic quaternary phosphonium compounds include tetramethyl phosphonium hydroxide, tetramethyl phosphonium acetate, tetramethyl phosphonium formate, tetrabutyl phosphonium hydroxide, tetrabutyl phosphonium acetate (TBPA), tetraphenyl phosphonium acetate, tetraphenyl phosphonium phenoxide, and combinations comprising at least one of the foregoing.
  • TBPA is often used.
  • the amount of alpha and beta catalyst used can be based upon the total number of moles of dihydroxy compound used in the polymerization reaction.
  • the ratio of beta catalyst, for example a phosphonium salt, to all dihydroxy compounds used in the polymerization reaction it is convenient to refer to moles of phosphonium salt per mole of the dihydroxy compound, meaning the number of moles of phosphonium salt divided by the sum of the moles of each individual dihydroxy compound present in the reaction mixture.
  • the alpha catalyst can be used in an amount sufficient to provide 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 8 moles, specifically, 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 7 moles of metal per mole of the dihydroxy compounds used.
  • the amount of beta catalyst (e.g., organic ammonium or phosphonium salts) can be 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 5 , specifically 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 4 moles per total mole of the dihydroxy compounds in the reaction mixture.
  • Branched polycarbonate blocks can be prepared by adding a branching agent during polymerization.
  • branching agents include polyfunctional organic compounds containing at least three functional groups selected from hydroxyl, carboxyl, carboxylic anhydride, haloformyl, and mixtures of the foregoing functional groups.
  • trimellitic acid trimellitic anhydride
  • trimellitic trichloride tris-p-hydroxy phenyl ethane
  • isatin-bis-phenol tris-phenol TC (1,3,5-tris((p-hydroxyphenyl)isopropyl)benzene)
  • tris-phenol PA (4(4(1,1-bis(p-hydroxyphenyl)-ethyl)alpha, alpha-dimethyl benzyl)phenol
  • 4-chloroformyl phthalic anhydride trimesic acid
  • benzophenone tetracarboxylic acid The branching agents can be added at a level of about 0.05 to about 5 wt %. Combinations comprising linear polycarbonates and branched polycarbonates can be used.
  • a chain stopper (also referred to as a capping agent) can be included during polymerization.
  • the chain stopper limits molecular weight growth rate, and so controls molecular weight in the polycarbonate.
  • Exemplary chain stoppers include certain mono-phenolic compounds, mono-carboxylic acid chlorides, and/or mono-chloroformates.
  • Mono-phenolic chain stoppers are exemplified by monocyclic phenols such as phenol and C 1 -C 22 alkyl-substituted phenols such as p-cumyl-phenol, resorcinol monobenzoate, and p- and tertiary-butyl phenol; and monoethers of diphenols, such as p-methoxyphenol.
  • monocyclic phenols such as phenol and C 1 -C 22 alkyl-substituted phenols
  • monoethers of diphenols such as p-methoxyphenol.
  • Alkyl-substituted phenols with branched chain alkyl substituents having 8 to 9 carbon atom can be specifically mentioned.
  • Certain mono-phenolic UV absorbers can also be used as a capping agent, for example 4-substituted-2-hydroxybenzophenones and their derivatives, aryl salicylates, monoesters of diphenols such as resorcinol monobenzoate, 2-(2-hydroxyaryl)-benzotriazoles and their derivatives, 2-(2-hydroxyaryl)-1,3,5-triazines and their derivatives, and the like.
  • Mono-carboxylic acid chlorides can also be used as chain stoppers.
  • monocyclic, mono-carboxylic acid chlorides such as benzoyl chloride, C 1 -C 22 alkyl-substituted benzoyl chloride, toluoyl chloride, halogen-substituted benzoyl chloride, bromobenzoyl chloride, cinnamoyl chloride, 4-nadimidobenzoyl chloride, and combinations thereof; polycyclic, mono-carboxylic acid chlorides such as trimellitic anhydride chloride, and naphthoyl chloride; and combinations of monocyclic and polycyclic mono-carboxylic acid chlorides. Chlorides of aliphatic monocarboxylic acids with less than or equal to about 22 carbon atoms are useful.
  • Functionalized chlorides of aliphatic monocarboxylic acids such as acryloyl chloride and methacryoyl chloride, are also useful.
  • mono-chloroformates including monocyclic, mono-chloroformates, such as phenyl chloroformate, alkyl-substituted phenyl chloroformate, p-cumyl phenyl chloroformate, toluene chloroformate, and combinations thereof.
  • the polycarbonate copolymers comprising carbonate units (1) and carbonate units (4) can have an intrinsic viscosity, as determined in chloroform at 25° C., of about 0.3 to about 1.5 deciliters per gram (dl/gm), specifically about 0.45 to about 1.0 dl/gm.
  • the polycarbonate copolymers can have a weight average molecular weight of about 10,000 to about 200,000 g/mol, specifically about 20,000 to about 100,000 g/mol, as measured by gel permeation chromatography (GPC), using a crosslinked styrene-divinylbenzene column and calibrated to polycarbonate references.
  • GPC samples are prepared at a concentration of about 1 mg per ml, and are eluted at a flow rate of about 1.5 ml per minute.
  • polycarbonate copolymers contain the first repeating bisphenol carbonate units (1), and repeating arylate ester units of formula (7)
  • Ar 1 is a C 6-32 hydrocarbyl group containing at least one aromatic group, e.g., a phenyl, naphthalene, anthracene, or the like.
  • Ar 1 is derived from an aromatic bisphenol as described above in connection with units (1) and (4), a monoaryl dihydroxy compound (6), or a combination comprising different bisphenol or monoaryl dihydroxy compounds.
  • arylate ester units (7) can be derived by reaction of isophthalic acid, terephthalic acid, or a combination thereof (referred to herein as a “phthalic acid”), with any of the aromatic bisphenols described above, a monoaryl dihydroxy compound (6), or a combination thereof.
  • the molar ratio of isophthalate to terephthalate can be 1:99 to 99:1, or 80:20 to 20:80, or 60:40 to 40:60.
  • the polycarbonate copolymers comprising first bisphenol carbonate units (1) and arylate ester units (7) can be alternating or block copolymers of formula (8)
  • R 1 and Ar 1 are as defined in formulas (1) and (7), respectively.
  • the copolymers are block copolymers containing carbonate blocks and ester blocks.
  • the weight ratio of total ester units to total carbonate units in the copolymers can vary broadly, for example from 99:1 to 1:99, or from 95:5 to 5:95, specifically from 90:10 to 10:90, or more specifically from 90:10 to 50:50, depending on the desired properties of the thermoplastic composition.
  • the molar ratio of isophthalate to terephthalate in the ester units of the copolymers can also vary broadly, for example from 0:100 to 100:0, or from 92:8 to 8:92, more specifically from 98:2 to 45:55, depending on the desired properties of the thermoplastic composition.
  • the weight ratio of total ester units to total carbonate can be 99:1 to 40:60, or 90:10 to 50:40, wherein the molar ratio of isophthalate to terephthalate is from 99:1 to 40:50, more specifically 98:2 to 45:55, depending on the desired properties of the thermoplastic composition.
  • Additional carbonate units derived from the dihydroxy compound used to form the arylate ester units (7) can also be present as described above, for example in amounts of less than 20 mole %, less than 10 mole %, or less than 5 mole %, based on the total moles of units in the polycarbonate copolymer. It is also possible to have additional arylate ester units present derived from reaction of the phthalic acid with the dihydroxy compound used to form the carbonate units, for example in amounts of less than 20 mole %, less than 10 mole %, less than 5 mole %, or less than 1 mole % based on the total moles of units in the copolymer.
  • the combination of such additional carbonate units and such additional arylate ester units are present in an amount of less than 20 mole %, less than 10 mole %, less than 5 mole %, or less than 1 mole % based on the total moles of units in the copolymer.
  • a specific poly(carbonate-arylate ester) is a poly(carbonate)-co-(bisphenol arylate ester) comprising carbonate units (1), specifically bisphenol carbonate units, even more specifically bisphenol-A carbonate units and repeating bisphenol arylate ester units.
  • Bisphenol arylate units comprise residues of phthalic acid and a bisphenol, for example a bisphenol (2).
  • the bisphenol arylate ester units are of formula (7a)
  • R a and R b are each independently C 1-12 alkyl, C 1-12 alkenyl, C 3-8 cycloalkyl, or C 1-12 alkoxy, p and q are each independently 0 to 4, and X a is a bridging group between the two arylene groups, and is a single bond, —O—, —S—, —S(O)—, —S(O) 2 —, —C(O)—, a C 1-11 alkylidene of the formula —C(R c )(R d )— wherein R c and R d are each independently hydrogen or C 1-10 alkyl, or a group of the formula —C( ⁇ R e )— wherein R e is a divalent C 1-10 hydrocarbon group.
  • p and q is each 1, and R a and R b are each a C 1-3 alkyl group, specifically methyl, disposed meta to the oxygen on each ring.
  • the bisphenol can be bisphenol-A, where p and q are both 0 and X a is isopropylidene.
  • the polycarbonate copolymer is a poly(bisphenol-A-phthalate-ester)-co-(bisphenol-A carbonate) of formula (8a)
  • x and y represent the weight percent of arylate-bisphenol-A ester units and bisphenol-A carbonate units, respectively. Generally, the units are present as blocks. In an embodiment, the weight percent of ester units y to carbonate units y in the copolymers is 50:50 to 99:1, or 55:45 to 90:10, or 75:25 to 95:5.
  • Copolymers of formula (8a) comprising to 45 wt % of carbonate units and 55 to 65 wt % of ester units, wherein the ester units have a molar ratio of isophthalate to terephthalate of 45:55 to 55:45 are often referred to as poly(carbonate-ester)s (PCE) and copolymers comprising 15 to 25 wt % of carbonate units and 75 to 85 wt % of ester units having a molar ratio of isophthalate to terephthalate from 98:2 to 88:12 are often referred to as poly(phthalate-carbonate)s (PPC).
  • PCE poly(carbonate-ester)s
  • PPC poly(phthalate-carbonate)s
  • a specific polycarbonate copolymer contains carbonate units (1) and repeating monoaryl-arylate ester units of formula (7b)
  • each R h is independently a halogen atom, a C 1-10 hydrocarbyl such as a C 1-10 alkyl group, a halogen-substituted C 1-10 alkyl group, a C 6-10 aryl group, or a halogen-substituted C 6-10 aryl group, and n is 0 to 4.
  • each R h is independently a C 1-4 alkyl, and n is 0 to 3, 0 to 1, or 0.
  • R 1 is as defined in formula (1) and R h , and n are as defined in formula (7b), and the mole ratio of x:m is 99:1 to 1:99, specifically 80:20 to 20:80, or 60:40 to 40:60.
  • the monoaryl-arylate ester unit (7b) is derived from the reaction of a combination of isophthalic and terephthalic diacids (or derivatives thereof) with resorcinol (or reactive derivatives thereof) to provide isophthalate-terephthalate-resorcinol (“ITR” ester units) of formula (7c)
  • ITR ester units are present in the polycarbonate copolymer in an amount greater than or equal to 95 mol %, specifically greater than or equal to 99 mol %, and still more specifically greater than or equal to 99.5 mol % based on the total moles of ester units in the copolymer.
  • Such (isophthalate-terephthalate-resorcinol)-carbonate copolymers (“ITR-PC”) can possess many desired features, including toughness, transparency, and weatherability. ITR-PC copolymers can also have desirable thermal flow properties.
  • ITR-PC copolymers can be readily manufactured on a commercial scale using interfacial polymerization techniques, which allow synthetic flexibility and composition specificity in the synthesis of the ITR-PC copolymers.
  • Certain ITR-PC copolymers have inherently low smoke density properties. In these copolymers, the addition of the polyetherimides significantly reduces the heat release of the copolymers.
  • a specific example of a poly(carbonate)-co-(monoaryl arylate ester) is a poly(bisphenol-A carbonate)-co-(isophthalate-terephthalate-resorcinol ester) of formula (8c)
  • m is 4 to 100, 4 to 90, 5 to 70, more specifically 5 to 50, or still more specifically 10 to 30, and the mole ratio of x:n is 99:1 to 1:99, specifically 90:10 to 10:90.
  • the ITR ester units are present in the poly(carbonate-arylate ester) copolymer in an amount greater than or equal to 95 mol %, specifically greater than or equal to 99 mol %, and still more specifically greater than or equal to 99.5 mol % based on the total moles of ester units.
  • Other carbonate units, other ester units, or a combination thereof can be present, in a total amount of 1 to 20 mole % based on the total moles of units in the copolymers, for example resorcinol carbonate units of the formula
  • poly(bisphenol-A carbonate)-co-(isophthalate-terephthalate-resorcinol ester) (8c) comprises 1 to 20 mol % of bisphenol-A carbonate units, 60-98 mol % of isophthalic acid-terephthalic acid-resorcinol ester units, and optionally 1 to 20 mol % of resorcinol carbonate units, isophthalic acid-terephthalic acid-bisphenol-A phthalate ester units, or a combination thereof.
  • the polycarbonate copolymers comprising arylate ester units are generally prepared from polyester blocks.
  • the polyester blocks can also be prepared by interfacial polymerization.
  • the reactive derivatives of the acid or diol such as the corresponding acid halides, in particular the acid dichlorides and the acid dibromides can be used.
  • isophthalic acid, terephthalic acid, or a combination comprising at least one of the foregoing acids isophthaloyl dichloride, terephthaloyl dichloride, or a combination comprising at least one of the foregoing dichlorides can be used.
  • the polyesters can also be obtained by melt-process condensation as described above, by solution phase condensation, or by transesterification polymerization wherein, for example, a dialkyl ester such as dimethyl terephthalate can be transesterified with the dihydroxy reactant using acid catalysis, to generate the polyester blocks.
  • Branched polyester blocks in which a branching agent, for example, a glycol having three or more hydroxyl groups or a trifunctional or multifunctional carboxylic acid has been incorporated, can be used.
  • a branching agent for example, a glycol having three or more hydroxyl groups or a trifunctional or multifunctional carboxylic acid has been incorporated, can be used.
  • the polycarbonate copolymers comprising arylate ester units can have an M w of 2,000 to 100,000 g/mol, specifically 3,000 to 75,000 g/mol, more specifically 4,000 to 50,000 g/mol, more specifically 5,000 to 35,000 g/mol, and still more specifically 17,000 to 30,000 g/mol.
  • Molecular weight determinations are performed using GPC using a cross linked styrene-divinyl benzene column, at a sample concentration of 1 milligram per milliliter, and as calibrated with polycarbonate standards. Samples are eluted at a flow rate of about 1.0 ml/min with methylene chloride as the eluent.
  • the polycarbonate copolymers are “PC-siloxane” copolymers that contain bisphenol carbonate units (1) and repeating siloxane units (also known as “diorganosiloxane units”).
  • the polysiloxane units are of formula (9)
  • each R is independently a C 1-13 monovalent hydrocarbyl group.
  • each R can independently be a C 1-13 alkyl group, C 1-13 alkoxy group, C 2-13 alkenyl group, C 2-13 alkenyloxy group, C 3-6 cycloalkyl group, C 3-6 cycloalkoxy group, C 6-14 aryl group, C 6-10 aryloxy group, C 7-13 arylalkyl group, C 7-13 arylalkoxy group, C 7-13 alkylaryl group, or C 7-13 alkylaryloxy group.
  • the foregoing groups can be fully or partially halogenated with fluorine, chlorine, bromine, or iodine, or a combination thereof.
  • the polysiloxane comprises R groups that have minimal hydrocarbon content.
  • an R group with a minimal hydrocarbon content is a methyl group.
  • E in formula (9) can vary widely depending on the type and relative amount of each component in the thermoplastic composition, whether the polymer is linear, branched or a graft copolymer, the desired properties of the composition, and like considerations.
  • E has an average value of 2 to 500, 2 to 200, or 5 to 100, 10 to 100, 10 to 80, 2 to 30, or 30 to 80.
  • E has an average value of 16 to 50, more specifically 20 to 45, and even more specifically 25 to 45.
  • E has an average value of 4 to 50, 4 to 15, specifically 5 to 15, more specifically 6 to 15, and still more specifically 7 to 10.
  • the polysiloxane units are structural units of formula (9a)
  • each R can independently be the same or different, and is as defined above; and each Ar can independently be the same or different, and is a substituted or unsubstituted C 6-30 compound containing an aromatic group, wherein the bonds are directly connected to the aromatic moiety.
  • the Ar groups in formula (9a) can be derived from a C 6-30 dihydroxy aromatic compound, for example a bisphenol compound as described above or a monoaryl dihydroxy compound (6) above. Combinations comprising at least one of the foregoing dihydroxy aromatic compounds can also be used.
  • Exemplary dihydroxy aromatic compounds are resorcinol (i.e., 1,3-dihydroxybenzene), 4-methyl-1,3-dihydroxybenzene, 5-methyl-1,3-dihydroxybenzene, 4,6-dimethyl-1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 1,1-bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)octane, 1,1-bis(4-hydroxyphenyl)propane, 1,1-bis(4-hydroxyphenyl)n-butane, 2,2-bis(4-hydroxy-1-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)cyclohexane, bis(4-hydroxyphenyl sulfide), and 1,1-bis(4-
  • dihydroxy aromatic compound is unsubstituted, or is does not contain non-aromatic hydrocarbyl substituents such as alkyl, alkoxy, or alkylene substituents.
  • the polysiloxane units are of the formula (9a-1)
  • E has an average value as described above, specifically an average value of 2 to 200.
  • polydiorganosiloxane units are units of formula (9b)
  • R and E are as described for formula (9), and each R 2 is independently a divalent C 1-30 alkylene or C 7-30 arylene-alkylene.
  • R 2 is C 7-30 arylene-alkylene
  • the polydiorganosiloxane units are of formula (9b-1)
  • R and E are as defined for formula (9), and each R 3 is independently a divalent C 2-8 aliphatic group.
  • Each M in formula (25) can be the same or different, and can be a halogen, cyano, nitro, C 1-8 alkylthio, C 1-8 alkyl, C 1-8 alkoxy, C 2-8 alkenyl, C 2-8 alkenyloxy group, C 3-8 cycloalkyl, C 3-8 cycloalkoxy, C 6-10 aryl, C 6-10 aryloxy, C 7-12 arylalkyl, C 7-12 arylalkoxy, C 7-12 alkylaryl, or C 7-12 alkylaryloxy, wherein each n is independently 0, 1, 2, 3, or 4.
  • M is bromo or chloro, an alkyl group such as methyl, ethyl, or propyl, an alkoxy group such as methoxy, ethoxy, or propoxy, or an aryl group such as phenyl, chlorophenyl, or tolyl;
  • R 3 is a dimethylene, trimethylene or tetramethylene group; and
  • R is a C 1-8 alkyl, haloalkyl such as trifluoropropyl, cyanoalkyl, or aryl such as phenyl, chlorophenyl or tolyl.
  • R is methyl, or a combination of methyl and trifluoropropyl, or a combination of methyl and phenyl.
  • M is methoxy, n is 0 or 1
  • R 3 is a divalent C 1-3 aliphatic group, and R is methyl.
  • polysiloxane units are of formula (9b-2)
  • polysiloxane units are of formula (9b-3)
  • E has an average value as defined above, specifically an average value of 5 to 100, 2 to 30, or 30 to 80.
  • the relative amount of carbonate units (1) and polysiloxane units (9) in the PC-siloxane copolymers depends on the desired properties of the thermoplastic composition, such as impact, smoke density, heat release, and melt viscosity.
  • the polycarbonate copolymer is selected to have an average value of E that provides good impact and/or transparency properties, as well as to provide the desired weight percent of siloxane units in the thermoplastic composition.
  • the polycarbonate copolymers can comprise siloxane units in an amount of 0.3 to 30 weight percent (wt %), specifically 0.5 to 25 wt %, or 0.5 to 15 wt %, based on the total weight of the polymers in the thermoplastic composition, with the proviso that the siloxane units are provided by polysiloxane units covalently bonded in the polymer backbone of the polycarbonate copolymer.
  • a specific PC-siloxane comprises first carbonate units (1) derived from bisphenol-A, and second repeating siloxane units (9b-2), (9b-3), or a combination thereof.
  • This polycarbonate copolymer can comprise the siloxane units in an amount of 0.1 to 25 weight percent (wt %), 0.2 to 10 wt %, 0.2 to 6 wt % 0.2 to 5 wt %, or 0.25 to 2 wt %, based on the total weight of the polycarbonate copolymer, with the proviso that the siloxane units are covalently bound to the polymer backbone of the polycarbonate copolymer.
  • the remaining units are bisphenol units (1).
  • the PC-siloxane copolymers can have an intrinsic viscosity, as determined in chloroform at 25° C., of 0.3 to 1.5 deciliters per gram (dl/g), specifically 0.45 to 1.0 dl/g.
  • the PC-siloxane copolymers can have a weight average molecular weight (M w ) of 10,000 to 100,000 g/mol, as measured by gel permeation chromatography (GPC) using a cross linked styrene-divinyl benzene column, at a sample concentration of 1 milligram per milliliter, and as calibrated with polycarbonate standards.
  • M w weight average molecular weight
  • the polycarbonate copolymers comprise bisphenol carbonate units (1) and second units comprising a combination of the bisphenol carbonate units (4), the ester units (7), and the polysiloxane units (9).
  • a polycarbonate copolymer can comprise first bisphenol carbonate units (1), second bisphenol carbonate units (4) different from the first carbonate units, and either ester units (7) or siloxane units (9).
  • the polycarbonate copolymer comprises first bisphenol carbonate units (1), arylate ester units (7), and siloxane units (9).
  • the polycarbonate copolymers comprise comprises first bisphenol carbonate units (1), arylate-monoaryl ester units (7b), specifically ITR ester units (7c), and siloxane units (9).
  • these polymers are referred to herein as “PC-ITR-siloxane” copolymers.
  • the PC-ITR-siloxane copolymers comprise 1 to 40 mol %, or 1 to 20 mol % of first bisphenol carbonate units (1), 50 to 95 mol % of ITR ester units (7c), and an amount of polysiloxane units (9b), specifically (9b-1), even more specifically (9b-1), (9b-2), or a combination thereof effective to provide 0.1 to 10 wt % of siloxane units, each based on the total copolymer.
  • the PC-ITR-siloxane copolymers can comprise 1 to 20 mol % of bisphenol-A carbonate units, 60 to 90 mole % of ITR ester units, and an amount of polysiloxane units (9b-2), (9b-3), or a combination thereof effective to provide 0.1 to 10 wt % of siloxane units, each based on the total copolymer.
  • the polycarbonate copolymers comprising first bisphenol carbonate units (1), monoaryl-arylate ester units (7b), such as ITR units (7c), and siloxane units (9) can further optionally comprise small amounts of other carbonate units, for example 1 to 20 mole %, of other carbonate units, based on the total moles of units in the copolymers.
  • the other carbonate unit is derived from monoaryl dihydroxy compound (6).
  • Other arylate ester units can optionally be present, for example 1 to 20 mole % of arylate ester-bisphenol units (7b), based on the total moles of units in the copolymers.
  • a combination of the other carbonate units and other ester units can be present, wherein the total amount of the combination is 1 to 20 mole %.
  • the ITR-PC-siloxane copolymers can further optionally comprise 1 to 20 mole % of resorcinol carbonate units, 1 to mole % of bisphenol-A arylate ester units, each based on the total moles of units in the copolymers.
  • the ITR-PC-siloxane copolymer can comprise 1 to 40 mol % of bisphenol-A carbonate units, 60 to 98 mol % of isophthalic acid-terephthalic acid-resorcinol ester units, and 1 to 20 mol % of resorcinol carbonate units, isophthalic acid-terephthalic acid-bisphenol-A ester units, or a combination thereof.
  • these polycarbonate copolymers can comprise siloxane units, specifically polysiloxane units (9b-2), (9b-3), or a combination thereof in an amount effective to provide 0.1 to 25 wt %, 0.2 to 10 wt %, 0.2 to 6 wt % 0.2 to 5 wt %, or 0.25 to 2 wt % of siloxane units, based on the total weight of the polycarbonate copolymer, with the proviso that the siloxane units are covalently bound to the polymer backbone of the polycarbonate copolymer.
  • the ITR-PC-siloxane copolymers can have an intrinsic viscosity, as determined in chloroform at 25° C., of 0.3 to 1.5 deciliters per gram (dl/g), specifically 0.45 to 1.0 dl/g.
  • the PC-siloxane copolymers can have a weight average molecular weight (M w ) of 10,000 to 100,000 g/mol, as measured by gel permeation chromatography (GPC) using a cross linked styrene-divinyl benzene column, at a sample concentration of I milligram per milliliter, and as calibrated with polycarbonate standards.
  • M w weight average molecular weight
  • the low smoke density thermoplastic compositions comprise the above-described polycarbonate copolymers, alone or in combination, and 5 to 30 wt % of a polyetherimide, based on the total weight of the thermoplastic composition.
  • the polyetherimide is of formula (10)
  • R is a substituted or unsubstituted divalent organic group having 2 to 20 carbon atoms, for example a substituted or unsubstituted aromatic hydrocarbon group having 6 to 20 carbon atoms or a halogenated derivative thereof: a substituted or unsubstituted, straight or branched chain alkylene group having 2 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene groups having 3 to 20 carbon atoms, or a divalent group of formula (11)
  • Q is —O—, —S—, —C(O)—, —SO 2 —, —SO—, or —C y H 2y — wherein y is an integer from 1 to 5 or a halogenated derivative thereof.
  • the group Z in formula (10) is an aromatic C 1-24 monocyclic or polycyclic group optionally substituted with 1 to 6 C 1-8 alkyl groups, 1 to 8 halogen atoms, or a combination thereof, wherein the divalent bonds of the —O—Z—O— group are in the 3,3′,3,4′, 4,3′, or the 4,4′ positions.
  • R in formula (10) is a divalent radical of one of the following formulas
  • Q 1 is —O—, —S—, —C(O)—, —SO 2 —, —SO—, or —C y H 2y — wherein y is an integer from 1 to 5.
  • y is an integer from 1 to 5.
  • Polyetherimides can be obtained by polymerization of an aromatic bisanhydride of formula (13)
  • aromatic bisanhydrides (38) include 3,3-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)benzophenone dianhydride; 4,4′-bis(3,4-dicarboxyphenoxy)diphenyl sulfone dianhydride; 2,2-bis[4-(2,3-dicarboxyphenoxy)phenyl]propane dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)diphenyl ether dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)diphenyl sulfide dianhydride; 4,4′-bis(2,3-dicarboxyphenoxy)diphen
  • diamines H 2 N—R—NH 2 include ethylenediamine, propylenediamine, trimethylenediamine, diethylenetriamine, triethylenetetramine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, 1,12-dodecanediamine, 1,18-octadecanediamine, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 4-methylnonamethylenediamine, 5-methylnonamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 2,2-dimethylpropylenediamine, N-methyl-bis(3-aminopropyl)amine, 3-methoxyhexamethylenediamine, 1,2-bis(3-aminopropoxy)ethane, bis(3-aminopropyl)sul
  • thermoplastic compositions can include various other polymers to adjust the properties of the thermoplastic compositions, with the proviso that the other polymers are selected so as to not adversely affect the desired properties of the thermoplastic composition significantly, in particular low smoke density and low heat release.
  • a polycarbonate copolymer as described above and a homopolycarbonate such as a bisphenol-A homopolycarbonate can still provide thermoplastic compositions having the required low smoke density.
  • polymers include an impact modifier such as natural rubber, fluoroelastomers, ethylene-propylene rubber (EPR), ethylene-butene rubber, ethylene-propylene-diene monomer rubber (EPDM), acrylate rubbers, hydrogenated nitrile rubber (HNBR) silicone elastomers, and elastomer-modified graft copolymers such as styrene-butadiene-styrene (SBS), styrene-butadiene rubber (SBR), styrene-ethylene-butadiene-styrene (SEBS), acrylonitrile-butadiene-styrene (ABS), acrylonitrile-ethylene-propylene-diene-styrene (AES), styrene-isoprene-styrene (SIS), methyl methacrylate-butadiene-styrene (MBS), high rubber graft (HRG), and the
  • such other polymers provide less than 50 wt %, less than 40 wt %, less than 30 wt %, less than wt %, or less than 10 wt % of the total composition.
  • no other polymers are present.
  • no polymers containing halogen are present in the thermoplastic compositions.
  • the thermoplastic compositions can include various additives ordinarily incorporated into flame retardant compositions having low smoke density and low heat release, with the proviso that the additive(s) are selected so as to not adversely affect the desired properties of the thermoplastic composition significantly, in particular low smoke density and low heat release.
  • additives can be mixed at a suitable time during the mixing of the components for forming the composition.
  • Exemplary additives include fillers, reinforcing agents, antioxidants, heat stabilizers, light stabilizers, ultraviolet (UV) light stabilizers, plasticizers, lubricants, mold release agents, antistatic agents, colorants such as such as titanium dioxide, carbon black, and organic dyes, surface effect additives, radiation stabilizers, additional flame retardants, and anti-drip agents.
  • a combination of additives can be used.
  • the additives are used in the amounts generally known to be effective.
  • the total amount of additives is generally 0.01 to parts per parts per hundred parts by weight of the polymers (PHR).
  • pigments such as titanium dioxide produces white compositions, which are commercially desirable.
  • Pigments such as titanium dioxide (or other mineral fillers) can be present in the thermoplastic compositions in amounts of 0 to 12 PHR, 0.1 to 9 PHR, 0.5 to 5 PHR, or 0.5 to 3 PHR.
  • antioxidant additives include organophosphites such as tris(nonyl phenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butylphenyl)pentaerythritol diphosphite, distearyl pentaerythritol diphosphite; alkylated monophenols or polyphenols; alkylated reaction products of polyphenols with dienes, such as tetrakis[methylene(3,5-di-tert-butyl-4-hydroxyhydrocinnamate)]methane; butylated reaction products of para-cresol or dicyclopentadiene; alkylated hydroquinones; hydroxylated thiodiphenyl ethers; alkylidene-bisphenols; benzyl compounds; esters of beta-(3,5-di-tert-butyl-4-hydroxyphenyl
  • Exemplary heat stabilizer additives include organophosphites such as triphenyl phosphite, tris-(2,6-dimethylphenyl)phosphite, and tris-(mixed mono- and di-nonylphenyl)phosphite; phosphonates such as dimethylbenzene phosphonate, phosphates such as trimethyl phosphate; or combinations comprising at least one of the foregoing heat stabilizers. Heat stabilizers are used in amounts of 0.01 to 0.1 PHR.
  • Light stabilizers and/or ultraviolet light (UV) absorbing additives can also be used.
  • Exemplary light stabilizer additives include benzotriazoles such as 2-(2-hydroxy-5-methylphenyl)benzotriazole, 2-(2-hydroxy-5-tert-octylphenyl)-benzotriazole and 2-hydroxy-4-n-octoxy benzophenone, or combinations comprising at least one of the foregoing light stabilizers.
  • Light stabilizers are used in amounts of 0.01 to 5 PHR.
  • UV absorbing additives include hydroxybenzophenones; hydroxybenzotriazoles; hydroxybenzotriazines; cyanoacrylates; oxanilides; benzoxazinones; 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol (CYASORB® 5411); 2-hydroxy-4-n-octyloxybenzophenone (CYASORB® 531); 2-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)-phenol (CYASORB® 1164); 2,2′-(1,4-phenylene)bis(4H-3,1-benzoxazin-4-one) (CYASORB® UV-3638); 1,3-bis[(2-cyano-3,3-diphenylacryloyl)oxy]-2,2-bis[[(2-cyano-3,3-diphenylacrylate
  • Plasticizers, lubricants, and/or mold release agents can also be used.
  • phthalic acid esters such as dioctyl-4,5-epoxy-hexahydrophthalate; tris-(octoxycarbonylethyl)isocyanurate; tristearin; poly-alpha-olefins; epoxidized soybean oil; silicones, including silicone oils; esters, for example, fatty acid esters such as alkyl stearyl esters, e.g., methyl stearate, stearyl stearate, pentaerythritol tetrastearate, and the like; combinations of methyl stearate and hydrophilic and hydrophobic nonionic surfactants comprising polyethylene glycol polymers, polypropylene glycol polymers, poly(ethylene glycol-co-propylene glycol) copolymers, or a combination comprising at least one of the foregoing glycol polymers
  • Flame retardant salts are not needed to obtain the desired low smoke and low heat release properties.
  • Examples of flame retardant salts include of C 1-16 alkyl sulfonate salts such as potassium perfluorobutane sulfonate (Rimar salt), potassium perfluorooctane sulfonate, tetraethylammonium perfluorohexane sulfonate, and potassium diphenylsulfone sulfonate (KSS); salts such as Na 2 CO 3 , K 2 CO 3 , MgCO 3 , CaCO 3 , and BaCO 3 , phosphate salts, or fluoro-anion complexes such as Li 3 AlF 6 , BaSiF 6 , KBF 4 , K 3 AlF 6 , KAF 4 , K 2 SiF 6 , and/or Na 3 AlF 6 .
  • no flame retardant salts are present.
  • flame retardant salts are present in amounts of 0.01
  • Organic flame retardants can be present, for example organic compounds that include phosphorus, nitrogen, bromine, and/or chlorine. However, halogenated flame retardants are generally avoided, such that the thermoplastic composition can be essentially free of chlorine and bromine. “Essentially free of chlorine and bromine” as used herein means having a bromine and/or chlorine content of less than or equal to 100 parts per million by weight (ppm), less than or equal to 75 ppm, or less than or equal to 50 ppm, based on the total parts by weight of the composition, excluding any filler.
  • the thermoplastic compositions can further comprise an organophosphorus flame retardant in an amount effective to provide 0.1 to 1.0 wt % phosphorus, based on the weight of the composition.
  • the organophosphorus compound specifically BPADP or RDP can be present in an amount of 2 to 10 wt %, which is effective to provide 0.1 to 1.0 wt % phosphorus based on the total weight of the composition.
  • Organophosphorus compounds include aromatic organophosphorus compounds having at least one organic aromatic group and at least one phosphorus-containing group, as well as organic compounds having at least one phosphorus-nitrogen bond.
  • the aromatic group can be a substituted or unsubstituted C 3-30 group containing one or more of a monocyclic or polycyclic aromatic moiety (which can optionally contain with up to three heteroatoms (N, O, P, S, or Si)) and optionally further containing one or more nonaromatic moieties, for example alkyl, alkenyl, alkynyl, or cycloalkyl.
  • the aromatic moiety of the aromatic group can be directly bonded to the phosphorus-containing group, or bonded via another moiety, for example an alkylene group.
  • the aromatic moiety of the aromatic group can be directly bonded to the phosphorus-containing group, or bonded via another moiety, for example an alkylene group.
  • the aromatic group is the same as an aromatic group of the polycarbonate backbone, such as a bisphenol group (e.g., bisphenol-A), a monoarylene group (e.g., a 1,3-phenylene or a 1,4-phenylene), or a combination comprising at least one of the foregoing.
  • the phosphorus-containing group can be a phosphate (P( ⁇ O)(OR) 3 ), phosphite (P(OR) 3 ), phosphonate (RP( ⁇ O)(OR) 2 ), phosphinate (R 2 P( ⁇ O)(OR)), phosphine oxide (R 3 P( ⁇ O)), or phosphine (R 3 P), wherein each R in the foregoing phosphorus-containing groups can be the same or different, provided that at least one R is an aromatic group.
  • a combination of different phosphorus-containing groups can be used.
  • the aromatic group can be directly or indirectly bonded to the phosphorus, or to an oxygen of the phosphorus-containing group (i.e., an ester).
  • the aromatic organophosphorus compound is a monomeric phosphate.
  • Representative monomeric aromatic phosphates are of the formula (GO) 3 P ⁇ O, wherein each G is independently an alkyl, cycloalkyl, aryl, alkylarylene, or arylalkylene group having up to 30 carbon atoms, provided that at least one G is an aromatic group. Two of the G groups can be joined together to provide a cyclic group.
  • G corresponds to a monomer used to form the polycarbonate, e.g., resorcinol.
  • Exemplary phosphates include phenyl bis(dodecyl)phosphate, phenyl bis(neopentyl)phosphate, phenyl bis(3,5,5′-trimethylhexyl)phosphate, ethyl diphenyl phosphate, 2-ethylhexyl di(p-tolyl)phosphate, bis(2-ethylhexyl)p-tolyl phosphate, tritolyl phosphate, bis(2-ethylhexyl)phenyl phosphate, tri(nonylphenyl)phosphate, bis(dodecyl)p-tolyl phosphate, dibutyl phenyl phosphate, 2-chloroethyl diphenyl phosphate, p-tolyl bis(2,5,5′-trimethylhexyl)phosphate, 2-ethylhexyl diphenyl phosphate, and the like.
  • a specific aromatic phosphate is one
  • Di- or polyfunctional aromatic phosphorus-containing compounds are also useful, for example, compounds of formula (14)
  • each G 2 is independently a hydrocarbon or hydrocarbonoxy having 1 to 30 carbon atoms.
  • G corresponds to a monomer used to form the polycarbonate, e.g., resorcinol.
  • Specific aromatic organophosphorus compounds have two or more phosphorus-containing groups, and are inclusive of acid esters of formula (15)
  • R 16 , R 17 , R 18 , and R 19 are each independently C 1-8 alkyl, C 5-6 cycloalkyl, C 6-20 aryl, or C 7-12 arylalkylene, each optionally substituted by C 1-12 alkyl, specifically by C 1-4 alkyl and X is a mono- or poly-nuclear aromatic C 6-30 moiety or a linear or branched C 2-30 aliphatic radical, which can be OH-substituted and can contain up to 8 ether bonds, provided that at least one of R 16 , R 17 , R 18 , R 19 , and X is an aromatic group.
  • R 16 , R 17 , R 18 , and R 19 are each independently C 1-4 alkyl, naphthyl, phenyl(C 1-4 )alkylene, or aryl groups optionally substituted by C 1-4 alkyl. Specific aryl moieties are cresyl, phenyl, xylenyl, propylphenyl, or butylphenyl.
  • X in formula (15) is a mono- or poly-nuclear aromatic C 6-30 moiety derived from a diphenol.
  • n is each independently 0 or 1; in some embodiments n is equal to 1.
  • q is from 0.5 to 30, from 0.8 to 15, from 1 to 5, or from 1 to 2.
  • X can be represented by the following divalent groups (16), or a combination comprising one or more of these divalent groups.
  • each of R 16 , R 17 , R 18 , and R 19 can be aromatic, i.e., phenyl, n is 1, and p is 1-5, specifically 1-2.
  • at least one of R 16 , R 17 , R 18 , R 19 , and X corresponds to a monomer used to form the polycarbonate, e.g., bisphenol-A or resorcinol.
  • X is derived especially from resorcinol, hydroquinone, bisphenol-A, or diphenylphenol
  • R 16 , R 17 , R 18 , R 19 is aromatic, specifically phenyl.
  • a specific aromatic organophosphorus compound of this type is resorcinol bis(diphenyl phosphate), also known as RDP.
  • Another specific class of aromatic organophosphorus compounds having two or more phosphorus-containing groups are compounds of formula (17)
  • R 16 , R 17 , R 18 , R 19 , n, and q are as defined for formula (19) and wherein Z is C 1-7 alkylidene, C 1-7 alkylene, C 5-12 cycloalkylidene, —O—, —S—, —SO 2 —, or —CO—, specifically isopropylidene.
  • a specific aromatic organophosphorus compound of this type is bisphenol-A bis(diphenyl phosphate), also known as BPADP, wherein R 16 , R 17 , R 18 , and R 19 are each phenyl, each n is 1, and q is from 1 to 5, from 1 to 2, or 1.
  • Organophosphorus compounds containing at least one phosphorus-nitrogen bond includes phosphazenes, phosphorus ester amides, phosphoric acid amides, phosphonic acid amides, phosphinic acid amides, and tris(aziridinyl)phosphine oxide.
  • each R w is independently a C 1-12 alkyl, alkenyl, alkoxy, aryl, aryloxy, or polyoxyalkylene group.
  • at least one hydrogen atom of these groups can be substituted with a group having an N, S, O, or F atom, or an amino group.
  • each R w can be a substituted or unsubstituted phenoxy, an amino, or a polyoxyalkylene group.
  • Any given R w can further be a crosslink to another phosphazene group.
  • Exemplary crosslinks include bisphenol groups, for example bisphenol A groups.
  • Examples include phenoxy cyclotriphosphazene, octaphenoxy cyclotetraphosphazene decaphenoxy cyclopentaphosphazene, and the like.
  • a combination of different phosphazenes can be used.
  • a number of phosphazenes and their synthesis are described in H. R Allcook, “Phosphorus-Nitrogen Compounds” Academic Press (1972), and J. E. Mark et al., “Inorganic Polymers” Prentice-Hall International, Inc. (1992).
  • the thermoplastic compositions can comprise from 0.3 to 8.5 wt %, or 0.5 to 8.0 wt %, or 3.5 to 7.5 wt % of the organophosphorus flame retardant, each based on the total weight of the composition.
  • the organophosphorus compounds can be bisphenol A bis(diphenyl phosphate), triphenyl phosphate, resorcinol bis(diphenyl phosphate), tricresyl phosphate, or a combination comprising at least one of the foregoing.
  • Anti-drip agents in most embodiments are not used in the thermoplastic compositions.
  • Anti-drip agents include a fibril-forming or non-fibril forming fluoropolymer such as polytetrafluoroethylene (PTFE).
  • the anti-drip agent can be encapsulated by a rigid copolymer, for example styrene-acrylonitrile copolymer (SAN).
  • SAN styrene-acrylonitrile copolymer
  • TSAN styrene-acrylonitrile copolymer
  • Antidrip agents are substantially absent or completely absent from the thermoplastic compositions in some embodiments.
  • thermoplastic compositions can vary.
  • the polymers are combined (e.g., blended) with any additives (e.g., a mold release agent) such as in a screw-type extruder.
  • any additives e.g., a mold release agent
  • the polymers any additives can be combined in any order, and in form, for example, powder, granular, filamentous, as a masterbatch, and the like.
  • the thermoplastic compositions can be foamed, extruded into a sheet, or optionally pelletized. Methods of foaming a thermoplastic composition using frothing or physical or chemical blowing agents are known and can be used.
  • the pellets can be used for molding into articles, foaming, or they can be used in forming a sheet of the flame retardant thermoplastic composition.
  • the composition can be extruded (or co-extruded with a coating or other layer) in the form of a sheet and/or can be processed through calendaring rolls to form the desired sheet.
  • the thermoplastic compositions are formulated to meet strict low smoke density requirements.
  • the relative amounts of polycarbonate copolymer and polyetherimide in the thermoplastic compositions depends on the particular copolymer and polyetherimide used, the targeted level of smoke density and heat release, and other desired properties of the thermoplastic composition, such as impact strength and flow.
  • the polyetherimide is present in an amount from 5 to 30 wt %, based on the total weight of the thermoplastic composition, and within this range the specific amount is selected to be effective to provide a smoke density (Ds-4) of less than 300, less than 250, less than 200, less than 150, or less than 100 as determined in accordance with ISO 5659-2 on a 3 mm thick plaque.
  • Ds-4 smoke density
  • thermoplastic compositions can further have a maximum average rate of heat emission (MAHRE) of 90 kW/m 2 or less, 75 kW/m 2 or less, or 60 kW/m 2 or less as measured according to ISO 5660-1 on a 3 mm thick plaque.
  • MAHRE maximum average rate of heat emission
  • PC-siloxane copolymers such as (bisphenol-A carbonate)-co-(polydimethylsiloxane) and polycarbonate copolymers such as (bisphenol-A carbonate)-co-PPPBP carbonate
  • PC-siloxane copolymers such as (bisphenol-A carbonate)-co-(polydimethylsiloxane) and polycarbonate copolymers such as (bisphenol-A carbonate)-co-PPPBP carbonate
  • Ds-4 smoke density
  • these compositions are suitable for EN-45545 type applications (for R1, R3 and R6 applications qualifying for HL2 compliance, a smoke density (Ds-4) at or below 300 is required), provided that the other required properties (e.g.
  • ITR-PC-siloxane copolymers such as (ITR ester)-co-(bisphenol-A carbonate)-co-polydimethyl-siloxane)carbonate copolymers with good inherent smoke and heat release properties
  • a combination with 5 to 30 wt % of the polyetherimide lowers the smoke density (Ds-4), as determined according to ISO 5659-2 on a 3 mm thick plaque, even further so that more stringent fire requirements can be met, more specifically Hazard Level 3 requirements for R6 applications in the EN45545 norm (for R1, R3 and R6 applications qualifying for HL3 compliance, a smoke density (Ds-4) at or below 150 or 300 is required), provided that the other required properties (e.g. heat release) meet the selection criteria as well.
  • the compositions can have a smoke density (Ds-4) of 300 or less as determined according to ISO 5659-2 on a 3 mm thick plaque.
  • a thermoplastic composition comprising a combination of ITR-PC with ITR-PC-siloxane has a smoke density (Ds-4) of 150 or less as determined according to ISO 5659-2 and maximum heat release rate (MAHRE) of 90 kW/m 2 or less as determined according to ISO 5660-1, both on a 3 mm thick plaque.
  • Ds-4 smoke density
  • MAHRE maximum heat release rate
  • the ITR-PC comprises ITR and bisphenol-A carbonate units as described above
  • the ITR-PC-siloxane comprises ITR ester units, bisphenol-A carbonate units, and siloxane units (9b-2), (9b-3), or a combination thereof as described above.
  • the compositions can further comprise an aromatic organophosphorus compound, e.g., RDP, BPDA, or a combination comprising at least one of the foregoing aromatic organophosphorus compounds.
  • thermoplastic compositions can be formulated to have lower densities, in particular a density of 1.35 g/cc or less, 1.34 g/cc or less, 1.33 g/cc or less, 1.32 g/cc or less, 1.31 g/cc or less, 1.30 g/cc or less, or 1.29 g/cc or less.
  • the same or similar values can be obtained in components having a wide range of thicknesses, for example from 0.1 to 10 mm, or 0.5 to 5 mm.
  • the thermoplastic compositions can further have good melt viscosities, which aid processing.
  • the thermoplastic compositions can have a melt volume flow rate (MVR, cubic centimeter per 10 minutes (cc/10 min), according to of 4 to about 30, greater than or equal to 10, greater than or equal to 12, greater than or equal to 15, greater than or equal to 16, greater than or equal to 17, greater than or equal to 18, greater than or equal to 19, or greater than or equal to 20 cc/min, measured at 300° C./1.2 Kg at 360 second dwell according to ISO 1133.
  • MVR melt volume flow rate
  • cc/10 min cubic centimeter per 10 minutes
  • the thermoplastic compositions can further have excellent impact properties, in particular multiaxial impact (MAI) and ductility.
  • the compositions can have an MAI equal to or higher than 100 J, determined at 23° C. at an impact speed of 4.4 m/second in accordance with ISO 6603 on discs with a thickness of 3.2 mm.
  • the compositions can have a ductility in multiaxial impact of 80% and higher, determined at 23° C. at an impact speed of 4.4 m/second in accordance with ISO 6603 on discs with a thickness of 3.2 mm. These values can be obtained in articles having a wide range of thicknesses, for example from 0.1 to mm, or 0.5 to 5 mm.
  • thermoplastic compositions having practical impact properties within 20%, within 10%, within 5%, or within 1% of the same compositions without the polyetherimides can be manufactured.
  • the thermoplastic compositions can have an MAI within 20%, within 10%, within 5%, or within 1% of the MAI of the same composition, each determined at 23° C. at an impact speed of 4.4 m/second in accordance with ISO 6603 on discs with a thickness of 3.2 mm.
  • the white or almost-white color of the polycarbonates can further be maintained.
  • thermoplastic compositions can be molded into useful shaped articles by a variety of means such as injection molding, extrusion, rotational molding, blow molding, and thermoforming to form articles.
  • the thermoplastic compositions can be used to form a foamed article, a molded article, a thermoformed article, an extruded film, an extruded sheet, one or more layers of a multi-layer article (e.g. a cap-layer), a substrate for a coated article, or a substrate for a metallized article.
  • a multi-layer article e.g. a cap-layer
  • Illustrative articles include access panels, access doors, air flow regulators air gaspers, air grilles, arm rests, baggage storage doors, balcony components, cabinet walls, ceiling panels, door pulls, door handles, duct housing, enclosures for electronic devices, equipment housings, equipment panels, floor panels, food carts, food trays, galley surfaces, grilles, handles, housings for TVs and displays, light panels, magazine racks, telephone housings, partitions, parts for trolley carts, seat backs, seat components, railing components, seat housings, shelves, side walls, speaker housings, storage compartments, storage housings, toilet seats, tray tables, trays, trim panel, window moldings, window slides, windows, and the like.
  • thermoplastic compositions are formulated to provide articles that meet certain criteria set forth in the new European Railway standard EN-45545 (2013).
  • the European Union has approved the introduction of a set of fire testing standards for the railroad industry that prescribes certain flammability, flame spread rate, heat release, smoke emission, and smoke toxicity requirements for materials used in railway vehicles, known as European Railway standard EN-45545 (2013). Based on the vehicle material, end-use, and fire risks, 26 different “Requirement” categories for materials have been established (R1-R26).
  • Passenger seat shells (both back and base shell) fall under the R6 application type. Lighting strips fall under the R3 application type.
  • the R1 application type covers, amongst others, interior vertical and horizontal surfaces, such as side walls, front/end walls, doors, ceiling panels, as well as luggage racks, linings and frames.
  • “Hazard Levels” (HL1 to HL3) have been designated, reflecting the degree of probability of personal injury as the result of a fire. The levels are based on dwell time and are related to operation and design categories. HL1 is the lowest hazard level and is typically applicable to vehicles that run under relatively safe conditions (easy evacuation of the vehicle). HL3 is the highest hazard level and represents most dangerous operation/design categories (difficult and/or time-consuming evacuation of the vehicle, e.g. in underground rail cars). For each application type, different test requirements for the hazard levels are defined. The testing methods, and smoke density (Ds-4) and maximum heat release (MAHRE) values for the various hazard levels in the European Railway standard EN-45545 (2013) are shown in Table 1B for R6 applications.
  • Ds-44 smoke density
  • MAHRE maximum heat release
  • compositions herein can meet the requirements for HL2, and some compositions can meet the requirements for HL3.
  • thermoplastic compositions can be used for the manufacture of a wide variety of articles, including high occupancy structures such as rail stations, airports and office buildings, the thermoplastic compositions are especially useful for the manufacture of transportation components.
  • a “transportation component” is an article or portion of an article used in rolling stock, an aircraft, a roadway vehicle, or a marine vehicle.
  • Rolling stock includes but is not limited to a locomotive, coach, light rail vehicle, underground rail vehicle, tram, trolley, magnetic levitation vehicle, and a cable car.
  • An “aircraft” includes but is not limited to a jet, an airplane, an airship, a helicopter, a balloon, and a spacecraft.
  • a “roadway vehicle” includes but is not limited to an automobile, bus, scooter and a motorcycle.
  • a “marine vehicle” includes but is not limited to a boat, a ship (including freight and passenger ships), jet skis, and a submarine.
  • Exemplary transportation components for rolling stock includes interior components (e.g., structure and coverings) such as ceiling paneling, flaps, boxes, hoods, louvers, insulation material and the body shell in interiors, side walls, front walls/end walls, partitions, room dividers, interior doors, interior lining of the front-/end-wall doors and external doors, luggage overhead luggage racks, vertical luggage rack, luggage container, luggage compartments, windows, window frames, kitchen interiors, surfaces or a component assembly comprising at least one of the foregoing.
  • interior components e.g., structure and coverings
  • interior components e.g., structure and coverings
  • interior components e.g., structure and coverings
  • interior components e.g., structure and coverings
  • any of the foregoing articles are in compliance with European Rail Standard EN-45545, for example meeting HL2 or HL3.
  • thermoplastic compositions are particularly useful in train and aircraft, for example a variety of aircraft compartment interior applications, as well as interior applications for other modes of transportation, such as bus, train, subway, marine, and the like.
  • the articles are interior components for aircraft or trains, including access panels, access doors, air flow regulators baggage storage doors, display panels, display units, door handles, door pulls, enclosures for electronic devices, food carts, food trays, grilles, handles, magazine racks, seat components, partitions, refrigerator doors, seat backs, side walls, tray tables, trim panels, and the like.
  • the poly(siloxane) copolymer compositions can be formed (e.g., molded) into sheets that can be used for any of the above mentioned components.
  • any of the foregoing articles are in compliance with European Rail Standard EN-45545, for example meeting HL2 or HL3.
  • compositions are particularly useful for the manufacture of a transportation component, in particular an aircraft component or a rolling stock component (e.g., a train component) having a smoke density (Ds-4) of less than 300, less than 180, or less than 150 (measured in accordance with ISO 5659-2 on a 3 mm thick plaque), and a MAHRE of less than 90 kW/m 2 , or less than 60 (measured using ISO 5660-1 on a 3 mm thick plaque).
  • smoke density Ds-44%
  • MAHRE smoke density
  • Such materials can be in compliance with EN-45545 (2013), for example meeting HL2 or HL3.
  • compositions comprise the PC-siloxane, or the PC-siloxane in combination with another polycarbonate copolymer or homopolycarbonate together with 5 to 30 wt % of PEI.
  • An organophosphorus compound can be present in the compositions.
  • PC-siloxanes containing bisphenol-A carbonate units and polysiloxane units of formulas (9a), (9b), or a combination thereof can be used, optionally in combination with a bisphenol-A homopolycarbonate, and further optionally in combination with an aromatic organophosphorus compound such as RDP or BPADP in an amount effective to provide 0.1 to 1.0 wt % of phosphorus.
  • thermoplastic compositions with the polyetherimide have Ds-4 values lower than 300, as determined according to ISO 5659-2 on 3 mm thick plaques, and as such can meet the smoke density requirements for Hazard Level 2 applications according to EN45545 (requiring Ds-4 values equal to or lower than 300) and simultaneously have very low heat release (MAHRE) properties without compromising mechanical properties such as impact resistance and processability.
  • Ds-4 values lower than 300, as determined according to ISO 5659-2 on 3 mm thick plaques, and as such can meet the smoke density requirements for Hazard Level 2 applications according to EN45545 (requiring Ds-4 values equal to or lower than 300) and simultaneously have very low heat release (MAHRE) properties without compromising mechanical properties such as impact resistance and processability.
  • MAHRE very low heat release
  • compositions comprise an ITR-PC, and ITR-PC-siloxane copolymer, or a combination of an ITR-PC and an ITR-PC-siloxane copolymer together with 5 to 30 wt % of PEI.
  • An organophosphorus compound can be present in the compositions.
  • the ITR-PC can comprise ITR ester units and bisphenol-A carbonate units
  • the ITR-PC-siloxane copolymer can comprise ITR ester units, bisphenol-A carbonate units, and polysiloxane units of formulas (9a), (9b), or a combination thereof, and an organophosphorus compound can be present, such as RDP or BPADP in an amount effective to provide 0.1 to 1.0 wt % of phosphorus.
  • an organophosphorus compound can be present, such as RDP or BPADP in an amount effective to provide 0.1 to 1.0 wt % of phosphorus.
  • the same compositions without PEI only have smoke density (Ds-4) values below 300, as determined according to ISO5659-2 on 3 mm thick samples, which would make them suitable for Hazard Level 2 applications according to EN45545 (requiring Ds-4 values equal to or lower than 300).
  • thermoplastic compositions with the polyetherimide have Ds-4 values below 150, as determined according to ISO5659-2 on 3 mm thick plaques and as such can meet the smoke density requirements for the most stringent Hazard Level 3 for EN45545 applications (requiring Ds-4 values equal to or below 150) and simultaneously have very low heat-release properties without compromising mechanical properties such as impact resistance and processability.
  • thermoplastic compositions having low smoke density and low heat release rates are further illustrated by the following non-limiting examples.
  • Heat release measurements were performed on 10 ⁇ 10 cm plaques with 3 mm thickness using a Cone Calorimeter. All measurements were performed according to ISO 5660-1, with an irradiation of 50 kW/m 2 at the sample position and a sample-to-cone distance of 6 cm in view of the charring behavior of the samples (as prescribed by ISO5660-1).
  • the smoke density and heat release tests executed are indicative tests. They were performed according to their respective ISO standards, but were not executed by an officially certified test institute.
  • compositions were made as follows. All solid additives (e.g., stabilizers, colorants, solid flame retardants) were dry blended off-line as concentrates using one of the primary polymer powders as a carrier and starve-fed via gravimetric feeder(s) into the feed throat of the extruder. The remaining polymer(s) were starve-fed via gravimetric feeder(s) into the feed throat of the extruder as well.
  • the liquid flame retardants e.g., BPADP
  • BPADP liquid injection system. It will be recognized by one skilled in the art that the method is not limited to these temperatures or processing equipment.
  • Extrusion of all materials was performed on a 25 mm Werner-Pfleiderer ZAK twin-screw extruder (L/D ratio of 33/1 with a vacuum port located near the die face.
  • the extruder has 9 zones, which were set at temperatures of 40° C. (feed zone), 200° C. (zone 1), 250° C. (zone 2), 270° C. (zone 3) and 280-300° C. (zone 4 to 8). Screw speed was 300 rpm and throughput was between 15 and 25 kg/hr.
  • compositions were molded after drying at 100-110° C. for 6 hours on a 45-ton Engel molding machine with 22 mm screw or 75-ton Engel molding machine with 30 mm screw operating at a temperature 270-300° C. with a mold temperature of 70-90° C. It will be recognized by one skilled in the art that the method is not limited to these temperatures or processing equipment.
  • Examples 1-8 demonstrate the effect of the addition of polyetherimide (PEI) to Isophthalic acid-terephthalic acid-resorcinol)-bisphenol-A poly(ester-co-carbonate) (ITR-PC) copolymers on smoke density (Ds-4) and heat release (MAHRE) properties as well as mechanical properties. Formulations and results are shown in Table 4.
  • smoke density (Ds-4) decreases upon addition of PEI, with values similar to 100 wt % PEI obtained already at 20-30 wt % of PEI loading (Ds-4 of 77, 76 and 69 for 20, 25 and 30% respectively, compared to Ds-4 of 72 for 100 wt % PEI, all measured on 3 mm thick plaques).
  • the decrease in smoke density (Ds-4) as a function of fractional concentration of PEI is non-linear, following a behavior indicating strong interaction between the PEI and the ITR-PC copolymer.
  • An interaction parameter k was calculated based on the following equation.
  • Ds Blend w ITR - PC ⁇ Ds ITR - PC Pure + kw PEI ⁇ Ds PEI pure w ITR - PC + kw PEI ( Eq . ⁇ 1 )
  • the compositions containing up to 30% of polyetherimide have similar multiaxial impact properties, both impact energy (120-135 J) and ductility (80-100%), as determined according to ISO 6603 on 3.2 mm thick discs, as the composition without polyetherimide (CEx1, impact energy of 119 J and ductility of 100%).
  • compositions containing high amounts of polyetherimide (CEx7) or only polyetherimide (CEx8) have significantly worse ductility levels (20% and 0% for CEx6 and CEx7 respectively) and/or impact energy (10J for CEx7) than the composition containing only polycarbonate copolymer (CEx1).
  • Examples 9-12 demonstrate the effect of the addition of polyetherimide (PEI) to polycarbonate copolymer combinations with high isophthalic acid-terephthalic acid-resorcinol contents, namely ITR-PC-siloxane copolymers and ITR-PC copolymers on smoke density (Ds-4). Formulations and results are shown in Table 5.
  • PEI polyetherimide
  • smoke density decreases upon addition of PEI, with values similar to 100 wt % PEI already at 20 wt % of PEI loading (DS-4 of 76, compared to DS-4 of 72 for 100 wt % PEI, all measured on a 3 mm thick plaque).
  • Ds Blend w ITR - PC / ITR - PC - Si ⁇ Ds 100 ⁇ % ⁇ ⁇ ITR - PC / ITR - PC - Si + kw PEI ⁇ Ds PEI pure w ITR - PC / ITR - PC - Si + kw PEI ( Equ . ⁇ 2 )
  • Examples 18-22 demonstrate the effect of the addition of PEI to PPPBP-PC copolymers. Table 7 shows the formulations and results.
  • PEI polycarbonate homopolymer
  • Ds-4 smoke density
  • PC polycarbonate homopolymer
  • Ds-4 smoke density
  • PC polycarbonate homopolymer
  • Ds-4 smoke density
  • PC polycarbonate homopolymer
  • Ds-4 smoke density
  • the addition of PEI to PC homopolymer reduces the smoke density (Ds-4) to such as degree that formulations containing PEI have smoke density (Ds-4) values (Ds-4 of 493 at 30% PEI as determined according to ISO5659-2 on a 3 mm thick plaque, Ex29) below 600, making them suitable for EN-45545 type applications (for R6 applications qualifying for HL1 compliance, a Ds-4 smoke density at or below 600 is required), provided that the other required properties (e.g.
  • the addition of PEI to combinations of a polycarbonate homopolymer and a PC-siloxane can reduce the smoke density (Ds-4) to such an extent that formulations containing PEI have smoke density (Ds-4) values below 300 (Ds-4 of 246 (Ex33) and 147 (Ex34) at 20 and 30% PEI respectively, as determined according to ISO5659-2 on a 3 mm thick plaque), which would make them suitable for EN-45545 type applications (for R6 applications qualifying for HL2 compliance, a smoke density (Ds-4) at or below 300 is required), provided that the other required properties (e.g.
  • Examples 36-38 show that the addition of an aromatic organophosphorus compound (BPADP) to compositions of PEI in a polycarbonate copolymer results in a further unexpected combination of properties. Results and formulations are shown in Table 11.
  • BPADP aromatic organophosphorus compound
  • the low heat release (MAHRE) and smoke density (Ds-4) make the components capable of meeting the requirements of the most strict hazard level (HL3) for R6 applications in European Railway standard EN-45545, which requires MAHRE of equal to or less than 60, as determined according to ISO5660-1 on a 3 mm thick plaque, and Ds-4 equal to or less than 150, as determined according to ISO5659-2 on a 3 mm thick plaque.
  • Table 12 summarizes the interaction parameter values obtained for the compositions showing the nonlinear effect of PEI addition on smoke density of various polycarbonate copolymers and their combinations.
  • the interaction parameter has a value of greater than 4.
  • a “combination” is inclusive of blends, mixtures, alloys, reaction products, and the like.
  • Compounds are described using standard nomenclature. For example, any position not substituted by any indicated group is understood to have its valency filled by a bond as indicated, or a hydrogen atom.
  • a dash (“-”) that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, —CHO is attached through carbon of the carbonyl group.
  • hydrocarbyl and “hydrocarbon” refers broadly to a substituent comprising carbon and hydrogen, optionally with 1 to 3 heteroatoms, for example, oxygen, nitrogen, halogen, silicon, sulfur, or a combination thereof; “alkyl” refers to a straight or branched chain, saturated monovalent hydrocarbon group; “alkylene” refers to a straight or branched chain, saturated, divalent hydrocarbon group; “alkylidene” refers to a straight or branched chain, saturated divalent hydrocarbon group, with both valences on a single common carbon atom; “alkenyl” refers to a straight or branched chain monovalent hydrocarbon group having at least two carbons joined by a carbon-carbon double bond; “cycloalkyl” refers to a non-aromatic monovalent monocyclic or multicyclic hydrocarbon group having at least three carbon atoms, “cycloalkenyl” refers to a non-aromatic cyclic divalent hydro
  • each of the foregoing groups can be unsubstituted or substituted, provided that the substitution does not significantly adversely affect synthesis, stability, or use of the compound.
  • substituted means that at least one hydrogen on the designated atom or group is replaced with another group, provided that the designated atom's normal valence is not exceeded.
  • substituent is oxo (i.e., ⁇ O)
  • two hydrogens on the atom are replaced.
  • Exemplary groups that can be present on a “substituted” position include, but are not limited to, cyano; hydroxyl; nitro; azido; alkanoyl (such as a C 2-6 alkanoyl group such as acyl); carboxamido; C 1-6 or C 1-3 alkyl, cycloalkyl, alkenyl, and alkynyl (including groups having at least one unsaturated linkages and from 2 to 8, or 2 to 6 carbon atoms); C 1-6 or C 1-3 alkoxy groups; C 6-10 aryloxy such as phenoxy; C 1-6 alkylthio; C 1-6 or C 1-3 alkylsulfinyl; C 1-6 or C 1-3 alkylsulfonyl; aminodi(C 1-6 or C 1-3 )alkyl; C 6-12 aryl having at least one aromatic rings (e.g., phenyl, biphenyl, naphthyl, or the like, each ring either

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
US13/780,430 2012-02-29 2013-02-28 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof Abandoned US20130224462A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/780,430 US20130224462A1 (en) 2012-02-29 2013-02-28 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof
US15/061,514 US9994709B2 (en) 2012-02-29 2016-03-04 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof
US15/989,572 US20180273751A1 (en) 2012-02-29 2018-05-25 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261604861P 2012-02-29 2012-02-29
US13/780,430 US20130224462A1 (en) 2012-02-29 2013-02-28 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/061,514 Division US9994709B2 (en) 2012-02-29 2016-03-04 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof

Publications (1)

Publication Number Publication Date
US20130224462A1 true US20130224462A1 (en) 2013-08-29

Family

ID=47884567

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/780,430 Abandoned US20130224462A1 (en) 2012-02-29 2013-02-28 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof
US15/061,514 Active 2033-03-23 US9994709B2 (en) 2012-02-29 2016-03-04 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof
US15/989,572 Abandoned US20180273751A1 (en) 2012-02-29 2018-05-25 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US15/061,514 Active 2033-03-23 US9994709B2 (en) 2012-02-29 2016-03-04 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof
US15/989,572 Abandoned US20180273751A1 (en) 2012-02-29 2018-05-25 Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof

Country Status (4)

Country Link
US (3) US20130224462A1 (zh)
EP (1) EP2820085B1 (zh)
CN (1) CN104204088B (zh)
WO (1) WO2013130809A1 (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130317143A1 (en) * 2012-05-24 2013-11-28 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
WO2015106208A1 (en) * 2014-01-10 2015-07-16 Sabic Global Technologies B.V. Compatibilized compositions, articles formed therefrom, and methods of manufacture thereof
WO2016085928A1 (en) * 2014-11-25 2016-06-02 Sabic Global Technologies B.V. Thermoplastic compositions, method of manufacture, and articles therefrom
CN105814127A (zh) * 2013-10-08 2016-07-27 迈图高新材料股份有限公司 反应性官能基硅氧烷组合物
WO2016116395A1 (de) * 2015-01-20 2016-07-28 Covestro Deutschland Ag Flammgeschützte formmassen enthaltend siloxan-haltiges polycarbonat-blockcokondensat
WO2017003843A1 (en) * 2015-06-30 2017-01-05 Sabic Global Technologies B.V. Thermoplastic composition with balanced chemical resistance and impact properties
US20170084394A1 (en) * 2015-02-03 2017-03-23 Sabic Global Technologies, B.V. Polyetherimide Compatible Polymer Blends for Capacitor Films
US20170084393A1 (en) * 2015-02-03 2017-03-23 Sabic Global Technologies, B.V. Polyetherimide Miscible Polymer Blends for Capacitor Films
US9688842B2 (en) 2012-02-29 2017-06-27 Sabic Global Technologies B.V. Thermoplastic polycarbonate copolymer compositions, methods of their manufacture, and articles thereof
US20170283612A1 (en) * 2014-08-20 2017-10-05 Sabic Global Technologies B.V. Thermoplastic compositions, methods of their manufacture, and articles thereof
WO2017194364A1 (en) * 2016-05-09 2017-11-16 Solvay Specialty Polymers Usa, Llc Polyphenylsulfone compositions including a polycarbonate-polysiloxane copolymer
US20180009959A1 (en) * 2014-12-05 2018-01-11 Riken Technos Corporation Hard coat laminate film
US10144827B2 (en) 2014-11-25 2018-12-04 Sabic Global Technologies B.V. Weatherable thermoplastic compositions, method of manufacture, and articles therefrom
US20190031916A1 (en) * 2016-02-26 2019-01-31 Trinseo Europe Gmbh Molded Structures of Polycarbonate Based Substrates Over Molded with Silicone Rubbers
US10196494B2 (en) 2013-02-21 2019-02-05 Sabic Global Technologies B.V. Polymeric sheets, methods for making and using the same, and articles comprising polymeric sheets
US10196485B2 (en) * 2015-04-07 2019-02-05 Sabic Global Technologies B.V. Chemical-resistant thermoplastic compositions, articles formed therefrom, and methods of manufacture thereof
US10522264B2 (en) 2013-03-15 2019-12-31 General Cable Technologies Corporation Foamed polymer separator for cabling
CN110922733A (zh) * 2018-09-04 2020-03-27 沙特基础工业全球技术有限公司 聚碳酸酯制品及其制造方法
US20200131362A1 (en) * 2018-10-29 2020-04-30 Sabic Global Technologies B.V. Weatherable transparent high heat polycarbonate copolymer composition
US10689530B2 (en) 2014-10-02 2020-06-23 Riken Technos Corporation Pressure-sensitive adhesive film
US10696861B2 (en) 2014-05-30 2020-06-30 Riken Technos Corporation Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product
US10717871B2 (en) 2015-01-20 2020-07-21 Covestro Deutschland Ag Flame-retardant, glass fiber-containing molding compounds containing siloxane-containing polycarbonate block co-condensate
CN112601783A (zh) * 2018-08-24 2021-04-02 Sabic环球技术有限责任公司 包含聚硅氧烷的阻燃性组合物
US11107607B2 (en) 2014-06-06 2021-08-31 General Cable Technologies Corporation Foamed polycarbonate separators and cables thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9328240B2 (en) * 2012-12-21 2016-05-03 Sabic Global Technologies B.V. Polycarbonate compositions, articles formed therefrom, and methods of manufacture thereof
US10196517B2 (en) 2013-05-01 2019-02-05 Sabic Global Technologies B.V. Interior train components having low smoke and low heat release, and methods of their manufacture
US9352755B2 (en) 2013-05-01 2016-05-31 Sabic Global Technologies B.V. Interior train components having low smoke and low heat release, and methods of their manufacture
US9266541B2 (en) 2013-05-01 2016-02-23 Sabic Global Technologies B.V. Interior train components having low smoke and low heat release, and methods of their manufacture
US9650496B2 (en) 2013-06-12 2017-05-16 Sabic Global Technologies B.V. Interior aircraft components and methods of manufacture
WO2018234944A1 (en) * 2017-06-21 2018-12-27 Sabic Global Technologies B.V. HIGH FLUIDITY AND LOW SHINE THERMOPLASTIC COMPOSITIONS, PROCESS FOR PRODUCING THE SAME, AND ARTICLES COMPRISING THE COMPOSITION
EP3569752B1 (en) * 2018-05-15 2020-08-26 SABIC Global Technologies B.V. Nonwoven fabric and associated composite and methods of making
EP3659676A1 (en) 2018-11-27 2020-06-03 SABIC Global Technologies B.V. Rail interior compliant thermoplastic composite
CN115322552A (zh) * 2022-08-29 2022-11-11 南京聚隆科技股份有限公司 一种可用于轨道交通内饰的低烟低热释放聚碳酸酯材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645422A1 (en) * 1993-08-19 1995-03-29 General Electric Company Flame retardant polycarbonate blends
JPH107897A (ja) * 1996-06-28 1998-01-13 Mitsubishi Eng Plast Kk ポリカーボネート系樹脂組成物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972902A (en) 1971-01-20 1976-08-03 General Electric Company 4,4'-Isopropylidene-bis(3- and 4-phenyleneoxyphthalic anhydride)
US4430484A (en) 1981-01-14 1984-02-07 General Electric Company Polyester-carbonate resin blends
US4710548A (en) 1981-09-30 1987-12-01 The Dow Chemical Company Blends of a polycarbonate with a polyester-polycarbonate copolymer
US4455410A (en) 1982-03-18 1984-06-19 General Electric Company Polyetherimide-polysulfide blends
US4387193A (en) * 1982-03-18 1983-06-07 General Electric Company Blends of polyetherimides and organopolysiloxane-polycarbonate block copolymers
US4548997A (en) * 1982-04-05 1985-10-22 General Electric Company Polyetherimide-polycarbonate blends
DE3844183A1 (de) 1988-12-29 1990-07-19 Metallgesellschaft Ag Waessriger reiniger fuer metalloberflaechen
EP0522751B1 (en) 1991-07-01 1998-04-01 General Electric Company Polycarbonate-polysiloxane block copolymers
US5387639A (en) * 1992-10-23 1995-02-07 General Electric Company Ductile blends of polyester-carbonate or polyarylates and polyetherimide resins
ES2105339T3 (es) 1992-10-23 1997-10-16 Gen Electric Mezclas de resinas copolimeras aptas para conformacion en caliente pirorretardantes.
CN1103080A (zh) * 1993-09-15 1995-05-31 通用电气公司 阻燃、可热成型的聚碳酸酯/聚醚酰亚胺类树脂的共混物
CA2157082A1 (en) 1994-11-07 1996-05-08 Roger J. White Flame retardant molding compositions having improved flow
TW360681B (en) * 1995-06-07 1999-06-11 Gen Electric Phosphate flame retardant polymers
JPH09183893A (ja) 1995-11-01 1997-07-15 Nippon G Ii Plast Kk 熱可塑性樹脂組成物
US6204313B1 (en) 1999-01-22 2001-03-20 General Electric Company Flame retardant polymer blends, and method for making
US7169859B2 (en) 1999-05-18 2007-01-30 General Electric Company Weatherable, thermostable polymers having improved flow composition
US7790292B2 (en) * 1999-05-18 2010-09-07 Sabic Innovative Plastics Ip B.V. Polysiloxane copolymers, thermoplastic composition, and articles formed therefrom
US7605221B2 (en) * 1999-05-18 2009-10-20 Sabic Innovative Plastics Ip B.V. Weatherable, thermostable polymers having improved flow composition
US6989190B2 (en) 2000-10-17 2006-01-24 General Electric Company Transparent polycarbonate polyester composition and process
CN100469838C (zh) 2003-02-21 2009-03-18 沙伯基础创新塑料知识产权有限公司 半透明热塑性组合物、其制备方法及其模塑制品
WO2004076512A2 (en) 2003-02-21 2004-09-10 General Electric Company Transparent and high-heat polycarbonate-polysiloxane copolymers and transparent blends with polycarbonate and a process for preparing same
US7277230B2 (en) * 2004-03-31 2007-10-02 General Electric Company Methods for producing and purifying 2-hydrocarbyl-3,3-bis(4-hydroxyaryl)phthalimidine monomers and polycarbonates derived therefrom
US7279594B2 (en) * 2004-12-13 2007-10-09 General Electric Company Thermoplastic composition, articles thereof, and method of making the articles
US20090306258A1 (en) 2005-08-26 2009-12-10 General Electric Company Low smoke polycarbonate composition, method of manufacture and product made therefrom
US20070049706A1 (en) * 2005-08-26 2007-03-01 Srinivas Siripurapu Low smoke polycarbonate composition, method of manufacture and product made therefrom
US20070066737A1 (en) * 2005-09-16 2007-03-22 Gallucci Robert R Flame retardant polymer blends
US7700696B2 (en) 2006-06-28 2010-04-20 Sabic Innovative Plastics Ip B.V. Polycarbonate composition having improved scratch resistance, and articles formed therefrom
US7709562B2 (en) * 2006-09-29 2010-05-04 Sabic Innovative Plastics Ip B.V. Thermoplastic compositions, methods of making, and articles formed therefrom
US9062196B2 (en) * 2007-09-28 2015-06-23 Sabic Global Technologies B.V. High heat polycarbonates, methods of making, and articles formed therefrom
US7994254B2 (en) * 2008-06-20 2011-08-09 Sabic Innovative Plastics Ip B.V. Polysiloxane-polycarbonate compositions, and related methods and articles
US8022166B2 (en) 2008-06-23 2011-09-20 Sabic Innovative Plastics Ip B.V. Polycarbonate compositions
WO2010077644A1 (en) 2008-12-08 2010-07-08 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, method of manufacture thereof, and articles therefrom
US7994248B2 (en) 2008-12-11 2011-08-09 Sabic Innovative Plastics Ip B.V. Flame retardant thermoplastic polycarbonate compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0645422A1 (en) * 1993-08-19 1995-03-29 General Electric Company Flame retardant polycarbonate blends
JPH107897A (ja) * 1996-06-28 1998-01-13 Mitsubishi Eng Plast Kk ポリカーボネート系樹脂組成物

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9688842B2 (en) 2012-02-29 2017-06-27 Sabic Global Technologies B.V. Thermoplastic polycarbonate copolymer compositions, methods of their manufacture, and articles thereof
US8895649B2 (en) 2012-05-24 2014-11-25 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US8927661B2 (en) 2012-05-24 2015-01-06 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9018286B2 (en) * 2012-05-24 2015-04-28 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9023923B2 (en) 2012-05-24 2015-05-05 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US20130317143A1 (en) * 2012-05-24 2013-11-28 Sabic Innovative Plastics Ip B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US9394483B2 (en) 2012-05-24 2016-07-19 Sabic Global Technologies B.V. Flame retardant polycarbonate compositions, methods of manufacture thereof and articles comprising the same
US10196494B2 (en) 2013-02-21 2019-02-05 Sabic Global Technologies B.V. Polymeric sheets, methods for making and using the same, and articles comprising polymeric sheets
US10522264B2 (en) 2013-03-15 2019-12-31 General Cable Technologies Corporation Foamed polymer separator for cabling
CN105814127A (zh) * 2013-10-08 2016-07-27 迈图高新材料股份有限公司 反应性官能基硅氧烷组合物
US20160251483A1 (en) * 2013-10-08 2016-09-01 Momentive Performance Materials Gmbh Reactive Functional Siloxane Compositions
US9771458B2 (en) * 2013-10-08 2017-09-26 Momentive Performance Materials Gmbh Reactive functional siloxane compositions
CN105899612A (zh) * 2014-01-10 2016-08-24 沙特基础工业全球技术有限公司 增容组合物、由其形成的制品以及制造它们的方法
US10005902B2 (en) 2014-01-10 2018-06-26 Sabic Global Technologies B.V. Compatibilized compositions, articles formed therefrom, and methods of manufacture thereof
US10017641B2 (en) 2014-01-10 2018-07-10 Sabic Global Technologies B.V. Compatibilized compositions, articles formed therefrom, and methods of manufacture thereof
WO2015106208A1 (en) * 2014-01-10 2015-07-16 Sabic Global Technologies B.V. Compatibilized compositions, articles formed therefrom, and methods of manufacture thereof
US10696861B2 (en) 2014-05-30 2020-06-30 Riken Technos Corporation Actinic-ray-curable resin composition, layered film including hardcoat formed therefrom, and layered transparent resin product
US11107607B2 (en) 2014-06-06 2021-08-31 General Cable Technologies Corporation Foamed polycarbonate separators and cables thereof
US20170283612A1 (en) * 2014-08-20 2017-10-05 Sabic Global Technologies B.V. Thermoplastic compositions, methods of their manufacture, and articles thereof
US9982130B2 (en) * 2014-08-20 2018-05-29 Sabic Global Technologies B.V. Thermoplastic compositions, methods of their manufacture, and articles thereof
US10689530B2 (en) 2014-10-02 2020-06-23 Riken Technos Corporation Pressure-sensitive adhesive film
US10377876B2 (en) * 2014-11-25 2019-08-13 Sabic Global Technologies B.V. Thermoplastic compositions, method of manufacture, and articles therefrom
CN107001796A (zh) * 2014-11-25 2017-08-01 沙特基础工业全球技术有限公司 热塑性组合物、制备方法及其制品
WO2016085928A1 (en) * 2014-11-25 2016-06-02 Sabic Global Technologies B.V. Thermoplastic compositions, method of manufacture, and articles therefrom
US10144827B2 (en) 2014-11-25 2018-12-04 Sabic Global Technologies B.V. Weatherable thermoplastic compositions, method of manufacture, and articles therefrom
US20180009959A1 (en) * 2014-12-05 2018-01-11 Riken Technos Corporation Hard coat laminate film
US10487208B2 (en) 2015-01-20 2019-11-26 Covestro Deutschland Ag Flame-retardant molding compounds containing siloxane-containing polycarbonate block co-condensate
WO2016116395A1 (de) * 2015-01-20 2016-07-28 Covestro Deutschland Ag Flammgeschützte formmassen enthaltend siloxan-haltiges polycarbonat-blockcokondensat
US10717871B2 (en) 2015-01-20 2020-07-21 Covestro Deutschland Ag Flame-retardant, glass fiber-containing molding compounds containing siloxane-containing polycarbonate block co-condensate
US10147541B2 (en) * 2015-02-03 2018-12-04 Sabic Global Technologies, B.V. Polyetherimide miscible polymer blends for capacitor films
US20170084393A1 (en) * 2015-02-03 2017-03-23 Sabic Global Technologies, B.V. Polyetherimide Miscible Polymer Blends for Capacitor Films
US20170084394A1 (en) * 2015-02-03 2017-03-23 Sabic Global Technologies, B.V. Polyetherimide Compatible Polymer Blends for Capacitor Films
US10196485B2 (en) * 2015-04-07 2019-02-05 Sabic Global Technologies B.V. Chemical-resistant thermoplastic compositions, articles formed therefrom, and methods of manufacture thereof
US10590240B2 (en) 2015-06-30 2020-03-17 Sabic Global Technologies B.V. Thermoplastic composition with balanced chemical resistance and impact properties
WO2017003843A1 (en) * 2015-06-30 2017-01-05 Sabic Global Technologies B.V. Thermoplastic composition with balanced chemical resistance and impact properties
US20190031916A1 (en) * 2016-02-26 2019-01-31 Trinseo Europe Gmbh Molded Structures of Polycarbonate Based Substrates Over Molded with Silicone Rubbers
US11208574B2 (en) * 2016-02-26 2021-12-28 Trinseo Europe Gmbh Molded structures of polycarbonate based substrates over molded with silicone rubbers
WO2017194364A1 (en) * 2016-05-09 2017-11-16 Solvay Specialty Polymers Usa, Llc Polyphenylsulfone compositions including a polycarbonate-polysiloxane copolymer
CN112601783A (zh) * 2018-08-24 2021-04-02 Sabic环球技术有限责任公司 包含聚硅氧烷的阻燃性组合物
CN110922733A (zh) * 2018-09-04 2020-03-27 沙特基础工业全球技术有限公司 聚碳酸酯制品及其制造方法
US20200131362A1 (en) * 2018-10-29 2020-04-30 Sabic Global Technologies B.V. Weatherable transparent high heat polycarbonate copolymer composition
US11572468B2 (en) * 2018-10-29 2023-02-07 Shpp Global Technologies B.V. Weatherable transparent high heat polycarbonate copolymer composition

Also Published As

Publication number Publication date
US9994709B2 (en) 2018-06-12
CN104204088B (zh) 2016-08-24
US20180273751A1 (en) 2018-09-27
EP2820085A1 (en) 2015-01-07
EP2820085B1 (en) 2018-08-08
US20160185960A1 (en) 2016-06-30
CN104204088A (zh) 2014-12-10
WO2013130809A1 (en) 2013-09-06

Similar Documents

Publication Publication Date Title
US9994709B2 (en) Thermoplastic compositions having low smoke, methods of their manufacture, and uses thereof
US9328240B2 (en) Polycarbonate compositions, articles formed therefrom, and methods of manufacture thereof
US9688842B2 (en) Thermoplastic polycarbonate copolymer compositions, methods of their manufacture, and articles thereof
US9266541B2 (en) Interior train components having low smoke and low heat release, and methods of their manufacture
US10017641B2 (en) Compatibilized compositions, articles formed therefrom, and methods of manufacture thereof
US8841366B2 (en) Thermoplastic polycarbonate copolymer compositions, methods of their manufacture, and uses thereof
US10196517B2 (en) Interior train components having low smoke and low heat release, and methods of their manufacture
US9365720B2 (en) Interior train components having low smoke and low heat release, and methods of their manufacture
US9352755B2 (en) Interior train components having low smoke and low heat release, and methods of their manufacture
US9718956B2 (en) Interior aircraft components and methods of manufacture
US20160347952A1 (en) Interior train components having low smoke and low heat release, and methods of their manufacture
US10329421B2 (en) Polycarbonate compositions, method of manufacture thereof, and articles therefrom

Legal Events

Date Code Title Description
AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033591/0673

Effective date: 20140402

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT REMOVE 10 APPL. NUMBERS PREVIOUSLY RECORDED AT REEL: 033591 FRAME: 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033649/0529

Effective date: 20140402

AS Assignment

Owner name: SABIC GLOBAL TECHNOLOGIES B.V., NETHERLANDS

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE 12/116841, 12/123274, 12/345155, 13/177651, 13/234682, 13/259855, 13/355684, 13/904372, 13/956615, 14/146802, 62/011336 PREVIOUSLY RECORDED ON REEL 033591 FRAME 0673. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SABIC INNOVATIVE PLASTICS IP B.V.;REEL/FRAME:033663/0427

Effective date: 20140402

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION