US20130177730A1 - Encapsulated Ceramic Element and Method of Making the Same - Google Patents
Encapsulated Ceramic Element and Method of Making the Same Download PDFInfo
- Publication number
- US20130177730A1 US20130177730A1 US13/828,729 US201313828729A US2013177730A1 US 20130177730 A1 US20130177730 A1 US 20130177730A1 US 201313828729 A US201313828729 A US 201313828729A US 2013177730 A1 US2013177730 A1 US 2013177730A1
- Authority
- US
- United States
- Prior art keywords
- wafer
- pzt
- encapsulation material
- layer
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title abstract description 7
- 239000000463 material Substances 0.000 claims abstract description 90
- 238000005538 encapsulation Methods 0.000 claims abstract description 74
- 238000001465 metallisation Methods 0.000 claims abstract description 25
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 15
- 239000003822 epoxy resin Substances 0.000 claims description 2
- 229920000647 polyepoxide Polymers 0.000 claims description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 abstract description 82
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 abstract description 81
- 239000007858 starting material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 7
- 238000000227 grinding Methods 0.000 description 7
- 239000004593 Epoxy Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
- H10N30/883—Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/4505—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
- C04B41/90—Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/02—Forming enclosures or casings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/08—Shaping or machining of piezoelectric or electrostrictive bodies
- H10N30/085—Shaping or machining of piezoelectric or electrostrictive bodies by machining
- H10N30/088—Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8548—Lead-based oxides
- H10N30/8554—Lead-zirconium titanate [PZT] based
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/23—Sheet including cover or casing
- Y10T428/232—Encased layer derived from inorganic settable ingredient
Definitions
- This invention relates to ceramic elements and, more specifically, to an encapsulated PZT (lead zirconate titanate) element and the method of making the same.
- PZT lead zirconate titanate
- PZT (lead zirconate titanate) ceramic elements are typically made through a process which includes cutting a wafer or block of PZT material into a plurality of smaller PZT elements.
- the cutting exposes the edges and surfaces of the PZT elements which, as a result of further processing or use, can cause one or more of the following: 1) the breakage of the PZT elements when the PZT elements are thin enough; 2) damage to the ceramic material on the edges and surfaces of the PZT elements; and 3) the release of particles of ceramic material from the edges and surfaces of the PZT elements and into the product(s) in which PZT elements are used such as, for example, disk drives.
- the present invention is directed to an encapsulated ceramic element such as, for example, a PZT element, in which one or more of the outside surfaces thereof has been encapsulated with a layer of epoxy or the like protective encapsulation material and a layer of metallization,
- the invention is also directed to a method of making the same.
- the method of making the encapsulated ceramic element comprises at least the steps of providing a wafer of ceramic material; making a plurality of first spaced-apart cuts through the wafer to form a wafer including a base and a plurality of first spaced-apart walls extending away from the base and defining a plurality of first spaced-apart recesses between the plurality of spaced-apart walls; filling the plurality of recesses with an encapsulation material to define a wafer with a plurality of first spaced-apart layers of encapsulation material; grinding away at least the base of the wafer; and making a cut through selected ones of the plurality of layers of encapsulation material to divide the wafer into a plurality of separate and individual encapsulated ceramic elements, each including either one encapsulate outside surface or two opposed encapsulated outside surfaces.
- a layer of metallization is applied over both the top and bottom outside surfaces of the wafer of ceramic material and opposed top and bottom edges of the layers of encapsulation material following the curing of the encapsulation material and grinding away of at least the base of the wafer.
- the method additionally comprises the steps of making a plurality of second spaced-apart cuts through the wafer in a relationship normal to the plurality of first spaced-apart cuts to define a wafer with a plurality of posts and second spaced-apart recesses oriented in a relationship normal to the first spaced-apart recesses; filling the first and second spaced-apart recesses with an encapsulated material to define first and second sets of intersecting layers of encapsulation material; applying a layer of metallization over the top and bottom outside surfaces of the wafer and the edges of the layers of encapsulation material following curing of the encapsulation material and grinding away of at least the base of the wafer; and making a cut through selected ones of the second spaced-apart layers of encapsulation material either prior to or following making the cut through selected ones of the first spaced-apart layers of encapsulation material to form a plurality of ceramic elements, each including at least two normal outside surfaces with a layer of encapsulation
- FIG. 1 is an enlarged perspective view of a diced starter wafer of PZT material which can be used as a starting material or block for making the encapsulated PZT element of the present invention
- FIG. 2 is an enlarged perspective view of the PZT wafer of FIG. 1 after filling with encapsulation material, curing of the encapsulation material, grinding away of at least the base of the PZT wafer shown in FIG. 1 , and the application of opposed layers of metallization thereto;
- FIG. 3 is an enlarged perspective view of the PZT wafer shown in FIG. 2 following dicing through the layers of metallization and encapsulation material to create a plurality of individual, separate encapsulated PZT elements;
- FIG. 4 is an enlarged perspective view of one of the individual interior cut PZT elements shown in FIG. 3 which includes two opposed encapsulated outer side surfaces and two opposed metallized outer top and bottom surfaces;
- FIG. 5 is an enlarged perspective view of a diced grid patterned starter wafer of PZT material which can be used as a starting material or block for making another embodiment of an encapsulated PZT element of the present invention
- FIG. 6 is an enlarged perspective view of the PZT wafer of FIG. 5 after filling with encapsulation material, curing of the encapsulation material, grinding away of at least the base of the PZT wafer shown in FIG. 5 , and the application of opposed layers of metallization thereto;
- FIG. 7 is an enlarged perspective view of the PZT wafer shown in FIG. 6 following dicing through the layers of metallization and encapsulation material to create a plurality of individual, separate encapsulated PZT elements;
- FIG. 8 is an enlarged perspective view of one of the individual interior cut PZT elements shown in FIG. 7 which includes two sets of opposed encapsulated outer side surfaces and two opposed metallized outer top and bottom surfaces.
- FIG. 1 shows a base or starter wafer 10 of PZT (lead zirconate titanate) ceramic material which can be used as the starting material or block for making the encapsulated PZT elements of the present invention.
- PZT lead zirconate titanate
- block or starter wafer 10 is made by providing a solid block of PZT ceramic material having a dimension (length, height, width) substantially larger than the dimension (length, height, width) of the final desired encapsulated individual PZT elements.
- the wafer 10 which is typically about 76 mm long, 1 mm high, and 76 mm wide is, in one embodiment, mounted on a dicing tape and diced (cut) to form a wafer 10 which includes a solid flat, generally rectangularly-shaped base 12 and a plurality of spaced-apart, parallel elongated walls 14 of PZT material extending generally unitarily normally outwardly and upwardly from the base 12 to define a plurality of spaced-apart, parallel, open channels or recesses or voids 16 therebetween also extending in an orientation generally normally upwardly from the base 12 .
- FIG. 1 shows only a portion of a wafer 10 and only five walls 14 for illustration purposes, it is understood that the PZT wafer 10 includes more than one hundred fifty (150) such walls 14 and could include as many as one thousand (1,000) such walls depending upon the application.
- each of the walls 14 of PZT material will define the body or core 14 of each of the individual final PZT elements 30 of the present invention as shown in FIG. 4 and thus the wafer 10 is diced with a blade whose width and orientation during dicing will determine both the pitch of the walls 14 and thus the pitch of the body of the final PZT elements and also the thickness of the layers of encapsulation material on the final PZT elements.
- the use of a wide dicing blade during the initial dicing operation will result in a thicker layer of epoxy or the like encapsulation material on the final PZT elements, while the use of a thinner dicing blade during this initial dicing operation will result in final PZT elements with thin layers of epoxy or the like encapsulation material.
- the width of the dicing blade or cut for this initial processing operation is determined by the following equation:
- First blade or cut width Final blade or cut width+(2 ⁇ remaining epoxy)
- the invention encompasses the use of any other suitable cutting apparatus to effect the initial cuts such as, for example, the use of a laser.
- the second step (not shown) in the process of making encapsulated PZT elements in accordance with the present invention comprises filling all of the open channels 16 in the wafer 10 with a two-part epoxy resin or the like suitable encapsulation material.
- top of the walls 14 of the wafer 10 and the base 12 of wafer 10 are then ground away using a suitable grinding apparatus to pre-poled thickness to create the ground PZT wafer 20 depicted in FIG. 2 .
- Ground PZT wafer 20 is comprised of a plurality of spaced-apart, parallel, elongate individual strips 14 of PZT material corresponding to and defined by the plurality of spaced-apart, parallel elongate walls 14 of the wafer 10 shown in FIG. 1 .
- the strips 14 of PZT material are separated by, and are held together by, a plurality of spaced-apart, parallel layers of cured encapsulation material 24 , i.e., a layer of encapsulation material 24 is located between each of the elongate strips 14 of PZT material in an alternating relationship with the strips 14 .
- the method of the present invention also includes the steps of metallizing the wafer 20 , i.e., applying a layer 21 of conductive metal material to and over each of the outside top and bottom surfaces of the wafer 20 and the exposed top and bottom edges of each of the layers 24 of encapsulation material as also shown in FIG. 2 ; inserting electrodes in the wafer 20 (not shown); and poling the wafer 20 (not shown), i.e., photo-processing and etching the wafer 20 as desired.
- the wafer 20 is then mounted onto a tape and frame apparatus (not shown) and, more specifically, is seated on a tape 23 as shown in FIG. 3 , for the final cutting operation in which any suitable cutting apparatus such as, for example, a dicing blade 19 , or other suitable cutting tool such as a laser, is used to form a longitudinal cut through each of the layers 21 of metallization and each of the layers 24 of encapsulation as shown in FIG. 3 which depicts the wafer 20 of FIG. 2 following the formation therein of a longitudinal cut 26 through the layers 21 of metallization and three of the four layers 24 of encapsulation material.
- any suitable cutting apparatus such as, for example, a dicing blade 19 , or other suitable cutting tool such as a laser
- the width of the dicing blade 19 which, of course, is less than the width of the layer 24 of encapsulation material, determines the width or thickness of the layer 24 of encapsulation material which will remain on the two outside (exterior side) surfaces of the final encapsulated PZT elements.
- the cuts 26 divide the PZT wafer 20 into a plurality of individual separate elongated encapsulated PZT elements 30 , one of which is shown in FIG. 4 , each defined by and including a center strip or body or core 14 of PZT material corresponding to and defined by the walls 14 shown in FIGS.
- outside surfaces 42 , 44 , 46 , 48 , 50 , and 52 on the body 14 a respective layer 24 of encapsulation material on and covering each of the opposed parallel outside (exterior/outer side) surfaces 42 and 44 of the body 14 of the PZT element 30 , and a layer 21 of metallization on and covering each of the top and bottom outside/exterior/outer surfaces 50 and 52 and the top and bottom edges of each of the layers 24 of encapsulation material.
- the length and width of PZT element 30 can range from about 10 mils (0.01 inches) to about 1,000 mils (1 inch) but will typically be in the range of between about 40-60 mils (0.04-0.06 inches).
- the thickness of PZT element 30 can range from about 1 mil (0.001 inches) to about 100 mils (0.1 inches) but will typically be about 4 mils (0.004 inches).
- the respective layers 24 of encapsulation material encapsulate and cover the respective outer side surfaces 42 and 44 of PZT element 30 to: protect the surfaces 42 and 44 from damage during further processing or use; strengthen the PZT element 30 during further processing or use; and prevent the release of particles of PZT material from the surfaces 42 and 44 during further processing and also prevent the release of particles of PZT material into the product(s) in which the PZT element 30 is used such as, for example, a disk drive.
- the metallization process which includes the placement of metallization over at least the top and bottom outer surfaces 50 and 52 and the top and bottom exposed edges of each of the layers 24 of encapsulation material reduces the risk of the layers 24 of encapsulation material separating from the body 14 and also creates a barrier preventing the entry of contaminants or the like between the edge of the layers 24 and the body 14 .
- FIG. 5 shows a starter wafer 110 of PZT (lead zirconate titanate) ceramic material which can be used as the starting material or block for making another embodiment 140 of an encapsulated PZT element of the present invention as shown in FIG. 8 .
- PZT lead zirconate titanate
- the PZT element 140 shown in FIG. 8 which may be the same size as the PZT element 30 , is made using the same elements, materials, and method as described above with respect to the PZT element 30 shown in FIG. 4 and thus the description above is incorporated herein by reference except as described below in more detail.
- a quadrant or checkerboard or grid pattern including a plurality of rows and columns of spaced-apart and parallel generally rectangularly-shaped posts or pillars 114 of PZT ceramic material extending and projecting unitarily generally normally outwardly from an interior surface of a solid lower generally rectangularly-shaped base 112 of the wafer 110 and defining a first set of spaced-apart and parallel recesses or voids 116 similar to the recesses 16 of the wafer 10 and, additionally, a second set of spaced-apart, parallel recesses or voids 117 extending along the length of the wafer 110 in an orientation normal to, and intersecting, the first set of recesses 116 .
- the first and second sets of recesses 116 and 117 are then filled with encapsulation material, the encapsulation material is cured, and the wafer 110 is then ground to form a ground wafer 120 as shown in FIG. 6 which includes a cured layer 124 of encapsulation material comprised of a first set of spaced-apart and parallel layers 124 a of encapsulation material similar to the first set of layers 24 of encapsulation material of the ground PZT wafer 20 shown in FIG. 2 and additionally a second set of spaced-apart and parallel layers 124 b of encapsulation material extending along the length of the ground wafer 120 in a direction normal to, and intersecting, the first layers 124 a of encapsulation material shown therein.
- the ground wafer 120 is also metallized as shown in FIG. 6 , i.e., a layer 121 of metallization, i.e., conductive metal material, is applied to and over each of the top and bottom outside surfaces of the wafer 120 and the exposed outside top and bottom edges of each of the layers 124 a and 124 b of encapsulation material.
- a layer 121 of metallization i.e., conductive metal material
- the final cutting operation of FIG. 7 includes the steps of forming a first cut 126 through each of the first set of layers 124 a of encapsulation material and layers 121 of metallization and an additional second cut 127 through each of the second set of layers 124 b of encapsulation material and layers 121 of metallization to divide the wafer 20 into a plurality of individual PZT elements 140 as shown in FIG. 8 , each including a central body or core 114 of PZT material corresponding to and defined by each of the posts 114 shown in FIGS.
- outside surfaces 142 , 144 , 146 , 148 , and 150 on the body 114 a layer 124 of encapsulation material covering each of the outside (exterior/outer side) surfaces 142 , 144 , 146 , and 148 of the body 114 , and a layer 121 of metallization material covering each of the top and bottom outside/outer surfaces 150 and 152 of the body 114 and the top and bottom edges of the layer 124 of encapsulation material covering the surfaces 142 , 144 , 146 , and 148 .
- the PZT element 140 includes a first set of opposed encapsulated outer side surfaces 142 and 144 with a layer 124 a of encapsulation material thereon and a second set of opposed encapsulated outer side surfaces 146 and 148 with a layer 124 b of encapsulation material thereon and orientated in a relationship generally normal to the surfaces 142 and 144 and the layer 124 a of encapsulation material thereon.
- the final cuts 26 may be made in selected ones of the layers 24 of encapsulation material of the wafer 20 shown in FIG. 2 so as to form an individual final PZT element 40 in which only one of the outer side surfaces 42 or 44 is encapsulated, i.e., by using a blade or laser beam in alternating ones of the layers 24 of encapsulation material wide enough to remove all of the encapsulation material.
- the final cuts 126 may be made in selected ones of the layers 124 a of the encapsulation material to form individual final PZT elements 140 including either only two normal encapsulated outside (exterior side) surfaces or three encapsulated outside (exterior side) surfaces again by using a blade or laser beam in selected ones of the plurality of layers 124 a of encapsulation material wide enough to remove all of the encapsulation material.
- the present invention encompasses the encapsulated PZT elements, and the method of making encapsulated PZT elements, having shapes other than rectangular or square including, for example, curved and circular shapes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Micromachines (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
A PZT (lead zirconate titanate) element including one or more outside surfaces including a layer of encapsulation and metallization material and the method of making the same including at least the steps of providing a wafer of ceramic material including a base and one or more walls defining one or more recesses in the wafer which are filled with an encapsulation material. The encapsulation material is then cured and a layer of metallization is applied to one or more of the outside surfaces of the wafer and encapsulation material. Cuts are then made through the layer of metallization and cured encapsulation material to divide the wafer into a plurality of individual and separate ceramic elements with one or more surfaces including a layer of metallization and encapsulation.
Description
- This application is a divisional application which claims the benefit of the filing date of co-pending U.S. patent application Ser. No. 12/840,464 filed on Jul. 21, 2010, entitled Encapsulated Ceramic Element and Method of Making the Same, the disclosure of which is explicitly incorporated herein by reference as are all references cited therein, which claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/271,846 filed on Jul. 27, 2009, the contents of which are explicitly incorporated by reference, as are all references cited therein.
- This invention relates to ceramic elements and, more specifically, to an encapsulated PZT (lead zirconate titanate) element and the method of making the same.
- PZT (lead zirconate titanate) ceramic elements are typically made through a process which includes cutting a wafer or block of PZT material into a plurality of smaller PZT elements. The cutting exposes the edges and surfaces of the PZT elements which, as a result of further processing or use, can cause one or more of the following: 1) the breakage of the PZT elements when the PZT elements are thin enough; 2) damage to the ceramic material on the edges and surfaces of the PZT elements; and 3) the release of particles of ceramic material from the edges and surfaces of the PZT elements and into the product(s) in which PZT elements are used such as, for example, disk drives.
- The present invention is directed to an encapsulated ceramic element such as, for example, a PZT element, in which one or more of the outside surfaces thereof has been encapsulated with a layer of epoxy or the like protective encapsulation material and a layer of metallization, The invention is also directed to a method of making the same.
- In one embodiment, the method of making the encapsulated ceramic element comprises at least the steps of providing a wafer of ceramic material; making a plurality of first spaced-apart cuts through the wafer to form a wafer including a base and a plurality of first spaced-apart walls extending away from the base and defining a plurality of first spaced-apart recesses between the plurality of spaced-apart walls; filling the plurality of recesses with an encapsulation material to define a wafer with a plurality of first spaced-apart layers of encapsulation material; grinding away at least the base of the wafer; and making a cut through selected ones of the plurality of layers of encapsulation material to divide the wafer into a plurality of separate and individual encapsulated ceramic elements, each including either one encapsulate outside surface or two opposed encapsulated outside surfaces.
- According to the invention, a layer of metallization is applied over both the top and bottom outside surfaces of the wafer of ceramic material and opposed top and bottom edges of the layers of encapsulation material following the curing of the encapsulation material and grinding away of at least the base of the wafer.
- In another embodiment, the method additionally comprises the steps of making a plurality of second spaced-apart cuts through the wafer in a relationship normal to the plurality of first spaced-apart cuts to define a wafer with a plurality of posts and second spaced-apart recesses oriented in a relationship normal to the first spaced-apart recesses; filling the first and second spaced-apart recesses with an encapsulated material to define first and second sets of intersecting layers of encapsulation material; applying a layer of metallization over the top and bottom outside surfaces of the wafer and the edges of the layers of encapsulation material following curing of the encapsulation material and grinding away of at least the base of the wafer; and making a cut through selected ones of the second spaced-apart layers of encapsulation material either prior to or following making the cut through selected ones of the first spaced-apart layers of encapsulation material to form a plurality of ceramic elements, each including at least two normal outside surfaces with a layer of encapsulation material thereon.
- There are other advantages and features of this invention, which will be more readily apparent from the following detailed description of preferred embodiments of the invention, the drawings, and the appended claims.
- These and other features of the invention can best be understood by the following description of the accompanying drawings as follows:
-
FIG. 1 is an enlarged perspective view of a diced starter wafer of PZT material which can be used as a starting material or block for making the encapsulated PZT element of the present invention; -
FIG. 2 is an enlarged perspective view of the PZT wafer ofFIG. 1 after filling with encapsulation material, curing of the encapsulation material, grinding away of at least the base of the PZT wafer shown inFIG. 1 , and the application of opposed layers of metallization thereto; -
FIG. 3 is an enlarged perspective view of the PZT wafer shown inFIG. 2 following dicing through the layers of metallization and encapsulation material to create a plurality of individual, separate encapsulated PZT elements; -
FIG. 4 is an enlarged perspective view of one of the individual interior cut PZT elements shown inFIG. 3 which includes two opposed encapsulated outer side surfaces and two opposed metallized outer top and bottom surfaces; -
FIG. 5 is an enlarged perspective view of a diced grid patterned starter wafer of PZT material which can be used as a starting material or block for making another embodiment of an encapsulated PZT element of the present invention; -
FIG. 6 is an enlarged perspective view of the PZT wafer ofFIG. 5 after filling with encapsulation material, curing of the encapsulation material, grinding away of at least the base of the PZT wafer shown inFIG. 5 , and the application of opposed layers of metallization thereto; -
FIG. 7 is an enlarged perspective view of the PZT wafer shown inFIG. 6 following dicing through the layers of metallization and encapsulation material to create a plurality of individual, separate encapsulated PZT elements; and -
FIG. 8 is an enlarged perspective view of one of the individual interior cut PZT elements shown inFIG. 7 which includes two sets of opposed encapsulated outer side surfaces and two opposed metallized outer top and bottom surfaces. -
FIG. 1 shows a base orstarter wafer 10 of PZT (lead zirconate titanate) ceramic material which can be used as the starting material or block for making the encapsulated PZT elements of the present invention. - Although not shown or described herein in any detail, it is understood that the block or
starter wafer 10 is made by providing a solid block of PZT ceramic material having a dimension (length, height, width) substantially larger than the dimension (length, height, width) of the final desired encapsulated individual PZT elements. Thewafer 10 which is typically about 76 mm long, 1 mm high, and 76 mm wide is, in one embodiment, mounted on a dicing tape and diced (cut) to form awafer 10 which includes a solid flat, generally rectangularly-shaped base 12 and a plurality of spaced-apart, parallelelongated walls 14 of PZT material extending generally unitarily normally outwardly and upwardly from thebase 12 to define a plurality of spaced-apart, parallel, open channels or recesses orvoids 16 therebetween also extending in an orientation generally normally upwardly from thebase 12. AlthoughFIG. 1 shows only a portion of awafer 10 and only fivewalls 14 for illustration purposes, it is understood that thePZT wafer 10 includes more than one hundred fifty (150)such walls 14 and could include as many as one thousand (1,000) such walls depending upon the application. - As described in more detail below, each of the
walls 14 of PZT material will define the body orcore 14 of each of the individualfinal PZT elements 30 of the present invention as shown inFIG. 4 and thus thewafer 10 is diced with a blade whose width and orientation during dicing will determine both the pitch of thewalls 14 and thus the pitch of the body of the final PZT elements and also the thickness of the layers of encapsulation material on the final PZT elements. - For example, the use of a wide dicing blade during the initial dicing operation will result in a thicker layer of epoxy or the like encapsulation material on the final PZT elements, while the use of a thinner dicing blade during this initial dicing operation will result in final PZT elements with thin layers of epoxy or the like encapsulation material.
- The pitch of each of the
walls 14 in both the X and Y directions, and thus the final pitch of each of the final PZT elements, is determined by the following equation: -
Pitch=poled shrinkage factor×(final dimension+final kerf) - The width of the dicing blade or cut for this initial processing operation is determined by the following equation:
-
First blade or cut width=Final blade or cut width+(2×remaining epoxy) - If PZT material is to be removed, then remaining epoxy=−(PZT to remove on the side).
- Although not described herein in any detail, it is understood that the invention encompasses the use of any other suitable cutting apparatus to effect the initial cuts such as, for example, the use of a laser.
- The second step (not shown) in the process of making encapsulated PZT elements in accordance with the present invention comprises filling all of the
open channels 16 in thewafer 10 with a two-part epoxy resin or the like suitable encapsulation material. - After all the
channels 16 have been appropriately filled, excess encapsulation material is removed or scraped (not shown) from the top and two exposed sides of thewalls 14 of thewafer 10 and the encapsulation material is subsequently cured (not shown). - The top of the
walls 14 of thewafer 10 and thebase 12 ofwafer 10 are then ground away using a suitable grinding apparatus to pre-poled thickness to create theground PZT wafer 20 depicted inFIG. 2 . -
Ground PZT wafer 20 is comprised of a plurality of spaced-apart, parallel, elongateindividual strips 14 of PZT material corresponding to and defined by the plurality of spaced-apart, parallelelongate walls 14 of thewafer 10 shown inFIG. 1 . Thestrips 14 of PZT material are separated by, and are held together by, a plurality of spaced-apart, parallel layers of curedencapsulation material 24, i.e., a layer ofencapsulation material 24 is located between each of theelongate strips 14 of PZT material in an alternating relationship with thestrips 14. - The method of the present invention also includes the steps of metallizing the
wafer 20, i.e., applying alayer 21 of conductive metal material to and over each of the outside top and bottom surfaces of thewafer 20 and the exposed top and bottom edges of each of thelayers 24 of encapsulation material as also shown inFIG. 2 ; inserting electrodes in the wafer 20 (not shown); and poling the wafer 20 (not shown), i.e., photo-processing and etching thewafer 20 as desired. - In accordance with the invention, the
wafer 20 is then mounted onto a tape and frame apparatus (not shown) and, more specifically, is seated on atape 23 as shown inFIG. 3 , for the final cutting operation in which any suitable cutting apparatus such as, for example, adicing blade 19, or other suitable cutting tool such as a laser, is used to form a longitudinal cut through each of thelayers 21 of metallization and each of thelayers 24 of encapsulation as shown inFIG. 3 which depicts thewafer 20 ofFIG. 2 following the formation therein of alongitudinal cut 26 through thelayers 21 of metallization and three of the fourlayers 24 of encapsulation material. - The width of the
dicing blade 19 which, of course, is less than the width of thelayer 24 of encapsulation material, determines the width or thickness of thelayer 24 of encapsulation material which will remain on the two outside (exterior side) surfaces of the final encapsulated PZT elements. - The
cuts 26 divide thePZT wafer 20 into a plurality of individual separate elongated encapsulatedPZT elements 30, one of which is shown inFIG. 4 , each defined by and including a center strip or body orcore 14 of PZT material corresponding to and defined by thewalls 14 shown inFIGS. 1-3 ,outside surfaces body 14, arespective layer 24 of encapsulation material on and covering each of the opposed parallel outside (exterior/outer side)surfaces body 14 of thePZT element 30, and alayer 21 of metallization on and covering each of the top and bottom outside/exterior/outer surfaces 50 and 52 and the top and bottom edges of each of thelayers 24 of encapsulation material. The length and width ofPZT element 30 can range from about 10 mils (0.01 inches) to about 1,000 mils (1 inch) but will typically be in the range of between about 40-60 mils (0.04-0.06 inches). The thickness ofPZT element 30 can range from about 1 mil (0.001 inches) to about 100 mils (0.1 inches) but will typically be about 4 mils (0.004 inches). - In accordance with the present invention, the
respective layers 24 of encapsulation material encapsulate and cover the respectiveouter side surfaces PZT element 30 to: protect thesurfaces PZT element 30 during further processing or use; and prevent the release of particles of PZT material from thesurfaces PZT element 30 is used such as, for example, a disk drive. - Further, in accordance with the present invention, the metallization process which includes the placement of metallization over at least the top and bottom
outer surfaces 50 and 52 and the top and bottom exposed edges of each of thelayers 24 of encapsulation material reduces the risk of thelayers 24 of encapsulation material separating from thebody 14 and also creates a barrier preventing the entry of contaminants or the like between the edge of thelayers 24 and thebody 14. -
FIG. 5 shows astarter wafer 110 of PZT (lead zirconate titanate) ceramic material which can be used as the starting material or block for making anotherembodiment 140 of an encapsulated PZT element of the present invention as shown inFIG. 8 . - The
PZT element 140 shown inFIG. 8 , which may be the same size as thePZT element 30, is made using the same elements, materials, and method as described above with respect to thePZT element 30 shown inFIG. 4 and thus the description above is incorporated herein by reference except as described below in more detail. - Initially, during the initial dicing of the starter PZT wafer block, additional parallel, spaced-apart cuts are made along the length of the
starter PZT wafer 10 shown inFIG. 1 in a direction normal to thewalls 14 andrecesses 16 to create astarter PZT wafer 110 as shown inFIG. 5 which comprises a quadrant or checkerboard or grid pattern including a plurality of rows and columns of spaced-apart and parallel generally rectangularly-shaped posts orpillars 114 of PZT ceramic material extending and projecting unitarily generally normally outwardly from an interior surface of a solid lower generally rectangularly-shaped base 112 of thewafer 110 and defining a first set of spaced-apart and parallel recesses orvoids 116 similar to therecesses 16 of thewafer 10 and, additionally, a second set of spaced-apart, parallel recesses orvoids 117 extending along the length of thewafer 110 in an orientation normal to, and intersecting, the first set ofrecesses 116. - The first and second sets of
recesses wafer 110 is then ground to form aground wafer 120 as shown inFIG. 6 which includes a curedlayer 124 of encapsulation material comprised of a first set of spaced-apart andparallel layers 124 a of encapsulation material similar to the first set oflayers 24 of encapsulation material of theground PZT wafer 20 shown inFIG. 2 and additionally a second set of spaced-apart andparallel layers 124 b of encapsulation material extending along the length of the ground wafer 120 in a direction normal to, and intersecting, thefirst layers 124 a of encapsulation material shown therein. - The
ground wafer 120 is also metallized as shown inFIG. 6 , i.e., alayer 121 of metallization, i.e., conductive metal material, is applied to and over each of the top and bottom outside surfaces of thewafer 120 and the exposed outside top and bottom edges of each of thelayers PZT element 30, thelayer 121 of metallization is applied following curing of thelayers 124 of encapsulation material and grinding away of at least thebase 112 of thestarter PZT wafer 110. - The final cutting operation of
FIG. 7 includes the steps of forming afirst cut 126 through each of the first set oflayers 124 a of encapsulation material andlayers 121 of metallization and an additionalsecond cut 127 through each of the second set oflayers 124 b of encapsulation material andlayers 121 of metallization to divide thewafer 20 into a plurality ofindividual PZT elements 140 as shown inFIG. 8 , each including a central body orcore 114 of PZT material corresponding to and defined by each of theposts 114 shown inFIGS. 5-7 ,outside surfaces body 114, alayer 124 of encapsulation material covering each of the outside (exterior/outer side)surfaces body 114, and alayer 121 of metallization material covering each of the top and bottom outside/outer surfaces body 114 and the top and bottom edges of thelayer 124 of encapsulation material covering thesurfaces - Thus, in the embodiment of
FIG. 8 , thePZT element 140 includes a first set of opposed encapsulatedouter side surfaces layer 124 a of encapsulation material thereon and a second set of opposed encapsulatedouter side surfaces layer 124 b of encapsulation material thereon and orientated in a relationship generally normal to thesurfaces layer 124 a of encapsulation material thereon. - While the invention has been taught with specific reference to the embodiments and methods described above, someone skilled in the art will recognize that changes can be made in form and detail to the embodiments and the methods without departing from the spirit and the scope of the invention. The described embodiments are thus to be considered in all respects only as illustrative and not restrictive.
- For example, it is understood that, in the embodiment and method of
FIGS. 1-4 , thefinal cuts 26 may be made in selected ones of thelayers 24 of encapsulation material of thewafer 20 shown inFIG. 2 so as to form an individual final PZT element 40 in which only one of theouter side surfaces layers 24 of encapsulation material wide enough to remove all of the encapsulation material. - It is also understood that, in the embodiment of
FIGS. 5-8 where thewafer 120 also includes alayer 124 of encapsulation material comprising first and second intersectinglayers FIG. 6 , thefinal cuts 126 may be made in selected ones of thelayers 124 a of the encapsulation material to form individualfinal PZT elements 140 including either only two normal encapsulated outside (exterior side) surfaces or three encapsulated outside (exterior side) surfaces again by using a blade or laser beam in selected ones of the plurality oflayers 124 a of encapsulation material wide enough to remove all of the encapsulation material. - Still further, it is understood that the present invention encompasses the encapsulated PZT elements, and the method of making encapsulated PZT elements, having shapes other than rectangular or square including, for example, curved and circular shapes.
- The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency the claims are to be embraced within their scope.
Claims (13)
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. A ceramic element comprising a core of ceramic material including a plurality of exterior surfaces, one or more of the exterior surfaces being covered with a layer of encapsulation material and one or more of the exterior surfaces of the core of ceramic material and an edge of the layer of encapsulation material also being covered with a layer of metallization.
7. The ceramic element of claim 6 , wherein the encapsulation material is an epoxy resin material.
8. The ceramic element of claim 6 , wherein the core of ceramic material includes at least first and second opposed exterior side surfaces covered with the layer of encapsulation material, the core of ceramic material further including third and fourth opposed exterior top and bottom surfaces, the layer of metallization covering the third and fourth opposed exterior to and bottom surfaces and the edge of the layer of encapsulation material.
9. The ceramic element of claim 6 , wherein the core of ceramic material includes first and second opposed exterior side surfaces, third and fourth opposed exterior side surfaces and fifth and sixth opposed exterior top and bottom surfaces, the first, second, third, and fourth exterior side surfaces all being covered with the layer of encapsulation material and the layer of metallization covering the fifth and sixth opposed exterior top and bottom surfaces and the edge of the layer of encapsulation material.
10. The ceramic element of claim 6 comprising a PZT element.
11. The ceramic element of claim 6 , wherein the core of ceramic material includes at least a first exterior side surface and at least a second exterior top or bottom surface, the layer of encapsulation material covering the first exterior side surface and the layer of metallization covering the second exterior top or bottom surface and the edge of the layer of encapsulation material.
12. (canceled)
13. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/828,729 US20130177730A1 (en) | 2009-07-27 | 2013-03-14 | Encapsulated Ceramic Element and Method of Making the Same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27184609P | 2009-07-27 | 2009-07-27 | |
US12/840,464 US8399059B2 (en) | 2009-07-27 | 2010-07-21 | Encapsulated ceramic element and method of making the same |
US13/828,729 US20130177730A1 (en) | 2009-07-27 | 2013-03-14 | Encapsulated Ceramic Element and Method of Making the Same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/840,464 Division US8399059B2 (en) | 2009-07-27 | 2010-07-21 | Encapsulated ceramic element and method of making the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130177730A1 true US20130177730A1 (en) | 2013-07-11 |
Family
ID=43015588
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/840,464 Active 2031-04-15 US8399059B2 (en) | 2009-07-27 | 2010-07-21 | Encapsulated ceramic element and method of making the same |
US13/828,729 Abandoned US20130177730A1 (en) | 2009-07-27 | 2013-03-14 | Encapsulated Ceramic Element and Method of Making the Same |
US13/828,360 Active US8802196B2 (en) | 2009-07-27 | 2013-03-14 | Encapsulated ceramic element and method of making the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/840,464 Active 2031-04-15 US8399059B2 (en) | 2009-07-27 | 2010-07-21 | Encapsulated ceramic element and method of making the same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/828,360 Active US8802196B2 (en) | 2009-07-27 | 2013-03-14 | Encapsulated ceramic element and method of making the same |
Country Status (5)
Country | Link |
---|---|
US (3) | US8399059B2 (en) |
JP (2) | JP5416278B2 (en) |
CN (2) | CN202940273U (en) |
DE (1) | DE112010003083T5 (en) |
WO (1) | WO2011016994A1 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8399059B2 (en) * | 2009-07-27 | 2013-03-19 | Cts Corporation | Encapsulated ceramic element and method of making the same |
WO2011103113A1 (en) * | 2010-02-22 | 2011-08-25 | Cts Corporation | Composite ceramic structure and method of making the same |
JP5699690B2 (en) * | 2011-03-03 | 2015-04-15 | コニカミノルタ株式会社 | Manufacturing method of ultrasonic probe |
JP5882053B2 (en) * | 2011-12-28 | 2016-03-09 | 太陽誘電株式会社 | Method for manufacturing acoustic wave device |
JP6054169B2 (en) * | 2012-02-17 | 2016-12-27 | 日本碍子株式会社 | Method for manufacturing ceramic element |
US9406314B1 (en) | 2012-10-04 | 2016-08-02 | Magnecomp Corporation | Assembly of DSA suspensions using microactuators with partially cured adhesive, and DSA suspensions having PZTs with wrap-around electrodes |
JP2014078624A (en) * | 2012-10-11 | 2014-05-01 | Tdk Corp | Piezoelectric element |
JP5633549B2 (en) * | 2012-10-11 | 2014-12-03 | Tdk株式会社 | Piezoelectric element |
DE102012111889B9 (en) | 2012-12-06 | 2014-09-04 | Epcos Ag | Electroacoustic transducer |
JP6082255B2 (en) | 2013-01-18 | 2017-02-15 | 日本碍子株式会社 | Ceramic parts and manufacturing method thereof |
JP5949599B2 (en) * | 2013-03-05 | 2016-07-06 | コニカミノルタ株式会社 | Composite piezoelectric material manufacturing method, ultrasonic probe manufacturing method, composite piezoelectric material, ultrasonic probe, and ultrasonic diagnostic imaging apparatus |
JP5679010B2 (en) | 2013-05-07 | 2015-03-04 | Tdk株式会社 | Piezoelectric element and manufacturing method thereof |
JP5928544B2 (en) * | 2014-09-10 | 2016-06-01 | Tdk株式会社 | Piezoelectric element and piezoelectric body |
CN108417707B (en) * | 2018-03-16 | 2021-06-11 | 上海爱声生物医疗科技有限公司 | Preparation method of piezoelectric composite material and piezoelectric composite material |
CN108903975B (en) * | 2018-05-07 | 2020-09-08 | 华中科技大学 | High-frequency ultrasonic phased array for ophthalmology and preparation method thereof |
CN114311351A (en) * | 2021-12-17 | 2022-04-12 | 中国船舶重工集团公司第七一五研究所 | Preparation method of 1-3 type piezoelectric single crystal composite material |
CN115666210B (en) * | 2022-12-12 | 2023-04-07 | 南京中旭电子科技有限公司 | Ceramic air-tight packaged high-sensitivity Hall element and packaging device thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683396A (en) * | 1983-10-17 | 1987-07-28 | Hitachi, Ltd. | Composite ultrasonic transducers and methods for making same |
US5744898A (en) * | 1992-05-14 | 1998-04-28 | Duke University | Ultrasound transducer array with transmitter/receiver integrated circuitry |
US20030137223A1 (en) * | 2000-11-02 | 2003-07-24 | Fujitsu Limited | Method of bonding piezoelectric element and electrode, and piezoelectric microactuator using the bonding method |
US7082655B2 (en) * | 2003-12-18 | 2006-08-01 | Ge Inspection Technologies, Lp | Process for plating a piezoelectric composite |
US20070228871A1 (en) * | 2006-03-30 | 2007-10-04 | Fujitsu Limited | Thin-film piezoelectric device and method of manufacturing the same |
US20100327699A1 (en) * | 2008-02-05 | 2010-12-30 | Muhammed Hassanali | Encapsulation coating to reduce particle shedding |
US20110206888A1 (en) * | 2010-02-22 | 2011-08-25 | Marshall Suarez | Composite Ceramic Structure and Method of Making the Same |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4514247A (en) * | 1983-08-15 | 1985-04-30 | North American Philips Corporation | Method for fabricating composite transducers |
JPS6085699A (en) * | 1983-10-17 | 1985-05-15 | Hitachi Ltd | Formation of composite piezoelectric material |
US4732717A (en) * | 1985-10-11 | 1988-03-22 | Sumitomo Bakelite Company Limited | Process for producing piezo-electric or pyro-electric composite sheet |
JPS63146698A (en) * | 1986-12-10 | 1988-06-18 | Yokogawa Medical Syst Ltd | Manufacture of two-dimension array transducer |
JPH01244683A (en) * | 1988-03-25 | 1989-09-29 | Hitachi Metals Ltd | Manufacture of compound piezoelectric body |
JPH0828539B2 (en) * | 1988-12-28 | 1996-03-21 | 日本電気株式会社 | Electrostrictive effect element |
JPH0490299A (en) * | 1990-08-01 | 1992-03-24 | Matsushita Electric Ind Co Ltd | Manufacture of composite piezoelectric material |
JP3089851B2 (en) * | 1992-09-16 | 2000-09-18 | 株式会社村田製作所 | Manufacturing method of chip type piezoelectric resonator |
JP3222220B2 (en) * | 1992-10-19 | 2001-10-22 | 株式会社村田製作所 | Manufacturing method of chip type piezoelectric resonator |
US5729239A (en) * | 1995-08-31 | 1998-03-17 | The United States Of America As Represented By The Secretary Of The Navy | Voltage controlled ferroelectric lens phased array |
US5830591A (en) * | 1996-04-29 | 1998-11-03 | Sengupta; Louise | Multilayered ferroelectric composite waveguides |
JP4065049B2 (en) * | 1998-03-19 | 2008-03-19 | オリンパス株式会社 | Method for manufacturing piezoelectric ceramic structure and method for manufacturing composite piezoelectric vibrator |
CA2346878A1 (en) | 1998-10-16 | 2000-04-27 | Xubai Zhang | Voltage tunable laminated dielectric materials for microwave applications |
US6335586B1 (en) * | 1998-12-28 | 2002-01-01 | Ngk Insulators, Ltd. | Piezoelectric/electrostrictive device and production method thereof |
US6662418B1 (en) * | 1999-07-13 | 2003-12-16 | Samsung Electro-Mechanics Co., Ltd. | Manufacturing method of ceramic device using mixture with photosensitive resin |
US6620287B2 (en) * | 2000-04-12 | 2003-09-16 | Richard B. Cass | Large-area fiber composite with high fiber consistency |
SE0001674D0 (en) * | 2000-05-05 | 2000-05-05 | Stig Petersson | Process for manufacturing adjacent waveguide channels |
JP2001326999A (en) * | 2000-05-18 | 2001-11-22 | Olympus Optical Co Ltd | Method for machining piezoelectric structure, and production method of complex piezoelectric body |
JP3551141B2 (en) * | 2000-09-28 | 2004-08-04 | 松下電器産業株式会社 | Method of manufacturing piezoelectric body |
US6393681B1 (en) * | 2001-01-19 | 2002-05-28 | Magnecomp Corp. | PZT microactuator processing |
JP2004088056A (en) * | 2002-07-02 | 2004-03-18 | Sumitomo Electric Ind Ltd | Piezoelectric vibrator, mounting method for it, mounting device, ultrasonic probe using it, and three-dimensional ultrasonic diagnostic device using it |
JP2004158739A (en) | 2002-11-08 | 2004-06-03 | Toshiba Corp | Resin sealed semiconductor device and manufacturing method therefor |
US7109642B2 (en) * | 2003-11-29 | 2006-09-19 | Walter Guy Scott | Composite piezoelectric apparatus and method |
JP2006196657A (en) | 2005-01-13 | 2006-07-27 | New Japan Radio Co Ltd | Manufacturing method of semiconductor device |
US7583010B1 (en) * | 2006-12-04 | 2009-09-01 | Lockheed Martin Corporation | Hybrid transducer |
US8125741B2 (en) * | 2007-07-20 | 2012-02-28 | Magnecomp Corporation | Rotational, shear mode, piezoelectric motor integrated into a collocated, rotational, shear mode, piezoelectric micro-actuated suspension, head or head/gimbal assembly for improved tracking in disk drives and disk drive equipment |
US7671519B2 (en) * | 2007-08-31 | 2010-03-02 | Cts Corporation | Bond pad for use with piezoelectric ceramic substrates |
US8008842B2 (en) * | 2007-10-26 | 2011-08-30 | Trs Technologies, Inc. | Micromachined piezoelectric ultrasound transducer arrays |
US8399059B2 (en) * | 2009-07-27 | 2013-03-19 | Cts Corporation | Encapsulated ceramic element and method of making the same |
-
2010
- 2010-07-21 US US12/840,464 patent/US8399059B2/en active Active
- 2010-07-21 JP JP2012522896A patent/JP5416278B2/en active Active
- 2010-07-21 WO PCT/US2010/042740 patent/WO2011016994A1/en active Application Filing
- 2010-07-21 DE DE201011003083 patent/DE112010003083T5/en not_active Withdrawn
- 2010-07-21 CN CN2010900010263U patent/CN202940273U/en not_active Expired - Lifetime
- 2010-07-21 CN CN2013201982840U patent/CN203192864U/en not_active Expired - Lifetime
-
2013
- 2013-03-14 US US13/828,729 patent/US20130177730A1/en not_active Abandoned
- 2013-03-14 US US13/828,360 patent/US8802196B2/en active Active
- 2013-11-14 JP JP2013235517A patent/JP2014057091A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683396A (en) * | 1983-10-17 | 1987-07-28 | Hitachi, Ltd. | Composite ultrasonic transducers and methods for making same |
US5744898A (en) * | 1992-05-14 | 1998-04-28 | Duke University | Ultrasound transducer array with transmitter/receiver integrated circuitry |
US20030137223A1 (en) * | 2000-11-02 | 2003-07-24 | Fujitsu Limited | Method of bonding piezoelectric element and electrode, and piezoelectric microactuator using the bonding method |
US7082655B2 (en) * | 2003-12-18 | 2006-08-01 | Ge Inspection Technologies, Lp | Process for plating a piezoelectric composite |
US20070228871A1 (en) * | 2006-03-30 | 2007-10-04 | Fujitsu Limited | Thin-film piezoelectric device and method of manufacturing the same |
US20100327699A1 (en) * | 2008-02-05 | 2010-12-30 | Muhammed Hassanali | Encapsulation coating to reduce particle shedding |
US20110206888A1 (en) * | 2010-02-22 | 2011-08-25 | Marshall Suarez | Composite Ceramic Structure and Method of Making the Same |
Also Published As
Publication number | Publication date |
---|---|
CN202940273U (en) | 2013-05-15 |
JP5416278B2 (en) | 2014-02-12 |
WO2011016994A1 (en) | 2011-02-10 |
US20130177708A1 (en) | 2013-07-11 |
DE112010003083T5 (en) | 2012-06-06 |
JP2013500607A (en) | 2013-01-07 |
US20110020585A1 (en) | 2011-01-27 |
JP2014057091A (en) | 2014-03-27 |
US8802196B2 (en) | 2014-08-12 |
CN203192864U (en) | 2013-09-11 |
US8399059B2 (en) | 2013-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8802196B2 (en) | Encapsulated ceramic element and method of making the same | |
US20070226996A1 (en) | Hybrid integrated circuit device and method of manufacturing the same | |
DE102012213343B4 (en) | PROCESS FOR MANUFACTURING AN OPTOELECTRONIC SEMICONDUCTOR DEVICE WITH SAPPHIRE FLIP CHIP | |
KR100855015B1 (en) | Packaged integrated circuits and methods of producing thereof | |
DE112017003219T5 (en) | Method for processing a wafer | |
US6393681B1 (en) | PZT microactuator processing | |
US20180204786A1 (en) | Die with metallized sidewall and method of manufacturing | |
DE102016109693B4 (en) | Process for separating semiconductor dies from a semiconductor substrate and semiconductor substrate arrangement | |
US8561270B2 (en) | Composite ceramic structure and method of making the same | |
DE102021209439A1 (en) | wafer processing methods | |
CA2524654C (en) | Piezoelectric composites and methods for manufacturing same | |
US9961777B2 (en) | Method for cutting a carrier for electrical components | |
US9112135B2 (en) | Piezoelectric element and method for manufacturing piezoelectric element | |
DE102004014208A1 (en) | Chip container used in production of electronic, especially optoelectronic, components has cavity plate provided with etched cavities for each semiconductor chip | |
JP3841060B2 (en) | Semiconductor device and manufacturing method thereof | |
US10003006B2 (en) | Piezoelectric actuator, method for manufacturing the same, and magnetic disc apparatus | |
DE112018003861T5 (en) | LAYER ELEMENT PRODUCTION METHOD | |
US20130056756A1 (en) | Light-transmissive member, optical device, and manufacturing methods thereof | |
JPH01152013A (en) | Cutting device | |
JP2010118603A (en) | Manufacturing method of electronic component | |
US20170222120A1 (en) | Method for producing ceramic multi-layer components and ceramic multi-layer component | |
DE102010045056A1 (en) | Method and device for producing chip components and chip component produced by the method | |
TH70885B (en) | Encapsulated ceramic parts And methods of manufacturing the same thing | |
JP2004273506A (en) | Stacked piezoelectric ceramic element | |
DE6947383U (en) | SEMICONDUCTOR COMPONENT. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |