US20130129498A1 - Diffuser, in particular for an axial flow machine - Google Patents

Diffuser, in particular for an axial flow machine Download PDF

Info

Publication number
US20130129498A1
US20130129498A1 US13/678,676 US201213678676A US2013129498A1 US 20130129498 A1 US20130129498 A1 US 20130129498A1 US 201213678676 A US201213678676 A US 201213678676A US 2013129498 A1 US2013129498 A1 US 2013129498A1
Authority
US
United States
Prior art keywords
diffuser
steps
flow
recited
cross sectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/678,676
Other languages
English (en)
Inventor
Willy Heinz Hofmann
Armin Busekros
Thomas Peter SOMMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Assigned to ALSTOM TECHNOLOGY LTD reassignment ALSTOM TECHNOLOGY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SOMMER, THOMAS PETER, BUSEKROS, ARMIN, HOFMANN, WILLY HEINZ
Publication of US20130129498A1 publication Critical patent/US20130129498A1/en
Assigned to GENERAL ELECTRIC TECHNOLOGY GMBH reassignment GENERAL ELECTRIC TECHNOLOGY GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALSTOM TECHNOLOGY LTD
Assigned to Ansaldo Energia Switzerland AG reassignment Ansaldo Energia Switzerland AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC TECHNOLOGY GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump

Definitions

  • the present invention relates to the field of axial flow machines and more particularly to a diffuser.
  • Diffusers which are arranged at the outlet of stationary gas turbines and which are to reduce the speed of flow of the gases coming out of the turbine and to bring about a build-up of pressure in order to improve the efficiency of the gas turbine, have been known for a long time in the prior art (see, for example, document EP 0 491 966 A1 or document US 2011/058939 A1 along with the attached FIG. 1 ).
  • document EP 0 265 633 B1 proposes dividing the diffuser into several part diffusers in the radial direction by means of flow-conducting baffle plates.
  • the inner tapering part of the diffuser is provided with a controllable Coanda flow by way of which the flow in the diffuser can be influenced in a favorable manner.
  • the inner part of the diffuser, the hub, tapers downstream without forming a step. From an external source, a gas is guided toward a ring chamber in the hub and from there is injected by means of a number of slotted nozzles in the direction of flow of the hot exhaust gases parallel to the surface of the hub.
  • said additional gas flow sucks in hot exhaust gas and deflects it in the direction of the hub.
  • EP 0 265 633 B1 provides a sudden transition in the cross sectional area at the outlet of the diffuser which is designated as a Carnot diffuser.
  • the present invention provides a diffuser for an axial flow machine.
  • the diffuser has a transition from a ring channel having a first cross sectional area into an outlet space with a second, larger cross sectional area along a machine axis of the axial flow machine.
  • the transition includes a plurality of steps.
  • FIG. 1 shows the schematic design of a gas turbine with an exhaust gas diffuser, as is known
  • FIG. 2 shows the inside design of a conventional Carnot diffuser
  • FIG. 3 shows, in comparison to FIG. 2 , the inside design of a multi-step diffuser according to one exemplary embodiment of the invention
  • FIG. 4 shows a perspective side view of a 2-step diffuser according to another exemplary embodiment of the invention.
  • the invention provides a diffuser, in particular for an industrial gas turbine, which results, in a simple manner, in a further improvement in the overall efficiency of the gas turbine.
  • An embodiment of the invention proceeds from a diffuser, in particular for an axial flow machine, preferably a stationary gas turbine, which diffuser transforms from a ring channel with a first cross sectional area into an outlet space with a second, larger cross sectional area along a machine axis. It is distinguished in that the transition is effected in several steps.
  • a first development of an embodiment of the invention provides that the cross sectional area inside the diffuser is increased in two steps. Said diffuser is designed in a particularly simple manner.
  • the diffuser is realized as a Carnot diffuser.
  • a further development of an embodiment of the invention is distinguished in that the diffuser includes an outer casing and an inner casing, between which the medium flows through the diffuser, and that the steps are generated in the cross sectional area by diameter steps on the inner casing.
  • an embodiment of the invention is characterized in that a ring-shaped, convexly curved guiding surface which tapers in diameter is arranged between two adjacent steps, and that on the upstream step of the two steps there is provided an annular passage, through which a gas flow is able to escape and to flow along the guiding surface in the form of a Coanda flow.
  • the flow in the diffuser is able to be influenced in a favorable manner.
  • the guiding surface is preferably arranged between the penultimate and the last step of the diffuser.
  • Yet another development of an embodiment of the invention is characterized in that the diffuser is arranged at the outlet of an industrial gas turbine.
  • FIG. 1 shows the schematic design of a gas turbine with an exhaust gas diffuser, as is known in the prior art.
  • the gas turbine 10 shown in FIG. 1 includes a compressor 12 , which sucks in air by means of an air inlet 11 and compresses it. The compressed air is supplied to a combustion chamber 13 and there is used for the combustion of a fuel 14 .
  • the resultant hot gas is expanded in a turbine 15 downstream under operating conditions and then flows through a diffuser 16 in order to slow down the speed of flow and to bring about a build-up of pressure.
  • FIG. 2 shows a highly simplified representation of the inside design of a conventional Carnot diffuser.
  • the diffuser 16 which is realized in a concentric manner with respect to a machine axis 31 , on the inlet side includes a ring channel 17 , by means of which the exhaust gas 19 of the turbine flows into the diffuser 16 .
  • Connecting to the ring channel 17 with its comparatively small cross sectional area is an outlet space 21 , the cross sectional area of which is substantially larger for the flow.
  • the transition between the ring channel 17 and the outlet space 21 is effected, in this example, by means of a sudden step 22 , which characterizes the diffuser 16 as a Carnot diffuser.
  • Radial struts 18 which connect the inside part and the outside part of the diffuser 16 and at the same time serve for steering the flow, can be arranged in the ring channel 17 .
  • the invention now proposes, according to the exemplary embodiment shown in FIG. 3 , to realize the transition between the ring channel 17 and the outlet space 21 in multiple steps in the case of a diffuser 20 .
  • two steps 22 a and 22 b are provided for this purpose.
  • a further step 22 c (shown by the broken line in FIG. 3 ) is optional.
  • the number of steps, however, is not limited upward.
  • the diameter jumps connected to the steps 22 a - c are limited in the exemplary embodiment in FIG. 3 to the inside part of the diffuser 20 . However, it is also just as conceivable to provide diameter jumps on the outside part of the diffuser.
  • Such a multiply stepped inside contour produces a gain in the build-up of pressure which can be 0.1% of the turbine efficiency and in the case of a GT26 model gas turbine of the Applicant signifies a gain in capacity of almost half a megawatt.
  • a corresponding diffuser looks, for example, as shown in FIG. 4 .
  • the diffuser 20 a of FIG. 4 includes a ring-shaped outer casing 23 which surrounds an inner casing 24 in a concentric manner and together with the inner casing 24 defines a flow channel.
  • the inner casing 24 and the outer casing 23 are connected by means of radial struts 25 .
  • Two rings 26 and 27 which are stepped in diameter and by means of which the multiply stepped expansion of the diffuser 20 a is brought about, are arranged one behind the other in the axial direction at the outlet of the diffuser 20 a.
  • the flow conditions in the diffuser can be influenced by means of a Coanda flow, as has been proposed, in principle, in document US 2011/058939 A1 mentioned in the introduction.
  • a ring-shaped, convexly curved guiding surface 28 which tapers in diameter is arranged between two steps 22 a and 22 b in the case of a diffuser 20 b.
  • an annular passage 29 On the upstream step of the two steps 22 a and 22 b is provided an annular passage 29 , through which a gas flow is able to escape and to flow along the guiding surface 28 in the form of a Coanda flow 30 .
  • the gas feed for the Coanda flow 30 can be effected in different ways. Contrary to what the aforementioned document teaches, however, as claimed in the invention an external reference source for an actively injected additional gas is to be omitted.
  • an external reference source for an actively injected additional gas is to be omitted.
  • the Coanda flow is preferably inserted between the penultimate and the last step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
US13/678,676 2011-11-17 2012-11-16 Diffuser, in particular for an axial flow machine Abandoned US20130129498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011118735A DE102011118735A1 (de) 2011-11-17 2011-11-17 Diffusor, insbesondere für eine axiale strömungsmaschine
DE102011118735.2 2011-11-17

Publications (1)

Publication Number Publication Date
US20130129498A1 true US20130129498A1 (en) 2013-05-23

Family

ID=47215404

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/678,676 Abandoned US20130129498A1 (en) 2011-11-17 2012-11-16 Diffuser, in particular for an axial flow machine

Country Status (6)

Country Link
US (1) US20130129498A1 (ja)
EP (1) EP2594741A3 (ja)
JP (2) JP2013108498A (ja)
CN (1) CN103122776B (ja)
DE (1) DE102011118735A1 (ja)
RU (1) RU2569015C2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947283A1 (fr) 2014-05-23 2015-11-25 GE Energy Products France SNC Structure d'isolation thermo-acoustique pour échappement de machine tournante
US20170342862A1 (en) * 2016-05-31 2017-11-30 General Electric Company Exhaust Diffuser
US11291938B2 (en) 2016-12-16 2022-04-05 General Electric Technology Gmbh Coanda effect moisture separator system
US11506145B2 (en) * 2020-03-20 2022-11-22 Doosan Enerbility Co., Ltd Exhaust diffuser hub structure for reducing flow separation
EP4197621A1 (en) * 2021-12-17 2023-06-21 Pratt & Whitney Canada Corp. Diffuser nozzle for a gas turbine engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2896793B1 (en) 2014-01-21 2024-08-28 Ansaldo Energia Switzerland AG Method of operating a gas turbine assembly and the gas turbine assembly
EP3023695A1 (de) * 2014-11-20 2016-05-25 Siemens Aktiengesellschaft Thermische Energiemaschine
FR3029568B1 (fr) * 2014-12-05 2016-11-18 Turbomeca Plenum d'alimentation en air
RU2632354C1 (ru) * 2016-12-01 2017-10-04 Открытое акционерное общество "Научно-производственное объединение по исследованию и проектированию энергетического оборудования им. И.И. Ползунова" (ОАО "НПО ЦКТИ") Двухпоточный цилиндр низкого давления паровой турбины

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2579043A (en) * 1948-03-20 1951-12-18 Mcdonnell Aircraft Corp Exit area control for jet engines
US2637972A (en) * 1948-04-09 1953-05-12 Mcdonnell Aircraft Corp Afterburner for turbojet engines and the like
US4239453A (en) * 1975-12-27 1980-12-16 Klein, Schanzlin & Becker Ag. Means for reducing cavitation-induced erosion of centrifugal pumps
US4272955A (en) * 1979-06-28 1981-06-16 General Electric Company Diffusing means
SU1000558A1 (ru) * 1981-04-03 1983-02-28 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Диффузор
US4497445A (en) * 1980-03-10 1985-02-05 Rolls-Royce Limited Diffusion apparatus
US4971768A (en) * 1987-11-23 1990-11-20 United Technologies Corporation Diffuser with convoluted vortex generator
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
US20020159886A1 (en) * 2001-04-27 2002-10-31 Mitsubishi Heavy Industries, Ltd. Axial-flow turbine having stepped portion formed in axial-flow turbine passage
US20110058939A1 (en) * 2009-06-02 2011-03-10 John Orosa Turbine exhaust diffuser with a gas jet producing a coanda effect flow control
US20110088379A1 (en) * 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
US8061983B1 (en) * 2008-06-20 2011-11-22 Florida Turbine Technoligies, Inc. Exhaust diffuser strut with stepped trailing edge
DE102010024091A1 (de) * 2010-06-17 2011-12-22 Esg Mbh Mischer und Strömungsleitgitter
EP2407638A1 (de) * 2010-07-15 2012-01-18 Siemens Aktiengesellschaft Abgasdiffusor für eine Gasturbine und Verfahren zum Betreiben einer Gasturbine mit einem solchen Abgasdiffusor
US8337153B2 (en) * 2009-06-02 2012-12-25 Siemens Energy, Inc. Turbine exhaust diffuser flow path with region of reduced total flow area
US20130019583A1 (en) * 2011-07-22 2013-01-24 Kin Pong Lo Diffuser with backward facing step having varying step height
US20130081731A1 (en) * 2011-10-03 2013-04-04 General Electric Company Exhaust gas diffuser
US20130091865A1 (en) * 2011-10-17 2013-04-18 General Electric Company Exhaust gas diffuser

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828603A (en) * 1948-04-09 1958-04-01 Westinghouse Electric Corp Afterburner for turbo jet engines and the like
DE1062066B (de) * 1952-10-15 1959-07-23 Nat Res Dev Einrichtung, insbesondere fuer Gasturbinen-anlagen zum Verbrennen von gasfoermigem oder verdampftem Brennstoff
CH484358A (de) * 1968-02-15 1970-01-15 Escher Wyss Ag Abströmgehäuse einer axialen Turbomaschine
US3625630A (en) * 1970-03-27 1971-12-07 Caterpillar Tractor Co Axial flow diffuser
JPS58127120U (ja) * 1982-02-23 1983-08-29 防衛庁技術研究本部長 高温ガス排気管の出口部構造
SU1657672A1 (ru) * 1986-07-28 1991-06-23 Производственное объединение "Невский завод" им.В.И.Ленина Диффузор турбомашины
CH672004A5 (ja) 1986-09-26 1989-10-13 Bbc Brown Boveri & Cie
US4923370A (en) * 1988-11-28 1990-05-08 Allied-Signal Inc. Radial turbine wheel
EP0491966B1 (de) 1990-12-10 1994-11-30 Asea Brown Boveri Ag Lagerung einer thermischen Turbomaschine
US5487266A (en) * 1992-05-05 1996-01-30 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
US5230656A (en) * 1992-08-05 1993-07-27 Carrier Corporation Mixer ejector flow distributor
EP1262637A1 (de) * 2001-05-31 2002-12-04 ALSTOM (Switzerland) Ltd Verfahren zum Betrieben eines Gasturbinenkraftwerks sowie Gasturbinenkraftwerk
JP4929217B2 (ja) * 2008-03-28 2012-05-09 三菱重工業株式会社 ガスタービンおよびガスタービンの中間軸ならびにガスタービン圧縮機の冷却方法
US8313286B2 (en) * 2008-07-28 2012-11-20 Siemens Energy, Inc. Diffuser apparatus in a turbomachine

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2579043A (en) * 1948-03-20 1951-12-18 Mcdonnell Aircraft Corp Exit area control for jet engines
US2637972A (en) * 1948-04-09 1953-05-12 Mcdonnell Aircraft Corp Afterburner for turbojet engines and the like
US4239453A (en) * 1975-12-27 1980-12-16 Klein, Schanzlin & Becker Ag. Means for reducing cavitation-induced erosion of centrifugal pumps
US4272955A (en) * 1979-06-28 1981-06-16 General Electric Company Diffusing means
US4497445A (en) * 1980-03-10 1985-02-05 Rolls-Royce Limited Diffusion apparatus
SU1000558A1 (ru) * 1981-04-03 1983-02-28 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Диффузор
US4971768A (en) * 1987-11-23 1990-11-20 United Technologies Corporation Diffuser with convoluted vortex generator
US5110560A (en) * 1987-11-23 1992-05-05 United Technologies Corporation Convoluted diffuser
US20020159886A1 (en) * 2001-04-27 2002-10-31 Mitsubishi Heavy Industries, Ltd. Axial-flow turbine having stepped portion formed in axial-flow turbine passage
US8061983B1 (en) * 2008-06-20 2011-11-22 Florida Turbine Technoligies, Inc. Exhaust diffuser strut with stepped trailing edge
US20110058939A1 (en) * 2009-06-02 2011-03-10 John Orosa Turbine exhaust diffuser with a gas jet producing a coanda effect flow control
US8337153B2 (en) * 2009-06-02 2012-12-25 Siemens Energy, Inc. Turbine exhaust diffuser flow path with region of reduced total flow area
US8647057B2 (en) * 2009-06-02 2014-02-11 Siemens Energy, Inc. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control
US20110088379A1 (en) * 2009-10-15 2011-04-21 General Electric Company Exhaust gas diffuser
DE102010024091A1 (de) * 2010-06-17 2011-12-22 Esg Mbh Mischer und Strömungsleitgitter
EP2407638A1 (de) * 2010-07-15 2012-01-18 Siemens Aktiengesellschaft Abgasdiffusor für eine Gasturbine und Verfahren zum Betreiben einer Gasturbine mit einem solchen Abgasdiffusor
US20130019583A1 (en) * 2011-07-22 2013-01-24 Kin Pong Lo Diffuser with backward facing step having varying step height
US20130081731A1 (en) * 2011-10-03 2013-04-04 General Electric Company Exhaust gas diffuser
US20130091865A1 (en) * 2011-10-17 2013-04-18 General Electric Company Exhaust gas diffuser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947283A1 (fr) 2014-05-23 2015-11-25 GE Energy Products France SNC Structure d'isolation thermo-acoustique pour échappement de machine tournante
US10072527B2 (en) 2014-05-23 2018-09-11 General Electric Company Thermal and acoustic insulation assembly and method for an exhaust duct of a rotary machine
US20170342862A1 (en) * 2016-05-31 2017-11-30 General Electric Company Exhaust Diffuser
US10563543B2 (en) * 2016-05-31 2020-02-18 General Electric Company Exhaust diffuser
US11291938B2 (en) 2016-12-16 2022-04-05 General Electric Technology Gmbh Coanda effect moisture separator system
US11506145B2 (en) * 2020-03-20 2022-11-22 Doosan Enerbility Co., Ltd Exhaust diffuser hub structure for reducing flow separation
EP4197621A1 (en) * 2021-12-17 2023-06-21 Pratt & Whitney Canada Corp. Diffuser nozzle for a gas turbine engine
US11840937B2 (en) 2021-12-17 2023-12-12 Pratt & Whitney Canada Corp. Diffuser nozzle for a gas turbine engine

Also Published As

Publication number Publication date
DE102011118735A1 (de) 2013-05-23
EP2594741A2 (en) 2013-05-22
RU2569015C2 (ru) 2015-11-20
JP2016180412A (ja) 2016-10-13
CN103122776A (zh) 2013-05-29
JP6188885B2 (ja) 2017-08-30
CN103122776B (zh) 2016-02-10
RU2012148919A (ru) 2014-05-27
JP2013108498A (ja) 2013-06-06
EP2594741A3 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
US20130129498A1 (en) Diffuser, in particular for an axial flow machine
JP6017755B2 (ja) 排気ガスディフューザ
US7827798B2 (en) System for ventilating a combustion chamber wall in a turbomachine
US8882443B2 (en) Turbomachine compressor with an air injection system
US10907503B2 (en) Compressors with integrated secondary air flow systems
US20150176494A1 (en) Supporting structure for a gas turbine engine
US9347328B2 (en) Compressed air plenum for a gas turbine engine
KR20140127291A (ko) 배기가스 확산기와 지지 핀들을 구비한 가스터빈
EP3063373B1 (en) Gas turbine diffuser strut including coanda flow injection
US10533458B2 (en) Turbine ventilation structure
CN110770423B (zh) 燃气涡轮发动机
US10605266B2 (en) Gas turbine engine
EP1933041B1 (en) Inlet plenum for gas turbine engine
RU2007127556A (ru) Система вентиляции стенки камеры сгорания, газотурбинный двигатель, содержащий такую систему и кольцевой отсек для указанной системы
JP2013531174A (ja) ガスタービンのための排出ガスディフューザ、及び当該排出ガスディフューザを具備するガスタービンの運転方法
CA2794035C (en) Axial compressor for fluid-flow machines
JP6188069B2 (ja) 圧縮機、及びガスタービン
US20170321606A1 (en) Airflow manipulation device for compressor
US9739201B2 (en) Wake reducing structure for a turbine system and method of reducing wake
JP2014185539A (ja) ガスタービン
EP3029273B1 (en) Inner diffuser case for a gas turbine engine
KR20190116516A (ko) 가스 터빈
US10975767B2 (en) Bleeding structure for gas turbine engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TECHNOLOGY LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOFMANN, WILLY HEINZ;BUSEKROS, ARMIN;SOMMER, THOMAS PETER;SIGNING DATES FROM 20121210 TO 20121211;REEL/FRAME:029958/0975

AS Assignment

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:ALSTOM TECHNOLOGY LTD;REEL/FRAME:038216/0193

Effective date: 20151102

AS Assignment

Owner name: ANSALDO ENERGIA SWITZERLAND AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC TECHNOLOGY GMBH;REEL/FRAME:041686/0884

Effective date: 20170109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION