US20130209839A1 - Component including a rechargeable battery - Google Patents

Component including a rechargeable battery Download PDF

Info

Publication number
US20130209839A1
US20130209839A1 US13/577,877 US201113577877A US2013209839A1 US 20130209839 A1 US20130209839 A1 US 20130209839A1 US 201113577877 A US201113577877 A US 201113577877A US 2013209839 A1 US2013209839 A1 US 2013209839A1
Authority
US
United States
Prior art keywords
component according
anode
fibres
cathode
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/577,877
Inventor
Martyn John Hucker
Michael Dunleavy
Sajad Haq
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems PLC
Original Assignee
BAE Systems PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1002040.2A external-priority patent/GB201002040D0/en
Priority claimed from GBGB1004474.1A external-priority patent/GB201004474D0/en
Application filed by BAE Systems PLC filed Critical BAE Systems PLC
Assigned to BAE SYSTEMS PLC reassignment BAE SYSTEMS PLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DUNLEAVY, MICHAEL, HAQ, SAJAD, HUCKER, MARTYN JOHN
Publication of US20130209839A1 publication Critical patent/US20130209839A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/281Large cells or batteries with stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/287Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • H01M10/465Accumulators structurally combined with charging apparatus with solar battery as charging system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/26Construction, shape, or attachment of separate skins, e.g. panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/32Silver accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • Rechargeable batteries are groups of one or more secondary cells.
  • a well known example of a rechargeable battery is the lithium ion rechargeable battery, which is commonly used in consumer goods, and in the automotive and aerospace industries.
  • Lithium ion rechargeable batteries offer a high energy density, which is a significant factor in their popularity.
  • nickel-zinc batteries require virtually no charging circuitry, and have a low internal resistance resulting in high charge/discharge rates.
  • the theoretical energy density of acid and alkaline chemistry batteries is lower than lithium ion batteries, but in practice only a fraction of the theoretical value is achieved, using lithium ion, and nickel-zinc and other acid and alkaline chemistry batteries offer the possibility of high efficiencies in this regard.
  • nickel-zinc and other acid and alkaline chemistry rechargeable batteries it is desirable to provide structurally robust devices which are suited for ‘real world’ applications, and to enable convenient mass manufacture.
  • the present invention addresses the above described drawbacks and desires, and/or provides improved battery gravimetric or volumetric efficiency in terms of specific energy (Watt-hours per kilogram) or energy density (Watt-hours per litre).
  • a component including a rechargeable battery using one of an alkaline and acid based chemistry, the battery having an anode structure, a cathode structure and a separator structure which separates the anode from the cathode and contains an electrolyte, in which the anode structure and the cathode structure are each formed from a composite material which includes electrically conductive fibres and electrochemically active material in a binder matrix and wherein the battery is structurally inseparable from the rest of the component.
  • a component comprising a ‘structural’ rechargeable battery in which fibre reinforced cell components provide a dual role by functioning as active electrochemical or electrical elements and also as structural features of the component, being integral therewith.
  • the battery may thus be entirely free of any border or barrier between the cell or cells of the battery and any part of the component which does not act as part of the battery.
  • parts of the component which are not part of the battery may simply comprise composite material where the fibres or matrix are not electrically conductive or electrochemically active.
  • conventional batteries require additional support structures, such as casing, packaging, separators, electrodes, current collectors and the like. These, from a component operational point of view, are wholly parasitic.
  • additional support structures reduce the volumetric and/or gravimetric efficiency of conventional batteries.
  • active electrochemical and electrical components are multi-functional since they also perform a structural role as, for example, load bearing, protective or otherwise physically robust elements of the component.
  • the separator structure is formed from a composite material which includes electrically insulating fibres in a binder matrix.
  • the electrically insulating fibres may be glass, polymer, ceramic or textile fibres, and may be selected depending on the desired mechanical or physical properties of the component. Examples of suitable electrically insulating fibres include E-glass fabric, and silicon carbide fibres. Examples of textile fibres include natural fibres such as cotton, and synthetic fibres which are typically polymer fibres such as Nylon® and polyester.
  • the rechargeable battery is a nickel-zinc rechargeable battery.
  • the electrochemically active materials may be nickel hydroxide and zinc oxide.
  • the rechargeable battery may be a nickel-iron, nickel-cadmium, nickel metal hydride or silver-zinc rechargeable battery.
  • one or more of the anode structure, cathode structure and the separator structure may contain a porous additive which increases access of the electrolyte into said structure.
  • the porous additive may be one or more of a silica, a silica gel or carbon powder.
  • At least one of the anode structure and the cathode structure may further include an electrically conductive additive such as carbon powder. It will be apparent to the skilled reader that carbon powder can perform a dual role as a porous additive and an electrically conductive additive.
  • At least one of the anode structure and the cathode structure may further include an ion conducting additive such as polyethylene oxide (PEO).
  • PEO polyethylene oxide
  • Aqueous electrolyte When an aqueous electrolyte is employed, it is conveniently removed for electrolyte replacement or battery storage purposes.
  • Aqueous electrolyte may be accommodated by partially bonding the separator structure to the anode structure and/or cathode structure to provide interstices.
  • a porous additive as mentioned above may be used to provide a more open cell structure having channels for the electrolyte to promote circulation of the electrolyte around the electrically active materials of the anode and cathode.
  • the electrolyte may be a gel.
  • the electrolyte may be a solid polymer electrolyte (SPE).
  • SPE solid polymer electrolyte
  • the SPE may include polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyacrylic acid (PAA) or grafted analogues or combinations thereof. Biphasic mixtures of SPE's may be used. Additives may be present in the SPE to modify its electrical, physical or chemical properties.
  • Batteries used in this way will work well with solar cells, positioned say on the aircraft wings, which can be used to re-charge the cells in flight.
  • components according to the invention used for example as wing skins, can be used to provide power for structural health monitoring of the aircraft when in flight.
  • the availability of such power may enable longer flights to be planned in the knowledge that any aircraft health issues which arise are likely to be notified early and may be provided with more sophistication that was previously possible because more monitoring systems can be provided for the same weight, when compared with conventional batteries.
  • more accurate decision making about the flightworthiness of the aircraft is likely to lead to greater mission availability.
  • the electrically conductive fibres of the anode and cathode structures may include fibres having a conductive coating.
  • the fibres having a conductive coating may include carbon fibres and/or electrically insulating fibres.
  • electrically insulating fibres include glass fibres, polymer fibres, ceramic fibres such as silicon carbide fibres, and textile fibres.
  • textile fibres include natural fibres such as cotton and synthetic fibres which are typically polymer fibres such as Nylon® and polyester.
  • the electrically conductive fibres of the anode and cathode structures include fibres having a conductive coating
  • these fibres are metallised fibres, such as nickel coated fibres.
  • other conductive coatings might be utilised.
  • the electrically conductive fibres of the anode and cathode structures may be in the form of a woven fabric or may be non woven, for example in a non crimp fabric.
  • At least one of the anode structure, the cathode structure and the separator may be formed from a composite material which includes an electrically insulating polymer, ceramic or glass based binder matrix.
  • the electrically insulating binder matrix material is an epoxy resin.
  • Other structural resins, such as polyester resin, may be used.
  • the electrically insulating binder matrix material may include or consist of an open cell foam, a geopolymer or a SPE.
  • the SPE may perform a dual role as both binder and electrolyte.
  • An elastomeric binder matrix may be used.
  • a flexible rechargeable battery can be provided for inclusion in the component or possibly an article of clothing or other textile product, particularly if textile fibres are used in the manufacture of the battery.
  • Rechargeable batteries of this type may be integrated into an item of clothing such as by sewing, vulcanising or by being woven into the item of clothing.
  • Such flexible batteries comprised in clothing include power sources for hand held/hand operated items such as lights, radios, recording devices, medical equipment, heated clothing, etc., carried or worn by members of the emergency services, police, armed forces and others.
  • power sources for hand held/hand operated items such as lights, radios, recording devices, medical equipment, heated clothing, etc., carried or worn by members of the emergency services, police, armed forces and others.
  • commonly carried items such as cameras, mobile phones, PDAs and personal computers may have primary or additional power supplied to them from batteries incorporated into clothing, according to the invention.
  • Batteries in such clothing may be re-charged either by connection to a mains electricity supply, when not in use, or by employing photovoltaic cells, also carried in the clothing, to charge the batteries.
  • the rechargeable battery may include a number [plurality] of cells which may be interdigitated, multilayered or spatially distributed within the component or article.
  • a number [plurality] of cells which may be interdigitated, multilayered or spatially distributed within the component or article.
  • an aircraft composite wing skin incorporating cells may have the cells distributed across a large area of wing, either because the cells are connectable to solar cells distributed on the wing skin or because the cells are connectible to distributed power users such as lights, flight control surfaces, valves or sensors for aircraft systems, etc., located in different parts of the wing.
  • the thickness of the anode structure, cathode structure and/or the separator structure may be conveniently varied in order to provide desired mechanical and electrical properties.
  • These structures may be formed from one or more layers. Variation of the number of layers is one way in which the thickness of these structures may be varied.
  • the separator structure may include separator materials such as microporous polymer films, which may be used instead of or in combination with electrically insulating fibres in a binder matrix to aid ion transport.
  • a method of manufacturing a component including, and being structurally inseparable from, a rechargeable battery using one of an acid and alkaline based chemistry, the rechargeable battery including an anode structure and a cathode structure comprising fibrous reinforcing material and plastics matrix material and a separator structure, the separator structure separating the anode from the cathode and being adapted to contain an electrolyte; the method including the steps of laying up, either side of the separator structure, a layup of plies of electrically conductive fibrous reinforcing material for the anode structure and the cathode structure, introducing a binder matrix into at least the anode and the cathode structures and consolidating the layup of cathode, anode and separator into a single composite component.
  • a composite component according to the invention may conveniently be made by any known composite manufacturing processes compatible with the cell chemistry concerned. For example, wet layup; pre-pregging; resin infusion or resin transfer moulding or vacuum assisted resin transfer moulding may all be used. Use of such well known techniques allows great flexibility in form and size of batteries incorporated into components made according to the invention.
  • One advantage of using these commonly used techniques is that components of the invention may be employed to replace already existing parts made by the same techniques but not having the advantage of a battery formed integral therewith.
  • Components according to the invention may be used in new designs or to replace worn, damaged or outdated parts of any items which can be manufactured of composite material.
  • vehicles whether land, air, space or water born, may have parts manufactured with integral cells, according to the invention.
  • Examples of such use may include wing skins on aircraft, and in particular unmanned air vehicles, where components according to the invention may be used to power structural monitoring equipment, control surfaces, cameras, lights etc. Where the component may be exposed to sunlight or be otherwise connectible to photovoltaic equipment, the cell or cells may be charged using such equipment. Owing to the ability of cells in composite components according to the invention to be positioned anywhere in the component, where the component is a wing skin the photovoltaic cells may be positioned adjacent the cells of the invention to avoid unnecessary wiring.
  • Further potential uses on vehicles may include body panels on hybrid or electric drive vehicles where the components of the invention can be used to save weight and bulk, compared to conventional batteries. Such components may also find use on free flooding hydrodynamic hulls of, say, submersible remotely operated vehicles. The components would be especially useful on any vehicle where weight or bulk was at a premium like an aircraft or a satellite. On a satellite the saving in space and bulk of components according to the invention which could be used to power various systems would potentially be of great benefit and would likely increase the payload capability of the satellite substantially.
  • components according to the invention may comprise wall panels in portable or temporary buildings, room dividers, suspended ceiling panels, doors or window frames.
  • the electrical power available from the battery would replace or reduce the need for wiring and, once again, the cells could be used in conjunction with photovoltaic equipment to generate the power held in the cells of the components according to the invention.
  • a further advantage of using cells incorporated into such components is that the mass of the battery or batteries, where desired, may be distributed evenly and integrally throughout the various components. This can be very beneficial, for example, when sudden shocks occur to the component. Such shocks might occur, for example, for vehicles involved in collisions. For military or, say, nuclear containment equipment, explosions or projectile impacts may cause such shocks. Under such conditions the integral nature of the batteries in the components of which they form part will prevent their tending to act as uncontained missiles. Conventional batteries, when used in military tanks or armoured carriers for example, will be liable to act as uncontained missiles during an explosion or under projectile impact. However, batteries integral with the components according to the invention, because of the inherent support for the cells provided by the structure of the component, will not form separate detached objects and will avoid this problem.
  • An example of a component according to the invention in which rechargeable batteries are evenly distributed is internal panelling for a vehicle which may be in the form of a spall liner, as used in military vehicles. These vehicles are often used for reconnaissance patrols during which they spend a considerable time with their engines switched off on ‘silent watch’. In these circumstances the batteries may be used to provide power for sensors, communications, life support, air conditioning, etc. and there must be enough residual battery power to restart the vehicle engine.
  • the spall liners will form part of the vehicle armour but will also provide additional power without taking up any further limited internal space and will not add further weight or bulk to the vehicle. The extra weight of additional conventional batteries would normally reduce manoeuvrability and speed of the vehicle.
  • Components according to the invention may also comprise external vehicle armour as this is often manufactured from composite material.
  • the distributed nature of the batteries in the components also has the advantage of easing the design of an aircraft for the correct weight distribution.
  • There is no parasitic mass which has to be positioned wherever space is available on the aircraft and which forms a concentrated mass which must be balanced in order to trim the aircraft and which must be wired to equipment to be powered and also to a power source.
  • the weight of supports and packaging for the batteries will also be avoided as they will be integral with the aircraft itself.
  • the batteries may be positioned closer to equipment to be powered as they form part of the aircraft structure and do not need separate accommodation.
  • cabin interior lights may use a battery supply from cells comprising cabin panelling in which the lighting is mounted and wing lights or systems equipment may be supplied by power from batteries according to the invention comprising part of the wing structure.
  • Instruments in the cockpit may be powered by batteries, according to the invention, comprising the instrument panel itself.
  • components according to the invention in electrical or electronic equipment, in particular portable equipment such as computers, personal digital assistants (PDAs), cameras and telephones.
  • portable equipment such as computers, personal digital assistants (PDAs), cameras and telephones.
  • mountings for such equipment such as circuit boards, casings and the like could be made according to the invention which would, again, assist in cutting down the weight and bulk of such items enabling them to be lighter, smaller and possibly cheaper, owing to the reduced part count.
  • the power source for such equipment could be comprised in items of clothing to be worn by the user.
  • components such as wind turbine casings or blades and solar array support structures could be made according to the invention to cut down on wiring or on weight and bulk.
  • FIG. 1 shows a cross sectional side view of a component integral with a nickel-zinc rechargeable electrochemical cell, according to the invention.
  • FIG. 2 shows a cross sectional side view of a component integral with a rechargeable electrochemical cell according to the invention and suitable for use with alternative cell chemistries.
  • FIG. 1 shows an example of a component integral with an alkaline rechargeable battery of the invention, depicted generally at 10 , comprising an anode structure 12 which is spaced apart from a cathode structure 14 by a separator structure 16 .
  • the anode and cathode structures 12 , 14 may be connected to suitable electrode contacts 18 , 20 to permit charging and discharging of the cell in the usual manner, although, as explained in more detail below, the anode and cathode structures 12 , 14 may act fully as current collectors.
  • Each of the anode and cathode structures 12 , 14 and the separator structure 16 are formed as a composite material comprising suitable fibres in a binder matrix.
  • the anode and cathode structures 12 , 14 comprise electrically conductive fibres 12 a , 14 a in respective binder matrices 12 b , 14 b .
  • the separator structure 16 comprises electrically insulating fibres 16 a in a binder matrix 16 b.
  • the anode structure 12 is formed from a plain weave carbon fibre fabric 12 a embedded in an epoxy resin binder 12 b .
  • the epoxy resin binder 12 b also contains porous carbon powder and nickel hydroxide (Ni(OH) 2 ) powder, all of which is mixed thoroughly prior to use.
  • the carbon fibre fabric forms a convenient current collector.
  • the cathode structure 14 is formed from a plain weave carbon fibre fabric 14 a embedded in an epoxy resin binder 14 b .
  • the epoxy resin binder 14 b also contains porous carbon powder and zinc oxide (ZnO) powder, all of which is mixed thoroughly prior to use.
  • ZnO zinc oxide
  • the number of moles of zinc oxide used is approximately half that of the nickel hydroxide, in view of the stoichiometry of the electrochemical reaction.
  • the electrochemistry of the nickel zinc battery will be well known to the skilled reader, and therefore further details are not provided herein.
  • the carbon fibre fabric forms a convenient current collector.
  • the active additives in the anode and cathode structures are typically present as fine powders having particle sizes in the range 1 to 10 ⁇ m.
  • the separator structure 16 is formed from a plain weave E-glass fabric 16 a embedded in epoxy resin 16 b .
  • Other electrically insulating fibres such as silicon carbide which provide suitable structural reinforcement might be used instead.
  • Other separators such as microporous polymer films may be used either alone or in combination with the glass fabric.
  • the separator structure 16 contains an aqueous electrolyte consisting of 40% by weight potassium hydroxide in deionised water. Zinc oxide is dissolved in this solution until saturation or near saturation is achieved.
  • the electrolyte can be accommodated in a number of ways.
  • the separator structure may be partially bonded in order to provide spaces which can be filled by the electrolyte.
  • the electrolyte is retained by capillary action between fibres. A 30 to 40% degree of bonding is suitable for this purpose.
  • a porous additive such as a silica or a silica gel, may be used to provide a more open cell structure or a microporous polymer film may be employed. Vents may be provided to control the release of gases during overcharge conditions and fill/drain ports may be fitted to permit the introduction and removal of the aqueous electrolyte for maintenance or storage.
  • one or more textile fibres may be used to provide a more flexible device which might be incorporated, for example, into an item of clothing.
  • Textile fibres having a conductive coating might be used in the anode and cathode structures, and an elastomeric binder might be utilised to confer further mechanical flexibility.
  • the component or article of the invention can be manufactured in different ways. For example, it is possible to fully manufacture each of the anode and cathode structures and the separator structure separately and subsequently bond these completed structures together. Alternatively, each structure may be produced separately, but with partial cure of the epoxy resin binder, so that the structures can be co-cured together. The entire structure of the anode, cathode and separator structures may be formed with a common binder, for example in a wet lay up process, to provide a ‘monolithic’ structure for the component.
  • the separator may be pre-soaked in electrolyte prior to introduction of the epoxy binder so that the epoxy does not penetrate into the open cells.
  • Porosity can be introduced into the binder material in order to increase the utilisation of the active components of the battery, by increasing the surface area available at which electrochemical reactions can occur.
  • Porosity can be achieved in the electrode or separator structures by the addition of a porous additive, such as silica gel as described above, or by the use of sacrificial fillers.
  • a porous additive such as silica gel as described above
  • sacrificial fillers Prior to curing, an electrode material was sprinkled with a thick layer of common salt and consolidated by rolling. The electrode material was then cured, and the structure immersed in warm water to dissolve the salt. This resulted in significantly higher performance of the resulting structure in comparison to a control structure in which salt was not used.
  • utilisation of the active materials present increased by a factor of twenty. It will be appreciated that numerous other sacrificial fillers, such as can be used in this way. For example, commonly available materials such as sugar could be used in the same manner. Enhanced porosity of a separator
  • FIG. 1 There are numerous variations on the embodiment shown in FIG. 1 .
  • Other alkaline batteries such as nickel-iron, nickel-cadmium, nickel metal hydride (NiMH) and silver-zinc might be produced in accordance with the invention.
  • a lead acid battery could be used with lead oxide being used as the active material in the cathode and lead in the anode with sulphuric acid acting as the electrolyte.
  • FIG. 2 Alternative cell chemistries are now described in conjunction with FIG. 2 .
  • a separator 1 containing electrolyte is shown sandwiched between an anode 2 and a cathode 3 .
  • the anode comprises active material 4 and a current collector 5 and the cathode 3 comprises active material 6 and a current collector 7 .
  • Table 1 shows alternative chemistries for the positive active material, the negative active material and the electrolyte.
  • Active material may be intimately mixed with current collector binder, eg. epoxy resin, and/or applied as a surface coating on the inner faces 8 , 9 adjacent the separator.
  • Choice of active materials and electrolyte set the cell chemistry; chemistry substitution is simply a matter of blending the appropriate electrically active materials.
  • a porous separator structure may be produced by using a geopolymer or an open cell foam.
  • a gel electrolyte may be produced by adding gelling agents to an aqueous electrolyte solution.
  • a solid polymer electrolyte (SPE) or a SPE blend may be used in the separator structure, for example to act as a binder and an electrolyte.
  • the SPE or SPE blend may also bind the anode and the cathode structures, or at least bind the anode and cathode structures to the separator structure. This will increase the access of the electrolyte into the anode and cathode structures.
  • Multiphase electrolytes comprising SPE blended with a mechanically stiff matrix material
  • SPE materials such as polyethylene oxide (PEO) and polyvinyl alcohol (PVA) can be used.
  • PEO polyethylene oxide
  • PVA polyvinyl alcohol
  • Suitable mechanically-stiff matrix materials for blending include epoxies, polyesters, or polyimides.
  • the anode, cathode and separator structures are not necessarily planar. Non-planar configurations may be employed, for example, to provide a curved or even a generally tubular battery structure.
  • the composite structures of the invention are well suited for such configurations.
  • the battery may comprise a number of electrodes and secondary electrochemical cells, each cell comprising anode, cathode and separator structures.

Abstract

A component including a rechargeable battery and a method of producing such a component are disclosed. The component uses one of an acid and an alkaline chemistry and the battery has an anode structure, a cathode structure, and a separator structure which separates the anode from the cathode and contains an electrolyte. The anode structure and the cathode structure are each formed from a composite material which includes electrically conductive fibres and electrochemically active material in a binder matrix and the battery is formed to be structurally inseparable from the rest of the component.

Description

    BACKGROUND TO THE INVENTION
  • This invention relates to rechargeable batteries. Rechargeable batteries are groups of one or more secondary cells. A well known example of a rechargeable battery is the lithium ion rechargeable battery, which is commonly used in consumer goods, and in the automotive and aerospace industries. Lithium ion rechargeable batteries offer a high energy density, which is a significant factor in their popularity.
  • DESCRIPTION OF THE PRIOR ART
  • However, there are significant drawbacks attached to current rechargeable battery design and to lithium ion battery technology in particular. Current rechargeable batteries require housing in protective casings. They also require structure and wiring, in the equipment, to support them and to connect them to equipment remote from them. For applications where space and weight are at a premium, therefore, current rechargeable batteries have their limitations. For lithium ion batteries, contact with certain common substances, principally water, oxygen and carbon dioxide, are deleterious to battery performance, and can represent a severe hazard. As a result, a lithium ion battery is typically housed in a hermetically sealed protective casing. The constituents of lithium ion cells are typically toxic, and the battery can catch fire if short circuited, punctured or otherwise compromised. Also, charge and discharge rates need to be controlled carefully. In other words, there are practical disadvantages which hinder the exploitation of current rechargeable batteries and of lithium ion batteries in particular.
  • The present inventors have realised that acid and alkaline chemistries and in particular nickel-zinc rechargeable alkaline batteries and certain related battery technologies have considerable attractions. For example, nickel-zinc batteries require virtually no charging circuitry, and have a low internal resistance resulting in high charge/discharge rates. The theoretical energy density of acid and alkaline chemistry batteries is lower than lithium ion batteries, but in practice only a fraction of the theoretical value is achieved, using lithium ion, and nickel-zinc and other acid and alkaline chemistry batteries offer the possibility of high efficiencies in this regard. In order to encourage commercial use of nickel-zinc and other acid and alkaline chemistry rechargeable batteries it is desirable to provide structurally robust devices which are suited for ‘real world’ applications, and to enable convenient mass manufacture.
  • SUMMARY OF THE INVENTION
  • The present invention addresses the above described drawbacks and desires, and/or provides improved battery gravimetric or volumetric efficiency in terms of specific energy (Watt-hours per kilogram) or energy density (Watt-hours per litre).
  • According to a first aspect of the invention there is provided a component including a rechargeable battery using one of an alkaline and acid based chemistry, the battery having an anode structure, a cathode structure and a separator structure which separates the anode from the cathode and contains an electrolyte, in which the anode structure and the cathode structure are each formed from a composite material which includes electrically conductive fibres and electrochemically active material in a binder matrix and wherein the battery is structurally inseparable from the rest of the component.
  • In this way, it is possible to provide a component comprising a ‘structural’ rechargeable battery in which fibre reinforced cell components provide a dual role by functioning as active electrochemical or electrical elements and also as structural features of the component, being integral therewith. The battery may thus be entirely free of any border or barrier between the cell or cells of the battery and any part of the component which does not act as part of the battery. Thus, parts of the component which are not part of the battery may simply comprise composite material where the fibres or matrix are not electrically conductive or electrochemically active.
  • This provides advantageous mechanical properties and/or component performance properties. For example, conventional batteries require additional support structures, such as casing, packaging, separators, electrodes, current collectors and the like. These, from a component operational point of view, are wholly parasitic. The present inventors have recognised that these additional support structures reduce the volumetric and/or gravimetric efficiency of conventional batteries. In the present invention, active electrochemical and electrical components are multi-functional since they also perform a structural role as, for example, load bearing, protective or otherwise physically robust elements of the component.
  • Preferably, the separator structure is formed from a composite material which includes electrically insulating fibres in a binder matrix. The electrically insulating fibres may be glass, polymer, ceramic or textile fibres, and may be selected depending on the desired mechanical or physical properties of the component. Examples of suitable electrically insulating fibres include E-glass fabric, and silicon carbide fibres. Examples of textile fibres include natural fibres such as cotton, and synthetic fibres which are typically polymer fibres such as Nylon® and polyester.
  • In one preferred embodiment, the rechargeable battery is a nickel-zinc rechargeable battery. The skilled reader will appreciate that in such embodiments, the electrochemically active materials may be nickel hydroxide and zinc oxide.
  • Alternatively, the rechargeable battery may be a nickel-iron, nickel-cadmium, nickel metal hydride or silver-zinc rechargeable battery.
  • Advantageously, one or more of the anode structure, cathode structure and the separator structure may contain a porous additive which increases access of the electrolyte into said structure. The porous additive may be one or more of a silica, a silica gel or carbon powder.
  • At least one of the anode structure and the cathode structure may further include an electrically conductive additive such as carbon powder. It will be apparent to the skilled reader that carbon powder can perform a dual role as a porous additive and an electrically conductive additive.
  • At least one of the anode structure and the cathode structure may further include an ion conducting additive such as polyethylene oxide (PEO).
  • When an aqueous electrolyte is employed, it is conveniently removed for electrolyte replacement or battery storage purposes. Aqueous electrolyte may be accommodated by partially bonding the separator structure to the anode structure and/or cathode structure to provide interstices. Alternatively, a porous additive as mentioned above may be used to provide a more open cell structure having channels for the electrolyte to promote circulation of the electrolyte around the electrically active materials of the anode and cathode.
  • Alternatively, the electrolyte may be a gel.
  • Further in the alternative, the electrolyte may be a solid polymer electrolyte (SPE). The SPE may include polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyacrylic acid (PAA) or grafted analogues or combinations thereof. Biphasic mixtures of SPE's may be used. Additives may be present in the SPE to modify its electrical, physical or chemical properties.
  • Advantageously, the electrically conductive fibres of the anode and cathode structures are carbon or metal fibres. Carbon fibres in particular will enable components of the invention to be used where they are required to be strong and light such as in structural applications for aircraft or satellites. A particular application is seen as providing both structure and power in unmanned aerial vehicles which are often required to stay in flight for long periods, for example when carrying out surveillance operations, and where a source of power which does not add significantly to the weight of the aircraft will enable the aircraft to stay in flight for longer than if conventional batteries were used.
  • Batteries used in this way will work well with solar cells, positioned say on the aircraft wings, which can be used to re-charge the cells in flight. Equally, components according to the invention, used for example as wing skins, can be used to provide power for structural health monitoring of the aircraft when in flight. The availability of such power, with low additional weight, may enable longer flights to be planned in the knowledge that any aircraft health issues which arise are likely to be notified early and may be provided with more sophistication that was previously possible because more monitoring systems can be provided for the same weight, when compared with conventional batteries. Thus, more accurate decision making about the flightworthiness of the aircraft is likely to lead to greater mission availability.
  • The electrically conductive fibres of the anode and cathode structures may include fibres having a conductive coating. The fibres having a conductive coating may include carbon fibres and/or electrically insulating fibres. Examples of electrically insulating fibres include glass fibres, polymer fibres, ceramic fibres such as silicon carbide fibres, and textile fibres. Examples of textile fibres include natural fibres such as cotton and synthetic fibres which are typically polymer fibres such as Nylon® and polyester.
  • Preferably, where the electrically conductive fibres of the anode and cathode structures include fibres having a conductive coating, these fibres are metallised fibres, such as nickel coated fibres. However, other conductive coatings might be utilised.
  • The electrically conductive fibres of the anode and cathode structures may be in the form of a woven fabric or may be non woven, for example in a non crimp fabric.
  • At least one of the anode structure, the cathode structure and the separator may be formed from a composite material which includes an electrically insulating polymer, ceramic or glass based binder matrix. Preferably, the electrically insulating binder matrix material is an epoxy resin. Other structural resins, such as polyester resin, may be used.
  • Alternatively, the electrically insulating binder matrix material may include or consist of an open cell foam, a geopolymer or a SPE. In the latter case, the SPE may perform a dual role as both binder and electrolyte.
  • An elastomeric binder matrix may be used. In this way, a flexible rechargeable battery can be provided for inclusion in the component or possibly an article of clothing or other textile product, particularly if textile fibres are used in the manufacture of the battery. Rechargeable batteries of this type may be integrated into an item of clothing such as by sewing, vulcanising or by being woven into the item of clothing.
  • Possible uses of such flexible batteries comprised in clothing include power sources for hand held/hand operated items such as lights, radios, recording devices, medical equipment, heated clothing, etc., carried or worn by members of the emergency services, police, armed forces and others. Equally, commonly carried items such as cameras, mobile phones, PDAs and personal computers may have primary or additional power supplied to them from batteries incorporated into clothing, according to the invention. Batteries in such clothing may be re-charged either by connection to a mains electricity supply, when not in use, or by employing photovoltaic cells, also carried in the clothing, to charge the batteries.
  • The rechargeable battery may include a number [plurality] of cells which may be interdigitated, multilayered or spatially distributed within the component or article. For example, an aircraft composite wing skin incorporating cells, according to the invention, may have the cells distributed across a large area of wing, either because the cells are connectable to solar cells distributed on the wing skin or because the cells are connectible to distributed power users such as lights, flight control surfaces, valves or sensors for aircraft systems, etc., located in different parts of the wing.
  • The thickness of the anode structure, cathode structure and/or the separator structure may be conveniently varied in order to provide desired mechanical and electrical properties. These structures may be formed from one or more layers. Variation of the number of layers is one way in which the thickness of these structures may be varied.
  • The separator structure may include separator materials such as microporous polymer films, which may be used instead of or in combination with electrically insulating fibres in a binder matrix to aid ion transport.
  • According to a second aspect of the invention there is provided a method of manufacturing a component including, and being structurally inseparable from, a rechargeable battery using one of an acid and alkaline based chemistry, the rechargeable battery including an anode structure and a cathode structure comprising fibrous reinforcing material and plastics matrix material and a separator structure, the separator structure separating the anode from the cathode and being adapted to contain an electrolyte; the method including the steps of laying up, either side of the separator structure, a layup of plies of electrically conductive fibrous reinforcing material for the anode structure and the cathode structure, introducing a binder matrix into at least the anode and the cathode structures and consolidating the layup of cathode, anode and separator into a single composite component.
  • A composite component according to the invention may conveniently be made by any known composite manufacturing processes compatible with the cell chemistry concerned. For example, wet layup; pre-pregging; resin infusion or resin transfer moulding or vacuum assisted resin transfer moulding may all be used. Use of such well known techniques allows great flexibility in form and size of batteries incorporated into components made according to the invention. One advantage of using these commonly used techniques is that components of the invention may be employed to replace already existing parts made by the same techniques but not having the advantage of a battery formed integral therewith.
  • Components according to the invention may be used in new designs or to replace worn, damaged or outdated parts of any items which can be manufactured of composite material. For example, vehicles, whether land, air, space or water born, may have parts manufactured with integral cells, according to the invention. Examples of such use may include wing skins on aircraft, and in particular unmanned air vehicles, where components according to the invention may be used to power structural monitoring equipment, control surfaces, cameras, lights etc. Where the component may be exposed to sunlight or be otherwise connectible to photovoltaic equipment, the cell or cells may be charged using such equipment. Owing to the ability of cells in composite components according to the invention to be positioned anywhere in the component, where the component is a wing skin the photovoltaic cells may be positioned adjacent the cells of the invention to avoid unnecessary wiring.
  • Further potential uses on vehicles may include body panels on hybrid or electric drive vehicles where the components of the invention can be used to save weight and bulk, compared to conventional batteries. Such components may also find use on free flooding hydrodynamic hulls of, say, submersible remotely operated vehicles. The components would be especially useful on any vehicle where weight or bulk was at a premium like an aircraft or a satellite. On a satellite the saving in space and bulk of components according to the invention which could be used to power various systems would potentially be of great benefit and would likely increase the payload capability of the satellite substantially.
  • In buildings, components according to the invention may comprise wall panels in portable or temporary buildings, room dividers, suspended ceiling panels, doors or window frames. In all these items the electrical power available from the battery would replace or reduce the need for wiring and, once again, the cells could be used in conjunction with photovoltaic equipment to generate the power held in the cells of the components according to the invention.
  • A further advantage of using cells incorporated into such components is that the mass of the battery or batteries, where desired, may be distributed evenly and integrally throughout the various components. This can be very beneficial, for example, when sudden shocks occur to the component. Such shocks might occur, for example, for vehicles involved in collisions. For military or, say, nuclear containment equipment, explosions or projectile impacts may cause such shocks. Under such conditions the integral nature of the batteries in the components of which they form part will prevent their tending to act as uncontained missiles. Conventional batteries, when used in military tanks or armoured carriers for example, will be liable to act as uncontained missiles during an explosion or under projectile impact. However, batteries integral with the components according to the invention, because of the inherent support for the cells provided by the structure of the component, will not form separate detached objects and will avoid this problem.
  • An example of a component according to the invention in which rechargeable batteries are evenly distributed is internal panelling for a vehicle which may be in the form of a spall liner, as used in military vehicles. These vehicles are often used for reconnaissance patrols during which they spend a considerable time with their engines switched off on ‘silent watch’. In these circumstances the batteries may be used to provide power for sensors, communications, life support, air conditioning, etc. and there must be enough residual battery power to restart the vehicle engine. The spall liners will form part of the vehicle armour but will also provide additional power without taking up any further limited internal space and will not add further weight or bulk to the vehicle. The extra weight of additional conventional batteries would normally reduce manoeuvrability and speed of the vehicle. Components according to the invention may also comprise external vehicle armour as this is often manufactured from composite material.
  • The distributed nature of the batteries in the components also has the advantage of easing the design of an aircraft for the correct weight distribution. There is no parasitic mass which has to be positioned wherever space is available on the aircraft and which forms a concentrated mass which must be balanced in order to trim the aircraft and which must be wired to equipment to be powered and also to a power source. The weight of supports and packaging for the batteries will also be avoided as they will be integral with the aircraft itself. The batteries may be positioned closer to equipment to be powered as they form part of the aircraft structure and do not need separate accommodation. Thus, for example cabin interior lights may use a battery supply from cells comprising cabin panelling in which the lighting is mounted and wing lights or systems equipment may be supplied by power from batteries according to the invention comprising part of the wing structure. Instruments in the cockpit may be powered by batteries, according to the invention, comprising the instrument panel itself.
  • Of potential great importance would be the use of components according to the invention in electrical or electronic equipment, in particular portable equipment such as computers, personal digital assistants (PDAs), cameras and telephones. Here mountings for such equipment such as circuit boards, casings and the like could be made according to the invention which would, again, assist in cutting down the weight and bulk of such items enabling them to be lighter, smaller and possibly cheaper, owing to the reduced part count. Alternatively, for equipment carried on the user's person such as cameras, PDAs and mobile phones, the power source for such equipment could be comprised in items of clothing to be worn by the user. In addition, the perennial problem of heat dissipation in portable equipment powered by batteries could be alleviated by incorporating the cells in, for example, the casing of a portable computer where they could dissipate heat much more easily with the possible avoidance of the need for cooling fans.
  • For energy capture, components such as wind turbine casings or blades and solar array support structures could be made according to the invention to cut down on wiring or on weight and bulk.
  • When building structures are fabricated from such batteries they may in addition be provided with solar panels, or other energy generation means, so as to provide a readily portable structure comprising both energy generation and energy storage means.
  • Whilst the invention has been described above, it extends to any inventive combination of the features set out above, or in the following description, drawings or claims.
  • DESCRIPTION OF THE DRAWINGS
  • Exemplary embodiments of the component in accordance with the invention will now be described with reference to the accompanying drawings in which:—
  • FIG. 1 shows a cross sectional side view of a component integral with a nickel-zinc rechargeable electrochemical cell, according to the invention, and
  • FIG. 2 shows a cross sectional side view of a component integral with a rechargeable electrochemical cell according to the invention and suitable for use with alternative cell chemistries.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The invention provides components comprising rechargeable batteries using one of an acid or an alkaline chemistry and formed at least in part from composite materials, thereby imparting desired structural properties. FIG. 1 shows an example of a component integral with an alkaline rechargeable battery of the invention, depicted generally at 10, comprising an anode structure 12 which is spaced apart from a cathode structure 14 by a separator structure 16. The anode and cathode structures 12, 14 may be connected to suitable electrode contacts 18, 20 to permit charging and discharging of the cell in the usual manner, although, as explained in more detail below, the anode and cathode structures 12, 14 may act fully as current collectors.
  • Each of the anode and cathode structures 12, 14 and the separator structure 16 are formed as a composite material comprising suitable fibres in a binder matrix. The anode and cathode structures 12, 14 comprise electrically conductive fibres 12 a, 14 a in respective binder matrices 12 b, 14 b. The separator structure 16 comprises electrically insulating fibres 16 a in a binder matrix 16 b.
  • A representative example of a component of the invention integral with an alkaline battery in the form of a nickel-zinc battery will now be described, in which epoxy resin is used as the binder matrix throughout the device. The anode structure 12 is formed from a plain weave carbon fibre fabric 12 a embedded in an epoxy resin binder 12 b. The epoxy resin binder 12 b also contains porous carbon powder and nickel hydroxide (Ni(OH)2) powder, all of which is mixed thoroughly prior to use. The carbon fibre fabric forms a convenient current collector.
  • The cathode structure 14 is formed from a plain weave carbon fibre fabric 14 a embedded in an epoxy resin binder 14 b. The epoxy resin binder 14 b also contains porous carbon powder and zinc oxide (ZnO) powder, all of which is mixed thoroughly prior to use. Typically, the number of moles of zinc oxide used is approximately half that of the nickel hydroxide, in view of the stoichiometry of the electrochemical reaction. The electrochemistry of the nickel zinc battery will be well known to the skilled reader, and therefore further details are not provided herein. The carbon fibre fabric forms a convenient current collector.
  • The active additives in the anode and cathode structures (the nickel hydroxide, zinc oxide and carbon powder) are typically present as fine powders having particle sizes in the range 1 to 10 μm.
  • The separator structure 16 is formed from a plain weave E-glass fabric 16 a embedded in epoxy resin 16 b. Other electrically insulating fibres such as silicon carbide which provide suitable structural reinforcement might be used instead. Other separators such as microporous polymer films may be used either alone or in combination with the glass fabric. The separator structure 16 contains an aqueous electrolyte consisting of 40% by weight potassium hydroxide in deionised water. Zinc oxide is dissolved in this solution until saturation or near saturation is achieved.
  • The electrolyte can be accommodated in a number of ways. The separator structure may be partially bonded in order to provide spaces which can be filled by the electrolyte. The electrolyte is retained by capillary action between fibres. A 30 to 40% degree of bonding is suitable for this purpose. A porous additive, such as a silica or a silica gel, may be used to provide a more open cell structure or a microporous polymer film may be employed. Vents may be provided to control the release of gases during overcharge conditions and fill/drain ports may be fitted to permit the introduction and removal of the aqueous electrolyte for maintenance or storage.
  • In other embodiments, one or more textile fibres may be used to provide a more flexible device which might be incorporated, for example, into an item of clothing. Textile fibres having a conductive coating might be used in the anode and cathode structures, and an elastomeric binder might be utilised to confer further mechanical flexibility.
  • The component or article of the invention can be manufactured in different ways. For example, it is possible to fully manufacture each of the anode and cathode structures and the separator structure separately and subsequently bond these completed structures together. Alternatively, each structure may be produced separately, but with partial cure of the epoxy resin binder, so that the structures can be co-cured together. The entire structure of the anode, cathode and separator structures may be formed with a common binder, for example in a wet lay up process, to provide a ‘monolithic’ structure for the component.
  • Where silica, or a silica gel is used to provide an open cell structure in the separator layer, the separator may be pre-soaked in electrolyte prior to introduction of the epoxy binder so that the epoxy does not penetrate into the open cells.
  • Porosity can be introduced into the binder material in order to increase the utilisation of the active components of the battery, by increasing the surface area available at which electrochemical reactions can occur. Porosity can be achieved in the electrode or separator structures by the addition of a porous additive, such as silica gel as described above, or by the use of sacrificial fillers. In one example, prior to curing, an electrode material was sprinkled with a thick layer of common salt and consolidated by rolling. The electrode material was then cured, and the structure immersed in warm water to dissolve the salt. This resulted in significantly higher performance of the resulting structure in comparison to a control structure in which salt was not used. Specifically, utilisation of the active materials present increased by a factor of twenty. It will be appreciated that numerous other sacrificial fillers, such as can be used in this way. For example, commonly available materials such as sugar could be used in the same manner. Enhanced porosity of a separator layer may be achieved in the same manner.
  • There are numerous variations on the embodiment shown in FIG. 1. Other alkaline batteries such as nickel-iron, nickel-cadmium, nickel metal hydride (NiMH) and silver-zinc might be produced in accordance with the invention. Alternatively, a lead acid battery could be used with lead oxide being used as the active material in the cathode and lead in the anode with sulphuric acid acting as the electrolyte.
  • Alternative cell chemistries are now described in conjunction with FIG. 2. Here, in an arrangement similar to that shown in FIG. 1, the structure of a component in accordance with the invention is shown in section in the form of a basic structural cell. A separator 1, containing electrolyte is shown sandwiched between an anode 2 and a cathode 3. The anode comprises active material 4 and a current collector 5 and the cathode 3 comprises active material 6 and a current collector 7. Table 1, below, shows alternative chemistries for the positive active material, the negative active material and the electrolyte. Active material may be intimately mixed with current collector binder, eg. epoxy resin, and/or applied as a surface coating on the inner faces 8, 9 adjacent the separator. Choice of active materials and electrolyte set the cell chemistry; chemistry substitution is simply a matter of blending the appropriate electrically active materials.
  • TABLE 1
    +ve active −ve active
    Cell type material material Electrolyte
    Nickel- Nickel hydroxide Zinc oxide 40% KOH solution
    zinc (aqueous)
    Nickel- Nickel hydroxide Iron oxide 40% KOH solution
    iron (aqueous)
    Lead-acid Lead oxide Lead 4.2M Sulphuric acid
    (aqueous)
  • Features and techniques which are known in the art of alkaline rechargeable batteries may be used in conjunction with the present invention. For example, nickel-zinc battery technology developed by PowerGenix Corp, of San Diego, Calif. 92131-1109, USA may be incorporated into the present invention.
  • Other electrolyte systems may be used. For example, a porous separator structure may be produced by using a geopolymer or an open cell foam. A gel electrolyte may be produced by adding gelling agents to an aqueous electrolyte solution. In an alternative approach, a solid polymer electrolyte (SPE) or a SPE blend may be used in the separator structure, for example to act as a binder and an electrolyte. The SPE or SPE blend may also bind the anode and the cathode structures, or at least bind the anode and cathode structures to the separator structure. This will increase the access of the electrolyte into the anode and cathode structures. Multiphase electrolytes, comprising SPE blended with a mechanically stiff matrix material can also be used. For example, SPE materials such as polyethylene oxide (PEO) and polyvinyl alcohol (PVA) can be used. Suitable mechanically-stiff matrix materials for blending include epoxies, polyesters, or polyimides.
  • The anode, cathode and separator structures are not necessarily planar. Non-planar configurations may be employed, for example, to provide a curved or even a generally tubular battery structure. The composite structures of the invention are well suited for such configurations. The battery may comprise a number of electrodes and secondary electrochemical cells, each cell comprising anode, cathode and separator structures.

Claims (31)

1. A component comprising:
a rechargeable battery having one of an alkaline and acid based chemistry, the battery having an anode structure, a cathode structure and a separator structure which separates the anode structure from the cathode structure and contains an electrolyte in which the anode structure and the cathode structure are each formed from a composite material which includes electrically conductive fibres and electrochemically active material in a binder matrix and wherein the battery is structurally inseparable from the rest of the component.
2. A component according to claim 1, in which the separator structure is formed from a composite material which includes electrically insulating fibres in a binder matrix.
3. A component according to claim 1, comprising:
a battery using an aqueous liquid or gel electrolyte.
4. A component according to claim 1, comprising:
a nickel-zinc rechargeable battery.
5. A component according to claim 1, comprising:
a nickel-iron, nickel-cadmium, nickel metal hydride or silver-zinc rechargeable battery.
6. A component according to claim 1, comprising:
a lead acid battery.
7. A component according to claim 1, in which one or more of the anode structure, the cathode structure and the separator structure contains a porous additive which increases access of the electrolyte into said structure.
8. A component according to claim 7, in which the porous additive is one or more of a silica, a silica gel or carbon powder.
9. A component according to claim 1 in which at least one of the anode structure and the cathode structure comprises:
an electrically conductive additive.
10. A component according to claim 9, in which the electrically conductive additive is carbon powder.
11. A component according to claim 1, in which the electrolyte is a solid polymer electrolyte.
12. A component according to claim 1, in which the electrically conductive fibres of the anode and cathode structures are carbon or metal fibres.
13. A component according to claim 1, in which the electrically conductive fibres of the anode and cathode structures include fibres having a conductive coating.
14. A component according to claim 13, in which the fibres having a conductive coating include carbon fibres and/or electrically insulating fibres.
15. A component according to claim 13, in which the fibres having a conductive coating are metallised fibres.
16. A component according to claim 1, in which the electrically conductive fibres of the anode and cathode structures are formed as a woven fabric.
17. A component according to claim 1, in which the electrically conductive fibres of the anode and cathode electrode structures are formed as a non woven fabric.
18. A component according to claim 1, in which at least one of the anode structure, the cathode structure and the separator structure is formed from a composite material which includes an electrically insulating polymer, ceramic or glass based binder matrix formed of polymer, ceramic or glass.
19. A component according to claim 18, in which the electrically insulating binder matrix is an epoxy resin.
20. A component according to claim 18, in which the electrically insulating binder matrix is an elastomer.
21. A component according to claim 18, in which the electrically insulating binder matrix is an open cell foam.
22. A component according to claim 1, in which at least one of the anode structure, the cathode structure and the separator structure is formed from a composite material which includes a solid polymer electrolyte binder matrix.
23. A component according to claim 1, in combination with an aircraft wing skin.
24. A component according to claim 23, in which the wing skin includes a solar cell connected to the rechargeable battery.
25. A component according to claim 23, in combination with aircraft structural health monitoring equipment in which the rechargeable battery provides power to operate the structural health monitoring equipment.
26. A component according to claim 1, in combination with vehicle internal panelling.
27. A component according to claim 26, comprising:
a spall liner for a vehicle.
28. A component according to claim 26, comprising:
a vehicle instrument panel.
29. A component according to claim 1, comprising:
mounting means for electronic equipment.
30. A method of manufacturing a component including, and being structurally inseparable from, a rechargeable battery having one of an acid and alkaline based chemistry, the rechargeable battery including an anode structure and a cathode structure having fibrous reinforcing material and plastics matrix material and a separator structure, the separator structure separating the anode from the cathode structure and being adapted to contain an electrolyte, the method comprising:
laying up, on either side of the separator structure, a layup of plies of electrically conductive fibrous reinforcing material for the anode structure and the cathode structure;
introducing a binder matrix into at least the anode and the cathode structures; and
consolidating the layup of the cathode, anode and separator structure into a single composite component.
31. (canceled)
US13/577,877 2010-02-09 2011-02-09 Component including a rechargeable battery Abandoned US20130209839A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1002040.2 2010-02-09
GBGB1002040.2A GB201002040D0 (en) 2010-02-09 2010-02-09 Rechargeable batteries
GB1004474.1 2010-03-17
GBGB1004474.1A GB201004474D0 (en) 2010-03-17 2010-03-17 Rechargeable batteries
PCT/GB2011/050217 WO2011098793A1 (en) 2010-02-09 2011-02-09 Component including a rechargeable battery

Publications (1)

Publication Number Publication Date
US20130209839A1 true US20130209839A1 (en) 2013-08-15

Family

ID=43828240

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/577,887 Active 2031-08-13 US9136563B2 (en) 2010-02-09 2011-02-09 Rechargeable batteries
US13/577,877 Abandoned US20130209839A1 (en) 2010-02-09 2011-02-09 Component including a rechargeable battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/577,887 Active 2031-08-13 US9136563B2 (en) 2010-02-09 2011-02-09 Rechargeable batteries

Country Status (4)

Country Link
US (2) US9136563B2 (en)
EP (2) EP2534716B1 (en)
AU (2) AU2011214120B2 (en)
WO (2) WO2011098793A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271711A1 (en) * 2016-03-21 2017-09-21 Airbus Operations Gmbh Skin panel with an energy-storing layer for an aircraft or spacecraft and method for manufacturing an energy-storing layer for a skin panel
US9845158B2 (en) 2014-10-17 2017-12-19 X Development Llc Aircraft battery containment pods
DE102018208254B4 (en) 2018-05-25 2022-06-15 Airbus Operations Gmbh System for condition monitoring of a fiber composite structure
US11754205B2 (en) * 2015-02-23 2023-09-12 Exotex, Inc. Method and apparatus of making pipes and panels using a treated fiber thread to weave, braid or spin products

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2534716B1 (en) 2010-02-09 2017-08-02 BAE Systems PLC Component including a rechargeable battery
KR101072289B1 (en) * 2010-07-02 2011-10-11 주식회사 샤인 Battery electrode assembly having fiber-shaped structures
JP4940367B1 (en) * 2011-06-13 2012-05-30 日東電工株式会社 Separator for nonaqueous electrolyte electricity storage device, nonaqueous electrolyte electricity storage device, and production method thereof
WO2012172784A1 (en) * 2011-06-13 2012-12-20 日東電工株式会社 Method for manufacturing separator for non-aqueous electrolyte accumulator and method for manufacturing non-aqueous electrolyte accumulator
JP2013020946A (en) * 2011-06-13 2013-01-31 Nitto Denko Corp Method for manufacturing separator for nonaqueous electrolytic electricity storage device and method for manufacturing nonaqueous electrolytic electricity storage device
AU2012270175B2 (en) 2011-06-14 2015-09-17 Bae Systems Plc Component including a rechargeable battery
GB201203997D0 (en) * 2012-03-07 2012-04-18 Bae Systems Plc Electrical energy storage structures
GB2503007A (en) * 2012-06-14 2013-12-18 Bae Systems Plc Fluidic port
GB2505166B (en) * 2012-08-03 2018-04-04 Bae Systems Plc Component including a structural supercapacitor
US9819032B2 (en) * 2013-03-04 2017-11-14 Bae Systems Plc Standby electrical energy storage devices
EP2822061B1 (en) 2013-03-20 2019-05-08 Volvo Car Corporation Vehicle component comprising sandwich structure
DE102014221640A1 (en) * 2014-10-24 2016-04-28 Robert Bosch Gmbh Galvanic cell with robust separation of cathode and anode
KR101820461B1 (en) 2015-05-27 2018-01-22 한국과학기술원 Structure having energy storing capacity
EP3252842A1 (en) * 2016-06-01 2017-12-06 Airbus Operations GmbH Structural composite component and method for configuring a structural composite component
US10522874B2 (en) * 2016-11-01 2019-12-31 The Boeing Company Solid state fiber-based battery system and method of forming same
JP2020024779A (en) * 2016-11-08 2020-02-13 株式会社日立製作所 Electrode for secondary battery, secondary battery, and manufacturing method thereof
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
US11870037B2 (en) * 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes
JP2021533552A (en) 2018-07-27 2021-12-02 フォーム エナジー インク Negative electrode for electrochemical cell
FR3110775B1 (en) * 2020-05-19 2022-08-05 Renault Sas Battery cell comprising special porous solid electrolyte foams
WO2023074964A1 (en) * 2021-10-28 2023-05-04 (주) 사성파워 Structural battery structure for wearable robot and method for manufacturing same, and method for measuring torque for rotation module of wearable robot and torque measuring device therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964932A (en) * 1973-01-26 1976-06-22 Esb Incorporated Battery having deformations in a metal layer
US4415133A (en) * 1981-05-15 1983-11-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar powered aircraft
US5567544A (en) * 1995-05-26 1996-10-22 Boundless Corp. Battery
US5584893A (en) * 1995-11-17 1996-12-17 Valence Technology, Inc. Method of preparing electrodes for an electrochemical cell
US5744264A (en) * 1996-06-13 1998-04-28 Valence Technology, Inc. Lithium ion electrochemical cell
US5766789A (en) * 1995-09-29 1998-06-16 Energetics Systems Corporation Electrical energy devices
US6180281B1 (en) * 1997-12-12 2001-01-30 Johnson Research & Development Company, Inc. Composite separator and electrode
US20020037455A1 (en) * 2000-06-16 2002-03-28 Atsushi Tani Nickel-series rechargeable battery and process for the production thereof
US20030104280A1 (en) * 2001-11-27 2003-06-05 Srinivasan Venkatesan Active electrode composition with graphite additive
US20030139527A1 (en) * 2001-12-13 2003-07-24 Ming-Chi Institute Of Technology Method for making solid polymer electrolyte and uses thereof
US20100159314A1 (en) * 2006-02-16 2010-06-24 Lg Chem, Ltd. Lithium Secondary Battery With Enhanced Heat-Resistance
US20100291429A1 (en) * 2009-05-12 2010-11-18 Farmer Joseph C Electrochemical Nanofluid or Particle Suspension Energy Conversion and Storage Device
US20130059173A1 (en) * 2010-02-09 2013-03-07 Bae Systems Plc Component including a rechargeable battery

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1908956A1 (en) 1968-02-29 1969-09-25 Westinghouse Electric Corp Electrode for a secondary element
US3853624A (en) 1970-07-17 1974-12-10 Westinghouse Electric Corp High energy density iron-nickel battery
US4078125A (en) 1976-05-27 1978-03-07 Westinghouse Electric Corporation Energy density iron-silver battery
JPS5385348A (en) 1977-01-06 1978-07-27 Matsushita Electric Ind Co Ltd Negative electrode for nickel cadmium storage battery
JPS5682577A (en) 1979-12-10 1981-07-06 Sanyo Electric Co Ltd Positive plate for alkaline storage battery
JPS5684876A (en) 1979-12-12 1981-07-10 Sanyo Electric Co Ltd Positive electrode plate for alkaline storage battery
EP0353837B1 (en) 1988-07-19 1994-07-27 Yuasa Corporation A nickel electrode for an alkaline battery
US5124508A (en) 1990-08-14 1992-06-23 The Scabbard Corp. Application of sheet batteries as support base for electronic circuits
HUT63513A (en) 1991-06-24 1993-08-30 Battery Technologies Inc Immobilized alkali-zinc anode of improved conductivity and cumulative capacity for rechargeable cells
CN2158136Y (en) 1993-06-04 1994-03-02 赵学相 Plastic fiber direct charging battery
JPH08329955A (en) 1995-05-30 1996-12-13 Toshiba Battery Co Ltd Paste electrode and alkaline secondary battery
JP3330263B2 (en) 1995-10-05 2002-09-30 東芝電池株式会社 Alkaline secondary battery and manufacturing method thereof
JPH103906A (en) 1996-06-14 1998-01-06 Tokuyama Corp Positive electrode active material for alkaline secondary battery, and alkaline secondary battery
JPH10162815A (en) 1996-12-03 1998-06-19 Toshiba Battery Co Ltd Sealed nickel hydrogen battery
JPH10284055A (en) 1997-02-04 1998-10-23 Mitsubishi Electric Corp Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP3734117B2 (en) 1997-06-12 2006-01-11 株式会社ユアサコーポレーション Hydrogen storage alloy electrode
FR2773644B1 (en) 1998-01-15 2000-02-04 Alsthom Cge Alcatel NON-SINTERED NICKEL ELECTRODE USED IN PARTICULAR IN ELECTROCHEMICAL GENERATORS WITH ALKALINE ELECTROLYTE AND BINDER FOR ACTIVE MATERIAL
JPH11283603A (en) * 1998-03-30 1999-10-15 Noritake Co Ltd Separator for battery and its manufacture
US6203941B1 (en) * 1998-12-18 2001-03-20 Eveready Battery Company, Inc. Formed in situ separator for a battery
CN1127163C (en) 1999-04-05 2003-11-05 深圳市比亚迪股份有限公司 High-temperature Ni/H2 battery and its manufacture
JP2002117841A (en) 2000-02-01 2002-04-19 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
WO2002017415A1 (en) 2000-08-22 2002-02-28 Matsushita Electric Industrial Co., Ltd. Alkali storage battery and hydrogen absorbing alloy electrode for use therein
US7150938B2 (en) 2001-03-30 2006-12-19 Lithium Power Technologies, Inc. Structurally embedded intelligent power unit
JPWO2003028142A1 (en) * 2001-09-19 2005-01-13 川崎重工業株式会社 Three-dimensional battery, electrode structure thereof, and method for manufacturing electrode material of three-dimensional battery
US7335448B2 (en) 2002-05-30 2008-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
JP2004186075A (en) 2002-12-05 2004-07-02 Mikuni Color Ltd Electrode for secondary battery and secondary battery using this
US20040119194A1 (en) * 2002-12-24 2004-06-24 Boyko Aladjov Method for making electrodes for electrochemical cells
JP2005347177A (en) 2004-06-04 2005-12-15 Sanoh Industrial Co Ltd Alkaline battery
JP4718816B2 (en) * 2004-09-22 2011-07-06 日東電工株式会社 Reactive polymer-supported porous film for battery separator and battery manufacturing method using the same
US8186519B2 (en) 2005-01-07 2012-05-29 Emaus Kyoto, Inc. Porous cured epoxy resin
FR2890784B1 (en) 2005-09-09 2013-05-24 Accumulateurs Fixes POSITIVE ELECTRODE FOR ALKALINE ACCUMULATOR
JP4481282B2 (en) 2006-09-07 2010-06-16 住友電気工業株式会社 Battery electrode substrate, battery electrode, and alkaline secondary battery using the same
FR2920255B1 (en) 2007-08-24 2009-11-13 Commissariat Energie Atomique LITHIUM ELECTROCHEMICAL GENERATOR OPERATING WITH AQUEOUS ELECTROLYTE.
US20090076159A1 (en) 2007-09-19 2009-03-19 Protia, Llc Deuterium-enriched eplivanserin
KR100913176B1 (en) * 2007-11-28 2009-08-19 삼성에스디아이 주식회사 Negative electrode for lithium secondary battery and lithium secondary battery comprising same
EP2534716B1 (en) 2010-02-09 2017-08-02 BAE Systems PLC Component including a rechargeable battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964932A (en) * 1973-01-26 1976-06-22 Esb Incorporated Battery having deformations in a metal layer
US4415133A (en) * 1981-05-15 1983-11-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar powered aircraft
US5567544A (en) * 1995-05-26 1996-10-22 Boundless Corp. Battery
US5766789A (en) * 1995-09-29 1998-06-16 Energetics Systems Corporation Electrical energy devices
US5584893A (en) * 1995-11-17 1996-12-17 Valence Technology, Inc. Method of preparing electrodes for an electrochemical cell
US5744264A (en) * 1996-06-13 1998-04-28 Valence Technology, Inc. Lithium ion electrochemical cell
US6180281B1 (en) * 1997-12-12 2001-01-30 Johnson Research & Development Company, Inc. Composite separator and electrode
US20020037455A1 (en) * 2000-06-16 2002-03-28 Atsushi Tani Nickel-series rechargeable battery and process for the production thereof
US20030104280A1 (en) * 2001-11-27 2003-06-05 Srinivasan Venkatesan Active electrode composition with graphite additive
US20030139527A1 (en) * 2001-12-13 2003-07-24 Ming-Chi Institute Of Technology Method for making solid polymer electrolyte and uses thereof
US20100159314A1 (en) * 2006-02-16 2010-06-24 Lg Chem, Ltd. Lithium Secondary Battery With Enhanced Heat-Resistance
US20100291429A1 (en) * 2009-05-12 2010-11-18 Farmer Joseph C Electrochemical Nanofluid or Particle Suspension Energy Conversion and Storage Device
US20130059173A1 (en) * 2010-02-09 2013-03-07 Bae Systems Plc Component including a rechargeable battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9845158B2 (en) 2014-10-17 2017-12-19 X Development Llc Aircraft battery containment pods
US11754205B2 (en) * 2015-02-23 2023-09-12 Exotex, Inc. Method and apparatus of making pipes and panels using a treated fiber thread to weave, braid or spin products
US20170271711A1 (en) * 2016-03-21 2017-09-21 Airbus Operations Gmbh Skin panel with an energy-storing layer for an aircraft or spacecraft and method for manufacturing an energy-storing layer for a skin panel
US10854909B2 (en) * 2016-03-21 2020-12-01 Airbus Operations Gmbh Skin panel with an energy-storing layer for an aircraft or spacecraft and method for manufacturing an energy-storing layer for a skin panel
DE102018208254B4 (en) 2018-05-25 2022-06-15 Airbus Operations Gmbh System for condition monitoring of a fiber composite structure

Also Published As

Publication number Publication date
AU2011214119A1 (en) 2012-08-23
EP2534716A1 (en) 2012-12-19
AU2011214120B2 (en) 2013-10-24
AU2011214120A1 (en) 2012-08-23
AU2011214119B2 (en) 2014-05-01
WO2011098794A1 (en) 2011-08-18
US9136563B2 (en) 2015-09-15
EP2534717A1 (en) 2012-12-19
EP2534716B1 (en) 2017-08-02
EP2534717B1 (en) 2017-04-19
WO2011098793A1 (en) 2011-08-18
US20120308887A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP2534716B1 (en) Component including a rechargeable battery
AU2011214121B2 (en) Component including a rechargeable battery
AU2012270175B2 (en) Component including a rechargeable battery
US20150044572A1 (en) Electrical energy storage structures
EP2880667B1 (en) Structural supercapacitor usable in a mechanical structure
US10991935B2 (en) Structural lithium-ion batteries with carbon fiber electrodes
US20130157111A1 (en) Bipolar electrochemical battery with an improved casing
KR20160115864A (en) Wing structure for aircraft with structural battrery
EP2535970A1 (en) Component including a rechargeable battery
US9543078B2 (en) Structural composite battery with fluidic port for electrolyte
US9819032B2 (en) Standby electrical energy storage devices
Baird Review of Technical Criteria for High-Impact Battery Applications with Examples of Industry Performance
GB2511496A (en) Standby Electrical Energy Storage Devices
EP2775490A1 (en) Standby electrical energy storage devices

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAE SYSTEMS PLC, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUCKER, MARTYN JOHN;DUNLEAVY, MICHAEL;HAQ, SAJAD;REEL/FRAME:028989/0777

Effective date: 20120829

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION