US20130147267A1 - Encapsulated control module for a motor vehicle - Google Patents

Encapsulated control module for a motor vehicle Download PDF

Info

Publication number
US20130147267A1
US20130147267A1 US13/703,928 US201113703928A US2013147267A1 US 20130147267 A1 US20130147267 A1 US 20130147267A1 US 201113703928 A US201113703928 A US 201113703928A US 2013147267 A1 US2013147267 A1 US 2013147267A1
Authority
US
United States
Prior art keywords
base plate
control module
protective compound
electrical
recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/703,928
Other versions
US9637073B2 (en
Inventor
Gerhard Wetzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WETZEL, GERHARD
Publication of US20130147267A1 publication Critical patent/US20130147267A1/en
Application granted granted Critical
Publication of US9637073B2 publication Critical patent/US9637073B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0469Surface mounting by applying a glue or viscous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to control modules and methods for manufacturing same.
  • the present invention relates in particular to a control module for a motor vehicle, a motor vehicle having a control module and a method for manufacturing a control module.
  • Control modules for automatic transmissions in motor vehicles are installed in the transmission in such a way that they are entirely or partially immersed in transmission oil. These control modules contain an electronic system which must be packed in an oil-tight housing, so that aggressive transmission oil does not destroy the electronic system. This seal must be ensured within the operating temperature of the vehicle's automatic transmission, i.e., in a temperature range from approximately ⁇ 40° C. to +150° C.
  • hermetically sealed steel housings with glass-sheathed pins may be used for electrical contacting of the electronic system.
  • Housings manufactured by a so-called molding operation may also be used.
  • Such a molded housing i.e., sealed using an encapsulating resin, is described in European Patent No. EP 1 396 885 B1.
  • An interconnect device is fitted with electronic components and then completely enclosed in the molding compound, electrical contacting of the interconnect device to the outside being accomplished through a punched screen.
  • the individual contact strips of the punched screen emerge from the molded housing at the side faces.
  • these contact strips are welded to the punched screen of the control module and are then covered by plastic covers which contain ribs that pass between the contact strips to thereby achieve short-circuit protection.
  • All contact strips must have adhesion to the molding compound on all side faces to ensure the oil tightness of the mold housing. This adhesion depends on many parameters, e.g., the geometry and distribution of the contact strips. With a change in the contact strip configuration, it may therefore be necessary to adjust the process accordingly.
  • the two mold halves of the molding tool move toward the punched screen and form a seal with it.
  • the webs may also be punched out after the molding operation to obtain electrical separation of the individual contact strips. This necessitates an additional process step which also entails the risk of damage to the mold housing due to crack formation.
  • German Patent No. DE 103 15 432 A1 describes a configuration for electrically connecting an electrical unit which is situated in the interior of a metal housing and has flexible foil conductors leading out of the housing.
  • One object of the present invention is to provide a control module which is simple to manufacture and also provides reliable protection for the electronic modules. Another object of the present invention is to provide a method for manufacturing such a control module.
  • an example control module for a motor vehicle having a base plate, an electrical unit, an electrically insulated feeder line and an insulating compound, which protects against environmental influences.
  • the electrical unit has at least one electronic module and is situated on a top side of the base plate.
  • the electrically insulated feeder line is used for electrically connecting the electronic module to an external electrical component and the insulating compound, which protects against environmental influences (this compound being an encapsulating resin, for example), is applied to the top side of the base plate and covers the electrical unit with a seal. This is, thus, an encapsulation.
  • the base plate protrudes here beyond the protective compound in a planar extent along the entire circumference of the base plate. In other words, the base plate protrudes so that it has a larger base area than the protective compound.
  • the protective compound is applied only to the top side of the base plate but not to the bottom side of the base plate. It is thus possible for the base plate to be accommodated by a lower half of a molding tool before applying the protective compound and for the corresponding upper half of the molding tool to be applied to the base plate with a seal, whereupon the protective compound is introduced into the molding tool.
  • all electrical insulated feeder lines are mounted on the bottom side of the base plate opposite the protective compound.
  • the electronic module(s) is (are) situated on the top side of the base plate, all feeder lines being situated on the bottom side of the base plate.
  • the base plate has one or more openings beneath which the feeder line(s) is (are) situated.
  • the openings are used for the feed-through of one or more electrical lines between the electronic module and the corresponding feeder line.
  • the feeder line is situated on the bottom side of the base plate.
  • a motor vehicle having a control module as described above and below is provided.
  • a method for manufacturing a control module as described above and below; in this method, a base plate having an electronic module is provided, a feeder line being mounted on the base plate and an insulating compound which protects against environmental influences being applied to the top side of the base plate, this compound tightly covering the electrical unit and the base plate protruding beyond the protective compound in a planar extent on the entire circumference.
  • the compound is applied to the top side of the base plate by using a molding tool having a tool bottom part and a tool top part, the base plate being inserted into the tool bottom part when the protective compound is applied, and the tool top part being in contact on the top side of the base plate when the protective compound is applied along a circumferential sealing line.
  • FIG. 1 shows an encapsulated control unit according to one exemplary embodiment of the present invention.
  • FIG. 2 shows a sectional diagram of the control module of FIG. 1 , including a subarea of a molding tool.
  • FIG. 3 shows a construction stage of the control module of FIG. 1 .
  • FIG. 4 shows another construction stage of the control module of FIG. 1 .
  • FIG. 5 shows a sectional diagram of a subarea of the control module according to one exemplary embodiment of the present invention.
  • FIG. 1 shows an encapsulated (i.e., sheathed) control module according to one exemplary embodiment of the present invention.
  • This control module is, for example, a control module for an automatic transmission of a motor vehicle.
  • Molding compound 13 is shown as transparent for the sake of clarity.
  • FIG. 2 shows a section through the control module of FIG. 1 , drawn as sectional line A-A in FIG. 1 .
  • the control module (also referred to as a control unit) has a base plate 1 having an electrical contact, which may be created as a subassembly group. This module or construction stage is shown in FIG. 3 .
  • the electronic circuit which includes interconnect device 8 having at least one electronic component or an electronic module 9 , is adhesively affixed or otherwise attached to base plate 1 . This construction stage is illustrated in FIG. 4 .
  • control module The structure of the control module is described as follows, similar to the possible manufacturing sequence:
  • Flexible foil conductor elements (also referred to as flex foil elements) 31 , 32 , 33 , 34 , 35 , preferably in strips, are each adhesively affixed to the bottom side of base plate 1 , beneath corresponding openings 21 , 22 , 23 , 24 , 25 (see also FIG. 3 and the sectional diagram in FIG. 2 ).
  • the adhesive bonding of foil conductor elements 31 through 35 to base plate 1 seals openings 21 through 25 at the bottom.
  • Each foil conductor element is provided with a planar stiffening element 41 , 42 , 43 , 44 on the side opposite openings 21 through 24 (see FIG. 2 ).
  • the reinforcing or stiffening element is an adhesively affixed metal or plastic plate.
  • the foil conductor elements themselves are constructed as follows, for example: an electrically conductive copper layer 6 is adhesively affixed to a base foil 51 .
  • a cover foil 52 is situated on copper layer 6 (see FIG. 2 ).
  • Cover foil 52 is provided with at least one breakout 7 in the area of openings 21 through 25 , so that the electrically conductive copper layer is exposed.
  • foil conductor elements having multiple layers may also be used.
  • Base plate 1 may also be designed having one or more openings 2 , the corresponding adhesively affixed foil conductor elements 2 and their reinforcing elements 4 , depending on the number of inputs and outputs required for the electronic circuit.
  • the spatial position of the openings on base plate 1 is also freely selectable.
  • An interconnect device having at least one electronic component 9 may now be adhesively affixed to base plate 1 .
  • Interconnect device 8 connects electronic components 9 to corresponding contact pads 10 .
  • These contact pads 10 are electrically connected to the electrical paths of copper layer 6 in flex foil elements 31 through 35 , preferably by wire bonding, by contacting the electrical paths in the flex foil elements via breakouts 7 .
  • a robust bonding process may be ensured by reinforcing elements 4 beneath the flex foil elements.
  • FIG. 4 shows the corresponding construction stage in which the base plate is completed with the flex foil elements (foil conductor elements) and the electronic circuit. In this construction stage, it is possible to test the complete electronic circuit and its contacts electrically, for example.
  • the construction stage shown in FIG. 4 is inserted into a molding tool.
  • This molding tool is outlined in a detail in FIG. 2 and has an upper half 201 and a lower half 202 .
  • the module is accommodated at reinforcing elements 4 in particular in tool bottom half 202 (see also FIG. 2 , area Wu).
  • the top part of molding tool 201 moves toward base plate 1 and seals the latter in area Wo.
  • Area Wo forms a circumferential sealing line, as shown by dotted line 12 in FIG. 1 .
  • the closing force of the molding tool may be supported mutually by opposing areas Wu and Wo.
  • the seal on base plate 1 is simple since the base plate offers a planar area having a good surface.
  • Molding compound 13 is poured into closed molding tool 201 , 202 in a conventional way and thus forms the housing for the electronic circuit.
  • the tightness of this mold housing is ensured by the fact that molding compound 13 adheres to base plate 1 circumferentially (in parallel with dotted line 12 ) and the adhesive bond of flex foil strips 3 is tightly sealed around opening 2 .
  • the tightness of the housing may thus be achieved in a much simpler way than with conventional control modules, where each contact strip of the punched screen must have adhesion or tightness on each of the four sides in order to prevent oil from penetrating into the area of the electronics. Since the control units require a large number of contacts (inputs/outputs) on the order of 40 to 80 units, this yields 40 to 80 sealing lines. According to one exemplary embodiment of the present invention, the sealing line to the base plate and one sealing line per opening in the base plate must be sealed in the control unit. It is thus possible to construct, for example, a control unit having five openings (i.e., five foil conductor elements, for example) containing a total of 80 contact paths but nevertheless having only six sealing lines (cf. FIG.
  • sealing lines are planar and are not three-dimensional, as is the case with the punched screen contact strips.
  • the surface area in the area of the sealing lines is also defined and does not fluctuate greatly due to process and material tolerances as is the case with the punched edges in the punched screen contact strips.
  • the base plate material may be coordinated precisely with the thermal expansion coefficient of the molding compound since the base plate does not assume any electrical functions. The risk of crack formations due to different thermal expansions is therefore minimized.
  • the molding operation must be adjusted with each change in the punched screen. This entails a process risk and corresponding effort for process development.
  • the layout of the flex foil elements and the electrically insulated feeder lines in general is freely creatable without having any influence on the molding operation. Even the configuration of the opening is not critical since the molding compound must seal only along line 12 , which is parallel to the base plate. Sealing of the feeder lines is accomplished by adhesive bonding 14 between base plate 1 and cover foil 7 (see FIG. 2 ).
  • punched screen technology is a comparatively high current-carrying capacity due to the larger cross sections of the conductors. Therefore, it should be necessary for triggering an electrical oil pump, for example, to be able to connect a few “power lines” to the electrical circuit, so that the control unit may be provided with a punched screen according to FIG. 5 .
  • Such punched screens may be provided as an alternative or in addition to foil conductor elements.
  • a plastic sheathed punched screen part 16 is inserted into an opening 2 in base plate 1 .
  • This punched screen part includes at least one printed conductor 17 , which is injected into a plastic 18 in a known manner.
  • the punched screen is preferably contacted by wire bonding to interconnect device 8 of the electrical circuit, similar to the foil conductor elements.
  • interconnect device 8 of the electrical circuit Similar to the foil conductor elements.
  • a subarea 20 of each printed conductor is exposed in such a way that molding compound 13 is able to flow around the printed conductors on all four sides. Penetration of oil through the individual printed conductors is thereby prevented.
  • a tightness is created by adhesive bonding of sheathing 18 to the base plate by molding compound 13 .
  • the plastic sheathing may also be affixed tightly directly to the base plate using an adhesive 19 .
  • Another aspect of the present invention involves the mechanical fixation of the control unit in the control module or directly on a transmission part of the automotive transmission. If a control unit is secured on a metallic plate made of aluminum (e.g., the hydraulic control plate of the transmission) in a conventional manner, then substantial strains may occur when the temperature fluctuates accordingly. These strains are much greater than those of the molding compounds, which in turn entail the risk of cracks in the resin. Complex structural approaches are often necessary in this regard to compensate for these strains (e.g., in the form of elastic elements).
  • base plate 1 of the control module may be designed to be so rigid that the different thermal expansions cannot induce any deformation but instead result only in stresses. In other words, thermal expansions result in applied stresses in the base plate but not stresses in the molding compound, whereby crack formations may be prevented.
  • the base plate of the control unit may therefore easily be provided with recesses, which are provided with boreholes 15 , for example, to fasten the control unit onto the transmission (see FIG. 1 ). This permits conduction of heat directly downward through base plate 1 .
  • the contact strips of the punched screen are welded to the control module to contact the latter electrically. Since the electrical joining technique is also accomplished through plastic-sheathed punched screens, strains are transferred from the punched screen of the control module to the contact strips of the control unit punched screen when there are changes in temperature. These strains also in turn result in a risk of cracks/leakage. It is thus necessary to cushion the strains by “soft, elastic” areas in the punched screen. These areas require an additional installation space, which is often a disadvantage. Furthermore, the short circuit protection against metal chips floating around in the transmission oil is often possible in the elastic area only with an additional effort. Suboptimal short-circuit protection is often accepted up to a certain point to limit costs and complexity.
  • a simple molding tool having a simple seal may be used.
  • no free punching operation is necessary after the molding operation.
  • An inexpensive housing which provides a reliable seal of the electrical components is thus manufacturable.
  • a reliable short-circuit protection may thus be provided at the contact point between the mold housing and the control module. Changes/variants in the configuration of the electrical contacting have no effect on the molding operation per se.
  • Changes and variants in the configuration of the electrical contacts may be established with or without minor tool costs since a new punching tool and a new free-punching tool are not needed for the punched screen. Simple fastening of the control module is also possible; this fastening does not introduce any forces into the molding compound and therefore the tightness of the housing is not at risk.
  • the electrical contacting is accomplished by a flexible contacting which does not introduce any forces into the molding compound and thus does not compromise the tightness.
  • a punched screen part may also be used instead of a foil conductor element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Transmission Device (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Motor Or Generator Frames (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

A control module for a motor vehicle having a base plate and electronic modules situated thereon is described. The electronic modules are encapsulated and the insulating compound which protects against environmental influences and is used for this purpose is a distance away from the edge of the base plate over the entire circumference.

Description

    FIELD
  • The present invention relates to control modules and methods for manufacturing same. The present invention relates in particular to a control module for a motor vehicle, a motor vehicle having a control module and a method for manufacturing a control module.
  • BACKGROUND INFORMATION
  • Control modules for automatic transmissions in motor vehicles are installed in the transmission in such a way that they are entirely or partially immersed in transmission oil. These control modules contain an electronic system which must be packed in an oil-tight housing, so that aggressive transmission oil does not destroy the electronic system. This seal must be ensured within the operating temperature of the vehicle's automatic transmission, i.e., in a temperature range from approximately −40° C. to +150° C.
  • There are various approaches for packing the electronic system. For example, hermetically sealed steel housings with glass-sheathed pins may be used for electrical contacting of the electronic system. Housings manufactured by a so-called molding operation may also be used.
  • Such a molded housing, i.e., sealed using an encapsulating resin, is described in European Patent No. EP 1 396 885 B1. An interconnect device is fitted with electronic components and then completely enclosed in the molding compound, electrical contacting of the interconnect device to the outside being accomplished through a punched screen. The individual contact strips of the punched screen emerge from the molded housing at the side faces. In the control module, these contact strips are welded to the punched screen of the control module and are then covered by plastic covers which contain ribs that pass between the contact strips to thereby achieve short-circuit protection.
  • All contact strips must have adhesion to the molding compound on all side faces to ensure the oil tightness of the mold housing. This adhesion depends on many parameters, e.g., the geometry and distribution of the contact strips. With a change in the contact strip configuration, it may therefore be necessary to adjust the process accordingly.
  • Forces are also exerted on the contact strips due to welding of the punched screen of the control module, so these forces may also result in crack formation and therefore leakage of the mold housing. In addition to the forces introduced mechanically, the situation is also similar for forces introduced through thermal stresses, e.g., because of different expansion coefficients.
  • In manufacturing the mold housing, the two mold halves of the molding tool move toward the punched screen and form a seal with it. This means that the interspaces between the individual contact strips would also have to be sealed by the two mold halves, which, however, is technically complicated due to parts tolerances. Alternatively, the webs may also be punched out after the molding operation to obtain electrical separation of the individual contact strips. This necessitates an additional process step which also entails the risk of damage to the mold housing due to crack formation.
  • German Patent No. DE 103 15 432 A1 describes a configuration for electrically connecting an electrical unit which is situated in the interior of a metal housing and has flexible foil conductors leading out of the housing.
  • SUMMARY
  • One object of the present invention is to provide a control module which is simple to manufacture and also provides reliable protection for the electronic modules. Another object of the present invention is to provide a method for manufacturing such a control module.
  • According to a first aspect of the present invention, an example control module for a motor vehicle is provided, having a base plate, an electrical unit, an electrically insulated feeder line and an insulating compound, which protects against environmental influences. The electrical unit has at least one electronic module and is situated on a top side of the base plate. The electrically insulated feeder line is used for electrically connecting the electronic module to an external electrical component and the insulating compound, which protects against environmental influences (this compound being an encapsulating resin, for example), is applied to the top side of the base plate and covers the electrical unit with a seal. This is, thus, an encapsulation. The base plate protrudes here beyond the protective compound in a planar extent along the entire circumference of the base plate. In other words, the base plate protrudes so that it has a larger base area than the protective compound.
  • According to another exemplary embodiment of the present invention, the protective compound is applied only to the top side of the base plate but not to the bottom side of the base plate. It is thus possible for the base plate to be accommodated by a lower half of a molding tool before applying the protective compound and for the corresponding upper half of the molding tool to be applied to the base plate with a seal, whereupon the protective compound is introduced into the molding tool.
  • According to another exemplary embodiment of the present invention, all electrical insulated feeder lines are mounted on the bottom side of the base plate opposite the protective compound. In other words, the electronic module(s) is (are) situated on the top side of the base plate, all feeder lines being situated on the bottom side of the base plate.
  • According to another exemplary embodiment of the present invention, the base plate has one or more openings beneath which the feeder line(s) is (are) situated. The openings are used for the feed-through of one or more electrical lines between the electronic module and the corresponding feeder line. The feeder line is situated on the bottom side of the base plate.
  • According to another aspect of the present invention, a motor vehicle having a control module as described above and below is provided.
  • According to another aspect of the present invention, a method is provided for manufacturing a control module as described above and below; in this method, a base plate having an electronic module is provided, a feeder line being mounted on the base plate and an insulating compound which protects against environmental influences being applied to the top side of the base plate, this compound tightly covering the electrical unit and the base plate protruding beyond the protective compound in a planar extent on the entire circumference.
  • According to another exemplary embodiment of the present invention, the compound is applied to the top side of the base plate by using a molding tool having a tool bottom part and a tool top part, the base plate being inserted into the tool bottom part when the protective compound is applied, and the tool top part being in contact on the top side of the base plate when the protective compound is applied along a circumferential sealing line.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Exemplary embodiments of the present invention are described below with reference to the figures.
  • FIG. 1 shows an encapsulated control unit according to one exemplary embodiment of the present invention.
  • FIG. 2 shows a sectional diagram of the control module of FIG. 1, including a subarea of a molding tool.
  • FIG. 3 shows a construction stage of the control module of FIG. 1.
  • FIG. 4 shows another construction stage of the control module of FIG. 1.
  • FIG. 5 shows a sectional diagram of a subarea of the control module according to one exemplary embodiment of the present invention.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • The diagrams in the figures are schematic and are not drawn to scale. In the following description of the figures, the same reference numerals are used for the same or similar elements.
  • FIG. 1 shows an encapsulated (i.e., sheathed) control module according to one exemplary embodiment of the present invention. This control module is, for example, a control module for an automatic transmission of a motor vehicle. Molding compound 13 is shown as transparent for the sake of clarity.
  • FIG. 2 shows a section through the control module of FIG. 1, drawn as sectional line A-A in FIG. 1.
  • The control module (also referred to as a control unit) has a base plate 1 having an electrical contact, which may be created as a subassembly group. This module or construction stage is shown in FIG. 3.
  • The electronic circuit, which includes interconnect device 8 having at least one electronic component or an electronic module 9, is adhesively affixed or otherwise attached to base plate 1. This construction stage is illustrated in FIG. 4.
  • The structure of the control module is described as follows, similar to the possible manufacturing sequence:
  • Flexible foil conductor elements (also referred to as flex foil elements) 31, 32, 33, 34, 35, preferably in strips, are each adhesively affixed to the bottom side of base plate 1, beneath corresponding openings 21, 22, 23, 24, 25 (see also FIG. 3 and the sectional diagram in FIG. 2). The adhesive bonding of foil conductor elements 31 through 35 to base plate 1 seals openings 21 through 25 at the bottom. Each foil conductor element is provided with a planar stiffening element 41, 42, 43, 44 on the side opposite openings 21 through 24 (see FIG. 2).
  • For example, the reinforcing or stiffening element is an adhesively affixed metal or plastic plate. The foil conductor elements themselves are constructed as follows, for example: an electrically conductive copper layer 6 is adhesively affixed to a base foil 51. A cover foil 52 is situated on copper layer 6 (see FIG. 2). Cover foil 52 is provided with at least one breakout 7 in the area of openings 21 through 25, so that the electrically conductive copper layer is exposed. As an alternative to a single layer foil conductor element, foil conductor elements having multiple layers may also be used.
  • Base plate 1 may also be designed having one or more openings 2, the corresponding adhesively affixed foil conductor elements 2 and their reinforcing elements 4, depending on the number of inputs and outputs required for the electronic circuit. The spatial position of the openings on base plate 1 is also freely selectable.
  • An interconnect device having at least one electronic component 9 (electronic module) may now be adhesively affixed to base plate 1. Interconnect device 8 connects electronic components 9 to corresponding contact pads 10. These contact pads 10 are electrically connected to the electrical paths of copper layer 6 in flex foil elements 31 through 35, preferably by wire bonding, by contacting the electrical paths in the flex foil elements via breakouts 7. A robust bonding process may be ensured by reinforcing elements 4 beneath the flex foil elements. FIG. 4 shows the corresponding construction stage in which the base plate is completed with the flex foil elements (foil conductor elements) and the electronic circuit. In this construction stage, it is possible to test the complete electronic circuit and its contacts electrically, for example.
  • In the next manufacturing step, the construction stage shown in FIG. 4 is inserted into a molding tool. This molding tool is outlined in a detail in FIG. 2 and has an upper half 201 and a lower half 202. The module is accommodated at reinforcing elements 4 in particular in tool bottom half 202 (see also FIG. 2, area Wu). The top part of molding tool 201 moves toward base plate 1 and seals the latter in area Wo. Area Wo forms a circumferential sealing line, as shown by dotted line 12 in FIG. 1. The closing force of the molding tool may be supported mutually by opposing areas Wu and Wo. Likewise, the seal on base plate 1 is simple since the base plate offers a planar area having a good surface. Molding compound 13 is poured into closed molding tool 201, 202 in a conventional way and thus forms the housing for the electronic circuit. The tightness of this mold housing is ensured by the fact that molding compound 13 adheres to base plate 1 circumferentially (in parallel with dotted line 12) and the adhesive bond of flex foil strips 3 is tightly sealed around opening 2.
  • The tightness of the housing may thus be achieved in a much simpler way than with conventional control modules, where each contact strip of the punched screen must have adhesion or tightness on each of the four sides in order to prevent oil from penetrating into the area of the electronics. Since the control units require a large number of contacts (inputs/outputs) on the order of 40 to 80 units, this yields 40 to 80 sealing lines. According to one exemplary embodiment of the present invention, the sealing line to the base plate and one sealing line per opening in the base plate must be sealed in the control unit. It is thus possible to construct, for example, a control unit having five openings (i.e., five foil conductor elements, for example) containing a total of 80 contact paths but nevertheless having only six sealing lines (cf. FIG. 1). It is also advantageous if all sealing lines are planar and are not three-dimensional, as is the case with the punched screen contact strips. The surface area in the area of the sealing lines is also defined and does not fluctuate greatly due to process and material tolerances as is the case with the punched edges in the punched screen contact strips.
  • Another advantage is that the base plate material may be coordinated precisely with the thermal expansion coefficient of the molding compound since the base plate does not assume any electrical functions. The risk of crack formations due to different thermal expansions is therefore minimized.
  • Since the position, shape and number of the contact strips in a control unit may have an influence on the molding operation (for example, the molding compound must flow around the contact strips unhindered and unfavorable configurations may result in defects (bubbles), etc.), the molding operation must be adjusted with each change in the punched screen. This entails a process risk and corresponding effort for process development. In the case of a control unit according to one exemplary embodiment of the present invention, the layout of the flex foil elements and the electrically insulated feeder lines in general (which may also be punched screens) is freely creatable without having any influence on the molding operation. Even the configuration of the opening is not critical since the molding compound must seal only along line 12, which is parallel to the base plate. Sealing of the feeder lines is accomplished by adhesive bonding 14 between base plate 1 and cover foil 7 (see FIG. 2).
  • With the proposed approach using flex foil elements, tool costs required for the flex foil elements are lower than with comparable punched screen designs. If necessary, the change may be limited to only one element. An additional opening in the base plate or a new configuration of an opening is less cost-intensive than with a comparable punched screen approach.
  • One advantage of the punched screen technology is a comparatively high current-carrying capacity due to the larger cross sections of the conductors. Therefore, it should be necessary for triggering an electrical oil pump, for example, to be able to connect a few “power lines” to the electrical circuit, so that the control unit may be provided with a punched screen according to FIG. 5. Such punched screens may be provided as an alternative or in addition to foil conductor elements. In this case, a plastic sheathed punched screen part 16 is inserted into an opening 2 in base plate 1. This punched screen part includes at least one printed conductor 17, which is injected into a plastic 18 in a known manner. The punched screen is preferably contacted by wire bonding to interconnect device 8 of the electrical circuit, similar to the foil conductor elements. In the area of opening 2, a subarea 20 of each printed conductor is exposed in such a way that molding compound 13 is able to flow around the printed conductors on all four sides. Penetration of oil through the individual printed conductors is thereby prevented. In the area of openings 2, a tightness is created by adhesive bonding of sheathing 18 to the base plate by molding compound 13. Alternatively, the plastic sheathing may also be affixed tightly directly to the base plate using an adhesive 19.
  • Another aspect of the present invention involves the mechanical fixation of the control unit in the control module or directly on a transmission part of the automotive transmission. If a control unit is secured on a metallic plate made of aluminum (e.g., the hydraulic control plate of the transmission) in a conventional manner, then substantial strains may occur when the temperature fluctuates accordingly. These strains are much greater than those of the molding compounds, which in turn entail the risk of cracks in the resin. Complex structural approaches are often necessary in this regard to compensate for these strains (e.g., in the form of elastic elements).
  • According to one aspect of the present invention, base plate 1 of the control module may be designed to be so rigid that the different thermal expansions cannot induce any deformation but instead result only in stresses. In other words, thermal expansions result in applied stresses in the base plate but not stresses in the molding compound, whereby crack formations may be prevented.
  • The base plate of the control unit (control module) may therefore easily be provided with recesses, which are provided with boreholes 15, for example, to fasten the control unit onto the transmission (see FIG. 1). This permits conduction of heat directly downward through base plate 1.
  • Conventionally, the contact strips of the punched screen are welded to the control module to contact the latter electrically. Since the electrical joining technique is also accomplished through plastic-sheathed punched screens, strains are transferred from the punched screen of the control module to the contact strips of the control unit punched screen when there are changes in temperature. These strains also in turn result in a risk of cracks/leakage. It is thus necessary to cushion the strains by “soft, elastic” areas in the punched screen. These areas require an additional installation space, which is often a disadvantage. Furthermore, the short circuit protection against metal chips floating around in the transmission oil is often possible in the elastic area only with an additional effort. Suboptimal short-circuit protection is often accepted up to a certain point to limit costs and complexity.
  • According to the present invention, a simple molding tool having a simple seal may be used. In particular, no free punching operation is necessary after the molding operation. An inexpensive housing which provides a reliable seal of the electrical components is thus manufacturable. A reliable short-circuit protection may thus be provided at the contact point between the mold housing and the control module. Changes/variants in the configuration of the electrical contacting have no effect on the molding operation per se.
  • Changes and variants in the configuration of the electrical contacts may be established with or without minor tool costs since a new punching tool and a new free-punching tool are not needed for the punched screen. Simple fastening of the control module is also possible; this fastening does not introduce any forces into the molding compound and therefore the tightness of the housing is not at risk.
  • The electrical contacting is accomplished by a flexible contacting which does not introduce any forces into the molding compound and thus does not compromise the tightness. Thus, if lines must be contacted to the control unit for triggering an electrical oil pump, and these lines must carry high currents (magnitude greater than 10 amperes), then a punched screen part may also be used instead of a foil conductor element.
  • In addition, it should be pointed out that “including” and “having” do not preclude any other elements or steps, and “one” or “a/n” does not preclude a plurality. Furthermore, it should be pointed out that features or steps described with reference to one of the above-described exemplary embodiments may also be used in combination with other features or steps of other exemplary embodiments described above. Reference numerals in the claims are not to be regarded as restrictions.

Claims (14)

1-12. (canceled)
13. A control module for a motor vehicle, the control module comprising:
a base plate;
an electrical unit having an electronic module, the electrical unit being situated on a top side of the base plate;
an electrical feeder line to electrically connect the electronic module to an external electrical component; and
a protective compound applied to a top side of the base plate tightly covering the electrical unit to provide protection against environmental influences; and
wherein the base plate protrudes beyond the protective compound in a planar extent on the entire circumference.
14. The control module as recited in claim 13, wherein the protective compound is an insulating compound.
15. The control module as recited in claim 13, wherein the protective compound is only on the top side of the base plate and not on a bottom side of the base plate.
16. The control module as recited in claim 13, wherein all electrically insulated feeder lines are mounted on a bottom side of the base plate directed opposite the protective compound.
17. The control module as recited in claim 13, wherein the base plate has an opening beneath which the feeder line is situated, for a feed-through of an electrical line between the electronic module and the feeder line, and wherein the feeder line is situated on the bottom side of the base plate.
18. The control module as recited in claim 17, wherein the protective compound seals the opening in the base plate.
19. The control module as recited in claim 16, wherein the feeder line is a foil conductor element having a stiffening element beneath the opening on its side opposite the opening.
20. The control module as recited in claim 13, wherein an interconnect device is adhesively affixed to the base plate.
21. The control module as recited in claim 13, wherein the control module is a control module for an automatic transmission in a motor vehicle.
22. The control module as recited in claim 17, wherein the feeder line is a punched screen having a punched screen part, which is inserted into a second opening in the base plate and provides an electrical feeder line having a high current-carrying capacity.
23. A motor vehicle having a control module, the control module including:
a base plate;
an electrical unit having an electronic module, the electrical unit being situated on a top side of the base plate;
an electrical feeder line to electrically connect the electronic module to an external electrical component; and
a protective compound applied to a top side of the base plate tightly covering the electrical unit to provide protection against environmental influences; and
wherein the base plate protrudes beyond the protective compound in a planar extent on the entire circumference.
24. A method for manufacturing a control module, comprising:
providing a base plate with an electronic module;
mounting an electrical feeder line; and
applying a protective compound, which provides protection against environmental influences on a top side of the base plate to tightly cover the electrical unit, wherein the base plate protrudes beyond the protective compound in a planar extent on the entire circumference.
25. The method as recited in claim 24, wherein the applying of the protective compound to the top side of the base plate is carried out by using a molding tool including a tool bottom part and a tool top part, the base plate being inserted into the tool bottom part during application of the protective compound and the tool top part being in contact on a top side of the base plate along a circumferential sealing line during the applying of the protective compound.
US13/703,928 2010-06-25 2011-05-19 Encapsulated control module for a motor vehicle Expired - Fee Related US9637073B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102010030528A DE102010030528A1 (en) 2010-06-25 2010-06-25 Encapsulated control module for a motor vehicle
DE10200030528.6 2010-06-25
DE102010030528 2010-06-25
PCT/EP2011/058111 WO2011160897A1 (en) 2010-06-25 2011-05-19 Encapsulated control module for a motor vehicle

Publications (2)

Publication Number Publication Date
US20130147267A1 true US20130147267A1 (en) 2013-06-13
US9637073B2 US9637073B2 (en) 2017-05-02

Family

ID=44280941

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/703,928 Expired - Fee Related US9637073B2 (en) 2010-06-25 2011-05-19 Encapsulated control module for a motor vehicle

Country Status (7)

Country Link
US (1) US9637073B2 (en)
EP (1) EP2586059A1 (en)
JP (1) JP5603489B2 (en)
KR (1) KR20130118225A (en)
CN (1) CN102959703B (en)
DE (1) DE102010030528A1 (en)
WO (1) WO2011160897A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160249489A1 (en) * 2013-10-02 2016-08-25 Hitachi Automotive Systems, Ltd. Electronic control device
CN107452703A (en) * 2016-05-31 2017-12-08 罗伯特·博世有限公司 Controller unit particularly for motor vehicle and the method for punching press grid and electrical part to be electrically connected

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201014A1 (en) * 2012-01-24 2013-07-25 Robert Bosch Gmbh Transmission control module with oil-resistant tracks
JP6041211B2 (en) * 2013-03-29 2016-12-07 住友電装株式会社 Holding plate for automatic transmission, and wiring unit including the same
DE102015218171B4 (en) * 2015-09-22 2023-08-03 Vitesco Technologies Germany Gmbh Method of manufacturing an electronic component and electronic component
DE102016209477A1 (en) 2016-05-31 2017-11-30 Robert Bosch Gmbh Punching grid arrangement for a transmission control module with Cu and Al punched grids connected by an encapsulated wire bond connection
DE102016209416A1 (en) * 2016-05-31 2017-11-30 Robert Bosch Gmbh Control unit, in particular for a motor vehicle, and method for electrically connecting a stamped grid of substantially copper or aluminum with electrical components on a mounting surface of a printed circuit board element

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864036A (en) * 1953-01-30 1958-12-09 Steiner Rudolf Protection system for electric wiring
US4764804A (en) * 1986-02-21 1988-08-16 Hitachi, Ltd. Semiconductor device and process for producing the same
US5193270A (en) * 1990-12-22 1993-03-16 Robert Bosch Gmbh Method for joining a conductor track foil to an electrical component
EP0834923A1 (en) * 1996-10-07 1998-04-08 Gec Alsthom Transport Sa Electronic semiconductor components power module and high power interrupter using the same
US6398903B1 (en) * 1999-02-17 2002-06-04 Schott Glass Method for applying an edge protector to a plate made of a brittle material, such as glass or a glass-ceramic material, in particular a cooking surface
US6623588B1 (en) * 1993-12-23 2003-09-23 Coloplast A/S Method of manufacturing a foil-wrapped breast prosthesis and a shaping tool for use in performing the method
US20060158804A1 (en) * 2003-09-09 2006-07-20 Sanyo Electric Co., Ltd. Semiconductor module including circuit component and dielectric film, manufacturing method thereof, and application thereof
US7193852B2 (en) * 2003-09-05 2007-03-20 Robert Bosch Gmbh Control unit and method for producing the same
WO2007036384A2 (en) * 2005-09-29 2007-04-05 Robert Bosch Gmbh Controller, in particular for motor vehicle transmissions
WO2008155154A1 (en) * 2007-06-21 2008-12-24 Robert Bosch Gmbh Electric component
DE102007032142A1 (en) * 2007-06-30 2009-01-02 Robert Bosch Gmbh Electronic module and method for producing an electronic module
WO2010052202A1 (en) * 2008-11-04 2010-05-14 Tyco Electronics Amp Gmbh Component support
US8505198B2 (en) * 2008-06-19 2013-08-13 Robert Bosch Gmbh Method for manufacturing an electronic assembly

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000059013A (en) * 1998-08-05 2000-02-25 Tdk Corp Molding structure of electronic component
JP3472550B2 (en) * 2000-11-13 2003-12-02 株式会社小松製作所 Thermoelectric conversion device and method of manufacturing the same
JP2003273287A (en) * 2002-03-15 2003-09-26 Mitsubishi Electric Corp Semiconductor device
JP4119146B2 (en) * 2002-03-29 2008-07-16 富士通株式会社 Electronic component package
JP3906767B2 (en) 2002-09-03 2007-04-18 株式会社日立製作所 Electronic control unit for automobile
DE10315432A1 (en) * 2003-04-03 2004-10-14 Conti Temic Microelectronic Gmbh Arrangement for electrical connection
JP4766050B2 (en) * 2005-11-02 2011-09-07 パナソニック株式会社 Method for manufacturing electronic circuit device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864036A (en) * 1953-01-30 1958-12-09 Steiner Rudolf Protection system for electric wiring
US4764804A (en) * 1986-02-21 1988-08-16 Hitachi, Ltd. Semiconductor device and process for producing the same
US5193270A (en) * 1990-12-22 1993-03-16 Robert Bosch Gmbh Method for joining a conductor track foil to an electrical component
US6623588B1 (en) * 1993-12-23 2003-09-23 Coloplast A/S Method of manufacturing a foil-wrapped breast prosthesis and a shaping tool for use in performing the method
EP0834923A1 (en) * 1996-10-07 1998-04-08 Gec Alsthom Transport Sa Electronic semiconductor components power module and high power interrupter using the same
US6398903B1 (en) * 1999-02-17 2002-06-04 Schott Glass Method for applying an edge protector to a plate made of a brittle material, such as glass or a glass-ceramic material, in particular a cooking surface
US7193852B2 (en) * 2003-09-05 2007-03-20 Robert Bosch Gmbh Control unit and method for producing the same
US20060158804A1 (en) * 2003-09-09 2006-07-20 Sanyo Electric Co., Ltd. Semiconductor module including circuit component and dielectric film, manufacturing method thereof, and application thereof
WO2007036384A2 (en) * 2005-09-29 2007-04-05 Robert Bosch Gmbh Controller, in particular for motor vehicle transmissions
WO2008155154A1 (en) * 2007-06-21 2008-12-24 Robert Bosch Gmbh Electric component
DE102007032142A1 (en) * 2007-06-30 2009-01-02 Robert Bosch Gmbh Electronic module and method for producing an electronic module
US8505198B2 (en) * 2008-06-19 2013-08-13 Robert Bosch Gmbh Method for manufacturing an electronic assembly
WO2010052202A1 (en) * 2008-11-04 2010-05-14 Tyco Electronics Amp Gmbh Component support

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160249489A1 (en) * 2013-10-02 2016-08-25 Hitachi Automotive Systems, Ltd. Electronic control device
US10238012B2 (en) * 2013-10-02 2019-03-19 Hitachi Automotive Systems, Ltd Waterproof component-suppressing electronic control device
CN107452703A (en) * 2016-05-31 2017-12-08 罗伯特·博世有限公司 Controller unit particularly for motor vehicle and the method for punching press grid and electrical part to be electrically connected

Also Published As

Publication number Publication date
CN102959703B (en) 2016-07-06
EP2586059A1 (en) 2013-05-01
JP2013532383A (en) 2013-08-15
US9637073B2 (en) 2017-05-02
CN102959703A (en) 2013-03-06
WO2011160897A1 (en) 2011-12-29
JP5603489B2 (en) 2014-10-08
DE102010030528A1 (en) 2011-12-29
KR20130118225A (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US9637073B2 (en) Encapsulated control module for a motor vehicle
US10506732B2 (en) Media-tight control device for a motor vehicle and method for producing the control device
CN101852811B (en) Sensor assembly
CN101107893B (en) Control module
CN101552255B (en) Power semiconductor module with hermetically sealed switching assembly and corresponding production method
US9763344B2 (en) Electronic module for a control unit
US20060134937A1 (en) Electronic circuit device and production method of the same
EP3358920B1 (en) Electronic control device, and manufacturing method for vehicle-mounted electronic control device
CN204046939U (en) There is the electronic unit of circuit board
EP3358919B1 (en) Electronic control device and manufacturing method for same
JP2010509742A (en) Standardized electronic casing with modular contact partner
JPH0640560B2 (en) Method for mounting conductor track / network for circuit carrier of electromechanical timepiece mechanism and network
US20100027227A1 (en) Compact control device for a motor vehicle
US8059407B2 (en) Control device for a motor vehicle
EP3358925A1 (en) Electronic control device
US20120307461A1 (en) Flexible Circuit Board and Electric Device
US8674220B2 (en) Electronics housing with standard interface
CN107079583B (en) Transmission control module for use in contaminated media, TCU assembly for use in such a transmission control module, and method for manufacturing such a transmission control module
KR20140071922A (en) Superslim gearbox control module
KR20140019751A (en) Transmission control module of a motor vehicle transmission in the type of sandwich construction having components arranged in the sealed manner
JP4110995B2 (en) Circuit structure and inspection method thereof
JP6840269B2 (en) How to mechanically connect electronic components and electronic component assembly
CN109792848B (en) Electronic assembly for a transmission control module and method of manufacturing the same
CN105409062A (en) Electrical connection arrangement
CN103311231A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WETZEL, GERHARD;REEL/FRAME:029865/0336

Effective date: 20130107

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210502