US20130140063A1 - Printed circuits and method for making same - Google Patents
Printed circuits and method for making same Download PDFInfo
- Publication number
- US20130140063A1 US20130140063A1 US13/680,337 US201213680337A US2013140063A1 US 20130140063 A1 US20130140063 A1 US 20130140063A1 US 201213680337 A US201213680337 A US 201213680337A US 2013140063 A1 US2013140063 A1 US 2013140063A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- printed circuit
- metallized
- imaging
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1208—Pretreatment of the circuit board, e.g. modifying wetting properties; Patterning by using affinity patterns
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/105—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
- H05K3/106—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam by photographic methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/18—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
- H05K3/181—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
- H05K3/182—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
- H05K3/185—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/10—Using electric, magnetic and electromagnetic fields; Using laser light
- H05K2203/107—Using laser light
Definitions
- the present invention relates to a printed circuit board technology and more particularly to a method for making printed circuits which includes coating a non-metallized substrate and plating an image of a circuit design directly onto the coated substrate.
- the present invention also relates to printed circuits and printed circuit boards which result from this method.
- Prior art processes for making printed circuits and printed circuit boards typically use a silver halide polyester based film to create an image of a desired printed circuit along with several other steps and processes for forming and developing the printed circuit.
- a photo plotter is a piece of equipment that typically uses silver halide polyester film as the medium for imaging the design of a circuit. This equipment is then used in subsequent processing to image circuits for metallization or to print and etch specifically designed circuits. This is known as a print and etch process or a plate and etch process.
- One example of a prior art process for forming printed circuit boards includes the steps of creating a CAD/CAM design, sending data relating to the design to a photo plotter, photo plotting to a silver halide polyester film, developing an image from the sent data, creating intermediate tools, scrubbing or cleaning substrate for imaging, coating the substrate with a dry film, imaging the substrate with the design, developing the image, etching the image, and then stripping the remaining dry film.
- This prior art process requires several steps and has limitations on the imaging, developing, and etching of fine line images. With this process, fine line imaging can be consistently performed down to 0.003 inches. Imaging of much finer lines, for example imaging fine lines down to 0.0025 inches, creates a problem and is inconsistent when using this prior art process.
- laminate must be purchased with copper adhered to a panel and this type of processing has inherent issues with undercutting and rough edges which can create “lossy” issues for high speed RF applications.
- any rough protrusions or undercutting act like small antennas and the signal travel speed is reduced or lost during high frequency applications.
- High frequency applications require smooth images and very thin copper.
- the present invention is directed to a method for making printed circuits and printed circuit boards which eliminates the need for silver film used in imaging dry film in prior art processes.
- the method for making printed circuits and printed circuit boards in the present invention includes the steps of coating a non-metallized substrate and plating an image of the circuit design directly onto the coated substrate. The image substrate can then be developed and processed to create a resulting printed circuit without the need for additional printing of dry film, developing of dry film and etching processes.
- the non-metallized substrate may be a liquid crystal polymer, a polyimide, a ceramic, a ceramic filled, a glass, a paper, a filled polytetrafluoroethylene, an unfilled polytetrafluoroethylene, a polytetrafluoroethylene woven glass, a polytetrafluoroethylene non woven glass, a polyetheretherketone, an epoxy based laminate, a silicon wafer, and most plastic substances.
- This non-metallized substrate is then coated and an image of the desired circuit is plated directly onto the coated substrate.
- Exemplary materials for coating the non-metallized substrate include, but are not limited to, a silver nitrate based liquid, a silver chloride based with citric acid and a photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an immersion gold material, a platinum based material used in conjunction with palladium, and a ferric based solution combined with palladium.
- the present invention is also directed to a printed circuit that is made in accordance with the above-described method where the printed circuit includes fine line images down to 0.00025 inches with very thin copper.
- Another exemplary method of the present invention for making printed circuits and printed circuit boards includes the steps of providing a non-metallized pre-tooled substrate, coating a surface of the substrate with a photosensitive chemical suitable for laser imaging, baking the coated substrate until dry, designing circuitry and sending data relating to the circuitry design to a laser photo plotter or direct imaging plotter, imaging the circuitry design directly onto the coated substrate material with the laser photo plotter or direct imaging plotter using the tooling in the coated substrate as a reference for the imaging step, developing the imaged substrate with one or more chemistries, and processing the developed image with a copper bath.
- the previously described non-metallized substrates may be used with this method and the photosensitive chemicals used to coat the non-metallized surface may include, but are not limited to, the previously described materials, namely, a silver nitrate based liquid, a silver chloride based with citric acid and a photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an immersion gold material, a platinum based material used in conjunction with palladium, and a ferric based solution combined with palladium.
- the previously described materials namely, a silver nitrate based liquid, a silver chloride based with citric acid and a photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an immersion gold material, a platinum based material used in conjunction with palladium, and a ferric based solution combined with palladium.
- FIG. 1 is a flow chart depicting a prior art process for making printed circuits and printed circuit boards
- FIG. 2 is a flow chart depicting an exemplary embodiment of the method of the present invention for fabricating printed circuits and printed circuit boards;
- FIG. 3 is a flow chart depicting another exemplary embodiment of the method of the present invention for fabricating printed circuits and printed circuit boards.
- Methods of the present invention for fabricating printed circuits and printed circuit boards generally include providing a non-metallized substrate, coating the non-metallized substrate, and imaging of a circuit design directly onto the coated substrate.
- the image substrate may then be developed with one or more chemistries and processed by subjecting it to a copper bath in order to create a printed circuit or printed circuit board.
- any type of non-metallized substrate may be used as long as the substrate is uniform for imaging.
- photosensitive chemicals may be used to coat the surface of the non-metallized substrate and that a variety of chemistries may be used to develop the imaged substrate.
- FIG. 1 shows a flow chart 10 which depicts a prior art process for forming printed circuits and printed circuit boards.
- a circuit is created with a CAD/CAM design and the data relating to the circuit design is sent to a photo plotter in step 14 .
- the circuit design is photo plotted to a silver halide polyester film and the image on the silver halide polyester film is then developed in step 18 .
- Intermediate tools are created in step 20 .
- a substrate, such as a liquid crystal polymer or a polytetrafluoroethylene is then scrubbed or cleaned in step 22 to ready it for imaging.
- the substrate is then coated with a dry film in step 24 and the substrate is imaged with the circuit design in step 26 .
- the image of the printed circuit is developed in step 28 .
- the developed image of the printed circuit on the coated substrate is then etched in step 30 and any remaining dry film is stripped away in step 32 in order to create a printed circuit.
- FIG. 2 flow chart 40 is shown which depicts an exemplary embodiment of the method of the present invention for fabricating a printed circuit or printed circuit board.
- a non-metallized substrate is coated in step 41 .
- a circuit design is created.
- the data relating to the circuit design is then sent to a photo plotter or direct imaging equipment in step 43 and the image relating to the circuit design is directly plotted on the coated non-metallized substrate in step 44 .
- the image is not plotted to an intermediate silver halide polyester film or diazo.
- the plotted or direct image of the circuit design is then developed in step 45 and the developed image is then processed in step 46 without the need for intermediate developing and etching processes.
- FIG. 3 Another, more detailed exemplary embodiment of the present invention for fabricating printed circuits and printed circuit boards is shown in FIG. 3 by flow chart 50 .
- a non-metallized pre-tooled substrate is provided in step 48 which is then coated in step 51 .
- the non-metallized pre-tooled substrate may comprise any substrate or bonding film known in the industry of printed circuit board technology as long as the substrate is flat and uniform for imaging.
- the non-metallized substrate may be a liquid crystal polymer, a polyimide, a flat glass plate, a paper, a polyethylene terephthalate, a filled polytetrafluoroethylene, a unfilled polytetrafluoroethylene, a polytetrafluoroethylene woven glass, a polytetrafluoroethylene non woven glass, a polyetheretherketone, a low temperature cofired ceramic (LTCC), a high temperature cofired ceramic (HTCC), an epoxy based laminate, a silicon wafer, and most plastic substrates.
- the substrates may be woven or non woven and ceramic filled or unfilled.
- non-metallized substrate a number of known products may also be used as the non-metallized substrate including products known as KAPTON, SPEED BOARD C, ULTRALAM, FR4 EPDXIES, MULTIFUNCTIONAL EPDXIES, BT EPDXIES, LCP, and DUROID.
- the non-metallized pre-tooled substrate is coated in step 51 with a photosensitive chemical that is suitable for laser imaging.
- Such chemicals may include, but are not limited to, a silver nitrate based liquid, a silver chloride based with citric acid and photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an electroless nickel, an immersion gold, a platinum based material, and a palladium based material including a ferric based solution combined with palladium.
- the coated substrate is then baked until dry in step 49 .
- the coated substrate is baked at 40 degrees Celsius in a conventional oven or a conveyor oven for approximately 20 to 30 minutes.
- the circuitry for the printed circuit or printed circuit board is then designed in step 52 and the data relating to the circuit design is sent to a photo plotter or laser direct imaging in step 54 .
- the circuitry design is imaged onto the coated substrate using the photo plotter or laser direct imager in step 56 and the tooling in the coated substrate is used as a reference guide during the imaging.
- a silver halide polyester film is not used for imaging. Instead, the coated substrate is placed directly on the photo plotter or laser direct imager for imaging.
- Imaging technologies used in the present invention may include, but are not limited to, conventional UV imaging techniques, laser imaging, or any other form of photolithography type of exposure.
- the method of the present invention for fabricating printed circuits and printed circuit boards eliminates the need for a number of products, steps, and procedures including the need for silver film, diazo film, dry film, liquid dry films, collimated or non-collimated UV light sources, hot roll vacuum lamination, developing and etching and stripping of standard printed circuit boards, and waste treatment chemicals along with associated overhead and direct and indirect labor costs.
- the image substrate is then developed with chemistries in step 58 .
- chemistries such as any paper type developer like KODAK DEKTOL or NGS NAT 540 and FIXER NAT 750 may be used or EDTA based developer.
- the developed image is processed in step 60 with a copper bath to create the resulting printed circuit or printed circuit board.
- a copper bath to create the resulting printed circuit or printed circuit board.
- This may include any standard electroless copper plating process used for circuit board hole metallization that is known in the art.
- Metals plated directly to the imaged substrate may include, but are not limited to, electroless gold, electroless nickel, or any other metal that will plate to palladium in the case where the chemical used to coat the non-metallized substrate is a palladium based material.
- the methods of the present invention can produce conventional printed circuitry for printed circuit board use and for semiconductor manufacturing.
- the methods of the present invention for making printed circuits and printed circuit boards can also be used in solar panels, RFID tags, medical devices, automotive applications, commercial products, fuel cells, batteries, and in space and satellite applications.
- the methods of the present invention are used for selective additive circuitry. Therefore, any conventional application requiring selective metallization or multiple metal layers can utilize the methods of the present invention.
- the methods of the present invention can produce three dimensional circuits and continuous “wrap around” circuits creating an image from the front continuing to the edge and ultimately end up on the back side of a flat piece of material.
- the methods of the present invention can also be used for edge metallization and edge circuitry, as well as to create a circuit in a clear plastic tube.
- the components used in the methods of the present invention are environmentally friendly and the methods of the present invention used for creating multilayers eliminates the need for drilling, etching, and lamination processes associated with conventional printed circuit board single sided and multilayer manufacturing.
- the methods of the present invention can be used to fabricate single layer circuitry to multiple layer circuitry using conventional processing techniques or roll to roll continuous processing techniques.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Abstract
A method for making printed circuits and printed circuit boards which includes coating a non-metallized substrate and plating an image of a desired circuit design directly onto the coated substrate without the need to image the circuit design on an intermediate silver halide polyester film or diazo and utilizing existing imaging, developing and etching subtractive techniques in conventional printed circuit board processing. One exemplary embodiment of the method for making printed circuit boards includes coating a non-metallized substrate with a palladium based material including a ferric based solution combined with palladium.
Description
- This application is a continuation of patent application having Ser. No. 12/834,433 filed Jul. 12, 2010, currently pending, which application is a continuation-in-part patent application of patent application having Ser. No. 11/751,350, filed May 21, 2007, now U.S. Pat. No. 7,754,417.
- The present invention relates to a printed circuit board technology and more particularly to a method for making printed circuits which includes coating a non-metallized substrate and plating an image of a circuit design directly onto the coated substrate. The present invention also relates to printed circuits and printed circuit boards which result from this method.
- Prior art processes for making printed circuits and printed circuit boards typically use a silver halide polyester based film to create an image of a desired printed circuit along with several other steps and processes for forming and developing the printed circuit. A photo plotter is a piece of equipment that typically uses silver halide polyester film as the medium for imaging the design of a circuit. This equipment is then used in subsequent processing to image circuits for metallization or to print and etch specifically designed circuits. This is known as a print and etch process or a plate and etch process.
- One example of a prior art process for forming printed circuit boards includes the steps of creating a CAD/CAM design, sending data relating to the design to a photo plotter, photo plotting to a silver halide polyester film, developing an image from the sent data, creating intermediate tools, scrubbing or cleaning substrate for imaging, coating the substrate with a dry film, imaging the substrate with the design, developing the image, etching the image, and then stripping the remaining dry film. This prior art process requires several steps and has limitations on the imaging, developing, and etching of fine line images. With this process, fine line imaging can be consistently performed down to 0.003 inches. Imaging of much finer lines, for example imaging fine lines down to 0.0025 inches, creates a problem and is inconsistent when using this prior art process. In addition, laminate must be purchased with copper adhered to a panel and this type of processing has inherent issues with undercutting and rough edges which can create “lossy” issues for high speed RF applications. In other words, with this process, any rough protrusions or undercutting act like small antennas and the signal travel speed is reduced or lost during high frequency applications. High frequency applications require smooth images and very thin copper.
- Accordingly, there is a need for a new method for making printed circuits and printed circuit boards which facilitate fine line imaging without the inherent problem seen in the prior art processes. In addition, a method for making printed circuits and printed circuit boards is needed which will eliminate many of the steps used in prior art processes while still enabling the creation of printed circuits and printed circuit boards with fine line imaging with very flat non-rough surfaces without undercut utilizing very thin copper below 0.0002.
- The present invention is directed to a method for making printed circuits and printed circuit boards which eliminates the need for silver film used in imaging dry film in prior art processes. The method for making printed circuits and printed circuit boards in the present invention includes the steps of coating a non-metallized substrate and plating an image of the circuit design directly onto the coated substrate. The image substrate can then be developed and processed to create a resulting printed circuit without the need for additional printing of dry film, developing of dry film and etching processes.
- In one exemplary embodiment, the non-metallized substrate may be a liquid crystal polymer, a polyimide, a ceramic, a ceramic filled, a glass, a paper, a filled polytetrafluoroethylene, an unfilled polytetrafluoroethylene, a polytetrafluoroethylene woven glass, a polytetrafluoroethylene non woven glass, a polyetheretherketone, an epoxy based laminate, a silicon wafer, and most plastic substances. This non-metallized substrate is then coated and an image of the desired circuit is plated directly onto the coated substrate. Exemplary materials for coating the non-metallized substrate include, but are not limited to, a silver nitrate based liquid, a silver chloride based with citric acid and a photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an immersion gold material, a platinum based material used in conjunction with palladium, and a ferric based solution combined with palladium.
- The present invention is also directed to a printed circuit that is made in accordance with the above-described method where the printed circuit includes fine line images down to 0.00025 inches with very thin copper.
- Another exemplary method of the present invention for making printed circuits and printed circuit boards includes the steps of providing a non-metallized pre-tooled substrate, coating a surface of the substrate with a photosensitive chemical suitable for laser imaging, baking the coated substrate until dry, designing circuitry and sending data relating to the circuitry design to a laser photo plotter or direct imaging plotter, imaging the circuitry design directly onto the coated substrate material with the laser photo plotter or direct imaging plotter using the tooling in the coated substrate as a reference for the imaging step, developing the imaged substrate with one or more chemistries, and processing the developed image with a copper bath.
- The previously described non-metallized substrates may be used with this method and the photosensitive chemicals used to coat the non-metallized surface may include, but are not limited to, the previously described materials, namely, a silver nitrate based liquid, a silver chloride based with citric acid and a photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an immersion gold material, a platinum based material used in conjunction with palladium, and a ferric based solution combined with palladium.
- The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like numerals denote like elements, and:
-
FIG. 1 is a flow chart depicting a prior art process for making printed circuits and printed circuit boards; -
FIG. 2 is a flow chart depicting an exemplary embodiment of the method of the present invention for fabricating printed circuits and printed circuit boards; and -
FIG. 3 is a flow chart depicting another exemplary embodiment of the method of the present invention for fabricating printed circuits and printed circuit boards. - Methods of the present invention for fabricating printed circuits and printed circuit boards generally include providing a non-metallized substrate, coating the non-metallized substrate, and imaging of a circuit design directly onto the coated substrate. The image substrate may then be developed with one or more chemistries and processed by subjecting it to a copper bath in order to create a printed circuit or printed circuit board. It should be understood by those skilled in the art that any type of non-metallized substrate may be used as long as the substrate is uniform for imaging. In addition, those skilled in the art will understand that a number of photosensitive chemicals may be used to coat the surface of the non-metallized substrate and that a variety of chemistries may be used to develop the imaged substrate.
-
FIG. 1 shows a flow chart 10 which depicts a prior art process for forming printed circuits and printed circuit boards. Instep 12, a circuit is created with a CAD/CAM design and the data relating to the circuit design is sent to a photo plotter instep 14. Next, instep 16, the circuit design is photo plotted to a silver halide polyester film and the image on the silver halide polyester film is then developed instep 18. Intermediate tools are created instep 20. A substrate, such as a liquid crystal polymer or a polytetrafluoroethylene is then scrubbed or cleaned instep 22 to ready it for imaging. The substrate is then coated with a dry film instep 24 and the substrate is imaged with the circuit design instep 26. Following imaging of the printed circuit on the coated substrate, the image of the printed circuit is developed instep 28. The developed image of the printed circuit on the coated substrate is then etched instep 30 and any remaining dry film is stripped away instep 32 in order to create a printed circuit. - Turning now to
FIG. 2 ,flow chart 40 is shown which depicts an exemplary embodiment of the method of the present invention for fabricating a printed circuit or printed circuit board. First, a non-metallized substrate is coated instep 41. Then, instep 42, a circuit design is created. The data relating to the circuit design is then sent to a photo plotter or direct imaging equipment instep 43 and the image relating to the circuit design is directly plotted on the coated non-metallized substrate instep 44. Unlike prior art processes, the image is not plotted to an intermediate silver halide polyester film or diazo. The plotted or direct image of the circuit design is then developed instep 45 and the developed image is then processed instep 46 without the need for intermediate developing and etching processes. - Another, more detailed exemplary embodiment of the present invention for fabricating printed circuits and printed circuit boards is shown in
FIG. 3 byflow chart 50. First, a non-metallized pre-tooled substrate is provided instep 48 which is then coated instep 51. The non-metallized pre-tooled substrate may comprise any substrate or bonding film known in the industry of printed circuit board technology as long as the substrate is flat and uniform for imaging. For example, the non-metallized substrate may be a liquid crystal polymer, a polyimide, a flat glass plate, a paper, a polyethylene terephthalate, a filled polytetrafluoroethylene, a unfilled polytetrafluoroethylene, a polytetrafluoroethylene woven glass, a polytetrafluoroethylene non woven glass, a polyetheretherketone, a low temperature cofired ceramic (LTCC), a high temperature cofired ceramic (HTCC), an epoxy based laminate, a silicon wafer, and most plastic substrates. The substrates may be woven or non woven and ceramic filled or unfilled. In addition, a number of known products may also be used as the non-metallized substrate including products known as KAPTON, SPEED BOARD C, ULTRALAM, FR4 EPDXIES, MULTIFUNCTIONAL EPDXIES, BT EPDXIES, LCP, and DUROID. The non-metallized pre-tooled substrate is coated instep 51 with a photosensitive chemical that is suitable for laser imaging. Such chemicals may include, but are not limited to, a silver nitrate based liquid, a silver chloride based with citric acid and photosensitive gelatin, an iron based material, a chrome copper based material, a chrome nickel based material, an electroless nickel, an immersion gold, a platinum based material, and a palladium based material including a ferric based solution combined with palladium. - The coated substrate is then baked until dry in
step 49. In one exemplary embodiment, the coated substrate is baked at 40 degrees Celsius in a conventional oven or a conveyor oven for approximately 20 to 30 minutes. The circuitry for the printed circuit or printed circuit board is then designed instep 52 and the data relating to the circuit design is sent to a photo plotter or laser direct imaging instep 54. Next, the circuitry design is imaged onto the coated substrate using the photo plotter or laser direct imager instep 56 and the tooling in the coated substrate is used as a reference guide during the imaging. In contrast to prior art processes, a silver halide polyester film is not used for imaging. Instead, the coated substrate is placed directly on the photo plotter or laser direct imager for imaging. Imaging technologies used in the present invention may include, but are not limited to, conventional UV imaging techniques, laser imaging, or any other form of photolithography type of exposure. As a result, the method of the present invention for fabricating printed circuits and printed circuit boards eliminates the need for a number of products, steps, and procedures including the need for silver film, diazo film, dry film, liquid dry films, collimated or non-collimated UV light sources, hot roll vacuum lamination, developing and etching and stripping of standard printed circuit boards, and waste treatment chemicals along with associated overhead and direct and indirect labor costs. - In the exemplary method shown in
FIG. 3 , the image substrate is then developed with chemistries instep 58. Here, chemistries such as any paper type developer like KODAK DEKTOL or NGS NAT 540 and FIXER NAT 750 may be used or EDTA based developer. Finally, the developed image is processed instep 60 with a copper bath to create the resulting printed circuit or printed circuit board. This may include any standard electroless copper plating process used for circuit board hole metallization that is known in the art. Metals plated directly to the imaged substrate may include, but are not limited to, electroless gold, electroless nickel, or any other metal that will plate to palladium in the case where the chemical used to coat the non-metallized substrate is a palladium based material. - The methods of the present invention can produce conventional printed circuitry for printed circuit board use and for semiconductor manufacturing. The methods of the present invention for making printed circuits and printed circuit boards can also be used in solar panels, RFID tags, medical devices, automotive applications, commercial products, fuel cells, batteries, and in space and satellite applications. The methods of the present invention are used for selective additive circuitry. Therefore, any conventional application requiring selective metallization or multiple metal layers can utilize the methods of the present invention. The methods of the present invention can produce three dimensional circuits and continuous “wrap around” circuits creating an image from the front continuing to the edge and ultimately end up on the back side of a flat piece of material. The methods of the present invention can also be used for edge metallization and edge circuitry, as well as to create a circuit in a clear plastic tube. The components used in the methods of the present invention are environmentally friendly and the methods of the present invention used for creating multilayers eliminates the need for drilling, etching, and lamination processes associated with conventional printed circuit board single sided and multilayer manufacturing. The methods of the present invention can be used to fabricate single layer circuitry to multiple layer circuitry using conventional processing techniques or roll to roll continuous processing techniques.
- It will be understood that the foregoing description is of preferred exemplary embodiments of the invention and that the invention is not limited to specific forms shown or described herein. Various modifications may be made in the design, arrangement, order, and types of steps disclosed herein for making and using the invention without departing from the scope of the invention as expressed in the appended claims.
Claims (16)
1. A method for making a printed circuit comprising coating a non-metallized substrate and plating an image of a circuit design directly onto the coated substrate.
2. The method of claim 1 further comprising the steps of developing the imaged substrate and processing the developed image by subjecting the imaged substrate to a copper bath.
3. The method of claim 1 wherein the non-metallized substrate comprises at least one of a liquid crystal polymer, a polyimide, a polyethylene terephthalate, a filled polytetrafluoroethylene, an unfilled polytetrafluoroethylene, a polytetrafluoroethylene woven glass, a polytetrafiuoroethylene non woven glass, a low temperature cofired ceramic, and a high temperature cofired ceramic.
4. The method of claim 1 wherein the non-metallized substrate comprises at least one of the products known as LCP, KAPTON, SPEED BOARD C, PET, ULTRALAM, and DUROID.
5. A printed circuit made in accordance with the method of claim 1 .
6. The printed circuit board of claim 5 wherein the printed circuit comprises fine line images down to 0.00025 inches.
7. A method for making printed circuit boards comprising:
providing a non-metallized pre-tooled substrate;
coating a surface of the substrate with a photosensitive chemical suitable for laser imaging;
baking the coated substrate until dry;
designing circuitry and sending data relating to the circuitry design to a photo plotter;
imaging the circuitry design directly onto the coated substrate material with the photo plotter using the tooling in the coated substrate as a reference for the imaging step; developing the imaged substrate with one or more chemistries; and
processing the developed image with a copper bath.
8. The method of claim 8 wherein the non-metallized pre-tooled substrate comprises at least one of a liquid crystal polymer, a polyimide, a polyethylene terephthalate, a filled polytetrafluoroethylene, an unfilled polytetrafluoroethylene, a polytetrafluoroethylene woven glass, a polytetrafluoroethylene non woven glass, a low temperature cofired ceramic, and a high temperature cofired ceramic.
9. The method of claim 8 wherein the non-metallized pre-tooled substrate comprises at least one of the products known as LCP, KAPTON, SPEED BOARD C, PET, ULTRALAM, and DUROID.
10. The method of claim 8 wherein the photosensitive chemical used to coat the non-metallized surface comprises one of a silver nitrate based liquid, a silver chloride based with citric acid and a photosensitive gelatin, an iron based material, a chrome copper based material, and a chrome nickel based material.
11. The method of claim 8 wherein the coated substrate is baked at 40 degrees C. in a conventional oven or a conveyor oven.
12. The method of claim 8 wherein the chemistries used to develop the imaged substrate comprise any chemistry used to develop an image on paper.
13. The, method of claim 8 wherein processing the developed image in a copper bath results in metallizing the image left after photo plotting.
14. The method of claim 8 wherein the imaging step comprises imaging fine lines down to 0.00025 inches.
15. A printed circuit board made in accordance with the method of claim 8 .
16. The printed circuit board of claim 15 wherein the printed circuit comprises fine line images down to 0.00025 inches.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/680,337 US20130140063A1 (en) | 2007-05-21 | 2012-11-19 | Printed circuits and method for making same |
EP12007832.4A EP2660354A1 (en) | 2012-05-02 | 2012-11-20 | Method and apparatus for vapor condensation and recovery |
JP2012260791A JP2013253312A (en) | 2012-05-02 | 2012-11-29 | Method and apparatus for vapor condensation and recovery |
KR1020120153147A KR101387632B1 (en) | 2012-05-02 | 2012-12-26 | Method and apparatus for vapor condensation and recovery |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/751,350 US7754417B2 (en) | 2007-05-21 | 2007-05-21 | Printed circuits and method for making same |
US12/834,433 US8313891B2 (en) | 2007-05-21 | 2010-07-12 | Printed circuits and method for making same |
US13/680,337 US20130140063A1 (en) | 2007-05-21 | 2012-11-19 | Printed circuits and method for making same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/834,433 Continuation US8313891B2 (en) | 2007-05-21 | 2010-07-12 | Printed circuits and method for making same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130140063A1 true US20130140063A1 (en) | 2013-06-06 |
Family
ID=43379487
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/834,433 Expired - Fee Related US8313891B2 (en) | 2007-05-21 | 2010-07-12 | Printed circuits and method for making same |
US13/680,337 Abandoned US20130140063A1 (en) | 2007-05-21 | 2012-11-19 | Printed circuits and method for making same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/834,433 Expired - Fee Related US8313891B2 (en) | 2007-05-21 | 2010-07-12 | Printed circuits and method for making same |
Country Status (1)
Country | Link |
---|---|
US (2) | US8313891B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11127807B2 (en) | 2018-08-20 | 2021-09-21 | Samsung Display Co., Ltd. | Display device and manufacturing method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8968824B2 (en) * | 2013-03-14 | 2015-03-03 | Dowa Electronics Materials Co., Ltd. | Method for producing silver conductive film |
CN104105353B (en) * | 2014-07-02 | 2015-09-09 | 华中科技大学 | A kind of manufacturing method of high-precision ceramic circuit board |
US20190029122A1 (en) * | 2017-07-19 | 2019-01-24 | Anaren, Inc. | Encapsulation of circuit trace |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930963A (en) | 1971-07-29 | 1976-01-06 | Photocircuits Division Of Kollmorgen Corporation | Method for the production of radiant energy imaged printed circuit boards |
US4666735A (en) | 1983-04-15 | 1987-05-19 | Polyonics Corporation | Process for producing product having patterned metal layer |
DE3531271A1 (en) | 1985-09-02 | 1987-03-12 | Basf Ag | DEVICE FOR CUTTING PHOTORESIST COATINGS IN PHOTORESISTBOWS DEFINED SIZE AND EXACT, WRINKLE-FREE LAMINATING THE SAME ON FLEXIBLE AND RIGID CARRIER MATERIALS |
US4691091A (en) | 1985-12-31 | 1987-09-01 | At&T Technologies | Direct writing of conductive patterns |
US5281447A (en) | 1991-10-25 | 1994-01-25 | International Business Machines Corporation | Patterned deposition of metals via photochemical decomposition of metal-oxalate complexes |
US5378508A (en) | 1992-04-01 | 1995-01-03 | Akzo Nobel N.V. | Laser direct writing |
US5648125A (en) | 1995-11-16 | 1997-07-15 | Cane; Frank N. | Electroless plating process for the manufacture of printed circuit boards |
US5847327A (en) | 1996-11-08 | 1998-12-08 | W.L. Gore & Associates, Inc. | Dimensionally stable core for use in high density chip packages |
US5910394A (en) | 1997-06-18 | 1999-06-08 | Shipley Company, L.L.C. | I-line photoresist compositions |
US20030148024A1 (en) | 2001-10-05 | 2003-08-07 | Kodas Toivo T. | Low viscosity precursor compositons and methods for the depositon of conductive electronic features |
US6198525B1 (en) | 1999-02-19 | 2001-03-06 | International Business Machines Corporation | System for contact imaging both sides of a substrate |
US7074640B2 (en) | 2000-06-06 | 2006-07-11 | Simon Fraser University | Method of making barrier layers |
US7524528B2 (en) | 2001-10-05 | 2009-04-28 | Cabot Corporation | Precursor compositions and methods for the deposition of passive electrical components on a substrate |
US20040151978A1 (en) | 2003-01-30 | 2004-08-05 | Huang Wen C. | Method and apparatus for direct-write of functional materials with a controlled orientation |
DE102004005300A1 (en) | 2004-01-29 | 2005-09-08 | Atotech Deutschland Gmbh | Process for treating carrier material for the production of powder carriers and application of the process |
US20060165877A1 (en) | 2004-12-27 | 2006-07-27 | Mitsuboshi Belting Ltd. | Method for forming inorganic thin film pattern on polyimide resin |
US7293355B2 (en) | 2005-04-21 | 2007-11-13 | Endicott Interconnect Technologies, Inc. | Apparatus and method for making circuitized substrates in a continuous manner |
GB0508189D0 (en) | 2005-04-22 | 2005-06-01 | Eastman Kodak Co | Method of forming flexible electronic circuits |
GB0518612D0 (en) | 2005-09-13 | 2005-10-19 | Eastman Kodak Co | A method of forming conductive tracks |
JP4367457B2 (en) | 2006-07-06 | 2009-11-18 | パナソニック電工株式会社 | Silver film, silver film manufacturing method, LED mounting substrate, and LED mounting substrate manufacturing method |
US20080153320A1 (en) | 2006-12-20 | 2008-06-26 | Yi-Wen Lin | Space-saving IC card and card slot arrangement |
US7754417B2 (en) * | 2007-05-21 | 2010-07-13 | Steven Lee Dutton | Printed circuits and method for making same |
-
2010
- 2010-07-12 US US12/834,433 patent/US8313891B2/en not_active Expired - Fee Related
-
2012
- 2012-11-19 US US13/680,337 patent/US20130140063A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11127807B2 (en) | 2018-08-20 | 2021-09-21 | Samsung Display Co., Ltd. | Display device and manufacturing method thereof |
US11937472B2 (en) | 2018-08-20 | 2024-03-19 | Samsung Display Co., Ltd. | Display device and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20100326711A1 (en) | 2010-12-30 |
US8313891B2 (en) | 2012-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6039889A (en) | Process flows for formation of fine structure layer pairs on flexible films | |
KR101048967B1 (en) | Manufacturing method of flexible wiring circuit board | |
EP0003605B1 (en) | Toning and solvent washout process for making conductive interconnections | |
CN101466207B (en) | Circuit board and preparation method thereof | |
US8293461B2 (en) | Direct emulsion process for making printed circuits | |
CN101453838A (en) | Manufacturing method for circuit board | |
US8313891B2 (en) | Printed circuits and method for making same | |
CN101426342B (en) | Manufacturing method of hollowed-out flexible circuit board | |
US6562250B1 (en) | Method for manufacturing wiring circuit boards with bumps and method for forming bumps | |
US20040040148A1 (en) | Manufacture of flexible printed circuit boards | |
US7754417B2 (en) | Printed circuits and method for making same | |
US20090020315A1 (en) | Automated direct emulsion process for making printed circuits and multilayer printed circuits | |
US6264851B1 (en) | Selective seed and plate using permanent resist | |
CN101785372B (en) | Automated direct emulsion process for making printed circuits and multilayer printed circuits | |
JP7311839B2 (en) | Method for manufacturing copper-clad laminate | |
JP4570436B2 (en) | Metal mesh and wiring pattern transfer sheet | |
WO2008157630A1 (en) | Direct emulsion process for making printed circuits | |
US20080292784A1 (en) | Method for Metallizing Liquid Crystal and Polymer | |
JP2782576B2 (en) | Method of forming conductive circuit | |
JP2007151068A (en) | Film antenna wiring base material, its manufacturing method, film antenna using the same and film antenna for automobile | |
US6676991B2 (en) | Etch resist using printer technology | |
TWI430729B (en) | Method for manufacturing hollowed-out flexible printed circuit board | |
JP2005340523A (en) | Process for producing wiring board | |
JPH04107939A (en) | Manufacture of double-sided film carrier | |
JPH06314724A (en) | Double-sided wiring board for semiconductor element and semiconductor device using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |