US20130092186A1 - Removal of particles on back side of wafer - Google Patents
Removal of particles on back side of wafer Download PDFInfo
- Publication number
- US20130092186A1 US20130092186A1 US13/275,492 US201113275492A US2013092186A1 US 20130092186 A1 US20130092186 A1 US 20130092186A1 US 201113275492 A US201113275492 A US 201113275492A US 2013092186 A1 US2013092186 A1 US 2013092186A1
- Authority
- US
- United States
- Prior art keywords
- wafer
- brush
- contaminant particles
- semiconductor
- operable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002245 particle Substances 0.000 title claims abstract description 102
- 239000000356 contaminant Substances 0.000 claims abstract description 88
- 238000004140 cleaning Methods 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 51
- 239000004065 semiconductor Substances 0.000 claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 claims abstract description 43
- 230000007246 mechanism Effects 0.000 claims description 26
- 230000001680 brushing effect Effects 0.000 claims description 22
- 235000012431 wafers Nutrition 0.000 description 230
- 230000008569 process Effects 0.000 description 29
- 230000008901 benefit Effects 0.000 description 8
- 230000005611 electricity Effects 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- RSMUVYRMZCOLBH-UHFFFAOYSA-N metsulfuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)NC1=NC(C)=NC(OC)=N1 RSMUVYRMZCOLBH-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02082—Cleaning product to be cleaned
- H01L21/0209—Cleaning of wafer backside
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B1/00—Cleaning by methods involving the use of tools
- B08B1/10—Cleaning by methods involving the use of tools characterised by the type of cleaning tool
- B08B1/12—Brushes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B15/00—Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
- B08B15/04—Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area from a small area, e.g. a tool
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02082—Cleaning product to be cleaned
- H01L21/02087—Cleaning of wafer edges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67046—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/544—Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/5442—Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54426—Marks applied to semiconductor devices or parts for alignment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/544—Marks applied to semiconductor devices or parts
- H01L2223/54453—Marks applied to semiconductor devices or parts for use prior to dicing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- alignment marks may be used to ensure correct alignment between wafers as they are loaded into a semiconductor fabrication tool.
- a wafer leveling system may be used to ensure the wafer is flat during fabrication.
- particles generated by various fabrication processes may still cause alignment problems for conventional semiconductor fabrication processes, particularly if these particles are located on a back side of a wafer edge region. Consequently, the conventional semiconductor fabrication processes may produce failed wafers from time to time, thereby lowering yield and increasing fabrication costs.
- FIG. 1 is a flowchart illustrating a method for performing a wafer cleaning process according to various aspects of the present disclosure.
- FIGS. 2-3 are simplified diagrammatic cross-sectional side views of a semiconductor wafer according to various aspects of the present disclosure.
- FIG. 4 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure.
- FIG. 5 is a simplified block diagram of a wafer cleaning apparatus according to various aspects of the present disclosure.
- FIG. 6 is a simplified perspective view of a wafer cleaning apparatus according to various aspects of the present disclosure.
- FIG. 7 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure.
- first and second features are formed in direct contact
- additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
- present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
- the semiconductor wafer may be contain integrated circuit (IC) chips, systems on chip (SoC), or portion thereof, that may each include various passive and active microelectronic devices such as resistors, capacitors, inductors, diodes, metal-oxide semiconductor field effect transistors (MOSFET), complementary metal-oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), laterally diffused MOS (LDMOS) transistors, high power MOS transistors, or other types of transistors.
- IC integrated circuit
- SoC systems on chip
- LDMOS laterally diffused MOS
- the method 20 includes a block 30 in which a semiconductor wafer is loaded into a wafer handling system.
- the semiconductor wafer has a front side and a back side and one or more alignment marks.
- the wafer is loaded into a wafer pre-alignment unit of the wafer handling system.
- the method 20 includes a block 40 in which contaminant particles are removed from an edge region of the wafer from the back side.
- the one or more alignment marks are located in the edge region.
- the particles are removed by brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
- the method 20 includes a block 50 in which the removed contaminant particles are collected, and then the collected particles are discarded out of the wafer handling system.
- the contaminant particles are sucked into an exhaust pipe.
- the edge region of the wafer is shaped as an annular ring having a predetermined width. An outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
- FIG. 2 is a diagrammatic fragmentary cross-sectional side view of a portion of a semiconductor device during a fabrication stage.
- the semiconductor device includes a wafer 60 , which may also be referred to as a substrate.
- the wafer 60 may include a silicon material.
- the wafer 60 may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium; a suitable compound semiconductor, such as silicon carbide, indium arsenide, or indium phosphide; or a suitable alloy semiconductor, such as silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide.
- the wafer 60 includes various doped features for various microelectronic components, such as complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs), imaging sensors, memory cells, capacitive elements, inductive elements, and resistive elements.
- CMOSFETs complementary metal-oxide-semiconductor field-effect transistors
- a plurality of semiconductor fabrication processes 70 may be performed on the wafer 60 , for example to form the various components therein.
- these fabrication processes 70 may include various lithography process, deposition processes, etching processes, polishing, annealing processes, rinsing processes, implantation processes, etc.
- the performance of these fabrication processes 70 may result in the formation of a plurality of contaminant particles 80 .
- these contaminant particles 80 may include silicon dust, silicon oxide, or remnants of metal film, etc. As shown in FIG. 2 , these contaminant particles 80 may have various shapes or sizes and may be formed in various regions of the wafer 60 .
- the contaminant particles 80 may also be formed on either (or both) a front side (front surface) 90 of the wafer 60 or a back side 100 (back surface) of the wafer 60 , where the front side 90 is a side on which most fabrication processes (such as lithography or etching processes) are performed.
- the particles 80 are undesirable for a number of reasons. For example, they may cause delamination, incomplete film growth, leakage, misalignment, or otherwise degrade purity and integrity of the components of the wafer 60 . As such, it is desirable to remove these contaminant particles 80 from the wafer 60 .
- the contaminant particles 80 located on the front side 90 of the wafer 60 they are removed relatively easily using various available cleaning processes and cleaning tools. Therefore, the contaminant particles 80 formed on the front side 90 of the wafer 60 typically will not cause big problems.
- many semiconductor fabrication processes lack adequate tools or techniques to effectively remove contaminant particles 80 on the back side 100 of the wafer 60 . Hence, it is quite possible that the contaminant particles 80 on the back side 100 of the wafer 60 may remain for subsequent semiconductor fabrication processes. The presence of these back side contaminant particles may cause problems, particularly alignment-related problems.
- FIG. 3 is a simplified cross-sectional side view of the wafer 60 and a wafer-holding device 120 .
- the wafer 60 is located on the wafer-holding device 120 .
- the wafer holding-device may be a chuck in some embodiments, such as an electronic chuck.
- the wafer 60 Since one or more contaminant particle(s) 80 A formed on the back side 100 of the wafer 60 are located in between the wafer-holding device 120 and the wafer 60 , the wafer 60 is tilted with respect to the wafer-holding device 120 . In other words, the wafer 60 is unlevel due to the presence of the contaminant particles 80 A formed on the back side 100 of the wafer 60 . It is understood that the wafer 60 , the contaminant particle(s) 80 A, and the wafer-holding device 120 are not drawn in scale, and that the degree of tilting of the wafer 60 may be exaggerated in FIG. 3 .
- the tilting of the wafer 60 may cause fabrication problems. Therefore, a leveling system (not illustrated) may be used to resolve for the wafer tilting issue.
- the leveling system does not necessarily remove any of the contaminant particles 80 A from the back side 100 of the wafer 60 . Rather, the leveling system may have sensors that are operable to detect the presence of the particles 80 A on the back side 100 of the wafer 60 and adjust the wafer focus accordingly. Hence, through the detection of the particles 80 A, the leveling system can determine how much the wafer 60 is out of focus as a result and consequently generate compensation signals to compensate for the tilting of the wafer 60 . Stated differently, though the wafer 60 may still be somewhat tilted, the leveling system will allow the wafer 60 to be correctly-focused through appropriate amount of compensation adjustment, thereby minimizing harmful effects of wafer tilting.
- leveling systems may have a limited particle detection range. For most existing leveling systems, they may function effectively with respect to the detection and subsequent compensation of contaminant particles 80 A near a center (or inner) region of the wafer 60 . But the existing leveling systems may not be able to detect the contaminant particles formed near an edge region of the wafer 60 , and therefore will not be able to provide accurate compensation to account for these edge region contaminant particles.
- each scan field 140 is a region of the wafer 60 that corresponds to an exposure region as the wafer undergoes a photolithography process. It is understood that each scan field 140 may include a plurality of wafer dies. The scan fields 140 are arranged into a plurality of arrays or grids. During the photolithography process, the wafer 60 may be “stepped through” one field at a time.
- the wafer 60 is loaded into a wafer handling system.
- the wafer 60 should be aligned with previously-loaded wafers as well as subsequently-loaded wafers for reasons of uniformity and accuracy, assuming these wafers are directed toward the same product. Stated differently, each layer of the wafer 60 should be sufficiently aligned with a corresponding layer of all other wafers loaded into the wafer handling system.
- This type of wafer-to-wafer alignment may also be referred to as wafer overlay.
- a plurality of alignment marks may be implemented on the wafer 60 . For the sake of providing an illustration, alignment marks 200 A and 200 B are illustrated herein.
- the alignment marks 200 A- 200 B are formed on the front side of the wafer 60 .
- the alignment marks 200 A- 200 B may be relatively small.
- the sizes of the alignment marks 200 A- 200 B may each be a few hundred nanometers (nm) or smaller.
- the alignment marks 200 A- 200 B may also have any one of a plurality of suitable shapes.
- the shapes may include squares, rectangles, or other polygons.
- the shape, geometry, and relative size of the alignment marks 200 A- 200 B illustrated in FIG. 4 do not necessarily represent or limit the shapes, geometries, and sizes of actual alignment marks on a real world wafer.
- the alignment marks 200 A- 200 B are located on opposite corners of the wafer 60 . Each alignment mark 200 may be partially overlapping with one of the scan fields 140 .
- the alignment marks 200 A- 200 B are also located near the edge of the wafer 60 .
- the alignment marks 200 A- 200 B are located away from a center region of the wafer 60 , such that they are “out of the reach” of the leveling system for wafer tilt compensation discussed above.
- the alignment marks 200 A- 200 B are located within (or overlaps with) the alignment marks 200 A- 200 B—such as in the example situation shown in FIG. 4 —the presence of these contaminant particles 200 A- 200 B may not be detected by the leveling system.
- the disposition of the contaminant particles 80 B on the alignment marks 200 A- 200 B may result in substantial alignment problems for the wafer 60 .
- the presence of the back side contaminant particles 80 B on the alignment marks 200 A- 200 B may cause the leveling system to produce incorrect compensation signals, thereby over-compensating or under-compensating the amount of wafer tilt.
- the wafer may be out of focus during subsequent fabrication stages. Wafer failures may therefore occur.
- back side contaminant particles 80 may still interfere with proper alignment between wafers as long as they are out of a detection range of the leveling system.
- contaminant particles 80 disposed near the edge of the back side 100 of the wafer 60 may potentially contribute to misalignment between wafers and as such are undesirable for at least this reason alone.
- FIG. 5 an example simplified block diagram of a back side contaminant particle cleaning apparatus 250 is illustrated according various aspects of the present disclosure.
- the back side contaminant particle cleaning apparatus 250 is implemented inside a wafer pre-alignment unit 260 of a wafer handling system 270 .
- the contaminant particle cleaning apparatus 250 includes a mechanical structure 300 , a brushing mechanism 310 , and an exhaust component 320 .
- the mechanical structure 300 may include a securing mechanism that attaches the contaminant particle cleaning apparatus 250 to the wafer pre-alignment unit 260 .
- the mechanical structure may also include mechanisms that can receive a wafer (e.g., a wafer-holding device) and positionally secure the wafer so that the wafer is steady while being cleaned.
- the mechanical structure 300 may include screws, rods, fasteners, crutches, clamps, chucks, or other suitable mechanical devices.
- the brushing mechanism 310 may include an anti-electrostatic brush in various embodiments.
- Such anti-electrostatic brush is operable to brush contaminant particles off of the wafer surface without generating static electricity. This may be advantageous in at least two respects. In one respect, the absence of static electricity reduces the likelihood of causing electrostatic discharge (ESD) damages to the wafer. Stated differently, had static electricity been generated by the brushing of the wafer, the various electronic components on the wafer may suffer from ESD-related damages, as many electronic components are sensitive to ESD. Therefore, since the anti-electrostatic brush does not generate static electricity, ESD damages to the wafer may be avoided during the operation of the wafer cleaning apparatus 250 .
- ESD electrostatic discharge
- the presence of static electricity generally causes small contaminant particles to be attracted to (or stick to) the wafer surface.
- a static-electricity-generating brush been used to brush the wafer surface.
- the anti-electrostatic brush may remove the contaminant particles from the wafer surface with relative ease, since substantially no static electricity is produced by the anti-electrostatic brush during the brushing of the wafer.
- the brushing mechanism 310 may also include a movable member that is operable to raise or lower the anti-electrostatic brush.
- This movable member may also be referred to as a brush up/down component.
- the movable member is mechanically attached to the anti-electrostatic brush and may be electrically controlled to move the anti-electrostatic brush at programmed times.
- the anti-electrostatic brush may be moved up and down by a predetermined distance. In certain embodiments, the predetermined distance may be in a range between 0.5 millimeters (mm) and 1 mm.
- the brushing mechanism 310 may also include a spring that can provide a springing tension to the anti-electrostatic brush, thereby applying a force for the wafer brushing.
- the exhaust component 320 is operable to evacuate the contaminant particles once they are brushed off of the wafer surface.
- the exhaust component includes a hose or a pipe, through which the contaminant particles may exit the contaminant particle cleaning apparatus 250 (and also the wafer handling system 270 ).
- the hose may be coupled to the anti-electrostatic brush so as to collect the brushed-off contaminant particles.
- the exhaust component 320 may further include a vacuum generator, or alternatively be coupled to a vacuum generator. The vacuum generator can create a pressurized environment inside (and/or near) the exhaust component 320 so as to facilitate the removal of the contaminant particles.
- the exhaust component 320 may include a fan that can create a suction force to “suck” the loosened contaminant particles into the hose or pipe.
- the exhaust component 320 may have an air flow rate in a range between 2 liters/minute to about 10 liters/minute. It is understood that the exhaust component 320 may also be used to remove moisture from inside the contaminant particle cleaning apparatus 250 .
- the exhaust component 320 is activated simultaneously with the brushing mechanism 310 .
- the brushing mechanism 310 brushes off the contaminant particles from the back side of the wafer surface
- the exhaust component 320 sucks away the brushed-off (or loosened) contaminant particles.
- the exhaust component 320 and the brushing mechanism 310 may be activated at slightly different time slots.
- FIG. 5 shows the mechanical structure 300 , the brushing mechanism 310 , and the exhaust component 320 as separate devices, they may be partially or wholly integrated in some embodiments.
- the brushing mechanism 310 and the exhaust component 320 may be integrated as a single structure in certain embodiments.
- the contaminant particle cleaning apparatus 250 may further include other suitable devices or components, but they are not described or illustrated herein for the sake of simplicity.
- the wafer handling system 270 may further contain a controller 340 .
- the controller 340 may include one or more computer processors and/or memory components and may store and execute software program instructions.
- the controller 340 may be operable to govern the functioning of the various components of the wafer handling system 270 , for instance the operation of the wafer pre-alignment unit 260 .
- the controller 340 may be programmed to activate the contaminant particle cleaning apparatus 250 so that the brushing mechanism 310 begins brushing a wafer at a predetermined time.
- the controller 340 may also contain one or more appropriate sensors, such as voltage sensors, current sensors, vibration sensors, temperature sensors, levelness sensors, moisture sensors, position sensors, accelerometer sensors, etc. These sensors may be utilized to guide or assist the operation of the controller 340 . In some embodiments, one or more of these sensors may also be implemented outside the controller 340 but communicatively coupled to the controller 340 .
- FIG. 5 shows the controller 340 as a part of the wafer handling system 270 , it is understood that the controller 340 or a similar controlling mechanism may be implemented outside the wafer handling system 270 . Alternatively, the controller 340 may also be implemented inside (or as a part of) the wafer pre-alignment unit 260 in some embodiments, or even inside (or as a part of) the contaminant particle cleaning apparatus 250 in other embodiments. In other words, the location of the controller 340 is not critical and may change from embodiment to embodiment.
- FIG. 6 is a diagrammatic three-dimension perspective view of a portion of a contaminant particle cleaning apparatus 250 A that is an embodiment of the contaminant particle cleaning apparatus 250 of FIG. 5 .
- the contaminant particle cleaning apparatus 250 A is operable to hold the wafer 60 .
- the back side 100 of the wafer 60 is facing toward the rest of the contaminant particle cleaning apparatus 250 A.
- the contaminant particle cleaning apparatus 250 A includes a brush crutch mechanism 350 as part of the mechanical structure 300 of FIG. 5 .
- the brush crutch mechanism 350 is coupled to a brush module 360 , which has both the brushing mechanism 310 and the exhaust component 320 of FIG. 5 integrated therein.
- the brush crutch mechanism 350 may assist the raising and the lowering of the brush module 360 relative to the wafer 60 .
- the brush module 360 is operable to brush off contaminant particles from the back side 100 of the wafer 60 .
- the brush module 360 is used to brush an edge region of the wafer 60 , since contaminant particles located near the edge region causes significantly more problems than contaminant particles located near the center of the wafer 60 .
- the brush module 360 may employ an anti-electrostatic brush to remove the contaminant particles without producing static electricity. Meanwhile, as the contaminant particles are brushed off the wafer 60 , they are collected by the exhaust component located on the brush module 360 . These contaminant particles may then be discarded later.
- the wafer cleaning apparatus 250 A is implemented within a wafer pre-alignment unit, which is a part of a wafer handling system. It is also understood that an electronic controller (also not illustrated) may be used to govern the operation of the wafer cleaning apparatus 250 A. In some embodiments, a human operator may replace or supplement the functions of the electronic controller. Also, the shapes and configurations of the various components of the wafer cleaning apparatus 250 A illustrated herein are purely examples, and they may be altered in other embodiments for account for designs concerns and manufacturing requirements.
- FIG. 7 is a simplified diagrammatic top view of the wafer 60 provided to illustrate the operation of the wafer cleaning apparatus 250 .
- the wafer 60 includes alignment marks 200 A and 200 B located on opposite corners of the wafer 60 .
- Contaminant particles 80 B may be located within or partially overlapping with the alignment marks 200 A- 200 B.
- the alignment marks 200 A- 200 B and the contaminant particles 80 B are positioned within a wafer cleaning region 380 .
- the wafer cleaning region 380 represents the effective region on the back side of the wafer 60 that can be cleaned by the wafer cleaning apparatus 250 .
- the wafer cleaning region 380 is the cleaning path of the anti-electrostatic brush as the wafer 60 is spun.
- the wafer cleaning region 380 has an annular ring shape in the illustrated embodiment. Stated differently, the annular ring shaped wafer cleaning region 380 may be viewed as the difference between two concentric circles having a radius R 1 (inner circle) and R 2 (outer circle), respectively.
- the circle having the radius R 1 extends to the inner edge of the wafer cleaning region 380
- the circle having the radius R 2 extends to the outer edge of the wafer cleaning region 380 .
- the radius R 1 is in a range from about 70 mm to about 90 mm
- the radius R 2 is in a range from about 90 mm to about 110 mm.
- R 1 and R 2 may vary depending on the size of the wafer.
- the wafer cleaning region 380 has a width 390 .
- the width 390 represents the length of the brush used to clean the back side of the wafer.
- the width 390 may be carefully chosen so that it is neither too big nor too small. If the width 390 is too big, then the corresponding brushing mechanism (and hence the wafer cleaning apparatus) may not be easily installed or implemented within the wafer pre-alignment unit. In other words, there may be practical space-related constraints on the upper limit of the width 390 .
- the width 390 is carefully configured after taking various tradeoffs into consideration. In some embodiments, the width 390 is in a range from about 15 mm to about 25 mm.
- the wafer cleaning region 380 is also spaced apart from an outer rim 395 of the wafer 60 by a distance 400 .
- the distance 400 is sufficiently great to ensure that the brush of the wafer cleaning apparatus will not accidently brush the outer rim of the wafer 60 . This is because the brushing of the outer rim 395 (whether accidental or intentional) of the wafer 60 may result in scratching of the front side of the wafer 60 as well, which can damage semiconductor devices formed on the front side of the wafer 60 .
- the distance 400 is intentionally reserved to prevent scratching of the front side of the wafer 60 .
- the distance 400 is in a range from about 2 mm to about 3 mm.
- the configuration of the wafer cleaning apparatus herein allows contaminant particles 80 B to be effectively removed so that they are no longer located within the edge region of the wafer 60 or interfering with the alignment marks 200 A- 200 B.
- these back side contaminant particles 80 B may be brushed off the back side of the wafer 60 using a brushing mechanism and then be sucked away by an exhaust component. Consequently, the leveling system will not produce incorrect compensation signals to adjust the focus of the wafer 60 . Therefore, wafer yield and quality may be improved.
- fabrication apparatuses and techniques according to various aspects of the present disclosure offer advantages over existing fabrication apparatuses and techniques. It is understood, however, that not all advantages are necessarily discussed herein for reasons of simplicity, and other embodiments of the present disclosure may offer additional advantages, and that no particular advantage is required for all embodiments.
- the embodiments disclosed herein allow the contaminant particles located on the back side of a wafer to be cleaned, particularly the contaminant particles located near the edge of the wafer.
- the contaminant particles located on the back side of the wafer tend to cause alignment problems, especially if these particles are overlapping with alignment marks.
- Existing fabrication systems often lack effective tools and methods to remove these contaminant particles disposed near the edge on the back side of the wafer.
- a versatile and compact wafer cleaning apparatus may be used to effectively and efficiently remove the particles formed on the back side of the wafer, particularly the particles near the edge of the wafer. As such, wafer alignment may be significantly improved.
- the implementation of the wafer cleaning apparatus disclosed herein is simple and can be integrated within current fabrication tools.
- the wafer cleaning apparatus can easily be installed within the wafer pre-alignment unit that is currently available and widely used in semiconductor fabrication.
- the wafer cleaning apparatus consumes no additional space, nor does it require numerous other costly components.
- the implementation of the wafer cleaning apparatus is simple, inexpensive, and compatible with existing fabrication processes. Further, once the wafer cleaning apparatus is installed, it can remain installed for a long period of time without needing servicing.
- the apparatus includes: a mechanical structure that is operable to secure a position of a semiconductor wafer, the wafer having a front surface and a back surface; and a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface, wherein the predetermined region of the wafer at least partially overlaps with one or more alignment marks.
- the apparatus is a component of a wafer handling system.
- the apparatus is installed within a wafer pre-alignment unit of the wafer handling system.
- the wafer cleaning device includes a brush operable to brush contaminant particles off of the predetermined region of the wafer on the back surface without generating static electricity.
- the wafer cleaning device includes an exhaust component operable to collect and dispose of wafer particles brushed off by the brush.
- the predetermined region of the wafer is located near an edge of the wafer.
- the predetermined region of the wafer has an annular ring shape.
- the predetermined region of the wafer is spaced apart from an outer rim of the wafer by a predetermined distance.
- the system includes: a wafer handling system that includes a wafer pre-alignment unit; and a wafer cleaning mechanism installed within the wafer pre-alignment unit, the wafer cleaning mechanism being operable to clean an edge region of a semiconductor wafer from a back side of the wafer, wherein the wafer cleaning mechanism includes: a brush operable to brush contaminant particles off of the edge region of the back side of the wafer; and an exhaust component operable to gather the brushed-off contaminant particles.
- the wafer has one or more alignment marks located in the edge region of the wafer.
- the brush is operable to brush the wafer as the wafer is spun, thereby creating a cleaning path on the wafer, and wherein the one or more alignment overlaps with the cleaning path.
- the cleaning path is shaped like an annular ring having a ring width substantially equal to a length of the brush.
- the cleaning path is separated from an outer rim of the wafer by a predetermined distance.
- the brush includes an anti-electrostatic brush.
- the exhaust component includes a pipe and a vacuum generator.
- Yet another one of the broader forms of the present disclosure involves a method of fabricating a semiconductor device.
- the method includes: loading a semiconductor wafer into a wafer handling system, the semiconductor wafer having a front side and a back side and one or more alignment marks; removing contaminant particles from an edge region of the wafer from the back side, wherein the one or more alignment marks are located in the edge region; and collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
- the loading the wafer includes loading the wafer into a wafer pre-alignment unit of the wafer handling system.
- the removing includes brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
- the collecting includes sucking the removed contaminant particles into a pipe.
- the edge region of the wafer is shaped as an annular ring having a predetermined width, and wherein an outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
The present disclosure provides an apparatus for fabricating a semiconductor device. The apparatus includes a mechanical structure that is operable to secure a position of a semiconductor wafer. The wafer has a front surface and a back surface. The apparatus includes a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface. The predetermined region of the wafer at least partially overlaps with one or more alignment marks. The present disclosure also provides a method of fabricating a semiconductor device. The method includes loading a semiconductor wafer into a wafer handling system. The method includes removing contaminant particles from an edge region of the wafer from the back side. The alignment marks are located in the edge region. The method includes collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
Description
- The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. However, these advances have increased the complexity of processing and manufacturing ICs and, for these advances to be realized, similar developments in IC processing and manufacturing are needed. In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs.
- As the scaling down process continues to advance, alignment and overlay issues become more important due to the ever-decreasing device sizes. A small alignment or overlay error during fabrication may lead to the failure of a wafer. In conventional semiconductor fabrication processes, various devices and techniques have been utilized to minimize misalignment during fabrication. For example, alignment marks may be used to ensure correct alignment between wafers as they are loaded into a semiconductor fabrication tool. As another example, a wafer leveling system may be used to ensure the wafer is flat during fabrication. However, particles generated by various fabrication processes may still cause alignment problems for conventional semiconductor fabrication processes, particularly if these particles are located on a back side of a wafer edge region. Consequently, the conventional semiconductor fabrication processes may produce failed wafers from time to time, thereby lowering yield and increasing fabrication costs.
- Therefore, while existing semiconductor fabrication processes have been generally adequate for their intended purposes, they are not entirely satisfactory in every aspect.
- Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
-
FIG. 1 is a flowchart illustrating a method for performing a wafer cleaning process according to various aspects of the present disclosure. -
FIGS. 2-3 are simplified diagrammatic cross-sectional side views of a semiconductor wafer according to various aspects of the present disclosure. -
FIG. 4 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure. -
FIG. 5 is a simplified block diagram of a wafer cleaning apparatus according to various aspects of the present disclosure. -
FIG. 6 is a simplified perspective view of a wafer cleaning apparatus according to various aspects of the present disclosure. -
FIG. 7 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure. - It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
- Illustrated in
FIG. 1 is a flowchart of amethod 20 for cleaning a semiconductor wafer. The semiconductor wafer may be contain integrated circuit (IC) chips, systems on chip (SoC), or portion thereof, that may each include various passive and active microelectronic devices such as resistors, capacitors, inductors, diodes, metal-oxide semiconductor field effect transistors (MOSFET), complementary metal-oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), laterally diffused MOS (LDMOS) transistors, high power MOS transistors, or other types of transistors. - Referring to
FIG. 1 , themethod 20 includes ablock 30 in which a semiconductor wafer is loaded into a wafer handling system. The semiconductor wafer has a front side and a back side and one or more alignment marks. In some embodiments, the wafer is loaded into a wafer pre-alignment unit of the wafer handling system. Themethod 20 includes ablock 40 in which contaminant particles are removed from an edge region of the wafer from the back side. The one or more alignment marks are located in the edge region. In some embodiments, the particles are removed by brushing the edge region using an anti-electrostatic brush while the wafer is being spun. Themethod 20 includes ablock 50 in which the removed contaminant particles are collected, and then the collected particles are discarded out of the wafer handling system. In some embodiments, the contaminant particles are sucked into an exhaust pipe. In certain embodiments, the edge region of the wafer is shaped as an annular ring having a predetermined width. An outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance. It should be noted that additional processes may be provided before, during, and after themethod 20 ofFIG. 1 , and that some other processes may only be briefly described herein. -
FIG. 2 is a diagrammatic fragmentary cross-sectional side view of a portion of a semiconductor device during a fabrication stage. Referring toFIG. 2 , the semiconductor device includes awafer 60, which may also be referred to as a substrate. In some embodiments, thewafer 60 may include a silicon material. In other embodiments, thewafer 60 may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium; a suitable compound semiconductor, such as silicon carbide, indium arsenide, or indium phosphide; or a suitable alloy semiconductor, such as silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide. In various embodiments, thewafer 60 includes various doped features for various microelectronic components, such as complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs), imaging sensors, memory cells, capacitive elements, inductive elements, and resistive elements. - During the course of semiconductor fabrication, a plurality of
semiconductor fabrication processes 70 may be performed on thewafer 60, for example to form the various components therein. As examples, thesefabrication processes 70 may include various lithography process, deposition processes, etching processes, polishing, annealing processes, rinsing processes, implantation processes, etc. The performance of thesefabrication processes 70 may result in the formation of a plurality ofcontaminant particles 80. As examples, thesecontaminant particles 80 may include silicon dust, silicon oxide, or remnants of metal film, etc. As shown inFIG. 2 , thesecontaminant particles 80 may have various shapes or sizes and may be formed in various regions of thewafer 60. Thecontaminant particles 80 may also be formed on either (or both) a front side (front surface) 90 of thewafer 60 or a back side 100 (back surface) of thewafer 60, where thefront side 90 is a side on which most fabrication processes (such as lithography or etching processes) are performed. - The
particles 80 are undesirable for a number of reasons. For example, they may cause delamination, incomplete film growth, leakage, misalignment, or otherwise degrade purity and integrity of the components of thewafer 60. As such, it is desirable to remove thesecontaminant particles 80 from thewafer 60. For thecontaminant particles 80 located on thefront side 90 of thewafer 60, they are removed relatively easily using various available cleaning processes and cleaning tools. Therefore, thecontaminant particles 80 formed on thefront side 90 of thewafer 60 typically will not cause big problems. On the other hand, many semiconductor fabrication processes lack adequate tools or techniques to effectively removecontaminant particles 80 on theback side 100 of thewafer 60. Hence, it is quite possible that thecontaminant particles 80 on theback side 100 of thewafer 60 may remain for subsequent semiconductor fabrication processes. The presence of these back side contaminant particles may cause problems, particularly alignment-related problems. - In an effort to overcome this problem, various tools and techniques may be used to substantially mitigate the problems caused by
contaminant particles 80 formed on theback side 100. For example, one problem caused by the presence of thecontaminant particles 80 on theback side 100 of thewafer 60 is that thewafer 60 may be tilted. This is illustrated inFIG. 3 , which is a simplified cross-sectional side view of thewafer 60 and a wafer-holdingdevice 120. As shown inFIG. 3 , thewafer 60 is located on the wafer-holdingdevice 120. The wafer holding-device may be a chuck in some embodiments, such as an electronic chuck. Since one or more contaminant particle(s) 80A formed on theback side 100 of thewafer 60 are located in between the wafer-holdingdevice 120 and thewafer 60, thewafer 60 is tilted with respect to the wafer-holdingdevice 120. In other words, thewafer 60 is unlevel due to the presence of thecontaminant particles 80A formed on theback side 100 of thewafer 60. It is understood that thewafer 60, the contaminant particle(s) 80A, and the wafer-holdingdevice 120 are not drawn in scale, and that the degree of tilting of thewafer 60 may be exaggerated inFIG. 3 . - The tilting of the
wafer 60, if left unaddressed, may cause fabrication problems. Therefore, a leveling system (not illustrated) may be used to resolve for the wafer tilting issue. The leveling system does not necessarily remove any of thecontaminant particles 80A from theback side 100 of thewafer 60. Rather, the leveling system may have sensors that are operable to detect the presence of theparticles 80A on theback side 100 of thewafer 60 and adjust the wafer focus accordingly. Hence, through the detection of theparticles 80A, the leveling system can determine how much thewafer 60 is out of focus as a result and consequently generate compensation signals to compensate for the tilting of thewafer 60. Stated differently, though thewafer 60 may still be somewhat tilted, the leveling system will allow thewafer 60 to be correctly-focused through appropriate amount of compensation adjustment, thereby minimizing harmful effects of wafer tilting. - One drawback of existing leveling systems, however, is that they may have a limited particle detection range. For most existing leveling systems, they may function effectively with respect to the detection and subsequent compensation of
contaminant particles 80A near a center (or inner) region of thewafer 60. But the existing leveling systems may not be able to detect the contaminant particles formed near an edge region of thewafer 60, and therefore will not be able to provide accurate compensation to account for these edge region contaminant particles. - To illustrate the above point, refer to
FIG. 4 , a simplified top view of thewafer 60 is provided. Thewafer 60 may be virtually divided into a plurality of scan fields 140. Eachscan field 140 is a region of thewafer 60 that corresponds to an exposure region as the wafer undergoes a photolithography process. It is understood that eachscan field 140 may include a plurality of wafer dies. The scan fields 140 are arranged into a plurality of arrays or grids. During the photolithography process, thewafer 60 may be “stepped through” one field at a time. - As part of the fabrication process, the
wafer 60 is loaded into a wafer handling system. Thewafer 60 should be aligned with previously-loaded wafers as well as subsequently-loaded wafers for reasons of uniformity and accuracy, assuming these wafers are directed toward the same product. Stated differently, each layer of thewafer 60 should be sufficiently aligned with a corresponding layer of all other wafers loaded into the wafer handling system. This type of wafer-to-wafer alignment may also be referred to as wafer overlay. In order to achieve sufficient overlay, a plurality of alignment marks may be implemented on thewafer 60. For the sake of providing an illustration, alignment marks 200A and 200B are illustrated herein. - According to various embodiments, the alignment marks 200A-200B are formed on the front side of the
wafer 60. The alignment marks 200A-200B may be relatively small. For example, the sizes of the alignment marks 200A-200B may each be a few hundred nanometers (nm) or smaller. The alignment marks 200A-200B may also have any one of a plurality of suitable shapes. For example, the shapes may include squares, rectangles, or other polygons. In that regard, the shape, geometry, and relative size of the alignment marks 200A-200B illustrated inFIG. 4 do not necessarily represent or limit the shapes, geometries, and sizes of actual alignment marks on a real world wafer. - In some embodiments, the alignment marks 200A-200B are located on opposite corners of the
wafer 60. Each alignment mark 200 may be partially overlapping with one of the scan fields 140. The alignment marks 200A-200B are also located near the edge of thewafer 60. Alternatively stated, the alignment marks 200A-200B are located away from a center region of thewafer 60, such that they are “out of the reach” of the leveling system for wafer tilt compensation discussed above. Thus, if one or more backside contaminant particles 80B are located within (or overlaps with) the alignment marks 200A-200B—such as in the example situation shown in FIG. 4—the presence of thesecontaminant particles 200A-200B may not be detected by the leveling system. Consequently, the disposition of thecontaminant particles 80B on the alignment marks 200A-200B may result in substantial alignment problems for thewafer 60. For instance, the presence of the backside contaminant particles 80B on the alignment marks 200A-200B may cause the leveling system to produce incorrect compensation signals, thereby over-compensating or under-compensating the amount of wafer tilt. Hence, the wafer may be out of focus during subsequent fabrication stages. Wafer failures may therefore occur. - Note that even if the back
side contaminant particles 80 are not located exactly on the alignment marks 200A-200B, they may still interfere with proper alignment between wafers as long as they are out of a detection range of the leveling system. Alternatively stated,contaminant particles 80 disposed near the edge of theback side 100 of thewafer 60 may potentially contribute to misalignment between wafers and as such are undesirable for at least this reason alone. - To overcome the issue caused by back side contaminant particles described above, a wafer back side cleaning apparatus is implemented according to various aspects of the present disclosure. Referring now to
FIG. 5 , an example simplified block diagram of a back side contaminantparticle cleaning apparatus 250 is illustrated according various aspects of the present disclosure. The back side contaminantparticle cleaning apparatus 250 is implemented inside awafer pre-alignment unit 260 of awafer handling system 270. - The contaminant
particle cleaning apparatus 250 includes amechanical structure 300, abrushing mechanism 310, and anexhaust component 320. Themechanical structure 300 may include a securing mechanism that attaches the contaminantparticle cleaning apparatus 250 to thewafer pre-alignment unit 260. The mechanical structure may also include mechanisms that can receive a wafer (e.g., a wafer-holding device) and positionally secure the wafer so that the wafer is steady while being cleaned. In various embodiments, themechanical structure 300 may include screws, rods, fasteners, crutches, clamps, chucks, or other suitable mechanical devices. - The
brushing mechanism 310 may include an anti-electrostatic brush in various embodiments. Such anti-electrostatic brush is operable to brush contaminant particles off of the wafer surface without generating static electricity. This may be advantageous in at least two respects. In one respect, the absence of static electricity reduces the likelihood of causing electrostatic discharge (ESD) damages to the wafer. Stated differently, had static electricity been generated by the brushing of the wafer, the various electronic components on the wafer may suffer from ESD-related damages, as many electronic components are sensitive to ESD. Therefore, since the anti-electrostatic brush does not generate static electricity, ESD damages to the wafer may be avoided during the operation of thewafer cleaning apparatus 250. - In another respect, the presence of static electricity generally causes small contaminant particles to be attracted to (or stick to) the wafer surface. Thus, it would have been difficult to remove the contaminant particles from the wafer surface had a static-electricity-generating brush been used to brush the wafer surface. In comparison, the anti-electrostatic brush may remove the contaminant particles from the wafer surface with relative ease, since substantially no static electricity is produced by the anti-electrostatic brush during the brushing of the wafer.
- The
brushing mechanism 310 may also include a movable member that is operable to raise or lower the anti-electrostatic brush. This movable member may also be referred to as a brush up/down component. In some embodiments, the movable member is mechanically attached to the anti-electrostatic brush and may be electrically controlled to move the anti-electrostatic brush at programmed times. The anti-electrostatic brush may be moved up and down by a predetermined distance. In certain embodiments, the predetermined distance may be in a range between 0.5 millimeters (mm) and 1 mm. Thebrushing mechanism 310 may also include a spring that can provide a springing tension to the anti-electrostatic brush, thereby applying a force for the wafer brushing. - The
exhaust component 320 is operable to evacuate the contaminant particles once they are brushed off of the wafer surface. In some embodiments, the exhaust component includes a hose or a pipe, through which the contaminant particles may exit the contaminant particle cleaning apparatus 250 (and also the wafer handling system 270). The hose may be coupled to the anti-electrostatic brush so as to collect the brushed-off contaminant particles. Theexhaust component 320 may further include a vacuum generator, or alternatively be coupled to a vacuum generator. The vacuum generator can create a pressurized environment inside (and/or near) theexhaust component 320 so as to facilitate the removal of the contaminant particles. For example, theexhaust component 320 may include a fan that can create a suction force to “suck” the loosened contaminant particles into the hose or pipe. In certain embodiments, theexhaust component 320 may have an air flow rate in a range between 2 liters/minute to about 10 liters/minute. It is understood that theexhaust component 320 may also be used to remove moisture from inside the contaminantparticle cleaning apparatus 250. - In some embodiments, the
exhaust component 320 is activated simultaneously with thebrushing mechanism 310. In other words, as thebrushing mechanism 310 brushes off the contaminant particles from the back side of the wafer surface, theexhaust component 320 sucks away the brushed-off (or loosened) contaminant particles. In alterative embodiments, it is also contemplated that theexhaust component 320 and thebrushing mechanism 310 may be activated at slightly different time slots. - Although
FIG. 5 shows themechanical structure 300, thebrushing mechanism 310, and theexhaust component 320 as separate devices, they may be partially or wholly integrated in some embodiments. For example, thebrushing mechanism 310 and theexhaust component 320 may be integrated as a single structure in certain embodiments. In addition, the contaminantparticle cleaning apparatus 250 may further include other suitable devices or components, but they are not described or illustrated herein for the sake of simplicity. - The
wafer handling system 270 may further contain acontroller 340. Thecontroller 340 may include one or more computer processors and/or memory components and may store and execute software program instructions. Thecontroller 340 may be operable to govern the functioning of the various components of thewafer handling system 270, for instance the operation of thewafer pre-alignment unit 260. As an example, thecontroller 340 may be programmed to activate the contaminantparticle cleaning apparatus 250 so that thebrushing mechanism 310 begins brushing a wafer at a predetermined time. It is understood that thecontroller 340 may also contain one or more appropriate sensors, such as voltage sensors, current sensors, vibration sensors, temperature sensors, levelness sensors, moisture sensors, position sensors, accelerometer sensors, etc. These sensors may be utilized to guide or assist the operation of thecontroller 340. In some embodiments, one or more of these sensors may also be implemented outside thecontroller 340 but communicatively coupled to thecontroller 340. - Though the embodiment in
FIG. 5 shows thecontroller 340 as a part of thewafer handling system 270, it is understood that thecontroller 340 or a similar controlling mechanism may be implemented outside thewafer handling system 270. Alternatively, thecontroller 340 may also be implemented inside (or as a part of) thewafer pre-alignment unit 260 in some embodiments, or even inside (or as a part of) the contaminantparticle cleaning apparatus 250 in other embodiments. In other words, the location of thecontroller 340 is not critical and may change from embodiment to embodiment. -
FIG. 6 is a diagrammatic three-dimension perspective view of a portion of a contaminantparticle cleaning apparatus 250A that is an embodiment of the contaminantparticle cleaning apparatus 250 ofFIG. 5 . The contaminantparticle cleaning apparatus 250A is operable to hold thewafer 60. Theback side 100 of thewafer 60 is facing toward the rest of the contaminantparticle cleaning apparatus 250A. The contaminantparticle cleaning apparatus 250A includes abrush crutch mechanism 350 as part of themechanical structure 300 ofFIG. 5 . Thebrush crutch mechanism 350 is coupled to abrush module 360, which has both thebrushing mechanism 310 and theexhaust component 320 ofFIG. 5 integrated therein. In some embodiments, thebrush crutch mechanism 350 may assist the raising and the lowering of thebrush module 360 relative to thewafer 60. - As the
wafer 60 spins, thebrush module 360 is operable to brush off contaminant particles from theback side 100 of thewafer 60. In various embodiments, thebrush module 360 is used to brush an edge region of thewafer 60, since contaminant particles located near the edge region causes significantly more problems than contaminant particles located near the center of thewafer 60. As discussed above with reference toFIG. 5 , thebrush module 360 may employ an anti-electrostatic brush to remove the contaminant particles without producing static electricity. Meanwhile, as the contaminant particles are brushed off thewafer 60, they are collected by the exhaust component located on thebrush module 360. These contaminant particles may then be discarded later. - Although not illustrated for reasons of simplicity and clarity, it is understood that the
wafer cleaning apparatus 250A is implemented within a wafer pre-alignment unit, which is a part of a wafer handling system. It is also understood that an electronic controller (also not illustrated) may be used to govern the operation of thewafer cleaning apparatus 250A. In some embodiments, a human operator may replace or supplement the functions of the electronic controller. Also, the shapes and configurations of the various components of thewafer cleaning apparatus 250A illustrated herein are purely examples, and they may be altered in other embodiments for account for designs concerns and manufacturing requirements. -
FIG. 7 is a simplified diagrammatic top view of thewafer 60 provided to illustrate the operation of thewafer cleaning apparatus 250. Thewafer 60 includes alignment marks 200A and 200B located on opposite corners of thewafer 60.Contaminant particles 80B may be located within or partially overlapping with the alignment marks 200A-200B. - The alignment marks 200A-200B and the
contaminant particles 80B are positioned within awafer cleaning region 380. Thewafer cleaning region 380 represents the effective region on the back side of thewafer 60 that can be cleaned by thewafer cleaning apparatus 250. In some embodiments, thewafer cleaning region 380 is the cleaning path of the anti-electrostatic brush as thewafer 60 is spun. Thus, thewafer cleaning region 380 has an annular ring shape in the illustrated embodiment. Stated differently, the annular ring shapedwafer cleaning region 380 may be viewed as the difference between two concentric circles having a radius R1 (inner circle) and R2 (outer circle), respectively. The circle having the radius R1 extends to the inner edge of thewafer cleaning region 380, and the circle having the radius R2 extends to the outer edge of thewafer cleaning region 380. In some embodiments, the radius R1 is in a range from about 70 mm to about 90 mm, and the radius R2 is in a range from about 90 mm to about 110 mm. Of course, it is understood that R1 and R2 may vary depending on the size of the wafer. - The
wafer cleaning region 380 has awidth 390. Thewidth 390 represents the length of the brush used to clean the back side of the wafer. Thewidth 390 is the difference between the radii R2 and R1 in the illustrated embodiment, meaningwidth 390=R2−R1. Thewidth 390 may be carefully chosen so that it is neither too big nor too small. If thewidth 390 is too big, then the corresponding brushing mechanism (and hence the wafer cleaning apparatus) may not be easily installed or implemented within the wafer pre-alignment unit. In other words, there may be practical space-related constraints on the upper limit of thewidth 390. On the other hand, if thewidth 390 is too small, then it may not be able to effectively clean thewafer 60, since it may miss somecontaminant particles 80 located near the edge of thewafer 60, where thecontaminant particles 80 are also undetectable by the leveling system. In other words, thesecontaminant particles 80 may not be effectively removed by the wafer cleaning apparatus and thus may still cause alignment problems. As such, the width 390 (i.e., length of the brush) of the wafer cleaning region is carefully configured after taking various tradeoffs into consideration. In some embodiments, thewidth 390 is in a range from about 15 mm to about 25 mm. - Note that the
wafer cleaning region 380 is also spaced apart from anouter rim 395 of thewafer 60 by adistance 400. Thedistance 400 is sufficiently great to ensure that the brush of the wafer cleaning apparatus will not accidently brush the outer rim of thewafer 60. This is because the brushing of the outer rim 395 (whether accidental or intentional) of thewafer 60 may result in scratching of the front side of thewafer 60 as well, which can damage semiconductor devices formed on the front side of thewafer 60. Thus, thedistance 400 is intentionally reserved to prevent scratching of the front side of thewafer 60. In some embodiments, thedistance 400 is in a range from about 2 mm to about 3 mm. - As illustrated in
FIG. 7 , the configuration of the wafer cleaning apparatus herein allowscontaminant particles 80B to be effectively removed so that they are no longer located within the edge region of thewafer 60 or interfering with the alignment marks 200A-200B. In accordance with various aspects of the present disclosure, these backside contaminant particles 80B may be brushed off the back side of thewafer 60 using a brushing mechanism and then be sucked away by an exhaust component. Consequently, the leveling system will not produce incorrect compensation signals to adjust the focus of thewafer 60. Therefore, wafer yield and quality may be improved. - It is understood that the implementations of the various devices disclosed herein are merely examples and are not intended to be limiting. Other implementations may be used in alternative embodiments as long as they are consistent with the spirit and the scope of the present disclosure. For example, although a brushing mechanism or technique is used to clean the back side of the wafer surface, other techniques such as air purge, vapor clean, or ultrasonic shock may be used instead in alternative embodiments.
- The fabrication apparatuses and techniques according to various aspects of the present disclosure offer advantages over existing fabrication apparatuses and techniques. It is understood, however, that not all advantages are necessarily discussed herein for reasons of simplicity, and other embodiments of the present disclosure may offer additional advantages, and that no particular advantage is required for all embodiments.
- One advantage is that the embodiments disclosed herein allow the contaminant particles located on the back side of a wafer to be cleaned, particularly the contaminant particles located near the edge of the wafer. As discussed above, the contaminant particles located on the back side of the wafer tend to cause alignment problems, especially if these particles are overlapping with alignment marks. Existing fabrication systems often lack effective tools and methods to remove these contaminant particles disposed near the edge on the back side of the wafer. According to various aspects of the present disclosure, however, a versatile and compact wafer cleaning apparatus may be used to effectively and efficiently remove the particles formed on the back side of the wafer, particularly the particles near the edge of the wafer. As such, wafer alignment may be significantly improved.
- Another advantage is that the implementation of the wafer cleaning apparatus disclosed herein is simple and can be integrated within current fabrication tools. For example, the wafer cleaning apparatus can easily be installed within the wafer pre-alignment unit that is currently available and widely used in semiconductor fabrication. Hence, the wafer cleaning apparatus consumes no additional space, nor does it require numerous other costly components. As such, the implementation of the wafer cleaning apparatus is simple, inexpensive, and compatible with existing fabrication processes. Further, once the wafer cleaning apparatus is installed, it can remain installed for a long period of time without needing servicing.
- One of the broader forms of the present disclosure involves an apparatus for fabricating a semiconductor device. The apparatus includes: a mechanical structure that is operable to secure a position of a semiconductor wafer, the wafer having a front surface and a back surface; and a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface, wherein the predetermined region of the wafer at least partially overlaps with one or more alignment marks.
- In some embodiments, the apparatus is a component of a wafer handling system.
- In some embodiments, the apparatus is installed within a wafer pre-alignment unit of the wafer handling system.
- In some embodiments, the wafer cleaning device includes a brush operable to brush contaminant particles off of the predetermined region of the wafer on the back surface without generating static electricity.
- In some embodiments, the wafer cleaning device includes an exhaust component operable to collect and dispose of wafer particles brushed off by the brush.
- In some embodiments, the predetermined region of the wafer is located near an edge of the wafer.
- In some embodiments, the predetermined region of the wafer has an annular ring shape.
- In some embodiments, the predetermined region of the wafer is spaced apart from an outer rim of the wafer by a predetermined distance.
- Another one of the broader forms of the present disclosure involves a semiconductor fabrication system. The system includes: a wafer handling system that includes a wafer pre-alignment unit; and a wafer cleaning mechanism installed within the wafer pre-alignment unit, the wafer cleaning mechanism being operable to clean an edge region of a semiconductor wafer from a back side of the wafer, wherein the wafer cleaning mechanism includes: a brush operable to brush contaminant particles off of the edge region of the back side of the wafer; and an exhaust component operable to gather the brushed-off contaminant particles.
- In some embodiments, the wafer has one or more alignment marks located in the edge region of the wafer.
- In some embodiments, the brush is operable to brush the wafer as the wafer is spun, thereby creating a cleaning path on the wafer, and wherein the one or more alignment overlaps with the cleaning path.
- In some embodiments, the cleaning path is shaped like an annular ring having a ring width substantially equal to a length of the brush.
- In some embodiments, the cleaning path is separated from an outer rim of the wafer by a predetermined distance.
- In some embodiments, the brush includes an anti-electrostatic brush.
- In some embodiments, the exhaust component includes a pipe and a vacuum generator.
- Yet another one of the broader forms of the present disclosure involves a method of fabricating a semiconductor device. The method includes: loading a semiconductor wafer into a wafer handling system, the semiconductor wafer having a front side and a back side and one or more alignment marks; removing contaminant particles from an edge region of the wafer from the back side, wherein the one or more alignment marks are located in the edge region; and collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
- In some embodiments, the loading the wafer includes loading the wafer into a wafer pre-alignment unit of the wafer handling system.
- In some embodiments, the removing includes brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
- In some embodiments, the collecting includes sucking the removed contaminant particles into a pipe.
- In some embodiments, the edge region of the wafer is shaped as an annular ring having a predetermined width, and wherein an outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
- The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
Claims (20)
1. An apparatus for fabricating a semiconductor device, comprising:
a mechanical structure that is operable to secure a position of a semiconductor wafer, the wafer having a front surface and a back surface; and
a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface, wherein the predetermined region of the wafer at least partially overlaps with one or more alignment marks.
2. The apparatus of claim 1 , wherein the apparatus is a component of a wafer handling system.
3. The apparatus of claim 2 , wherein the apparatus is installed within a wafer pre-alignment unit of the wafer handling system.
4. The apparatus of claim 1 , wherein the wafer cleaning device includes a brush operable to brush contaminant particles off of the predetermined region of the wafer on the back surface.
5. The apparatus of claim 4 , wherein the wafer cleaning device includes an exhaust component operable to collect and dispose of wafer particles brushed off by the brush.
6. The apparatus of claim 1 , wherein the predetermined region of the wafer is located near an edge of the wafer.
7. The apparatus of claim 1 , wherein the predetermined region of the wafer has an annular ring shape.
8. The apparatus of claim 1 , wherein the predetermined region of the wafer is spaced apart from an outer rim of the wafer by a predetermined distance.
9. A semiconductor fabrication system, comprising:
a wafer handling system that includes a wafer pre-alignment unit; and
a wafer cleaning mechanism installed within the wafer pre-alignment unit, the wafer cleaning mechanism being operable to clean an edge region of a semiconductor wafer from a back side of the wafer, wherein the wafer cleaning mechanism includes:
a brush operable to brush contaminant particles off of the edge region of the back side of the wafer; and
an exhaust component operable to gather the brushed-off contaminant particles.
10. The semiconductor fabrication system of claim 9 , wherein the wafer has one or more alignment marks located in the edge region of the wafer.
11. The semiconductor fabrication system of claim 10 , wherein the brush is operable to brush the wafer as the wafer is spun, thereby creating a cleaning path on the wafer, and wherein the one or more alignment overlaps with the cleaning path.
12. The semiconductor fabrication system of claim 11 , wherein the cleaning path is shaped like an annular ring having a ring width substantially equal to a length of the brush.
13. The semiconductor fabrication system of claim 11 , wherein the cleaning path is separated from an outer rim of the wafer by a predetermined distance.
14. The semiconductor fabrication system of claim 9 , wherein the brush includes an anti-electrostatic brush.
15. The semiconductor fabrication system of claim 9 , wherein the exhaust component includes a pipe and a vacuum generator.
16. A method of fabricating a semiconductor device, comprising:
loading a semiconductor wafer into a wafer handling system, the semiconductor wafer having a front side and a back side and one or more alignment marks;
removing contaminant particles from an edge region of the wafer from the back side, wherein the one or more alignment marks are located in the edge region; and
collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
17. The method of claim 16 , wherein the loading the wafer includes loading the wafer into a wafer pre-alignment unit of the wafer handling system.
18. The method of claim 16 , wherein the removing includes brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
19. The method of claim 16 , wherein the collecting includes sucking the removed contaminant particles into a pipe.
20. The method of claim 16 , wherein the edge region of the wafer is shaped as an annular ring having a predetermined width, and wherein an outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/275,492 US20130092186A1 (en) | 2011-10-18 | 2011-10-18 | Removal of particles on back side of wafer |
CN201210107221.XA CN103065934B (en) | 2011-10-18 | 2012-04-12 | Remove the microgranule on wafer back side |
US15/295,731 US10115581B2 (en) | 2011-10-18 | 2016-10-17 | Removal of particles on back side of wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/275,492 US20130092186A1 (en) | 2011-10-18 | 2011-10-18 | Removal of particles on back side of wafer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/295,731 Division US10115581B2 (en) | 2011-10-18 | 2016-10-17 | Removal of particles on back side of wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130092186A1 true US20130092186A1 (en) | 2013-04-18 |
Family
ID=48085144
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/275,492 Abandoned US20130092186A1 (en) | 2011-10-18 | 2011-10-18 | Removal of particles on back side of wafer |
US15/295,731 Active US10115581B2 (en) | 2011-10-18 | 2016-10-17 | Removal of particles on back side of wafer |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/295,731 Active US10115581B2 (en) | 2011-10-18 | 2016-10-17 | Removal of particles on back side of wafer |
Country Status (2)
Country | Link |
---|---|
US (2) | US20130092186A1 (en) |
CN (1) | CN103065934B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9184042B1 (en) * | 2014-08-14 | 2015-11-10 | International Business Machines Corporation | Wafer backside particle mitigation |
US9318347B2 (en) | 2014-08-14 | 2016-04-19 | International Business Machines Corporation | Wafer backside particle mitigation |
US10115581B2 (en) | 2011-10-18 | 2018-10-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Removal of particles on back side of wafer |
CN110720136A (en) * | 2017-05-30 | 2020-01-21 | 伊利诺斯工具制品有限公司 | Method and apparatus for wireless communication with brushes |
CN114188244A (en) * | 2021-11-17 | 2022-03-15 | 苏州康沃斯智能装备有限公司 | Automatic code printing and inserting machine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018219509A1 (en) * | 2017-06-01 | 2018-12-06 | Asml Netherlands B.V. | Particle removal apparatus and associated system |
CN111029273B (en) * | 2018-10-10 | 2022-04-05 | 沈阳芯源微电子设备股份有限公司 | Low contact wafer upset system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6059891A (en) * | 1997-07-23 | 2000-05-09 | Tokyo Electron Limited | Apparatus and method for washing substrate |
US20030184720A1 (en) * | 2002-01-18 | 2003-10-02 | Asml Netherlands, B.V. | Lithographic apparatus, apparatus cleaning method, device manufacturing method and device manufactured thereby |
US20060060213A1 (en) * | 2004-09-21 | 2006-03-23 | Walter Huber | Manufacture of ultra-clean surfaces by selective |
US20070159615A1 (en) * | 2006-01-12 | 2007-07-12 | Nikon Corporation | Object transfer apparatus, exposure apparatus, object temperature control apparatus, object transfer method, and microdevice manufacturing method |
US20080163899A1 (en) * | 2006-12-20 | 2008-07-10 | Yasushi Takiguchi | Substrate cleaning apparatus, substrate cleaning method, and computer-readable storage medium |
US20090113656A1 (en) * | 2006-05-05 | 2009-05-07 | Lam Research Corporation | Apparatus for isolated bevel edge clean and method for using the same |
US20090202951A1 (en) * | 2008-02-12 | 2009-08-13 | Tokyo Electron Limited | Cleaning apparatus and cleaning method, coater/developer and coating and developing method, and computer readable storing medium |
US20120014689A1 (en) * | 2010-07-14 | 2012-01-19 | Tokyo Electron Limited | Substrate cleaning apparatus, coating and developing apparatus having the same and substrate cleaning method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5475889A (en) * | 1994-07-15 | 1995-12-19 | Ontrak Systems, Inc. | Automatically adjustable brush assembly for cleaning semiconductor wafers |
KR100213992B1 (en) * | 1995-05-12 | 1999-08-02 | 히가시 데쓰로 | Cleaning apparatus |
AU3488699A (en) * | 1998-04-10 | 1999-11-01 | Silicon Genesis Corporation | Surface treatment process and system |
US6446296B1 (en) * | 2000-03-06 | 2002-09-10 | Rite Track Equipment Services, Inc. | Substrate cleaning apparatus with brush force control and method |
JP5385537B2 (en) * | 2008-02-26 | 2014-01-08 | 大日本スクリーン製造株式会社 | Substrate processing equipment |
JP2012028697A (en) * | 2010-07-27 | 2012-02-09 | Toshiba Corp | Device and method for cleaning |
US20130092186A1 (en) | 2011-10-18 | 2013-04-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Removal of particles on back side of wafer |
-
2011
- 2011-10-18 US US13/275,492 patent/US20130092186A1/en not_active Abandoned
-
2012
- 2012-04-12 CN CN201210107221.XA patent/CN103065934B/en active Active
-
2016
- 2016-10-17 US US15/295,731 patent/US10115581B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6059891A (en) * | 1997-07-23 | 2000-05-09 | Tokyo Electron Limited | Apparatus and method for washing substrate |
US20030184720A1 (en) * | 2002-01-18 | 2003-10-02 | Asml Netherlands, B.V. | Lithographic apparatus, apparatus cleaning method, device manufacturing method and device manufactured thereby |
US20060060213A1 (en) * | 2004-09-21 | 2006-03-23 | Walter Huber | Manufacture of ultra-clean surfaces by selective |
US20070159615A1 (en) * | 2006-01-12 | 2007-07-12 | Nikon Corporation | Object transfer apparatus, exposure apparatus, object temperature control apparatus, object transfer method, and microdevice manufacturing method |
US20090113656A1 (en) * | 2006-05-05 | 2009-05-07 | Lam Research Corporation | Apparatus for isolated bevel edge clean and method for using the same |
US20080163899A1 (en) * | 2006-12-20 | 2008-07-10 | Yasushi Takiguchi | Substrate cleaning apparatus, substrate cleaning method, and computer-readable storage medium |
US20090202951A1 (en) * | 2008-02-12 | 2009-08-13 | Tokyo Electron Limited | Cleaning apparatus and cleaning method, coater/developer and coating and developing method, and computer readable storing medium |
US20120014689A1 (en) * | 2010-07-14 | 2012-01-19 | Tokyo Electron Limited | Substrate cleaning apparatus, coating and developing apparatus having the same and substrate cleaning method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10115581B2 (en) | 2011-10-18 | 2018-10-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Removal of particles on back side of wafer |
US9184042B1 (en) * | 2014-08-14 | 2015-11-10 | International Business Machines Corporation | Wafer backside particle mitigation |
US9318347B2 (en) | 2014-08-14 | 2016-04-19 | International Business Machines Corporation | Wafer backside particle mitigation |
CN110720136A (en) * | 2017-05-30 | 2020-01-21 | 伊利诺斯工具制品有限公司 | Method and apparatus for wireless communication with brushes |
CN114188244A (en) * | 2021-11-17 | 2022-03-15 | 苏州康沃斯智能装备有限公司 | Automatic code printing and inserting machine |
Also Published As
Publication number | Publication date |
---|---|
CN103065934A (en) | 2013-04-24 |
US20170040155A1 (en) | 2017-02-09 |
CN103065934B (en) | 2016-06-22 |
US10115581B2 (en) | 2018-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10115581B2 (en) | Removal of particles on back side of wafer | |
TWI637432B (en) | Foreign matter removing device, foreign matter removing method, peeling device, foreign matter detecting method, and foreign matter detecting device | |
US10522369B2 (en) | Method and system for cleaning wafer and scrubber | |
KR102466078B1 (en) | Chuck table mechanism | |
US9330898B2 (en) | Separation system, separation method, program and computer storage medium | |
US20140190634A1 (en) | Method and Apparatus for Drying a Wafer | |
TW201839834A (en) | Cutting device has two cutting units to implement positioning at efficiency and low costs | |
JP6504890B2 (en) | Foreign matter removing device, foreign matter removing method and stripping device | |
KR102551970B1 (en) | Setup method of cutting apparatus | |
US8206198B2 (en) | Wafer grinding machine and wafer grinding method | |
KR101399561B1 (en) | A cleaning nozzle for advanced lithography process | |
JP6450633B2 (en) | Foreign matter detection method, foreign matter detection device and peeling device | |
JP6474275B2 (en) | Processing equipment | |
JP6758508B2 (en) | Substrate processing method and substrate processing system | |
CN114378962A (en) | Cutting device | |
JP6893732B2 (en) | Manufacturing method of rectangular substrate support tray | |
CN110750033A (en) | Wafer carrying platform of photoetching machine | |
JP2011071289A (en) | Method of processing wafer | |
KR102039037B1 (en) | Laser processing apparatus and method for manufacturing solar cell using the same | |
US20210331211A1 (en) | Method of manufacturing semiconductor wafer and cleaning scrubber | |
KR100462565B1 (en) | Vacuum Chuck of Semiconductor Manufacturing Equipment | |
US12080544B2 (en) | Stacked wafer structure and method for forming the same | |
US20230040192A1 (en) | Wet clean spray process chamber for substrates | |
KR102439827B1 (en) | Laser processing apparatus and method for manufacturing solar cell using the same | |
TW202427657A (en) | Processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, HSUN-PENG;CHANG, HSIN-KUO;CHUNG, HAN-CHIH;AND OTHERS;SIGNING DATES FROM 20111024 TO 20111026;REEL/FRAME:027457/0787 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |