US20130144359A1 - Pain management with stimulation subthreshold to paresthesia - Google Patents

Pain management with stimulation subthreshold to paresthesia Download PDF

Info

Publication number
US20130144359A1
US20130144359A1 US13/753,326 US201313753326A US2013144359A1 US 20130144359 A1 US20130144359 A1 US 20130144359A1 US 201313753326 A US201313753326 A US 201313753326A US 2013144359 A1 US2013144359 A1 US 2013144359A1
Authority
US
United States
Prior art keywords
lead
drg
stimulation
paresthesia
pain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/753,326
Inventor
Eyad Kishawi
Jeffery M. Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spinal Modulation LLC
Original Assignee
Spinal Modulation LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spinal Modulation LLC filed Critical Spinal Modulation LLC
Priority to US13/753,326 priority Critical patent/US20130144359A1/en
Publication of US20130144359A1 publication Critical patent/US20130144359A1/en
Assigned to SPINAL MODULATION, INC. reassignment SPINAL MODULATION, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KISHAWI, EYAD, KRAMER, JEFFERY M.
Priority to US14/615,281 priority patent/US9468762B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0551Spinal or peripheral nerve electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36071Pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/36128Control systems
    • A61N1/36146Control systems specified by the stimulation parameters
    • A61N1/3615Intensity
    • A61N1/36157Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin

Definitions

  • SCS spinal cord stimulation
  • the goal of SCS is to create paresthesia that completely and consistently covers the painful areas, yet does not cause uncomfortable sensations in other areas. Paresthesia may be defined as a sensation of tingling, pricking, or numbness in an area of the body. It is more generally known as the feeling of “pins and needles”. In some instances, the feeling of paresthesia is preferred over the feeling of pain.
  • paresthesia production is accomplished by stimulating A ⁇ fibers in the dorsal column and/or the dorsal roots.
  • Dorsal column stimulation typically causes paresthesia in several dermatomes at and below the level of the stimulator.
  • dorsal root stimulation activates fibers in a limited number of rootlets in close proximity to the stimulator and causes paresthesia in only a few dermatomes. Because of these factors, dorsal root stimulation with an SCS stimulator may not produce sufficient pain relief. In addition, stimulation of the roots with an SCS stimulator can cause uncomfortable sensations and motor responses. These side effects may occur at pulse amplitudes that are below the value needed for full paresthesia coverage. Therefore, the clinical goal of SCS is to produce an electrical field that stimulates the relevant spinal cord structures without stimulating the nearby nerve root.
  • Intraspinal nerve root stimulation is a technique related to SCS, except that electrodes are placed along the nerve rootlets in the lateral aspect of the spinal canal (this area is known as “the gutter”), rather than over the midline of the spinal cord.
  • the electrodes are mounted on a cylindrical lead rather than on a traditional SCS paddle lead.
  • the accuracy of the leads' placement within the gutter is confirmed by stimulating the nerve roots at perceptible levels, which result in paresthesia in the local area.
  • Sensory paresthesia may be generated by stimulating at a level above the threshold for sensory recruitment. This may be used in conjunction with SCS to treat certain pain conditions.
  • the present invention provides devices, systems and methods for treating conditions, such as pain, while minimizing or eliminating possible complications and undesired side effects.
  • the devices, systems and methods treat pain without generating substantial sensations of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with specific stimulation energy levels, as will be described in more detail herein.
  • a method of treating pain in a patient comprising positioning a lead having at least one electrode disposed thereon so that at least one of the at least one electrode is in proximity to a dorsal root ganglion, and providing stimulation energy to the at least one of the at least one electrode so as to stimulate at least a portion of the dorsal root ganglion.
  • the positioning of the lead step and the providing stimulation energy step affect pain sensations without generating substantial sensations of paresthesia.
  • providing stimulation energy comprises providing stimulation energy at a level below a threshold for A ⁇ fiber recruitment. And, in some embodiments, providing stimulation energy comprises providing stimulation energy at a level below a threshold for A ⁇ fiber cell body recruitment.
  • providing stimulation energy comprises: a) providing stimulation energy at a level above a threshold for A ⁇ fiber cell body recruitment, b) providing stimulation energy at a level above a threshold for C fiber cell body recruitment, c) providing stimulation energy at a level above a threshold for small myelenated fiber cell body recruitment, or d) providing stimulation energy at a level above a threshold for unmyelenated fiber cell body recruitment.
  • providing stimulation energy comprises providing stimulation energy at a level which is capable of modulating glial cell function within the dorsal root ganglion.
  • providing stimulation energy comprises providing stimulation energy at a level which is capable of modulating satellite cell function within the dorsal root ganglion.
  • providing stimulation energy comprises providing stimulation energy at a level which is capable of modulating Schwann cell function within the dorsal root ganglion.
  • providing stimulation energy comprises providing stimulation energy at a level which is capable of causing at least one blood vessel associated with the dorsal root ganglion to release an agent or send a cell signal which affects a neuron or glial cell within the dorsal root ganglion.
  • positioning the lead comprises advancing the lead through an epidural space so that at least a portion of the lead extends along a nerve root sleeve angulation. And, in some instances advancing the lead through the epidural space comprises advancing the lead in an antegrade direction.
  • a method for treating a patient comprising selectively stimulating a small fiber cell body within a dorsal root ganglion of the patient while excluding an A ⁇ fiber cell body with the dorsal root ganglion of the patient.
  • the small fiber body comprises an A ⁇ fiber cell body.
  • the small fiber body comprises a C fiber cell body.
  • a method for treating a patient comprising identifying a dorsal root ganglion associated with a sensation of pain by the patient, and neuromodulating at least one glial cell within the dorsal root ganglion so as to reduce the sensation of pain by the patient.
  • the at least one glial cell comprises a satellite cell.
  • the at least one glial cell comprises a Schwann cell.
  • neuromodulating comprises providing stimulation at a level that reduces the sensation of pain without generating substantial sensations of paresthesia.
  • a method for treating a patient comprising positioning a lead having at least one electrode disposed thereon so that at least one of the at least one electrode is in proximity to a dorsal root ganglion, and providing stimulation energy to the at least one electrode so as to stimulate at least one blood vessel associated with the dorsal root ganglion in a manner that causes the at least one blood vessel to release an agent which neuromodulates a neuron within the dorsal root ganglion.
  • the agent comprises a neuromodulatory chemical that affects the function of neurons involved in pain sensory transduction.
  • a system for treating pain in a patient comprising a lead having at least one electrode disposed thereon, wherein the lead is configured for placement in proximity to a dorsal root ganglion, and a pulse generator configured to provide stimulation energy to the at least one of the at least one electrode while the lead is positioned in proximity to the dorsal root ganglion so as to stimulate at least a portion of the dorsal root ganglion in a manner which affects pain sensations without generating substantial sensations of paresthesia.
  • the pulse generator provides stimulation energy at a level at below a threshold for A ⁇ fiber recruitment. In other embodiments, the pulse generator provides stimulation energy at a level below a threshold for A ⁇ fiber cell body recruitment. In other embodiments, the pulse generator provides stimulation energy at a level above a threshold for A ⁇ fiber cell body recruitment. In still other embodiments, the pulse generator provides stimulation energy at a level above a threshold for C fiber cell body recruitment. In some embodiments, the pulse generator provides stimulation energy at a level above a threshold for small myelenated fiber cell body recruitment. And, in some embodiments, the pulse generator provides stimulation energy at a level above a threshold for unmyelenated fiber cell body recruitment.
  • the pulse generator provides stimulation energy at a level which is capable of modulating glial cell function within the dorsal root ganglion.
  • the pulse generator provides stimulation energy at a level which is capable of modulating satellite cell function within the dorsal root ganglion.
  • the pulse generator provides stimulation energy at a level which is capable of modulating Schwann cell function within the dorsal root ganglion.
  • the pulse generator provides stimulation energy at a level which is capable of causing at least one blood vessel associated with the dorsal root ganglion to release an agent or send a cell signal which affects a neuron or glial cell within the dorsal root ganglion.
  • the lead is configured to be advanced in an antegrade direction through an epidural space and positioned so that at least a portion of the lead extends along a nerve root sleeve angulation.
  • FIG. 1A provides a schematic illustration of a spinal cord, associated nerve roots and a peripheral nerve on a spinal level and FIG. 1B illustrates cells within a DRG.
  • FIGS. 2A-2C provide a cross-sectional histological illustration of a spinal cord and a DRG under varying levels of magnification.
  • FIG. 3 illustrates an embodiment of a lead, having at least one electrode thereon, advanced through the patient anatomy so that at least one of the electrodes is positioned on a target DRG.
  • FIG. 4 provides a schematic illustration of the lead positioned on a DRG.
  • FIG. 5 illustrates a graph showing an example relationship between threshold stimulus and nerve fiber diameter.
  • FIG. 6 illustrates recruitment order based on nerve fiber diameter.
  • FIG. 7 illustrates recruitment order based on cell body size.
  • FIG. 8 illustrates recruitment order differences based on location of stimulation.
  • FIG. 9 provides a schematic illustration of an embodiment of the lead positioned on a DRG, including various cells and anatomical structures associated with the DRG.
  • FIGS. 10A-10D , 11 , 12 illustrate embodiments of a lead and delivery system.
  • the present invention provides devices, systems and methods for treating pain while minimizing or eliminating possible complications and undesired side effects, particularly the sensation of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with stimulation energy in a manner that will affect pain sensations without generating substantial sensations of paresthesia. In some embodiments, such neurostimulation takes advantage of anatomical features and functions particular to the dorsal root ganglion, as will be described in more detail below.
  • the devices, systems and methods are minimally invasive, therefore reducing possible complications resulting from the implantation procedure, and targeted so as to manage pain sensations with minimal or no perceptions such as paresthesia.
  • FIG. 1A provides a schematic illustration of a spinal cord S, associated nerve roots and a peripheral nerve on a spinal level.
  • the nerve roots include a dorsal root DR and a ventral root VR that join together at the peripheral nerve PN.
  • the dorsal root DR includes a dorsal root ganglion DRG, as shown.
  • the DRG is comprised of a variety of cells, including large neurons, small neurons and non-neuronal cells.
  • Each neuron in the DRG is comprised of a bipolar or quasi-unipolar cell having a soma (the bulbous end of the neuron which contains the cell nucleus) and two axons.
  • FIG. 1B provides an expanded illustration of cells located in the DRG, including a small soma SM, a large soma SM′ and non-neuronal cells (in this instance, satellite cells SC).
  • FIGS. 2A-2C provide a cross-sectional histological illustration of a spinal cord S and associated nerve roots, including a DRG.
  • FIG. 2A illustrates the anatomy under 40 ⁇ magnification and indicates the size relationship of the DRG to the surrounding anatomy.
  • FIG. 2B illustrates the anatomy of FIG. 2A under 100 ⁇ magnification.
  • FIG. 2C illustrates the anatomy of FIG. 2A under 400 ⁇ magnification focusing on the DRG. As shown, the larger soma SM′ and the smaller somas SM are located within the DRG.
  • stimulation of a DRG according to the present invention is achieved with the use of a lead having at least one electrode thereon.
  • the lead is advanced through the patient anatomy so that the at least one electrode is positioned on, near, about or in proximity to the target DRG.
  • the lead and electrode(s) are sized and configured so that the electrode(s) are able to minimize or exclude undesired stimulation of other anatomies.
  • FIG. 3 illustrates an embodiment of a lead 100 , having at least one electrode 102 thereon, advanced through the patient anatomy so that at least one of the electrodes 102 is positioned on a target DRG.
  • the lead 100 is inserted epidurally and advanced in an antegrade direction along the spinal cord S.
  • each DRG is disposed along a dorsal root DR and typically resides at least partially between the pedicles PD or within a foramen.
  • Each dorsal root DR exits the spinal cord S at an angle ⁇ .
  • This angle ⁇ is considered the nerve root sleeve angulation and varies slightly by patient and by location along the spinal column.
  • the average nerve root angulation is significantly less than 90 degrees and typically less than 45 degrees.
  • advancement of the lead 100 toward the target DRG in this manner involves making a sharp turn along the angle ⁇ .
  • a turn of this severity is achieved with the use of delivery tools and design features specific to such lead placement which will be described in more detail in later sections.
  • the spatial relationship between the nerve roots, DRGs and surrounding structures are significantly influenced by degenerative changes, particularly in the lumbar spine.
  • patients may have nerve root angulations which differ from the normal anatomy, such as having even smaller angulations necessitating even tighter turns.
  • the delivery tools and devices accommodate these anatomies.
  • FIG. 4 provides a schematic illustration of an embodiment of the lead 100 positioned on a DRG.
  • the DRG includes smaller somas SM and larger somas SM′.
  • Each soma is connected with an associated axon or nerve fiber which extends through the root.
  • the axon or nerve fiber is a long, slender projection of a nerve cell, or neuron that conducts electrical impulses away from the neuron's cell body or soma.
  • the smaller somas SM have smaller axons AX and the larger somas SM′ have larger axons AX′.
  • axons or nerve fibers are recruited electrically according to size. Referring to FIG.
  • a graph is provided which illustrates an example relationship between threshold stimulus and nerve fiber diameter.
  • the threshold stimulus decreases.
  • larger mylenated fibers A ⁇ fibers
  • smaller mylenated fibers A ⁇ fibers
  • small unmylenated fibers C fibers
  • region A to the cell bodies SM′, SM
  • region B to the axons AX′, AX
  • the larger axons AX′ are stimulated before the smaller axons AX.
  • the nociceptive or painful stimuli are transduced from peripheral structures to the central nervous systems through small diameter, thinly myelinated and unmyelinated afferent nerve fibers or axons AX. Electrically, these fibers are more difficult to selectively target since larger diameter fibers or axons AX′ are preferentially activated by electrical currents based upon the above described size principle. These larger fibers AX′ are associated with sensory stimuli such as light touch, pressure and vibration and well as paresthesia such as generated by SCS.
  • the present invention provides methods and devices for preferentially neuromodulating the smaller diameter axon/smaller soma neurons over the larger diameter axon/larger soma neurons. This in turn interrupts pain transmission while minimizing or eliminating paresthesia.
  • a lead 100 positioned so that at least one of the electrodes 102 is disposed so as to selectively stimulate the DRG while minimizing or excluding undesired stimulation of other anatomies, such as portions of the dorsal root DR.
  • This allows the smaller diameter axon/smaller soma neurons to be recruited before the larger diameter axon/larger soma neurons. Consequently, these neurons involved in pain transduction can be modulated without producing paresthesias.
  • lower power stimulation means lower power consumption and longer battery life.
  • Conventional spinal stimulation systems typically provide stimulation with a frequency of about 30-120 Hz.
  • therapeutic benefits have been achieved with the devices and methods described herein at stimulation frequencies below those used in conventional stimulation systems.
  • the stimulation frequency used for the DRG stimulation methods described herein is less than 25 Hz.
  • the stimulation frequency could be even lower such as in the range of less than 15 Hz.
  • the stimulation frequency is below 10 Hz.
  • the stimulation frequency is 5 Hz.
  • the stimulation frequency is 2 Hz.
  • other stimulation patterns for the inventive devices and methods are also lower than those used in conventional stimulation systems.
  • embodiments of the present invention have achieved repeatable dermatome specific pain relief using a stimulation signal having an amplitude of less than 500 microamps, a pulse width of less than 120 microseconds and a low stimulation frequency as discussed above. It is believed that embodiments of the present invention can achieve dermatome specific pain relief using signals having pulse widths selected within the range of 60 microseconds to 120 microseconds. It is believed that embodiments of the present invention can achieve dermatome specific pain relief using a signal having an amplitude of about 200 microamps. In one specific example, repeatable dermatome specific pain relief was achieved in an adult female using a signal with an amplitude of 200 microamps, a pulse width of 60 microseconds and a frequency of 2 Hz.
  • non-neuronal cells such as glial cells
  • Glial cells surround neurons, hold them in place, provide nutrients, help maintain homeostasis, provide electrical insulation, destroy pathogens, regulate neuronal repair and the removal dead neurons, and participate in signal transmission in the nervous system.
  • glial cells help in guiding the construction of the nervous system and control the chemical and ionic environment of the neurons. Glial cells also play a role in the development and maintenance of dysfunction in chronic pain conditions.
  • a variety of specific types of glial cells are found within the DRG, such as satellite cells and Schwann cells.
  • Satellite cells surround neuron cell bodies within the DRG. They supply nutrients to the surrounding neurons and also have some structural function. Satellite cells also act as protective, cushioning cells. In addition, satellite cells can form gap junctions with neurons in the DRG. As opposed to classical chemical transmission in the nervous system, gap junctions between cells provide a direct electrical coupling. This, in turn, can produce a form of a quasi glial-neuronal syncytium. Pathophysiologic conditions can change the relationship between glia and cell bodies such that the neurons transducting information about pain can become dysfunctional. Therefore neurostimulation of the DRG can not only directly affect neurons but also impact the function of glial cells. Modulation of glial cell function with neurostimulation can in turn alter neuronal functioning. Such modulation can occur at levels below a threshold for generating sensations of paresthesia.
  • FIG. 9 provides a schematic illustration of an embodiment of the lead 100 positioned on a DRG.
  • the DRG includes satellite cells SC surrounding smaller somas SM and larger somas SM′.
  • stimulation energy provided by at least one of the electrodes 102 neuromodulates satellite cells SC.
  • Such neuromodulation impacts their function and, secondarily, impacts the function of associated neurons so as to interrupt or alter processing of sensory information, such as pain. Consequently, DRG satellite cell neuromodulation can be a treatment for chronic pain.
  • Schwann cells Another type of glial cells are Schwann cells. Also referred to as neurolemnocytes, Schwann cells assist in neuronal survival. In myelinated axons, Schwann cells form the myelin sheath. The vertebrate nervous system relies on the myelin sheath for insulation and as a method of decreasing membrane capacitance in the axon. The arrangement of the Schwann cells allows for saltatory conduction which greatly increases speed of conduction and saves energy. Non-myelinating Schwann cells are involved in maintenance of axons. Schwann cells also provide axon support, trophic actions and other support activities to neurons within the DRG.
  • Schwann cells SWC are illustrated along the axons of a neuron within the DRG.
  • stimulation energy provided by at least one of the electrodes 102 of the lead 100 neuromodulates Schwann cells SWC.
  • Such neuromodulation impacts their function and, secondarily, impacts the function of associated neurons.
  • Neuromodulation of Schwann cells impacts neuronal processing, transduction and transfer of sensory information including pain.
  • DRG stimulation relieves pain in the short and long term by impacting function of Schwann cells. This also may be achieved at stimulation levels below a threshold for generating sensations of paresthesia.
  • FIG. 9 schematically illustrates a blood vessel BV associated with and an example DRG.
  • stimulation energy is provided by at least one of the electrodes 102 of the lead 100 . Stimulation of the DRG can cause the release of a variety of agents from the neurons, glia and/or blood vessels which ultimately impact the function of neurons involved in the transduction and processing of sensory information, including pain.
  • stimulation of the DRG causes one or more types of neurons and/or one or more types of glial cells to release vasoactive agents which affect at least one blood vessel.
  • the at least one blood vessel in turn releases neuronal agents impact the function of neurons in processing pain.
  • the at least one blood vessel releases glial active agents which indirectly impacts the function of neurons in processing pain.
  • stimulation of the DRG directly affects the associated blood vessels which provide vessel to neuron cell signaling or vessel to glial cell signaling.
  • Such cell signaling ultimately impacts neuronal function, such as by altering metabolic rate or inducing the release of neural responsive chemicals which, in turn, directly change the cell function.
  • the change in cell function induces analgesia or pain relief in the short-term, mid-term and long-term. Such changes may occur at stimulation levels below a threshold for generating sensations of paresthesia.
  • Desired positioning of a lead 100 near the target anatomy may be achieved with a variety of delivery systems, devices and methods. Referring back to FIG. 3 , an example of such positioning is illustrated.
  • the lead 100 is inserted epidurally and advanced in an antegrade direction along the spinal cord S.
  • each DRG is disposed along a dorsal root DR and typically resides at least partially between the pedicles PD or within a foramen.
  • Each dorsal root DR exits the spinal cord S at an angle ⁇ .
  • This angle ⁇ is considered the nerve root sleeve angulation and varies slightly by patient and by location along the spinal column.
  • the average nerve root angulation is significantly less than 90 degrees and typically less than 45 degrees.
  • advancement of the lead 100 toward the target DRG in this manner involves making a sharp turn along the angle ⁇ .
  • the spatial relationship between the nerve roots, DRGs and surrounding structures are significantly influenced by degenerative changes, particularly in the lumbar spine.
  • patients may have nerve root angulations which differ from the normal anatomy, such as having even smaller angulations necessitating even tighter turns. Turns of this severity are achieved with the use of delivery tools having design features specific to such lead placement.
  • FIG. 10A illustrates an embodiment of a lead 100 comprising a shaft 103 having a distal end 101 with four electrodes 102 disposed thereon. It may be appreciated that any number of electrodes 102 may be present, including one, two, three, four, five, six, seven, eight or more.
  • the distal end 101 has a closed-end distal tip 106 .
  • the distal tip 106 may have a variety of shapes including a rounded shape, such as a ball shape (shown) or tear drop shape, and a cone shape, to name a few. These shapes provide an atraumatic tip for the lead 100 as well as serving other purposes.
  • the lead 100 also includes a stylet lumen 104 which extends toward the closed-end distal tip 106 .
  • a delivery system 120 is also illustrated, including a sheath 122 ( FIG. 10B ), stylet 124 ( FIG. 10C ) and introducing needle 126 ( FIG. 10D ).
  • the sheath 122 has a distal end 128 which is pre-curved to have an angle ⁇ , wherein the angle ⁇ is in the range of approximately 80 to 165 degrees.
  • the sheath 122 is sized and configured to be advanced over the shaft 103 of the lead 100 until a portion of its distal end 128 abuts the distal tip 106 of the lead 100 , as illustrated in FIG. 11 .
  • the ball shaped tip 106 of this embodiment also prevents the sheath 122 from extending thereover. Passage of the sheath 122 over the lead 100 causes the lead 100 to bend in accordance with the precurvature of the sheath 122 .
  • the sheath 122 assists in steering the lead 100 along the spinal column S and toward a target DRG, such as in a lateral direction.
  • the stylet 124 has a distal end 130 which is pre-curved so that its radius of curvature is in the range of approximately 0.1 to 0.5.
  • the stylet 124 is sized and configured to be advanced within the stylet lumen 104 of the lead 100 .
  • the stylet 124 extends therethrough so that its distal end 130 aligns with the distal end 101 of the lead 100 . Passage of the stylet 124 through the lead 100 causes the lead 100 to bend in accordance with the precurvature of the stylet 124 .
  • the stylet 124 has a smaller radius of curvature, or a tighter bend, than the sheath 122 .
  • extension of the lead 100 and stylet 124 through the sheath 122 bends or directs the lead 100 through a first curvature 123 .
  • Further extension of the lead 100 and stylet 124 beyond the distal end 128 of the sheath 122 allows the lead 100 to bend further along a second curvature 125 .
  • This two step curvature allows the lead 100 to be successfully positioned so that at least one of the electrodes 102 is on, near or about the target DRG, particularly by making a sharp turn along the angle ⁇ .
  • the lead 100 does not require stiff or torqueable construction since the lead 100 is not torqued or steered by itself.
  • the lead 100 is positioned with the use of the sheath 122 and stylet 124 which direct the lead 100 through the two step curvature. This eliminates the need for the operator to torque the lead 100 and optionally the sheath 122 with multiple hands. This also allows the lead 100 to have a lower profile as well as a very soft and flexible construction. This, in turn, minimizes erosion and discomfort created by pressure on nerve tissue, such as the target DRG and/or the nerve root, once the lead 100 is implanted. For example, such a soft and flexible lead 100 will minimize the amount of force translated to the lead 100 by body movement (e.g. flexion, extension, torsion).
  • an introducing needle 126 is illustrated.
  • the introducing needle 126 is used to access the epidural space of the spinal cord S.
  • the needle 126 has a hollow shaft 127 and typically has a very slightly curved distal end 132 .
  • the shaft 127 is sized to allow passage of the lead 100 , sheath 122 and stylet 124 therethrough.
  • the needle 126 is 14 gauge which is consistent with the size of epidural needles used to place conventional percutaneous leads within the epidural space.
  • other sized needles may also be used, particularly smaller needles such as 16-18 gauge.
  • needles having various tips known to practitioners or custom tips designed for specific applications may also be used.
  • the needle 126 also typically includes a Luer-LokTM fitting 134 or other fitting near its proximal end.
  • the Luer-LokTM fitting 134 is a female fitting having a tabbed hub which engages threads in a sleeve on a male fitting, such as a syringe.
  • the lead may have a pre-curved shape wherein the lead is deliverable through a sheath having a straighter shape, such as a substantially straight shape or a curved shape which is has a larger radius of curvature than the lead. Advancement of the lead out of the sheath allows the lead to recoil toward its pre-curved shape. Various combinations of curvature between the lead and sheath may allow for a variety of primary and secondary curvatures.
  • the at least one electrode may be positioned in, on or about, in proximity to, near or in the vicinity of the DRG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pain & Pain Management (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Electrotherapy Devices (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

Devices, systems and methods are provided for treating pain while minimizing or eliminating possible complications and undesired side effects, particularly the sensation of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with stimulation energy in a manner that will affect pain sensations without generating substantial sensations of paresthesia. In some embodiments, such neurostimulation takes advantage of anatomical features and functions particular to the dorsal root ganglion.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/730,908, entitled “PAIN MANAGEMENT WITH STIMULATION SUBTHRESHOLD TO PARESTHESIA,” filed Mar. 24, 2010, now Publication No. US-2010-0249875-A1, which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/163,007, entitled “PAIN MANAGEMENT WITH SUBTHRESHOLD STIMULATION,” filed Mar. 24, 2009, which is incorporated herein by reference.
  • STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • NOT APPLICABLE
  • REFERENCE TO A “SEQUENCE LISTING,” A TABLE, OR A COMPUTER PROGRAM LISTING APPENDIX SUBMITTED ON A COMPACT DISK
  • NOT APPLICABLE
  • BACKGROUND
  • For more than 30 years, spinal cord stimulation (SCS) has been used to treat a variety of pain syndromes. The goal of SCS is to create paresthesia that completely and consistently covers the painful areas, yet does not cause uncomfortable sensations in other areas. Paresthesia may be defined as a sensation of tingling, pricking, or numbness in an area of the body. It is more generally known as the feeling of “pins and needles”. In some instances, the feeling of paresthesia is preferred over the feeling of pain. In SCS, paresthesia production is accomplished by stimulating Aβ fibers in the dorsal column and/or the dorsal roots. Dorsal column stimulation typically causes paresthesia in several dermatomes at and below the level of the stimulator. In contrast, dorsal root stimulation activates fibers in a limited number of rootlets in close proximity to the stimulator and causes paresthesia in only a few dermatomes. Because of these factors, dorsal root stimulation with an SCS stimulator may not produce sufficient pain relief. In addition, stimulation of the roots with an SCS stimulator can cause uncomfortable sensations and motor responses. These side effects may occur at pulse amplitudes that are below the value needed for full paresthesia coverage. Therefore, the clinical goal of SCS is to produce an electrical field that stimulates the relevant spinal cord structures without stimulating the nearby nerve root.
  • Intraspinal nerve root stimulation is a technique related to SCS, except that electrodes are placed along the nerve rootlets in the lateral aspect of the spinal canal (this area is known as “the gutter”), rather than over the midline of the spinal cord. The electrodes are mounted on a cylindrical lead rather than on a traditional SCS paddle lead. The accuracy of the leads' placement within the gutter is confirmed by stimulating the nerve roots at perceptible levels, which result in paresthesia in the local area. Sensory paresthesia may be generated by stimulating at a level above the threshold for sensory recruitment. This may be used in conjunction with SCS to treat certain pain conditions.
  • For some patients, paresthesia is an undesired effect and is not a well tolerated alternative to pain. Therefore, improved treatments are needed to provide pain relief with minimal undesired effects. At least some of these objectives will be met by the present invention.
  • SUMMARY OF THE DISCLOSURE
  • The present invention provides devices, systems and methods for treating conditions, such as pain, while minimizing or eliminating possible complications and undesired side effects. In particular, the devices, systems and methods treat pain without generating substantial sensations of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with specific stimulation energy levels, as will be described in more detail herein.
  • In a first aspect of the present invention, a method is provided of treating pain in a patient comprising positioning a lead having at least one electrode disposed thereon so that at least one of the at least one electrode is in proximity to a dorsal root ganglion, and providing stimulation energy to the at least one of the at least one electrode so as to stimulate at least a portion of the dorsal root ganglion. Together the positioning of the lead step and the providing stimulation energy step affect pain sensations without generating substantial sensations of paresthesia.
  • In some embodiments, providing stimulation energy comprises providing stimulation energy at a level below a threshold for Aβ fiber recruitment. And, in some embodiments, providing stimulation energy comprises providing stimulation energy at a level below a threshold for Aβ fiber cell body recruitment.
  • In other embodiments, providing stimulation energy comprises: a) providing stimulation energy at a level above a threshold for Aδ fiber cell body recruitment, b) providing stimulation energy at a level above a threshold for C fiber cell body recruitment, c) providing stimulation energy at a level above a threshold for small myelenated fiber cell body recruitment, or d) providing stimulation energy at a level above a threshold for unmyelenated fiber cell body recruitment.
  • In still other embodiments, providing stimulation energy comprises providing stimulation energy at a level which is capable of modulating glial cell function within the dorsal root ganglion. For example, in some embodiments, providing stimulation energy comprises providing stimulation energy at a level which is capable of modulating satellite cell function within the dorsal root ganglion. In other embodiments, providing stimulation energy comprises providing stimulation energy at a level which is capable of modulating Schwann cell function within the dorsal root ganglion.
  • In yet other embodiments, providing stimulation energy comprises providing stimulation energy at a level which is capable of causing at least one blood vessel associated with the dorsal root ganglion to release an agent or send a cell signal which affects a neuron or glial cell within the dorsal root ganglion.
  • In some embodiments, positioning the lead comprises advancing the lead through an epidural space so that at least a portion of the lead extends along a nerve root sleeve angulation. And, in some instances advancing the lead through the epidural space comprises advancing the lead in an antegrade direction.
  • In a second aspect of the present invention, a method is provided for treating a patient comprising selectively stimulating a small fiber cell body within a dorsal root ganglion of the patient while excluding an Aβ fiber cell body with the dorsal root ganglion of the patient. In some embodiments, the small fiber body comprises an Aδ fiber cell body. In other embodiments, the small fiber body comprises a C fiber cell body.
  • In a third aspect of the present invention, a method is provided for treating a patient comprising identifying a dorsal root ganglion associated with a sensation of pain by the patient, and neuromodulating at least one glial cell within the dorsal root ganglion so as to reduce the sensation of pain by the patient. In some embodiments, the at least one glial cell comprises a satellite cell. In other embodiments, the at least one glial cell comprises a Schwann cell. And, in some embodiments, neuromodulating comprises providing stimulation at a level that reduces the sensation of pain without generating substantial sensations of paresthesia.
  • In a fourth aspect of the present invention, a method is provided for treating a patient comprising positioning a lead having at least one electrode disposed thereon so that at least one of the at least one electrode is in proximity to a dorsal root ganglion, and providing stimulation energy to the at least one electrode so as to stimulate at least one blood vessel associated with the dorsal root ganglion in a manner that causes the at least one blood vessel to release an agent which neuromodulates a neuron within the dorsal root ganglion. In some embodiments, the agent comprises a neuromodulatory chemical that affects the function of neurons involved in pain sensory transduction.
  • In a fifth aspect of the present invention, a system is provided for treating pain in a patient comprising a lead having at least one electrode disposed thereon, wherein the lead is configured for placement in proximity to a dorsal root ganglion, and a pulse generator configured to provide stimulation energy to the at least one of the at least one electrode while the lead is positioned in proximity to the dorsal root ganglion so as to stimulate at least a portion of the dorsal root ganglion in a manner which affects pain sensations without generating substantial sensations of paresthesia.
  • In some embodiments, the pulse generator provides stimulation energy at a level at below a threshold for Aβ fiber recruitment. In other embodiments, the pulse generator provides stimulation energy at a level below a threshold for Aβ fiber cell body recruitment. In other embodiments, the pulse generator provides stimulation energy at a level above a threshold for Aδ fiber cell body recruitment. In still other embodiments, the pulse generator provides stimulation energy at a level above a threshold for C fiber cell body recruitment. In some embodiments, the pulse generator provides stimulation energy at a level above a threshold for small myelenated fiber cell body recruitment. And, in some embodiments, the pulse generator provides stimulation energy at a level above a threshold for unmyelenated fiber cell body recruitment.
  • In some embodiments, the pulse generator provides stimulation energy at a level which is capable of modulating glial cell function within the dorsal root ganglion. For example, in some embodiments, the pulse generator provides stimulation energy at a level which is capable of modulating satellite cell function within the dorsal root ganglion. In other embodiments, the pulse generator provides stimulation energy at a level which is capable of modulating Schwann cell function within the dorsal root ganglion.
  • In some instances, the pulse generator provides stimulation energy at a level which is capable of causing at least one blood vessel associated with the dorsal root ganglion to release an agent or send a cell signal which affects a neuron or glial cell within the dorsal root ganglion.
  • And, in some embodiments, the lead is configured to be advanced in an antegrade direction through an epidural space and positioned so that at least a portion of the lead extends along a nerve root sleeve angulation.
  • Other objects and advantages of the present invention will become apparent from the detailed description to follow, together with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A provides a schematic illustration of a spinal cord, associated nerve roots and a peripheral nerve on a spinal level and FIG. 1B illustrates cells within a DRG.
  • FIGS. 2A-2C provide a cross-sectional histological illustration of a spinal cord and a DRG under varying levels of magnification.
  • FIG. 3 illustrates an embodiment of a lead, having at least one electrode thereon, advanced through the patient anatomy so that at least one of the electrodes is positioned on a target DRG.
  • FIG. 4 provides a schematic illustration of the lead positioned on a DRG.
  • FIG. 5 illustrates a graph showing an example relationship between threshold stimulus and nerve fiber diameter.
  • FIG. 6 illustrates recruitment order based on nerve fiber diameter.
  • FIG. 7 illustrates recruitment order based on cell body size.
  • FIG. 8 illustrates recruitment order differences based on location of stimulation.
  • FIG. 9 provides a schematic illustration of an embodiment of the lead positioned on a DRG, including various cells and anatomical structures associated with the DRG.
  • FIGS. 10A-10D, 11, 12 illustrate embodiments of a lead and delivery system.
  • DETAILED DESCRIPTION
  • The present invention provides devices, systems and methods for treating pain while minimizing or eliminating possible complications and undesired side effects, particularly the sensation of paresthesia. This is achieved by stimulating in proximity to a dorsal root ganglion with stimulation energy in a manner that will affect pain sensations without generating substantial sensations of paresthesia. In some embodiments, such neurostimulation takes advantage of anatomical features and functions particular to the dorsal root ganglion, as will be described in more detail below. The devices, systems and methods are minimally invasive, therefore reducing possible complications resulting from the implantation procedure, and targeted so as to manage pain sensations with minimal or no perceptions such as paresthesia.
  • FIG. 1A provides a schematic illustration of a spinal cord S, associated nerve roots and a peripheral nerve on a spinal level. Here, the nerve roots include a dorsal root DR and a ventral root VR that join together at the peripheral nerve PN. The dorsal root DR includes a dorsal root ganglion DRG, as shown. The DRG is comprised of a variety of cells, including large neurons, small neurons and non-neuronal cells. Each neuron in the DRG is comprised of a bipolar or quasi-unipolar cell having a soma (the bulbous end of the neuron which contains the cell nucleus) and two axons. The word soma is Greek, meaning “body”; the soma of a neuron is often called the “cell body”. Somas are gathered within the DRG, rather than the dorsal root, and the associated axons extend therefrom into the dorsal root and toward the peripheral nervous system. FIG. 1B provides an expanded illustration of cells located in the DRG, including a small soma SM, a large soma SM′ and non-neuronal cells (in this instance, satellite cells SC). FIGS. 2A-2C provide a cross-sectional histological illustration of a spinal cord S and associated nerve roots, including a DRG. FIG. 2A illustrates the anatomy under 40× magnification and indicates the size relationship of the DRG to the surrounding anatomy. FIG. 2B illustrates the anatomy of FIG. 2A under 100× magnification. Here, the differing structure of the DRG is becoming visible. FIG. 2C illustrates the anatomy of FIG. 2A under 400× magnification focusing on the DRG. As shown, the larger soma SM′ and the smaller somas SM are located within the DRG.
  • In some embodiments, stimulation of a DRG according to the present invention is achieved with the use of a lead having at least one electrode thereon. The lead is advanced through the patient anatomy so that the at least one electrode is positioned on, near, about or in proximity to the target DRG. The lead and electrode(s) are sized and configured so that the electrode(s) are able to minimize or exclude undesired stimulation of other anatomies.
  • FIG. 3 illustrates an embodiment of a lead 100, having at least one electrode 102 thereon, advanced through the patient anatomy so that at least one of the electrodes 102 is positioned on a target DRG. In this example, the lead 100 is inserted epidurally and advanced in an antegrade direction along the spinal cord S. As shown, each DRG is disposed along a dorsal root DR and typically resides at least partially between the pedicles PD or within a foramen. Each dorsal root DR exits the spinal cord S at an angle θ. This angle θ is considered the nerve root sleeve angulation and varies slightly by patient and by location along the spinal column. However, the average nerve root angulation is significantly less than 90 degrees and typically less than 45 degrees. Therefore, advancement of the lead 100 toward the target DRG in this manner involves making a sharp turn along the angle θ. A turn of this severity is achieved with the use of delivery tools and design features specific to such lead placement which will be described in more detail in later sections. In addition, the spatial relationship between the nerve roots, DRGs and surrounding structures are significantly influenced by degenerative changes, particularly in the lumbar spine. Thus, patients may have nerve root angulations which differ from the normal anatomy, such as having even smaller angulations necessitating even tighter turns. The delivery tools and devices accommodate these anatomies.
  • FIG. 4 provides a schematic illustration of an embodiment of the lead 100 positioned on a DRG. As illustrated, the DRG includes smaller somas SM and larger somas SM′. Each soma is connected with an associated axon or nerve fiber which extends through the root. The axon or nerve fiber is a long, slender projection of a nerve cell, or neuron that conducts electrical impulses away from the neuron's cell body or soma. The smaller somas SM have smaller axons AX and the larger somas SM′ have larger axons AX′. Typically, axons or nerve fibers are recruited electrically according to size. Referring to FIG. 5, a graph is provided which illustrates an example relationship between threshold stimulus and nerve fiber diameter. Generally, as the nerve fiber diameter increases, the threshold stimulus decreases. Thus, as illustrated in FIG. 6, larger mylenated fibers (Aβ fibers) are recruited before smaller mylenated fibers (Aδ fibers), which are in turn recruited before small unmylenated fibers (C fibers).
  • Referring to FIG. 7, the opposite is true of cell bodies compared to nerve fibers. Generally, it takes less current to recruit or modulate a smaller cell body or soma membrane than a larger one. Thus, as shown in FIG. 8, when low stimulation is provided in region A (to the cell bodies SM′, SM) the smaller diameter cell bodies SM are selectively stimulated before the larger diameter cell bodies SM′. This is due to the relatively smaller charge it takes to effectively modulate membrane function of a smaller cell body. However, when low stimulation is provided in region B (to the axons AX′, AX) the larger axons AX′ are stimulated before the smaller axons AX. Referring back to FIG. 4, since the cell bodies or somas are located within the DRG, region A generally corresponds to the DRG and region B generally corresponds to the dorsal root DR.
  • When a patient experiences pain, the nociceptive or painful stimuli are transduced from peripheral structures to the central nervous systems through small diameter, thinly myelinated and unmyelinated afferent nerve fibers or axons AX. Electrically, these fibers are more difficult to selectively target since larger diameter fibers or axons AX′ are preferentially activated by electrical currents based upon the above described size principle. These larger fibers AX′ are associated with sensory stimuli such as light touch, pressure and vibration and well as paresthesia such as generated by SCS.
  • The present invention provides methods and devices for preferentially neuromodulating the smaller diameter axon/smaller soma neurons over the larger diameter axon/larger soma neurons. This in turn interrupts pain transmission while minimizing or eliminating paresthesia. Referring again to FIG. 4, an example is illustrated of a lead 100 positioned so that at least one of the electrodes 102 is disposed so as to selectively stimulate the DRG while minimizing or excluding undesired stimulation of other anatomies, such as portions of the dorsal root DR. This allows the smaller diameter axon/smaller soma neurons to be recruited before the larger diameter axon/larger soma neurons. Consequently, these neurons involved in pain transduction can be modulated without producing paresthesias. This is achieved with the use of less current or lower power stimulation, i.e. stimulation at a subthreshold level to paresthesia. The effect of this preferential, targeted neuromodulation is analgesia without resultant paresthesias. In addition, lower power stimulation means lower power consumption and longer battery life.
  • Conventional spinal stimulation systems typically provide stimulation with a frequency of about 30-120 Hz. In contrast, therapeutic benefits have been achieved with the devices and methods described herein at stimulation frequencies below those used in conventional stimulation systems. In one aspect, the stimulation frequency used for the DRG stimulation methods described herein is less than 25 Hz. In other aspects, the stimulation frequency could be even lower such as in the range of less than 15 Hz. In still other aspects, the stimulation frequency is below 10 Hz. In one specific embodiment, the stimulation frequency is 5 Hz. In another specific, embodiment, the stimulation frequency is 2 Hz. In addition to lower stimulation frequencies, other stimulation patterns for the inventive devices and methods are also lower than those used in conventional stimulation systems. For example, embodiments of the present invention have achieved repeatable dermatome specific pain relief using a stimulation signal having an amplitude of less than 500 microamps, a pulse width of less than 120 microseconds and a low stimulation frequency as discussed above. It is believed that embodiments of the present invention can achieve dermatome specific pain relief using signals having pulse widths selected within the range of 60 microseconds to 120 microseconds. It is believed that embodiments of the present invention can achieve dermatome specific pain relief using a signal having an amplitude of about 200 microamps. In one specific example, repeatable dermatome specific pain relief was achieved in an adult female using a signal with an amplitude of 200 microamps, a pulse width of 60 microseconds and a frequency of 2 Hz. It may also be appreciated that other suitable stimulation signal parameters may be used along, such as provided in U.S. patent application Ser. No. 12/607,009 entitled “SELECTIVE STIMULATION SYSTEMS AND SIGNAL PARAMETERS FOR MEDICAL CONDITIONS,” filed Oct. 27, 2009, now Publication No. US-2010-0137938-A1, incorporated herein by reference for all purposes.
  • In addition to neuronal cells, non-neuronal cells, such as glial cells, are located within the DRG. Glial cells surround neurons, hold them in place, provide nutrients, help maintain homeostasis, provide electrical insulation, destroy pathogens, regulate neuronal repair and the removal dead neurons, and participate in signal transmission in the nervous system. In addition, glial cells help in guiding the construction of the nervous system and control the chemical and ionic environment of the neurons. Glial cells also play a role in the development and maintenance of dysfunction in chronic pain conditions. A variety of specific types of glial cells are found within the DRG, such as satellite cells and Schwann cells.
  • Satellite cells surround neuron cell bodies within the DRG. They supply nutrients to the surrounding neurons and also have some structural function. Satellite cells also act as protective, cushioning cells. In addition, satellite cells can form gap junctions with neurons in the DRG. As opposed to classical chemical transmission in the nervous system, gap junctions between cells provide a direct electrical coupling. This, in turn, can produce a form of a quasi glial-neuronal syncytium. Pathophysiologic conditions can change the relationship between glia and cell bodies such that the neurons transducting information about pain can become dysfunctional. Therefore neurostimulation of the DRG can not only directly affect neurons but also impact the function of glial cells. Modulation of glial cell function with neurostimulation can in turn alter neuronal functioning. Such modulation can occur at levels below a threshold for generating sensations of paresthesia.
  • FIG. 9 provides a schematic illustration of an embodiment of the lead 100 positioned on a DRG. As illustrated, the DRG includes satellite cells SC surrounding smaller somas SM and larger somas SM′. In some embodiments, stimulation energy provided by at least one of the electrodes 102 neuromodulates satellite cells SC. Such neuromodulation impacts their function and, secondarily, impacts the function of associated neurons so as to interrupt or alter processing of sensory information, such as pain. Consequently, DRG satellite cell neuromodulation can be a treatment for chronic pain.
  • Another type of glial cells are Schwann cells. Also referred to as neurolemnocytes, Schwann cells assist in neuronal survival. In myelinated axons, Schwann cells form the myelin sheath. The vertebrate nervous system relies on the myelin sheath for insulation and as a method of decreasing membrane capacitance in the axon. The arrangement of the Schwann cells allows for saltatory conduction which greatly increases speed of conduction and saves energy. Non-myelinating Schwann cells are involved in maintenance of axons. Schwann cells also provide axon support, trophic actions and other support activities to neurons within the DRG.
  • Referring again to FIG. 9, Schwann cells SWC are illustrated along the axons of a neuron within the DRG. In some embodiments, stimulation energy provided by at least one of the electrodes 102 of the lead 100 neuromodulates Schwann cells SWC. Such neuromodulation impacts their function and, secondarily, impacts the function of associated neurons. Neuromodulation of Schwann cells impacts neuronal processing, transduction and transfer of sensory information including pain. Thus, DRG stimulation relieves pain in the short and long term by impacting function of Schwann cells. This also may be achieved at stimulation levels below a threshold for generating sensations of paresthesia.
  • Beyond the neural cells (neurons, glia, etc) that are present in the DRG, there is a rich network of blood vessels that travel in and about the DRG to encapsulate the DRG and provide a blood supply and oxygen to this highly metabolically active neural structure. FIG. 9 schematically illustrates a blood vessel BV associated with and an example DRG. In some embodiments, stimulation energy is provided by at least one of the electrodes 102 of the lead 100. Stimulation of the DRG can cause the release of a variety of agents from the neurons, glia and/or blood vessels which ultimately impact the function of neurons involved in the transduction and processing of sensory information, including pain. For example, in some embodiments stimulation of the DRG causes one or more types of neurons and/or one or more types of glial cells to release vasoactive agents which affect at least one blood vessel. The at least one blood vessel in turn releases neuronal agents impact the function of neurons in processing pain. Or, the at least one blood vessel releases glial active agents which indirectly impacts the function of neurons in processing pain. In other embodiments, stimulation of the DRG directly affects the associated blood vessels which provide vessel to neuron cell signaling or vessel to glial cell signaling. Such cell signaling ultimately impacts neuronal function, such as by altering metabolic rate or inducing the release of neural responsive chemicals which, in turn, directly change the cell function. The change in cell function induces analgesia or pain relief in the short-term, mid-term and long-term. Such changes may occur at stimulation levels below a threshold for generating sensations of paresthesia.
  • Desired positioning of a lead 100 near the target anatomy, such as the DRG, may be achieved with a variety of delivery systems, devices and methods. Referring back to FIG. 3, an example of such positioning is illustrated. In this example, the lead 100 is inserted epidurally and advanced in an antegrade direction along the spinal cord S. As shown, each DRG is disposed along a dorsal root DR and typically resides at least partially between the pedicles PD or within a foramen. Each dorsal root DR exits the spinal cord S at an angle θ. This angle θ is considered the nerve root sleeve angulation and varies slightly by patient and by location along the spinal column. However, the average nerve root angulation is significantly less than 90 degrees and typically less than 45 degrees. Therefore, advancement of the lead 100 toward the target DRG in this manner involves making a sharp turn along the angle θ. In addition, the spatial relationship between the nerve roots, DRGs and surrounding structures are significantly influenced by degenerative changes, particularly in the lumbar spine. Thus, patients may have nerve root angulations which differ from the normal anatomy, such as having even smaller angulations necessitating even tighter turns. Turns of this severity are achieved with the use of delivery tools having design features specific to such lead placement.
  • Referring to FIGS. 10A-10D, an example lead and delivery devices for accessing a target DRG are illustrated. FIG. 10A illustrates an embodiment of a lead 100 comprising a shaft 103 having a distal end 101 with four electrodes 102 disposed thereon. It may be appreciated that any number of electrodes 102 may be present, including one, two, three, four, five, six, seven, eight or more. In this embodiment, the distal end 101 has a closed-end distal tip 106. The distal tip 106 may have a variety of shapes including a rounded shape, such as a ball shape (shown) or tear drop shape, and a cone shape, to name a few. These shapes provide an atraumatic tip for the lead 100 as well as serving other purposes. The lead 100 also includes a stylet lumen 104 which extends toward the closed-end distal tip 106. A delivery system 120 is also illustrated, including a sheath 122 (FIG. 10B), stylet 124 (FIG. 10C) and introducing needle 126 (FIG. 10D).
  • Referring to FIG. 10B, an embodiment of a sheath 122 is illustrated. In this embodiment, the sheath 122 has a distal end 128 which is pre-curved to have an angle α, wherein the angle α is in the range of approximately 80 to 165 degrees. The sheath 122 is sized and configured to be advanced over the shaft 103 of the lead 100 until a portion of its distal end 128 abuts the distal tip 106 of the lead 100, as illustrated in FIG. 11. Thus, the ball shaped tip 106 of this embodiment also prevents the sheath 122 from extending thereover. Passage of the sheath 122 over the lead 100 causes the lead 100 to bend in accordance with the precurvature of the sheath 122. Thus, the sheath 122 assists in steering the lead 100 along the spinal column S and toward a target DRG, such as in a lateral direction.
  • Referring back to FIG. 10C, an embodiment of a stylet 124 is illustrated. The stylet 124 has a distal end 130 which is pre-curved so that its radius of curvature is in the range of approximately 0.1 to 0.5. The stylet 124 is sized and configured to be advanced within the stylet lumen 104 of the lead 100. Typically the stylet 124 extends therethrough so that its distal end 130 aligns with the distal end 101 of the lead 100. Passage of the stylet 124 through the lead 100 causes the lead 100 to bend in accordance with the precurvature of the stylet 124. Typically, the stylet 124 has a smaller radius of curvature, or a tighter bend, than the sheath 122. Therefore, as shown in FIG. 12, when the stylet 124 is disposed within the lead 100, extension of the lead 100 and stylet 124 through the sheath 122 bends or directs the lead 100 through a first curvature 123. Further extension of the lead 100 and stylet 124 beyond the distal end 128 of the sheath 122 allows the lead 100 to bend further along a second curvature 125. This allows the laterally directed lead 100 to now curve around toward the target DRG along the nerve root angulation. This two step curvature allows the lead 100 to be successfully positioned so that at least one of the electrodes 102 is on, near or about the target DRG, particularly by making a sharp turn along the angle θ.
  • Thus, the lead 100 does not require stiff or torqueable construction since the lead 100 is not torqued or steered by itself. The lead 100 is positioned with the use of the sheath 122 and stylet 124 which direct the lead 100 through the two step curvature. This eliminates the need for the operator to torque the lead 100 and optionally the sheath 122 with multiple hands. This also allows the lead 100 to have a lower profile as well as a very soft and flexible construction. This, in turn, minimizes erosion and discomfort created by pressure on nerve tissue, such as the target DRG and/or the nerve root, once the lead 100 is implanted. For example, such a soft and flexible lead 100 will minimize the amount of force translated to the lead 100 by body movement (e.g. flexion, extension, torsion).
  • Referring back to FIG. 10D, an embodiment of an introducing needle 126 is illustrated. The introducing needle 126 is used to access the epidural space of the spinal cord S. The needle 126 has a hollow shaft 127 and typically has a very slightly curved distal end 132. The shaft 127 is sized to allow passage of the lead 100, sheath 122 and stylet 124 therethrough. In some embodiments, the needle 126 is 14 gauge which is consistent with the size of epidural needles used to place conventional percutaneous leads within the epidural space. However, it may be appreciated that other sized needles may also be used, particularly smaller needles such as 16-18 gauge. Likewise, it may be appreciated that needles having various tips known to practitioners or custom tips designed for specific applications may also be used. The needle 126 also typically includes a Luer-Lok™ fitting 134 or other fitting near its proximal end. The Luer-Lok™ fitting 134 is a female fitting having a tabbed hub which engages threads in a sleeve on a male fitting, such as a syringe.
  • Methods of approaching a target DRG using such a delivery system 120 is further described and illustrated in U.S. Patent Application No. 61/144,690 filed Jan. 14, 2009, incorporated herein by reference for all purposes, along with examples of other delivery systems, devices and methods applicable to use with the present invention.
  • It may be appreciated that other types of leads and corresponding delivery systems may be used to position such leads in desired orientations to provide stimulation subthreshold to paresthesia. For example, the lead may have a pre-curved shape wherein the lead is deliverable through a sheath having a straighter shape, such as a substantially straight shape or a curved shape which is has a larger radius of curvature than the lead. Advancement of the lead out of the sheath allows the lead to recoil toward its pre-curved shape. Various combinations of curvature between the lead and sheath may allow for a variety of primary and secondary curvatures. Once the lead is desirably placed, the sheath may then be removed.
  • It may also be appreciated that a variety of approaches to the DRG may be used, such as an antegrade epidural approach, a retrograde epidural approach, a transforamenal approach or an extraforaminal approach (approaching along a peripheral nerve from outside of the spinal column), and a contralateral approach, to name a few. Likewise, the at least one electrode may be positioned in, on or about, in proximity to, near or in the vicinity of the DRG.
  • Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications, and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Claims (1)

What is claimed is:
1. A method of treating pain in a patient comprising:
positioning a lead having at least one electrode disposed thereon so that at least one of the at least one electrode is in proximity to a dorsal root ganglion; and
providing stimulation energy to the at least one of the at least one electrode so as to stimulate at least a portion of the dorsal root ganglion,
wherein together the positioning of the lead step and the providing stimulation energy step affect pain sensations without generating substantial sensations of paresthesia.
US13/753,326 2009-03-24 2013-01-29 Pain management with stimulation subthreshold to paresthesia Abandoned US20130144359A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/753,326 US20130144359A1 (en) 2009-03-24 2013-01-29 Pain management with stimulation subthreshold to paresthesia
US14/615,281 US9468762B2 (en) 2009-03-24 2015-02-05 Pain management with stimulation subthreshold to paresthesia

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16300709P 2009-03-24 2009-03-24
US12/730,908 US8380318B2 (en) 2009-03-24 2010-03-24 Pain management with stimulation subthreshold to paresthesia
US13/753,326 US20130144359A1 (en) 2009-03-24 2013-01-29 Pain management with stimulation subthreshold to paresthesia

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/730,908 Continuation US8380318B2 (en) 2009-03-24 2010-03-24 Pain management with stimulation subthreshold to paresthesia

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/615,281 Continuation US9468762B2 (en) 2009-03-24 2015-02-05 Pain management with stimulation subthreshold to paresthesia

Publications (1)

Publication Number Publication Date
US20130144359A1 true US20130144359A1 (en) 2013-06-06

Family

ID=42781839

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/730,908 Active 2030-08-02 US8380318B2 (en) 2009-03-24 2010-03-24 Pain management with stimulation subthreshold to paresthesia
US13/753,326 Abandoned US20130144359A1 (en) 2009-03-24 2013-01-29 Pain management with stimulation subthreshold to paresthesia
US14/615,281 Active US9468762B2 (en) 2009-03-24 2015-02-05 Pain management with stimulation subthreshold to paresthesia

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/730,908 Active 2030-08-02 US8380318B2 (en) 2009-03-24 2010-03-24 Pain management with stimulation subthreshold to paresthesia

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/615,281 Active US9468762B2 (en) 2009-03-24 2015-02-05 Pain management with stimulation subthreshold to paresthesia

Country Status (7)

Country Link
US (3) US8380318B2 (en)
EP (1) EP2411091A4 (en)
JP (2) JP2012521801A (en)
CN (1) CN102438698B (en)
AU (1) AU2010229985B2 (en)
CA (1) CA2758459A1 (en)
WO (1) WO2010111358A2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054319A1 (en) * 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US20080085265A1 (en) * 2005-07-22 2008-04-10 Schneider M B System for optical stimulation of target cells
US20090088680A1 (en) * 2005-07-22 2009-04-02 Alexander Aravanis Optical tissue interface method and apparatus for stimulating cells
US20090099038A1 (en) * 2005-07-22 2009-04-16 Karl Deisseroth Cell line, system and method for optical-based screening of ion-channel modulators
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
US20100190229A1 (en) * 2005-07-22 2010-07-29 Feng Zhang System for optical stimulation of target cells
US20110159562A1 (en) * 2008-06-17 2011-06-30 Karl Deisseroth Apparatus and methods for controlling cellular development
US20110166632A1 (en) * 2008-07-08 2011-07-07 Delp Scott L Materials and approaches for optical stimulation of the peripheral nervous system
US20110172653A1 (en) * 2008-06-17 2011-07-14 Schneider M Bret Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US8729040B2 (en) 2008-05-29 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8815582B2 (en) 2008-04-23 2014-08-26 The Board Of Trustees Of The Leland Stanford Junior University Mammalian cell expressing Volvox carteri light-activated ion channel protein (VChR1)
US8834546B2 (en) 2010-11-22 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8864805B2 (en) 2007-01-10 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US9309296B2 (en) 2008-11-14 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9340589B2 (en) 2010-11-05 2016-05-17 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US9693692B2 (en) 2007-02-14 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US9956408B2 (en) 2013-10-09 2018-05-01 Gimer Medical Co. Ltd. Method for reducing spasticity and non-transitory computer-readable medium thereof
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
DE102015219027B4 (en) * 2014-10-01 2018-07-05 GiMer Medical Co., Ltd. Electronic stimulation system and device thereof for dorsal root ganglion
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US10086201B2 (en) 2013-10-09 2018-10-02 GiMer Medical Co., Ltd. Electronic stimulation device, method of treatment and electronic stimulation system
US10086197B2 (en) 2013-10-09 2018-10-02 GiMer Medical Co., Ltd. Method for reducing overactive bladder syndrome and computer-readable medium thereof
US10183165B2 (en) 2013-10-09 2019-01-22 GiMer Medical Co., Ltd. Method of reducing renal hypertension and computer-readable medium
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
US10232180B2 (en) 2004-09-08 2019-03-19 The Board Of Trustees Of The Leland Stanford Junior University Selective stimulation to modulate the sympathetic nervous system
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US10632310B2 (en) 2013-10-09 2020-04-28 GiMer Medical Co., Ltd. Electronic stimulation device, method of treatment and electronic stimulation system
US10639476B2 (en) 2013-10-09 2020-05-05 GiMer Medical Co., Ltd. Electronic stimulation device, method of treatment and electronic stimulation system
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580753B2 (en) 2004-09-08 2009-08-25 Spinal Modulation, Inc. Method and system for stimulating a dorsal root ganglion
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
US20070073354A1 (en) 2005-09-26 2007-03-29 Knudson Mark B Neural blocking therapy
EP2099374A4 (en) 2006-12-06 2012-10-03 Spinal Modulation Inc Hard tissue anchors and delivery devices
US9314618B2 (en) 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
US8983624B2 (en) * 2006-12-06 2015-03-17 Spinal Modulation, Inc. Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US9427570B2 (en) * 2006-12-06 2016-08-30 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Expandable stimulation leads and methods of use
US11679262B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US9072897B2 (en) 2007-03-09 2015-07-07 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine
US10925637B2 (en) 2010-03-11 2021-02-23 Mainstay Medical Limited Methods of implanting electrode leads for use with implantable neuromuscular electrical stimulator
EP2550991B1 (en) 2007-03-09 2020-09-02 Mainstay Medical Limited Neuromuscular electrical stimulation system
US11331488B2 (en) 2007-03-09 2022-05-17 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US11679261B2 (en) 2007-03-09 2023-06-20 Mainstay Medical Limited Systems and methods for enhancing function of spine stabilization muscles associated with a spine surgery intervention
US20090204173A1 (en) 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods
US7890182B2 (en) 2008-05-15 2011-02-15 Boston Scientific Neuromodulation Corporation Current steering for an implantable stimulator device involving fractionalized stimulation pulses
CN102202729B (en) 2008-10-27 2014-11-05 脊髓调制公司 Selective stimulation systems and signal parameters for medical conditions
US9327121B2 (en) 2011-09-08 2016-05-03 Nevro Corporation Selective high frequency spinal cord modulation for inhibiting pain, including cephalic and/or total body pain with reduced side effects, and associated systems and methods
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
JP2012521801A (en) 2009-03-24 2012-09-20 スパイナル・モデュレーション・インコーポレイテッド Management of pain with subthreshold stimuli for illusion
CA2758944C (en) 2009-04-22 2023-03-14 Konstantinos Alataris Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods
DE202010018211U1 (en) 2009-04-22 2014-09-29 Nevro Corporation Selective high-frequency spinal modulation for pain relief with less side-effect, and associated systems
US8498710B2 (en) 2009-07-28 2013-07-30 Nevro Corporation Linked area parameter adjustment for spinal cord stimulation and associated systems and methods
US9950159B2 (en) 2013-10-23 2018-04-24 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
CA2792529C (en) 2010-03-11 2018-06-05 Mainstay Medical, Inc. Modular stimulator for treatment of back pain, implantable rf ablation system and methods of use
US11684774B2 (en) 2010-03-11 2023-06-27 Mainstay Medical Limited Electrical stimulator for treatment of back pain and methods of use
US9999763B2 (en) 2012-06-13 2018-06-19 Mainstay Medical Limited Apparatus and methods for anchoring electrode leads adjacent to nervous tissue
US11786725B2 (en) 2012-06-13 2023-10-17 Mainstay Medical Limited Systems and methods for restoring muscle function to the lumbar spine and kits for implanting the same
US12097365B2 (en) 2010-03-11 2024-09-24 Mainstay Medical Limited Electrical stimulator for the treatment of back pain and methods of use
JP6231384B2 (en) 2010-05-10 2017-11-15 スパイナル・モデュレーション・インコーポレイテッドSpinal Modulation Inc. Method, system and device for suppressing misalignment
WO2012075198A2 (en) 2010-11-30 2012-06-07 Nevro Corporation Extended pain relief via high frequency spinal cord modulation, and associated systems and methods
US20120310140A1 (en) 2010-12-01 2012-12-06 Spinal Modulation, Inc. Directed delivery of agents to neural anatomy
JP2014506501A (en) 2011-02-02 2014-03-17 スパイナル・モデュレーション・インコーポレイテッド Apparatus, system, and method for targeted treatment of movement disorders
US9649494B2 (en) 2011-04-29 2017-05-16 Medtronic, Inc. Electrical stimulation therapy based on head position
US10448889B2 (en) 2011-04-29 2019-10-22 Medtronic, Inc. Determining nerve location relative to electrodes
US9789307B2 (en) 2011-04-29 2017-10-17 Medtronic, Inc. Dual prophylactic and abortive electrical stimulation
US11413458B2 (en) 2011-05-19 2022-08-16 Neuros Medical, Inc. Nerve cuff electrode for neuromodulation in large human nerve trunks
EP2739344B1 (en) 2011-08-02 2019-03-20 Mainstay Medical Limited Apparatus for anchoring electrode leads for use with implantable neuromuscular electrical stimulator
WO2013111137A2 (en) 2012-01-26 2013-08-01 Rainbow Medical Ltd. Wireless neurqstimulatqrs
US8676331B2 (en) 2012-04-02 2014-03-18 Nevro Corporation Devices for controlling spinal cord modulation for inhibiting pain, and associated systems and methods, including controllers for automated parameter selection
WO2013177307A1 (en) 2012-05-25 2013-11-28 Boston Scientific Neuromodulation Corporation Percutaneous implantation of an electrical stimulation lead for stimulating dorsal root ganglion
US8718790B2 (en) 2012-05-25 2014-05-06 Boston Scientific Neuromodulation Corporation Systems and methods for providing electrical stimulation of multiple dorsal root ganglia with a single lead
WO2013177159A1 (en) 2012-05-25 2013-11-28 Boston Scientific Neuromodulation Corporation Systems and methods for electrically stimulating patient tissue on or around one or more bony structures
US9919148B2 (en) * 2012-05-25 2018-03-20 Boston Scientific Neuromodulation Corporation Distally curved electrical stimulation lead and methods of making and using
US9186501B2 (en) 2012-06-13 2015-11-17 Mainstay Medical Limited Systems and methods for implanting electrode leads for use with implantable neuromuscular electrical stimulator
US10195419B2 (en) 2012-06-13 2019-02-05 Mainstay Medical Limited Electrode leads for use with implantable neuromuscular electrical stimulator
US10327810B2 (en) 2016-07-05 2019-06-25 Mainstay Medical Limited Systems and methods for enhanced implantation of electrode leads between tissue layers
US9833614B1 (en) 2012-06-22 2017-12-05 Nevro Corp. Autonomic nervous system control via high frequency spinal cord modulation, and associated systems and methods
AU2013282356B2 (en) 2012-06-30 2017-02-02 Boston Scientific Neuromodulation Corporation System for compounding low-frequency sources for high-frequency neuromodulation
US9002459B2 (en) * 2012-09-19 2015-04-07 Boston Scientific Neuromodulation Corporation Method for selectively modulating neural elements in the dorsal horn
WO2014087337A1 (en) 2012-12-06 2014-06-12 Bluewind Medical Ltd. Delivery of implantable neurostimulators
WO2014130865A2 (en) 2013-02-22 2014-08-28 Boston Scientific Neuromodulation Corporation Neurostimulation system having increased flexibility for creating complex pulse trains
US8909344B2 (en) 2013-03-07 2014-12-09 Jeffrey Edward Arle Head worn brain stimulation device and method
US9174053B2 (en) 2013-03-08 2015-11-03 Boston Scientific Neuromodulation Corporation Neuromodulation using modulated pulse train
AU2014233252B2 (en) 2013-03-15 2017-04-06 Boston Scientific Neuromodulation Corporation Systems for delivering subthreshold therapy to a patient
US9180297B2 (en) 2013-05-16 2015-11-10 Boston Scientific Neuromodulation Corporation System and method for spinal cord modulation to treat motor disorder without paresthesia
US9950173B2 (en) 2013-06-06 2018-04-24 Boston Scientific Neuromodulation Corporation System and method for delivering sub-threshold and super-threshold therapy to a patient
EP3003472B1 (en) 2013-06-06 2021-07-28 Que T. Doan System for delivering modulated sub-threshold therapy
US9895539B1 (en) 2013-06-10 2018-02-20 Nevro Corp. Methods and systems for disease treatment using electrical stimulation
CN105358214B (en) * 2013-06-28 2017-05-17 波士顿科学神经调制公司 Electrode selection for sub-threshold modulation therapy
JP6181307B2 (en) 2013-07-26 2017-08-16 ボストン サイエンティフィック ニューロモデュレイション コーポレイション A system that provides modulation therapy without perception
CN106029160B (en) 2013-11-01 2019-03-15 波士顿科学神经调制公司 For the system in midline delivering subthreshold value treatment
US10149978B1 (en) 2013-11-07 2018-12-11 Nevro Corp. Spinal cord modulation for inhibiting pain via short pulse width waveforms, and associated systems and methods
US10010715B2 (en) 2013-12-04 2018-07-03 Boston Scientific Neuromodulation Corporation Systems and methods for delivering therapy to the dorsal horn of a patient
AU2015214522B2 (en) 2014-02-05 2017-08-31 Boston Scientific Neuromodulation Corporation System and method for delivering modulated sub-threshold therapy to a patient
CA2937081A1 (en) 2014-02-05 2015-08-13 Boston Scientific Neuromodulation Corporation System and method for delivering modulated sub-threshold therapy to a patient
EP3145582B1 (en) 2014-05-20 2020-10-21 Nevro Corporation Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems
US9662495B2 (en) 2014-07-24 2017-05-30 Boston Scientific Neuromodulation Corporation Enhanced dorsal horn stimulation using multiple electrical fields
WO2016048951A1 (en) 2014-09-23 2016-03-31 Boston Scientific Neuromodulation Corporation Neuromodulation specific to objective function of modulation field for targeted tissue
EP3197543B1 (en) 2014-09-23 2019-03-13 Boston Scientific Neuromodulation Corporation Systems for receiving user-provided selection of electrode lists
AU2015321740B2 (en) 2014-09-23 2018-03-01 Boston Scientific Neuromodulation Corporation System for calibrating dorsal horn stimulation
CN106714900A (en) * 2014-09-23 2017-05-24 波士顿科学神经调制公司 Sub-perception modulation responsive to patient input
AU2015321575B2 (en) 2014-09-23 2018-05-10 Boston Scientific Neuromodulation Corporation Perception calibration of neural tissue using field troll
AU2015321491B2 (en) 2014-09-23 2018-09-27 Boston Scientific Neuromodulation Corporation Short pulse width stimulation
JP6580678B2 (en) 2014-09-23 2019-09-25 ボストン サイエンティフィック ニューロモデュレイション コーポレイション Neuromodulation using burst stimulation
US10471268B2 (en) 2014-10-16 2019-11-12 Mainstay Medical Limited Systems and methods for monitoring muscle rehabilitation
US9597521B2 (en) 2015-01-21 2017-03-21 Bluewind Medical Ltd. Transmitting coils for neurostimulation
US9764146B2 (en) 2015-01-21 2017-09-19 Bluewind Medical Ltd. Extracorporeal implant controllers
US10004896B2 (en) 2015-01-21 2018-06-26 Bluewind Medical Ltd. Anchors and implant devices
US9962547B2 (en) 2015-02-05 2018-05-08 Stimgenics, Llc Method and apparatus for multimodal electrical modulation of pain
EP3256206B1 (en) * 2015-02-09 2024-05-29 Boston Scientific Neuromodulation Corporation System for determining neurological position of epidural leads
US11167139B2 (en) 2015-03-20 2021-11-09 Medtronic Sg, Llc Method and apparatus for multi modal electrical modulation of pain using composite electromagnetic fields
AU2016235457B2 (en) 2015-03-20 2021-01-07 Medtronic Sg, Llc Method and apparatus for multimodal electrical modulation of pain
US10850102B2 (en) 2015-03-20 2020-12-01 Medtronic Sg, Llc Method and apparatus for multimodal electrical modulation of pain
WO2016179363A1 (en) 2015-05-05 2016-11-10 Haralambidis Cosmo Device for electrical stimulation of peridontal complex and surrounding tissue
US11103696B2 (en) 2015-05-05 2021-08-31 Cosmo Haralambidis Device for electrical stimulation of peridontal complex and surrounding tissue
US9827422B2 (en) 2015-05-28 2017-11-28 Boston Scientific Neuromodulation Corporation Neuromodulation using stochastically-modulated stimulation parameters
US9782589B2 (en) 2015-06-10 2017-10-10 Bluewind Medical Ltd. Implantable electrostimulator for improving blood flow
US11318310B1 (en) 2015-10-26 2022-05-03 Nevro Corp. Neuromodulation for altering autonomic functions, and associated systems and methods
US10105540B2 (en) 2015-11-09 2018-10-23 Bluewind Medical Ltd. Optimization of application of current
US9713707B2 (en) 2015-11-12 2017-07-25 Bluewind Medical Ltd. Inhibition of implant migration
WO2017106539A1 (en) 2015-12-18 2017-06-22 Medtronic, Inc. High duty cycle electrical stimulation therapy
CN109310865B (en) 2016-01-25 2022-09-13 内弗洛公司 Electrostimulation treatment of congestive heart failure, and associated systems and methods
US10799701B2 (en) 2016-03-30 2020-10-13 Nevro Corp. Systems and methods for identifying and treating patients with high-frequency electrical signals
US20180303704A1 (en) 2016-04-08 2018-10-25 Vibrating Therapeutic Apparel, Llc Vibrating therapeutic apparel
EP3429679B1 (en) 2016-05-17 2022-11-23 Boston Scientific Neuromodulation Corporation Systems for anchoring a lead for neurostimulation of a target anatomy
US11446504B1 (en) 2016-05-27 2022-09-20 Nevro Corp. High frequency electromagnetic stimulation for modulating cells, including spontaneously active and quiescent cells, and associated systems and methods
US10780274B2 (en) 2016-08-22 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for delivering spinal cord stimulation therapy
US10525268B2 (en) 2016-08-23 2020-01-07 Medtronic, Inc. Delivery of independent interleaved programs to produce higher-frequency electrical stimulation therapy
WO2018039670A1 (en) * 2016-08-26 2018-03-01 Spr Therapeutics, Llc Devices and methods for delivery of electrical current for pain relief
US10716935B2 (en) 2016-11-04 2020-07-21 Boston Scientific Neuromodulation Corporation Electrical stimulation leads, systems and methods for stimulation of dorsal root ganglia
US10124178B2 (en) 2016-11-23 2018-11-13 Bluewind Medical Ltd. Implant and delivery tool therefor
EP3558448B1 (en) * 2016-12-23 2022-03-02 Ecole Polytechnique Fédérale de Lausanne (EPFL) Sensory information compliant spinal cord stimulation system for the rehabilitation of motor functions
US10709886B2 (en) 2017-02-28 2020-07-14 Boston Scientific Neuromodulation Corporation Electrical stimulation leads and systems with elongate anchoring elements and methods of making and using
US10835739B2 (en) 2017-03-24 2020-11-17 Boston Scientific Neuromodulation Corporation Electrical stimulation leads and systems with elongate anchoring elements and methods of making and using
US20180353764A1 (en) 2017-06-13 2018-12-13 Bluewind Medical Ltd. Antenna configuration
WO2019074949A1 (en) 2017-10-10 2019-04-18 Medtronic, Inc. Management of electrical stimulation therapy
JP7279048B2 (en) 2017-12-13 2023-05-22 ニューロス・メディカル・インコーポレイティッド Nerve cuff deployment device
US11633604B2 (en) 2018-01-30 2023-04-25 Nevro Corp. Efficient use of an implantable pulse generator battery, and associated systems and methods
EP3773876B1 (en) 2018-04-09 2024-04-17 Neuros Medical, Inc. Apparatuses for setting an electrical dose
JP2020089723A (en) * 2018-12-07 2020-06-11 アヴェント インコーポレイテッド Device and method for selectively and reversibly modulating nervous system structure to inhibit perception of pain
US11602634B2 (en) 2019-01-17 2023-03-14 Nevro Corp. Sensory threshold adaptation for neurological therapy screening and/or electrode selection, and associated systems and methods
US11590352B2 (en) 2019-01-29 2023-02-28 Nevro Corp. Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods
US11918811B2 (en) 2019-05-06 2024-03-05 Medtronic Sg, Llc Method and apparatus for multi modal or multiplexed electrical modulation of pain using composite electromagnetic fields
US11452874B2 (en) 2020-02-03 2022-09-27 Medtronic, Inc. Shape control for electrical stimulation therapy
US11878172B2 (en) 2020-02-11 2024-01-23 Neuros Medical, Inc. System and method for quantifying qualitative patient-reported data sets
US11554264B2 (en) 2020-04-24 2023-01-17 Medtronic, Inc. Electrode position detection
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
US20230218900A1 (en) * 2022-01-12 2023-07-13 Advanced Neuromodulation Systems, Inc. Closed loop systems and methods for managing pain of a patient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776170A (en) * 1993-02-05 1998-07-07 Macdonald; Alexander John Ranald Electrotherapeutic apparatus
US20060052835A1 (en) * 2004-09-08 2006-03-09 Kim Daniel H Methods for stimulating the spinal cord and nervous system
US20090204173A1 (en) * 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods
US20110184486A1 (en) * 2007-04-24 2011-07-28 Dirk De Ridder Combination of tonic and burst stimulations to treat neurological disorders

Family Cites Families (247)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US525891A (en) * 1894-09-11 Fastener for electric wires
US3724467A (en) 1971-04-23 1973-04-03 Avery Labor Inc Electrode implant for the neuro-stimulation of the spinal cord
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4232679A (en) 1977-01-26 1980-11-11 Pacesetter Systems, Inc. Programmable human tissue stimulator
US4141367A (en) 1977-04-29 1979-02-27 Med Telectronics Ltd. Cardiac electrode/pacer system analyzer
US4374527A (en) 1978-07-19 1983-02-22 Medtronic, Inc. Body stimulation lead
US4313448A (en) 1980-01-28 1982-02-02 Medtronic, Inc. Myocardial sutureless lead
US4298003A (en) 1980-05-12 1981-11-03 Alza Corporation System for delivering agent at zero order rate with emerging agent below saturation
US4414986A (en) 1982-01-29 1983-11-15 Medtronic, Inc. Biomedical stimulation lead
US4479491A (en) 1982-07-26 1984-10-30 Martin Felix M Intervertebral stabilization implant
US4549556A (en) 1982-12-08 1985-10-29 Cordis Corporation Implantable lead
US4739764A (en) 1984-05-18 1988-04-26 The Regents Of The University Of California Method for stimulating pelvic floor muscles for regulating pelvic viscera
US4607639A (en) 1984-05-18 1986-08-26 Regents Of The University Of California Method and system for controlling bladder evacuation
US4590946A (en) 1984-06-14 1986-05-27 Biomed Concepts, Inc. Surgically implantable electrode for nerve bundles
US4573481A (en) * 1984-06-25 1986-03-04 Huntington Institute Of Applied Research Implantable electrode array
US4640286A (en) 1984-11-02 1987-02-03 Staodynamics, Inc. Optimized nerve fiber stimulation
US4577642A (en) 1985-02-27 1986-03-25 Medtronic, Inc. Drug dispensing body implantable lead employing molecular sieves and methods of fabrication
US4786155A (en) 1986-12-16 1988-11-22 Fantone Stephen D Operating microscope providing an image of an obscured object
US4920979A (en) 1988-10-12 1990-05-01 Huntington Medical Research Institute Bidirectional helical electrode for nerve stimulation
US4945912A (en) * 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US4940065A (en) 1989-01-23 1990-07-10 Regents Of The University Of California Surgically implantable peripheral nerve electrode
US4950270A (en) 1989-02-03 1990-08-21 Boehringer Mannheim Corporation Cannulated self-tapping bone screw
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
DE3918431C1 (en) 1989-06-06 1990-07-26 B. Braun Melsungen Ag, 3508 Melsungen, De
JPH03193393A (en) 1989-12-22 1991-08-23 Dainippon Printing Co Ltd Thermal mimeograph paper
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US20010006967A1 (en) 1992-09-21 2001-07-05 Stanley M. Crain Method of simultaneously enhancing analgesic potency and attenuating adverse side effects caused by tramadol and other bimodally-acting opioid agonists
US5360441A (en) 1992-10-30 1994-11-01 Medtronic, Inc. Lead with stylet capture member
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5344438A (en) 1993-04-16 1994-09-06 Medtronic, Inc. Cuff electrode
US5411540A (en) 1993-06-03 1995-05-02 Massachusetts Institute Of Technology Method and apparatus for preferential neuron stimulation
US5417719A (en) 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5400784A (en) 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
US5584835A (en) * 1993-10-18 1996-12-17 Greenfield; Jon B. Soft tissue to bone fixation device and method
US5411537A (en) 1993-10-29 1995-05-02 Intermedics, Inc. Rechargeable biomedical battery powered devices with recharging and control system therefor
US5458626A (en) 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US5419763B1 (en) 1994-01-04 1997-07-15 Cor Trak Medical Inc Prostatic drug-delivery catheter
US5501703A (en) 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5489294A (en) 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
SE9401267D0 (en) 1994-04-14 1994-04-14 Siemens Elema Ab The electrode device
US5505201A (en) * 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
US5514175A (en) 1994-11-09 1996-05-07 Cerebral Stimulation, Inc. Auricular electrical stimulator
US5741319A (en) 1995-01-27 1998-04-21 Medtronic, Inc. Biocompatible medical lead
US5733322A (en) 1995-05-23 1998-03-31 Medtronic, Inc. Positive fixation percutaneous epidural neurostimulation lead
US5755750A (en) 1995-11-13 1998-05-26 University Of Florida Method and apparatus for selectively inhibiting activity in nerve fibers
SE9504334D0 (en) 1995-12-04 1995-12-04 Pacesetter Ab Guidewire assembly
FR2742058B1 (en) 1995-12-12 1998-03-06 Ela Medical Sa FOLDABLE ANCHOR BARS PROBES FOR AN IMPLANTED MEDICAL DEVICE, IN PARTICULAR FOR A HEART STIMULATOR
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5702429A (en) 1996-04-04 1997-12-30 Medtronic, Inc. Neural stimulation techniques with feedback
US5713922A (en) 1996-04-25 1998-02-03 Medtronic, Inc. Techniques for adjusting the locus of excitation of neural tissue in the spinal cord or brain
US5824021A (en) 1996-04-25 1998-10-20 Medtronic Inc. Method and apparatus for providing feedback to spinal cord stimulation for angina
US5711316A (en) 1996-04-30 1998-01-27 Medtronic, Inc. Method of treating movement disorders by brain infusion
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US5885290A (en) 1996-12-09 1999-03-23 Guerrero; Cesar A. Intra-oral bone distraction device
DE29703043U1 (en) 1997-02-20 1997-04-24 Signus Medizintechnik GmbH, 63755 Alzenau Spinal implant
US5957965A (en) 1997-03-03 1999-09-28 Medtronic, Inc. Sacral medical electrical lead
US6785576B2 (en) 1997-04-21 2004-08-31 Medtronic, Inc. Medical electrical lead
US5865843A (en) 1997-04-23 1999-02-02 Medtronic Inc. Medical neurological lead with integral fixation mechanism
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
USRE40279E1 (en) 1997-06-26 2008-04-29 Sherwood Services Ag Method and system for neural tissue modification
US6839588B1 (en) * 1997-07-31 2005-01-04 Case Western Reserve University Electrophysiological cardiac mapping system based on a non-contact non-expandable miniature multi-electrode catheter and method therefor
US5871531A (en) 1997-09-25 1999-02-16 Medtronic, Inc. Medical electrical lead having tapered spiral fixation
US5984896A (en) 1997-10-28 1999-11-16 Ojp #73, Inc. Fixated catheter
US6415187B1 (en) 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
US6045532A (en) 1998-02-20 2000-04-04 Arthrocare Corporation Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord
US6493588B1 (en) 1998-03-18 2002-12-10 Mmc/Gatx Partnership No. 1 Electro-nerve stimulator systems and methods
US6314325B1 (en) 1998-04-07 2001-11-06 William R. Fitz Nerve hyperpolarization method and apparatus for pain relief
US6319241B1 (en) 1998-04-30 2001-11-20 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or a brain
US6421566B1 (en) 1998-04-30 2002-07-16 Medtronic, Inc. Selective dorsal column stimulation in SCS, using conditioning pulses
US6120467A (en) 1998-04-30 2000-09-19 Medtronic Inc. Spinal cord simulation systems with patient activity monitoring and therapy adjustments
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6002964A (en) * 1998-07-15 1999-12-14 Feler; Claudio A. Epidural nerve root stimulation
AU5130199A (en) 1998-07-27 2000-02-21 Case Western Reserve University Method and apparatus for closed-loop stimulation of the hypoglossal nerve in human patients to treat obstructive sleep apnea
US7599736B2 (en) 2001-07-23 2009-10-06 Dilorenzo Biomedical, Llc Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease
US6104957A (en) 1998-08-21 2000-08-15 Alo; Kenneth M. Epidural nerve root stimulation with lead placement method
US6044297A (en) 1998-09-25 2000-03-28 Medtronic, Inc. Posture and device orientation and calibration for implantable medical devices
US6366814B1 (en) 1998-10-26 2002-04-02 Birinder R. Boveja External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders
US6208902B1 (en) 1998-10-26 2001-03-27 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for pain syndromes utilizing an implantable lead and an external stimulator
US6356788B2 (en) 1998-10-26 2002-03-12 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy for depression, migraine, neuropsychiatric disorders, partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6611715B1 (en) 1998-10-26 2003-08-26 Birinder R. Boveja Apparatus and method for neuromodulation therapy for obesity and compulsive eating disorders using an implantable lead-receiver and an external stimulator
US6205359B1 (en) 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US6592559B1 (en) 1998-12-09 2003-07-15 Cook Incorporated Hollow, curved, superlastic medical needle
US6393325B1 (en) 1999-01-07 2002-05-21 Advanced Bionics Corporation Directional programming for implantable electrode arrays
US6909917B2 (en) 1999-01-07 2005-06-21 Advanced Bionics Corporation Implantable generator having current steering means
ATE298536T1 (en) 1999-03-09 2005-07-15 Thermage Inc DEVICE FOR TREATING TISSUE
US6835194B2 (en) 1999-03-18 2004-12-28 Durect Corporation Implantable devices and methods for treatment of pain by delivery of fentanyl and fentanyl congeners
US6436099B1 (en) 1999-04-23 2002-08-20 Sdgi Holdings, Inc. Adjustable spinal tether
US6055456A (en) 1999-04-29 2000-04-25 Medtronic, Inc. Single and multi-polar implantable lead for sacral nerve electrical stimulation
US6214016B1 (en) 1999-04-29 2001-04-10 Medtronic, Inc. Medical instrument positioning device internal to a catheter or lead and method of use
US6353762B1 (en) 1999-04-30 2002-03-05 Medtronic, Inc. Techniques for selective activation of neurons in the brain, spinal cord parenchyma or peripheral nerve
US6889094B1 (en) 1999-05-14 2005-05-03 Advanced Bionics Corporation Electrode array for hybrid cochlear stimulator
US6832115B2 (en) 2000-08-17 2004-12-14 William N. Borkan Catheter leads for the intrathecal space and method of use
US6516227B1 (en) 1999-07-27 2003-02-04 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6517542B1 (en) 1999-08-04 2003-02-11 The Cleveland Clinic Foundation Bone anchoring system
US6298256B1 (en) 1999-09-10 2001-10-02 Frank-Egbert Meyer Device and method for the location and catheterization of the surroundings of a nerve
US7047082B1 (en) 1999-09-16 2006-05-16 Micronet Medical, Inc. Neurostimulating lead
US7949395B2 (en) 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US6605094B1 (en) 1999-11-19 2003-08-12 Advanced Bionics Corporation Integrated subcutaneous tunneling and carrying tool
US6466821B1 (en) 1999-12-08 2002-10-15 Pacesetter, Inc. AC/DC multi-axis accelerometer for determining patient activity and body position
CN2401143Y (en) 1999-12-15 2000-10-18 杨俊� Lumbar puncture cerebrospinal fluid pressure dynamic monitoring apparatus
US6356786B1 (en) 2000-01-20 2002-03-12 Electrocore Techniques, Llc Method of treating palmar hyperhydrosis by electrical stimulation of the sympathetic nervous chain
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US7096070B1 (en) 2000-02-09 2006-08-22 Transneuronix, Inc. Medical implant device for electrostimulation using discrete micro-electrodes
AU2001234996A1 (en) 2000-02-11 2001-08-20 Yale University Planar patch clamp electrodes
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
FR2809017B1 (en) * 2000-05-16 2002-08-09 Ela Medical Sa REQUIRED FOR PLACEMENT OF AN IMPLANTABLE HEART CAVITY PACING LEAD IN THE CORONARY NETWORK
US6748276B1 (en) 2000-06-05 2004-06-08 Advanced Neuromodulation Systems, Inc. Neuromodulation therapy system
US7305268B2 (en) 2000-07-13 2007-12-04 Northstar Neurscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US6754539B1 (en) 2000-08-10 2004-06-22 Advanced Neuromodulation Systems, Inc. Spinal cord stimulation lead with an anode guard
US6510347B2 (en) 2000-08-17 2003-01-21 William N. Borkan Spinal cord stimulation leads
US6871099B1 (en) 2000-08-18 2005-03-22 Advanced Bionics Corporation Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain
US6862479B1 (en) 2000-08-30 2005-03-01 Advanced Bionics Corporation Spinal cord stimulation as a therapy for sexual dysfunction
US6522926B1 (en) 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US6510348B2 (en) 2000-12-20 2003-01-21 Medtronic, Inc. Perfusion lead and method of use
US6704604B2 (en) 2000-12-28 2004-03-09 Medtronic, Inc. System and method for promoting selective tissue in-growth for an implantable medical device
US20020087113A1 (en) 2000-12-29 2002-07-04 Medtronic, Inc. Drug management techniques for an implantable medical device
US6788975B1 (en) 2001-01-30 2004-09-07 Advanced Bionics Corporation Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy
US6901287B2 (en) 2001-02-09 2005-05-31 Medtronic, Inc. Implantable therapy delivery element adjustable anchor
US6873342B2 (en) 2001-04-12 2005-03-29 Mitsubishi Electric Research Laboratories, Inc. Method for generating detail directed visibility elements for a graphics model
US6892098B2 (en) 2001-04-26 2005-05-10 Biocontrol Medical Ltd. Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders
US6512958B1 (en) 2001-04-26 2003-01-28 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
US6928320B2 (en) 2001-05-17 2005-08-09 Medtronic, Inc. Apparatus for blocking activation of tissue or conduction of action potentials while other tissue is being therapeutically activated
JP2004533297A (en) 2001-05-29 2004-11-04 メドトロニック・インコーポレーテッド Closed loop neuromodulation system for prevention and treatment of heart disease
US6638276B2 (en) 2001-06-06 2003-10-28 Oratec Interventions, Inc. Intervertebral disc device employing prebent sheath
DE10129490A1 (en) 2001-06-21 2003-01-02 Helmut Mueckter Implantable screw for stabilization of joint or bone fracture, has flexible shaft which interconnects proximal head portion and distal insertion portion of elongated screw body
US6606521B2 (en) 2001-07-09 2003-08-12 Neuropace, Inc. Implantable medical lead
US7011647B2 (en) 2001-07-13 2006-03-14 Scimed Life Systems, Inc. Introducer sheath
US6554809B2 (en) 2001-08-02 2003-04-29 Teodulo Aves Epidural catheter needle
US6535767B1 (en) * 2001-08-21 2003-03-18 James W. Kronberg Apparatus and method for bioelectric stimulation, healing acceleration and pain relief
US20030069569A1 (en) 2001-08-29 2003-04-10 Burdette Everette C. Ultrasound device for treatment of intervertebral disc tissue
US6999819B2 (en) 2001-08-31 2006-02-14 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
AU2002334749A1 (en) 2001-09-28 2003-04-07 Northstar Neuroscience, Inc. Methods and implantable apparatus for electrical therapy
US6934583B2 (en) 2001-10-22 2005-08-23 Pacesetter, Inc. Implantable lead and method for stimulating the vagus nerve
US6745079B2 (en) * 2001-11-07 2004-06-01 Medtronic, Inc. Electrical tissue stimulation apparatus and method
US6849075B2 (en) 2001-12-04 2005-02-01 Estech, Inc. Cardiac ablation devices and methods
US6864418B2 (en) 2002-12-18 2005-03-08 Nanoset, Llc Nanomagnetically shielded substrate
US6721603B2 (en) 2002-01-25 2004-04-13 Cyberonics, Inc. Nerve stimulation as a treatment for pain
US7717899B2 (en) 2002-01-28 2010-05-18 Cardiac Pacemakers, Inc. Inner and outer telescoping catheter delivery system
EP1476220A4 (en) 2002-02-01 2009-12-16 Cleveland Clinic Foundation Delivery device for stimulating the sympathetic nerve chain
AU2003216133A1 (en) 2002-02-01 2003-09-02 The Cleveland Clinic Foundation Neural stimulation delivery device with independently moveable delivery structures
US20050010262A1 (en) 2002-02-01 2005-01-13 Ali Rezai Modulation of the pain circuitry to affect chronic pain
US7881805B2 (en) 2002-02-04 2011-02-01 Boston Scientific Neuromodulation Corporation Method for optimizing search for spinal cord stimulation parameter settings
AUPS042802A0 (en) 2002-02-11 2002-03-07 Neopraxis Pty Ltd Distributed functional electrical stimulation system
AUPS101502A0 (en) 2002-03-11 2002-04-11 Neopraxis Pty Ltd Wireless fes system
US7239912B2 (en) 2002-03-22 2007-07-03 Leptos Biomedical, Inc. Electric modulation of sympathetic nervous system
US7221981B2 (en) 2002-03-28 2007-05-22 Northstar Neuroscience, Inc. Electrode geometries for efficient neural stimulation
US20030199961A1 (en) 2002-04-03 2003-10-23 Bjorklund Vicki L. Method and apparatus for fixating a pacing lead of an implantable medical device
US7146222B2 (en) 2002-04-15 2006-12-05 Neurospace, Inc. Reinforced sensing and stimulation leads and use in detection systems
JP2006500318A (en) 2002-04-25 2006-01-05 ブレインスゲート リミテッド Method and apparatus for adjusting the characteristics of BBB and cerebral circulation using nerve excitatory and / or neurosuppressive effects of odorants on the intracranial nerve
WO2004043218A2 (en) 2002-11-14 2004-05-27 Brainsgate Ltd. Surgical tools and techniques for stimulation
US6968237B2 (en) 2002-05-22 2005-11-22 Pacesetter, Inc. Implantable coronary sinus lead and lead system
US6792318B2 (en) 2002-06-13 2004-09-14 Pacesetter, Inc. Technique for fixating a lead
US20040015202A1 (en) 2002-06-14 2004-01-22 Chandler Gilbert S. Combination epidural infusion/stimulation method and system
US20060009820A1 (en) 2002-07-17 2006-01-12 John Royle Apparatus for the application of electrical pulses to the human body
US7993351B2 (en) 2002-07-24 2011-08-09 Pressure Products Medical Supplies, Inc. Telescopic introducer with a compound curvature for inducing alignment and method of using the same
US7107105B2 (en) 2002-09-24 2006-09-12 Medtronic, Inc. Deployable medical lead fixation system and method
US6990376B2 (en) 2002-12-06 2006-01-24 The Regents Of The University Of California Methods and systems for selective control of bladder function
US7069083B2 (en) 2002-12-13 2006-06-27 Advanced Neuromodulation Systems, Inc. System and method for electrical stimulation of the intervertebral disc
US20040122477A1 (en) 2002-12-19 2004-06-24 Whitehurst Todd K. Fully implantable miniature neurostimulator for spinal nerve root stimulation as a therapy for angina and peripheral vascular disease
US20040122498A1 (en) 2002-12-19 2004-06-24 Yongxing Zhang Pulmonary artery lead for atrial therapy
US7890188B2 (en) 2002-12-19 2011-02-15 Cardiac Pacemakers, Inc. Implantable lead for septal placement of electrode with fixation mechanism in the pulmonary artery
US6945956B2 (en) 2002-12-23 2005-09-20 Medtronic, Inc. Steerable catheter
US6978180B2 (en) 2003-01-03 2005-12-20 Advanced Neuromodulation Systems, Inc. System and method for stimulation of a person's brain stem
US7085605B2 (en) 2003-01-23 2006-08-01 Epic Biosonics Inc. Implantable medical assembly
US20040186528A1 (en) 2003-03-20 2004-09-23 Medtronic, Inc. Subcutaneous implantable medical devices with anti-microbial agents for chronic release
US9446229B2 (en) 2003-04-08 2016-09-20 Omar Omar-Pasha Catheter
US7529592B2 (en) 2003-04-11 2009-05-05 Cardiac Pacemakers, Inc. Subcutaneous electrode and lead with temporary pharmacological agents
US7499758B2 (en) 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Helical fixation elements for subcutaneous electrodes
US7266412B2 (en) 2003-04-22 2007-09-04 Medtronic, Inc. Generation of multiple neurostimulation therapy programs
US20040243210A1 (en) 2003-05-30 2004-12-02 Morgan Kevin L. Fixation of a left heart medical lead in the coronary sinus
WO2005007238A1 (en) 2003-07-18 2005-01-27 Campbell James N Treatment of pain
US20050027338A1 (en) 2003-07-29 2005-02-03 Advanced Neuromodulation Systems, Inc. Stretchable lead body, method of manufacture, and system
US7794476B2 (en) * 2003-08-08 2010-09-14 Warsaw Orthopedic, Inc. Implants formed of shape memory polymeric material for spinal fixation
US20050033393A1 (en) 2003-08-08 2005-02-10 Advanced Neuromodulation Systems, Inc. Apparatus and method for implanting an electrical stimulation system and a paddle style electrical stimulation lead
US7359755B2 (en) 2003-08-08 2008-04-15 Advanced Neuromodulation Systems, Inc. Method and apparatus for implanting an electrical stimulation lead using a flexible introducer
US20050038489A1 (en) 2003-08-14 2005-02-17 Grill Warren M. Electrode array for use in medical stimulation and methods thereof
US7930037B2 (en) 2003-09-30 2011-04-19 Medtronic, Inc. Field steerable electrical stimulation paddle, lead system, and medical device incorporating the same
US20050080325A1 (en) 2003-10-14 2005-04-14 Advanced Neuromodulation Systems, Inc. Low profile connector and system for implantable medical device
US7437197B2 (en) 2003-10-23 2008-10-14 Medtronic, Inc. Medical lead and manufacturing method therefor
US8260436B2 (en) 2003-10-31 2012-09-04 Medtronic, Inc. Implantable stimulation lead with fixation mechanism
WO2005053789A2 (en) 2003-11-25 2005-06-16 Advanced Neuromodulation Systems, Inc. Directional stimulation lead and orientation system, and improved percutaneous-insertion needle and method of implanting a lead
EP1701766A2 (en) 2003-12-12 2006-09-20 Synecor, LLC Implantable medical device having pre-implant exoskeleton
US7295881B2 (en) 2003-12-29 2007-11-13 Biocontrol Medical Ltd. Nerve-branch-specific action-potential activation, inhibition, and monitoring
US7933661B2 (en) 2004-02-04 2011-04-26 Medtronic, Inc. Lead retention means
US7177702B2 (en) 2004-03-12 2007-02-13 Scimed Life Systems, Inc. Collapsible/expandable electrode leads
US7590454B2 (en) * 2004-03-12 2009-09-15 Boston Scientific Neuromodulation Corporation Modular stimulation lead network
US7174219B2 (en) * 2004-03-30 2007-02-06 Medtronic, Inc. Lead electrode for use in an MRI-safe implantable medical device
WO2005110529A1 (en) 2004-05-10 2005-11-24 Advanced Bionics Corporation Implantable electrode, insertion tool for use therewith, and insertion method
EP1773207A2 (en) 2004-06-02 2007-04-18 KFx Medical Corporation System and method for attaching soft tissue to bone
WO2006012050A2 (en) 2004-06-30 2006-02-02 Cvrx, Inc. Connection structures for extra-vascular electrode lead body
US7395120B2 (en) 2004-08-13 2008-07-01 The General Hospital Corporation Telescoping, dual-site pacing lead
US20060041295A1 (en) * 2004-08-17 2006-02-23 Osypka Thomas P Positive fixation percutaneous epidural neurostimulation lead
US9205261B2 (en) 2004-09-08 2015-12-08 The Board Of Trustees Of The Leland Stanford Junior University Neurostimulation methods and systems
US20120277839A1 (en) 2004-09-08 2012-11-01 Kramer Jeffery M Selective stimulation to modulate the sympathetic nervous system
JP2008513082A (en) 2004-09-20 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Deep brain stimulation system
US7963915B2 (en) 2004-10-15 2011-06-21 Baxano, Inc. Devices and methods for tissue access
US20060089696A1 (en) 2004-10-21 2006-04-27 Medtronic, Inc. Implantable medical lead with reinforced outer jacket
US8239029B2 (en) 2004-10-21 2012-08-07 Advanced Neuromodulation Systems, Inc. Stimulation of the amygdalohippocampal complex to treat neurological conditions
US20080009927A1 (en) 2005-01-11 2008-01-10 Vilims Bradley D Combination Electrical Stimulating and Infusion Medical Device and Method
US20060161235A1 (en) 2005-01-19 2006-07-20 Medtronic, Inc. Multiple lead stimulation system and method
US20060167525A1 (en) 2005-01-19 2006-07-27 Medtronic, Inc. Method of stimulating multiple sites
GB2423020A (en) 2005-02-14 2006-08-16 Algotec Ltd Percutaneous electrical stimulation probe for pain relief
US20070060954A1 (en) * 2005-02-25 2007-03-15 Tracy Cameron Method of using spinal cord stimulation to treat neurological disorders or conditions
US20060200121A1 (en) 2005-03-03 2006-09-07 Mowery Thomas M Navigable, multi-positional and variable tissue ablation apparatus and methods
US20060206178A1 (en) 2005-03-11 2006-09-14 Kim Daniel H Percutaneous endoscopic access tools for the spinal epidural space and related methods of treatment
US20060247750A1 (en) 2005-04-28 2006-11-02 Seifert Kevin R Guide catheters for accessing cardiac sites
US7672727B2 (en) 2005-08-17 2010-03-02 Enteromedics Inc. Neural electrode treatment
US20070213671A1 (en) * 2005-09-07 2007-09-13 Hiatt Mark J Infusion catheter system with telescoping cannula
WO2007087626A2 (en) * 2006-01-26 2007-08-02 Advanced Neuromodulation Systems, Inc. Method of neurosimulation of distinct neural structures using single paddle lead
US8135476B2 (en) 2006-04-27 2012-03-13 Medtronic, Inc. Implantable medical electrical stimulation lead fixation method and apparatus
US8075556B2 (en) 2006-05-23 2011-12-13 Andres Betts High frequency epidural neuromodulation catheter for effectuating RF treatment in spinal canal and method of using same
US7890174B2 (en) 2006-06-02 2011-02-15 Cardiac Pacemakers, Inc. Medical electrical lead with deployable fixation features
US8442656B2 (en) 2006-06-02 2013-05-14 Cardiac Pacemakers, Inc. Cardiac lead having implantable stiffening structures for fixation
US20080033431A1 (en) * 2006-06-29 2008-02-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Position augmenting mechanism
US20080039916A1 (en) * 2006-08-08 2008-02-14 Olivier Colliou Distally distributed multi-electrode lead
US9643004B2 (en) 2006-10-31 2017-05-09 Medtronic, Inc. Implantable medical elongated member with adhesive elements
US20080103572A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical lead with threaded fixation
US20080103580A1 (en) 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical elongated member with dual purpose conduit
US7853303B2 (en) 2006-11-16 2010-12-14 National Research Council Of Canada Neurological probe and method of using same
EP2099374A4 (en) 2006-12-06 2012-10-03 Spinal Modulation Inc Hard tissue anchors and delivery devices
US9314618B2 (en) 2006-12-06 2016-04-19 Spinal Modulation, Inc. Implantable flexible circuit leads and methods of use
US8983624B2 (en) * 2006-12-06 2015-03-17 Spinal Modulation, Inc. Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US9427570B2 (en) 2006-12-06 2016-08-30 St. Jude Medical Luxembourg Holdings SMI S.A.R.L. (“SJM LUX SMI”) Expandable stimulation leads and methods of use
AU2007329250B2 (en) 2006-12-06 2012-03-15 Spinal Modulation, Inc. Grouped leads for spinal stimulation
JP5562648B2 (en) 2007-01-29 2014-07-30 スパイナル・モデュレーション・インコーポレイテッド Non-stitched top retaining mechanism
US8244378B2 (en) 2007-01-30 2012-08-14 Cardiac Pacemakers, Inc. Spiral configurations for intravascular lead stability
US20100152747A1 (en) 2007-06-04 2010-06-17 Koninklijke Philips Electronics N.V. Insertion system and lead for treatment of a target tissue region
US8019443B2 (en) 2008-04-01 2011-09-13 Boston Scientific Neuromodulation Corporation Anchoring units for leads of implantable electric stimulation systems and methods of making and using
WO2009134352A2 (en) 2008-04-29 2009-11-05 Cardiac Pacemakers, Inc. Systems for delivering spinal cord stimulation
JP5374582B2 (en) * 2008-04-29 2013-12-25 カーディアック ペースメイカーズ, インコーポレイテッド System for selectively stimulating nerve roots
US8108052B2 (en) 2008-05-29 2012-01-31 Nervo Corporation Percutaneous leads with laterally displaceable portions, and associated systems and methods
US8249701B2 (en) 2008-10-15 2012-08-21 Spinal Modulation, Inc. Methods, devices and systems for programming neurostimulation
CN102202729B (en) 2008-10-27 2014-11-05 脊髓调制公司 Selective stimulation systems and signal parameters for medical conditions
US8255057B2 (en) 2009-01-29 2012-08-28 Nevro Corporation Systems and methods for producing asynchronous neural responses to treat pain and/or other patient conditions
EP2641633B1 (en) 2009-01-14 2018-04-04 Spinal Modulation Inc. Stimulation lead with stylet tube
JP2012521801A (en) 2009-03-24 2012-09-20 スパイナル・モデュレーション・インコーポレイテッド Management of pain with subthreshold stimuli for illusion
CA2758944C (en) 2009-04-22 2023-03-14 Konstantinos Alataris Spinal cord modulation for inducing paresthetic and anesthetic effects, and associated systems and methods
EP2429407B1 (en) 2009-05-15 2018-10-17 Spinal Modulation Inc. Systems and devices for neuromodulating spinal anatomy
JP6231384B2 (en) 2010-05-10 2017-11-15 スパイナル・モデュレーション・インコーポレイテッドSpinal Modulation Inc. Method, system and device for suppressing misalignment
US20120310140A1 (en) 2010-12-01 2012-12-06 Spinal Modulation, Inc. Directed delivery of agents to neural anatomy
JP2014506501A (en) 2011-02-02 2014-03-17 スパイナル・モデュレーション・インコーポレイテッド Apparatus, system, and method for targeted treatment of movement disorders
WO2013086420A1 (en) 2011-12-07 2013-06-13 Spinal Modulation, Inc. Neuromodulation of subcellular structures within the dorsal root ganglion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776170A (en) * 1993-02-05 1998-07-07 Macdonald; Alexander John Ranald Electrotherapeutic apparatus
US20060052835A1 (en) * 2004-09-08 2006-03-09 Kim Daniel H Methods for stimulating the spinal cord and nervous system
US20110184486A1 (en) * 2007-04-24 2011-07-28 Dirk De Ridder Combination of tonic and burst stimulations to treat neurological disorders
US20090204173A1 (en) * 2007-11-05 2009-08-13 Zi-Ping Fang Multi-Frequency Neural Treatments and Associated Systems and Methods

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10232180B2 (en) 2004-09-08 2019-03-19 The Board Of Trustees Of The Leland Stanford Junior University Selective stimulation to modulate the sympathetic nervous system
US9278159B2 (en) 2005-07-22 2016-03-08 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US20090088680A1 (en) * 2005-07-22 2009-04-02 Alexander Aravanis Optical tissue interface method and apparatus for stimulating cells
US20080085265A1 (en) * 2005-07-22 2008-04-10 Schneider M B System for optical stimulation of target cells
US20090099038A1 (en) * 2005-07-22 2009-04-16 Karl Deisseroth Cell line, system and method for optical-based screening of ion-channel modulators
US10046174B2 (en) 2005-07-22 2018-08-14 The Board Of Trustees Of The Leland Stanford Junior University System for electrically stimulating target neuronal cells of a living animal in vivo
US20100190229A1 (en) * 2005-07-22 2010-07-29 Feng Zhang System for optical stimulation of target cells
US20100234273A1 (en) * 2005-07-22 2010-09-16 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10036758B2 (en) 2005-07-22 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Delivery of a light-activated cation channel into the brain of a subject
US10094840B2 (en) 2005-07-22 2018-10-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9360472B2 (en) 2005-07-22 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US20070261127A1 (en) * 2005-07-22 2007-11-08 Boyden Edward S Light-activated cation channel and uses thereof
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US20070054319A1 (en) * 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US10627410B2 (en) 2005-07-22 2020-04-21 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9829492B2 (en) 2005-07-22 2017-11-28 The Board Of Trustees Of The Leland Stanford Junior University Implantable prosthetic device comprising a cell expressing a channelrhodopsin
US10569099B2 (en) 2005-07-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10451608B2 (en) 2005-07-22 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10422803B2 (en) 2005-07-22 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9101690B2 (en) 2005-07-22 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10105551B2 (en) 2007-01-10 2018-10-23 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9187745B2 (en) 2007-01-10 2015-11-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10369378B2 (en) 2007-01-10 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8864805B2 (en) 2007-01-10 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US11007374B2 (en) 2007-01-10 2021-05-18 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9693692B2 (en) 2007-02-14 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US9757587B2 (en) 2007-03-01 2017-09-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic method for generating an inhibitory current in a mammalian neuron
US9855442B2 (en) 2007-03-01 2018-01-02 The Board Of Trustees Of The Leland Stanford Junior University Method for optically controlling a neuron with a mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from natromonas pharaonis (NpHR)
US10589123B2 (en) 2007-03-01 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10035027B2 (en) 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10350430B2 (en) 2008-04-23 2019-07-16 The Board Of Trustees Of The Leland Stanford Junior University System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1)
US9394347B2 (en) 2008-04-23 2016-07-19 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating parkinson's disease by optically stimulating target cells
US9878176B2 (en) 2008-04-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University System utilizing Volvox carteri light-activated ion channel protein (VChR1) for optical stimulation of target cells
US8815582B2 (en) 2008-04-23 2014-08-26 The Board Of Trustees Of The Leland Stanford Junior University Mammalian cell expressing Volvox carteri light-activated ion channel protein (VChR1)
US9249200B2 (en) 2008-04-23 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Expression vector comprising a nucleotide sequence encoding a Volvox carteri light-activated ion channel protein (VChR1) and implantable device thereof
US8962589B2 (en) 2008-05-29 2015-02-24 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US9453215B2 (en) 2008-05-29 2016-09-27 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8729040B2 (en) 2008-05-29 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US20110172653A1 (en) * 2008-06-17 2011-07-14 Schneider M Bret Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US9084885B2 (en) 2008-06-17 2015-07-21 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US20110159562A1 (en) * 2008-06-17 2011-06-30 Karl Deisseroth Apparatus and methods for controlling cellular development
US8956363B2 (en) 2008-06-17 2015-02-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US9308392B2 (en) 2008-07-08 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9101759B2 (en) * 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US20110166632A1 (en) * 2008-07-08 2011-07-07 Delp Scott L Materials and approaches for optical stimulation of the peripheral nervous system
US10583309B2 (en) 2008-07-08 2020-03-10 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9458208B2 (en) 2008-11-14 2016-10-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9309296B2 (en) 2008-11-14 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10064912B2 (en) 2008-11-14 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10071132B2 (en) 2008-11-14 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9604073B2 (en) 2010-03-17 2017-03-28 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9249234B2 (en) 2010-03-17 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9359449B2 (en) 2010-03-17 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9850290B2 (en) 2010-11-05 2017-12-26 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10252076B2 (en) 2010-11-05 2019-04-09 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US9340589B2 (en) 2010-11-05 2016-05-17 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9421258B2 (en) 2010-11-05 2016-08-23 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US9968652B2 (en) 2010-11-05 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Optically-controlled CNS dysfunction
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US10196431B2 (en) 2010-11-05 2019-02-05 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9615789B2 (en) 2010-11-22 2017-04-11 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10914803B2 (en) 2010-11-22 2021-02-09 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9271674B2 (en) 2010-11-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8834546B2 (en) 2010-11-22 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10018695B2 (en) 2010-11-22 2018-07-10 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10371776B2 (en) 2010-11-22 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9840541B2 (en) 2011-12-16 2017-12-12 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9505817B2 (en) 2011-12-16 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10538560B2 (en) 2011-12-16 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10087223B2 (en) 2011-12-16 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9969783B2 (en) 2011-12-16 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10639476B2 (en) 2013-10-09 2020-05-05 GiMer Medical Co., Ltd. Electronic stimulation device, method of treatment and electronic stimulation system
US10632310B2 (en) 2013-10-09 2020-04-28 GiMer Medical Co., Ltd. Electronic stimulation device, method of treatment and electronic stimulation system
US10086201B2 (en) 2013-10-09 2018-10-02 GiMer Medical Co., Ltd. Electronic stimulation device, method of treatment and electronic stimulation system
US10086197B2 (en) 2013-10-09 2018-10-02 GiMer Medical Co., Ltd. Method for reducing overactive bladder syndrome and computer-readable medium thereof
US10183165B2 (en) 2013-10-09 2019-01-22 GiMer Medical Co., Ltd. Method of reducing renal hypertension and computer-readable medium
US9956408B2 (en) 2013-10-09 2018-05-01 Gimer Medical Co. Ltd. Method for reducing spasticity and non-transitory computer-readable medium thereof
DE102015219027B4 (en) * 2014-10-01 2018-07-05 GiMer Medical Co., Ltd. Electronic stimulation system and device thereof for dorsal root ganglion
DE102015017269B3 (en) 2014-10-01 2022-06-30 GiMer Medical Co., Ltd. Electronic stimulation system and device thereof for spinal ganglion
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture

Also Published As

Publication number Publication date
EP2411091A4 (en) 2012-09-12
WO2010111358A3 (en) 2011-01-13
CA2758459A1 (en) 2010-10-30
US9468762B2 (en) 2016-10-18
EP2411091A2 (en) 2012-02-01
US20150151126A1 (en) 2015-06-04
JP6018249B2 (en) 2016-11-02
AU2010229985A1 (en) 2011-11-03
US8380318B2 (en) 2013-02-19
CN102438698B (en) 2014-09-10
AU2010229985B2 (en) 2015-09-17
JP2012521801A (en) 2012-09-20
JP2015164532A (en) 2015-09-17
WO2010111358A2 (en) 2010-09-30
US20100249875A1 (en) 2010-09-30
CN102438698A (en) 2012-05-02

Similar Documents

Publication Publication Date Title
US9468762B2 (en) Pain management with stimulation subthreshold to paresthesia
US11413451B2 (en) Methods, systems and devices for reducing migration
JP2012521801A5 (en)
EP2429407B1 (en) Systems and devices for neuromodulating spinal anatomy
US9623233B2 (en) Delivery devices, systems and methods for stimulating nerve tissue on multiple spinal levels
US9427570B2 (en) Expandable stimulation leads and methods of use
US20240050749A1 (en) Occipital nerve stimulation for treatment of pain

Legal Events

Date Code Title Description
AS Assignment

Owner name: SPINAL MODULATION, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KISHAWI, EYAD;KRAMER, JEFFERY M.;SIGNING DATES FROM 20100331 TO 20100413;REEL/FRAME:030739/0748

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION