US20130092186A1 - Removal of particles on back side of wafer - Google Patents

Removal of particles on back side of wafer Download PDF

Info

Publication number
US20130092186A1
US20130092186A1 US13/275,492 US201113275492A US2013092186A1 US 20130092186 A1 US20130092186 A1 US 20130092186A1 US 201113275492 A US201113275492 A US 201113275492A US 2013092186 A1 US2013092186 A1 US 2013092186A1
Authority
US
United States
Prior art keywords
wafer
brush
contaminant particles
semiconductor
operable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/275,492
Inventor
Hsun-Peng Lin
Hsin-Kuo Chang
Han-Chih Chung
Yueh-Chih Wang
Chi-Jen Hsieh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority to US13/275,492 priority Critical patent/US20130092186A1/en
Assigned to TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. reassignment TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, HSIN-KUO, CHUNG, HAN-CHIH, HSIEH, CHI-JEN, WANG, YUEH-CHIH, LIN, HSUN-PENG
Priority to CN201210107221.XA priority patent/CN103065934B/en
Publication of US20130092186A1 publication Critical patent/US20130092186A1/en
Priority to US15/295,731 priority patent/US10115581B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/0209Cleaning of wafer backside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • B08B1/10Cleaning by methods involving the use of tools characterised by the type of cleaning tool
    • B08B1/12Brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/04Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area from a small area, e.g. a tool
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/02087Cleaning of wafer edges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67046Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly scrubbing means, e.g. brushes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • alignment marks may be used to ensure correct alignment between wafers as they are loaded into a semiconductor fabrication tool.
  • a wafer leveling system may be used to ensure the wafer is flat during fabrication.
  • particles generated by various fabrication processes may still cause alignment problems for conventional semiconductor fabrication processes, particularly if these particles are located on a back side of a wafer edge region. Consequently, the conventional semiconductor fabrication processes may produce failed wafers from time to time, thereby lowering yield and increasing fabrication costs.
  • FIG. 1 is a flowchart illustrating a method for performing a wafer cleaning process according to various aspects of the present disclosure.
  • FIGS. 2-3 are simplified diagrammatic cross-sectional side views of a semiconductor wafer according to various aspects of the present disclosure.
  • FIG. 4 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure.
  • FIG. 5 is a simplified block diagram of a wafer cleaning apparatus according to various aspects of the present disclosure.
  • FIG. 6 is a simplified perspective view of a wafer cleaning apparatus according to various aspects of the present disclosure.
  • FIG. 7 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure.
  • first and second features are formed in direct contact
  • additional features may be formed between the first and second features, such that the first and second features may not be in direct contact
  • present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • the semiconductor wafer may be contain integrated circuit (IC) chips, systems on chip (SoC), or portion thereof, that may each include various passive and active microelectronic devices such as resistors, capacitors, inductors, diodes, metal-oxide semiconductor field effect transistors (MOSFET), complementary metal-oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), laterally diffused MOS (LDMOS) transistors, high power MOS transistors, or other types of transistors.
  • IC integrated circuit
  • SoC systems on chip
  • LDMOS laterally diffused MOS
  • the method 20 includes a block 30 in which a semiconductor wafer is loaded into a wafer handling system.
  • the semiconductor wafer has a front side and a back side and one or more alignment marks.
  • the wafer is loaded into a wafer pre-alignment unit of the wafer handling system.
  • the method 20 includes a block 40 in which contaminant particles are removed from an edge region of the wafer from the back side.
  • the one or more alignment marks are located in the edge region.
  • the particles are removed by brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
  • the method 20 includes a block 50 in which the removed contaminant particles are collected, and then the collected particles are discarded out of the wafer handling system.
  • the contaminant particles are sucked into an exhaust pipe.
  • the edge region of the wafer is shaped as an annular ring having a predetermined width. An outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
  • FIG. 2 is a diagrammatic fragmentary cross-sectional side view of a portion of a semiconductor device during a fabrication stage.
  • the semiconductor device includes a wafer 60 , which may also be referred to as a substrate.
  • the wafer 60 may include a silicon material.
  • the wafer 60 may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium; a suitable compound semiconductor, such as silicon carbide, indium arsenide, or indium phosphide; or a suitable alloy semiconductor, such as silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide.
  • the wafer 60 includes various doped features for various microelectronic components, such as complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs), imaging sensors, memory cells, capacitive elements, inductive elements, and resistive elements.
  • CMOSFETs complementary metal-oxide-semiconductor field-effect transistors
  • a plurality of semiconductor fabrication processes 70 may be performed on the wafer 60 , for example to form the various components therein.
  • these fabrication processes 70 may include various lithography process, deposition processes, etching processes, polishing, annealing processes, rinsing processes, implantation processes, etc.
  • the performance of these fabrication processes 70 may result in the formation of a plurality of contaminant particles 80 .
  • these contaminant particles 80 may include silicon dust, silicon oxide, or remnants of metal film, etc. As shown in FIG. 2 , these contaminant particles 80 may have various shapes or sizes and may be formed in various regions of the wafer 60 .
  • the contaminant particles 80 may also be formed on either (or both) a front side (front surface) 90 of the wafer 60 or a back side 100 (back surface) of the wafer 60 , where the front side 90 is a side on which most fabrication processes (such as lithography or etching processes) are performed.
  • the particles 80 are undesirable for a number of reasons. For example, they may cause delamination, incomplete film growth, leakage, misalignment, or otherwise degrade purity and integrity of the components of the wafer 60 . As such, it is desirable to remove these contaminant particles 80 from the wafer 60 .
  • the contaminant particles 80 located on the front side 90 of the wafer 60 they are removed relatively easily using various available cleaning processes and cleaning tools. Therefore, the contaminant particles 80 formed on the front side 90 of the wafer 60 typically will not cause big problems.
  • many semiconductor fabrication processes lack adequate tools or techniques to effectively remove contaminant particles 80 on the back side 100 of the wafer 60 . Hence, it is quite possible that the contaminant particles 80 on the back side 100 of the wafer 60 may remain for subsequent semiconductor fabrication processes. The presence of these back side contaminant particles may cause problems, particularly alignment-related problems.
  • FIG. 3 is a simplified cross-sectional side view of the wafer 60 and a wafer-holding device 120 .
  • the wafer 60 is located on the wafer-holding device 120 .
  • the wafer holding-device may be a chuck in some embodiments, such as an electronic chuck.
  • the wafer 60 Since one or more contaminant particle(s) 80 A formed on the back side 100 of the wafer 60 are located in between the wafer-holding device 120 and the wafer 60 , the wafer 60 is tilted with respect to the wafer-holding device 120 . In other words, the wafer 60 is unlevel due to the presence of the contaminant particles 80 A formed on the back side 100 of the wafer 60 . It is understood that the wafer 60 , the contaminant particle(s) 80 A, and the wafer-holding device 120 are not drawn in scale, and that the degree of tilting of the wafer 60 may be exaggerated in FIG. 3 .
  • the tilting of the wafer 60 may cause fabrication problems. Therefore, a leveling system (not illustrated) may be used to resolve for the wafer tilting issue.
  • the leveling system does not necessarily remove any of the contaminant particles 80 A from the back side 100 of the wafer 60 . Rather, the leveling system may have sensors that are operable to detect the presence of the particles 80 A on the back side 100 of the wafer 60 and adjust the wafer focus accordingly. Hence, through the detection of the particles 80 A, the leveling system can determine how much the wafer 60 is out of focus as a result and consequently generate compensation signals to compensate for the tilting of the wafer 60 . Stated differently, though the wafer 60 may still be somewhat tilted, the leveling system will allow the wafer 60 to be correctly-focused through appropriate amount of compensation adjustment, thereby minimizing harmful effects of wafer tilting.
  • leveling systems may have a limited particle detection range. For most existing leveling systems, they may function effectively with respect to the detection and subsequent compensation of contaminant particles 80 A near a center (or inner) region of the wafer 60 . But the existing leveling systems may not be able to detect the contaminant particles formed near an edge region of the wafer 60 , and therefore will not be able to provide accurate compensation to account for these edge region contaminant particles.
  • each scan field 140 is a region of the wafer 60 that corresponds to an exposure region as the wafer undergoes a photolithography process. It is understood that each scan field 140 may include a plurality of wafer dies. The scan fields 140 are arranged into a plurality of arrays or grids. During the photolithography process, the wafer 60 may be “stepped through” one field at a time.
  • the wafer 60 is loaded into a wafer handling system.
  • the wafer 60 should be aligned with previously-loaded wafers as well as subsequently-loaded wafers for reasons of uniformity and accuracy, assuming these wafers are directed toward the same product. Stated differently, each layer of the wafer 60 should be sufficiently aligned with a corresponding layer of all other wafers loaded into the wafer handling system.
  • This type of wafer-to-wafer alignment may also be referred to as wafer overlay.
  • a plurality of alignment marks may be implemented on the wafer 60 . For the sake of providing an illustration, alignment marks 200 A and 200 B are illustrated herein.
  • the alignment marks 200 A- 200 B are formed on the front side of the wafer 60 .
  • the alignment marks 200 A- 200 B may be relatively small.
  • the sizes of the alignment marks 200 A- 200 B may each be a few hundred nanometers (nm) or smaller.
  • the alignment marks 200 A- 200 B may also have any one of a plurality of suitable shapes.
  • the shapes may include squares, rectangles, or other polygons.
  • the shape, geometry, and relative size of the alignment marks 200 A- 200 B illustrated in FIG. 4 do not necessarily represent or limit the shapes, geometries, and sizes of actual alignment marks on a real world wafer.
  • the alignment marks 200 A- 200 B are located on opposite corners of the wafer 60 . Each alignment mark 200 may be partially overlapping with one of the scan fields 140 .
  • the alignment marks 200 A- 200 B are also located near the edge of the wafer 60 .
  • the alignment marks 200 A- 200 B are located away from a center region of the wafer 60 , such that they are “out of the reach” of the leveling system for wafer tilt compensation discussed above.
  • the alignment marks 200 A- 200 B are located within (or overlaps with) the alignment marks 200 A- 200 B—such as in the example situation shown in FIG. 4 —the presence of these contaminant particles 200 A- 200 B may not be detected by the leveling system.
  • the disposition of the contaminant particles 80 B on the alignment marks 200 A- 200 B may result in substantial alignment problems for the wafer 60 .
  • the presence of the back side contaminant particles 80 B on the alignment marks 200 A- 200 B may cause the leveling system to produce incorrect compensation signals, thereby over-compensating or under-compensating the amount of wafer tilt.
  • the wafer may be out of focus during subsequent fabrication stages. Wafer failures may therefore occur.
  • back side contaminant particles 80 may still interfere with proper alignment between wafers as long as they are out of a detection range of the leveling system.
  • contaminant particles 80 disposed near the edge of the back side 100 of the wafer 60 may potentially contribute to misalignment between wafers and as such are undesirable for at least this reason alone.
  • FIG. 5 an example simplified block diagram of a back side contaminant particle cleaning apparatus 250 is illustrated according various aspects of the present disclosure.
  • the back side contaminant particle cleaning apparatus 250 is implemented inside a wafer pre-alignment unit 260 of a wafer handling system 270 .
  • the contaminant particle cleaning apparatus 250 includes a mechanical structure 300 , a brushing mechanism 310 , and an exhaust component 320 .
  • the mechanical structure 300 may include a securing mechanism that attaches the contaminant particle cleaning apparatus 250 to the wafer pre-alignment unit 260 .
  • the mechanical structure may also include mechanisms that can receive a wafer (e.g., a wafer-holding device) and positionally secure the wafer so that the wafer is steady while being cleaned.
  • the mechanical structure 300 may include screws, rods, fasteners, crutches, clamps, chucks, or other suitable mechanical devices.
  • the brushing mechanism 310 may include an anti-electrostatic brush in various embodiments.
  • Such anti-electrostatic brush is operable to brush contaminant particles off of the wafer surface without generating static electricity. This may be advantageous in at least two respects. In one respect, the absence of static electricity reduces the likelihood of causing electrostatic discharge (ESD) damages to the wafer. Stated differently, had static electricity been generated by the brushing of the wafer, the various electronic components on the wafer may suffer from ESD-related damages, as many electronic components are sensitive to ESD. Therefore, since the anti-electrostatic brush does not generate static electricity, ESD damages to the wafer may be avoided during the operation of the wafer cleaning apparatus 250 .
  • ESD electrostatic discharge
  • the presence of static electricity generally causes small contaminant particles to be attracted to (or stick to) the wafer surface.
  • a static-electricity-generating brush been used to brush the wafer surface.
  • the anti-electrostatic brush may remove the contaminant particles from the wafer surface with relative ease, since substantially no static electricity is produced by the anti-electrostatic brush during the brushing of the wafer.
  • the brushing mechanism 310 may also include a movable member that is operable to raise or lower the anti-electrostatic brush.
  • This movable member may also be referred to as a brush up/down component.
  • the movable member is mechanically attached to the anti-electrostatic brush and may be electrically controlled to move the anti-electrostatic brush at programmed times.
  • the anti-electrostatic brush may be moved up and down by a predetermined distance. In certain embodiments, the predetermined distance may be in a range between 0.5 millimeters (mm) and 1 mm.
  • the brushing mechanism 310 may also include a spring that can provide a springing tension to the anti-electrostatic brush, thereby applying a force for the wafer brushing.
  • the exhaust component 320 is operable to evacuate the contaminant particles once they are brushed off of the wafer surface.
  • the exhaust component includes a hose or a pipe, through which the contaminant particles may exit the contaminant particle cleaning apparatus 250 (and also the wafer handling system 270 ).
  • the hose may be coupled to the anti-electrostatic brush so as to collect the brushed-off contaminant particles.
  • the exhaust component 320 may further include a vacuum generator, or alternatively be coupled to a vacuum generator. The vacuum generator can create a pressurized environment inside (and/or near) the exhaust component 320 so as to facilitate the removal of the contaminant particles.
  • the exhaust component 320 may include a fan that can create a suction force to “suck” the loosened contaminant particles into the hose or pipe.
  • the exhaust component 320 may have an air flow rate in a range between 2 liters/minute to about 10 liters/minute. It is understood that the exhaust component 320 may also be used to remove moisture from inside the contaminant particle cleaning apparatus 250 .
  • the exhaust component 320 is activated simultaneously with the brushing mechanism 310 .
  • the brushing mechanism 310 brushes off the contaminant particles from the back side of the wafer surface
  • the exhaust component 320 sucks away the brushed-off (or loosened) contaminant particles.
  • the exhaust component 320 and the brushing mechanism 310 may be activated at slightly different time slots.
  • FIG. 5 shows the mechanical structure 300 , the brushing mechanism 310 , and the exhaust component 320 as separate devices, they may be partially or wholly integrated in some embodiments.
  • the brushing mechanism 310 and the exhaust component 320 may be integrated as a single structure in certain embodiments.
  • the contaminant particle cleaning apparatus 250 may further include other suitable devices or components, but they are not described or illustrated herein for the sake of simplicity.
  • the wafer handling system 270 may further contain a controller 340 .
  • the controller 340 may include one or more computer processors and/or memory components and may store and execute software program instructions.
  • the controller 340 may be operable to govern the functioning of the various components of the wafer handling system 270 , for instance the operation of the wafer pre-alignment unit 260 .
  • the controller 340 may be programmed to activate the contaminant particle cleaning apparatus 250 so that the brushing mechanism 310 begins brushing a wafer at a predetermined time.
  • the controller 340 may also contain one or more appropriate sensors, such as voltage sensors, current sensors, vibration sensors, temperature sensors, levelness sensors, moisture sensors, position sensors, accelerometer sensors, etc. These sensors may be utilized to guide or assist the operation of the controller 340 . In some embodiments, one or more of these sensors may also be implemented outside the controller 340 but communicatively coupled to the controller 340 .
  • FIG. 5 shows the controller 340 as a part of the wafer handling system 270 , it is understood that the controller 340 or a similar controlling mechanism may be implemented outside the wafer handling system 270 . Alternatively, the controller 340 may also be implemented inside (or as a part of) the wafer pre-alignment unit 260 in some embodiments, or even inside (or as a part of) the contaminant particle cleaning apparatus 250 in other embodiments. In other words, the location of the controller 340 is not critical and may change from embodiment to embodiment.
  • FIG. 6 is a diagrammatic three-dimension perspective view of a portion of a contaminant particle cleaning apparatus 250 A that is an embodiment of the contaminant particle cleaning apparatus 250 of FIG. 5 .
  • the contaminant particle cleaning apparatus 250 A is operable to hold the wafer 60 .
  • the back side 100 of the wafer 60 is facing toward the rest of the contaminant particle cleaning apparatus 250 A.
  • the contaminant particle cleaning apparatus 250 A includes a brush crutch mechanism 350 as part of the mechanical structure 300 of FIG. 5 .
  • the brush crutch mechanism 350 is coupled to a brush module 360 , which has both the brushing mechanism 310 and the exhaust component 320 of FIG. 5 integrated therein.
  • the brush crutch mechanism 350 may assist the raising and the lowering of the brush module 360 relative to the wafer 60 .
  • the brush module 360 is operable to brush off contaminant particles from the back side 100 of the wafer 60 .
  • the brush module 360 is used to brush an edge region of the wafer 60 , since contaminant particles located near the edge region causes significantly more problems than contaminant particles located near the center of the wafer 60 .
  • the brush module 360 may employ an anti-electrostatic brush to remove the contaminant particles without producing static electricity. Meanwhile, as the contaminant particles are brushed off the wafer 60 , they are collected by the exhaust component located on the brush module 360 . These contaminant particles may then be discarded later.
  • the wafer cleaning apparatus 250 A is implemented within a wafer pre-alignment unit, which is a part of a wafer handling system. It is also understood that an electronic controller (also not illustrated) may be used to govern the operation of the wafer cleaning apparatus 250 A. In some embodiments, a human operator may replace or supplement the functions of the electronic controller. Also, the shapes and configurations of the various components of the wafer cleaning apparatus 250 A illustrated herein are purely examples, and they may be altered in other embodiments for account for designs concerns and manufacturing requirements.
  • FIG. 7 is a simplified diagrammatic top view of the wafer 60 provided to illustrate the operation of the wafer cleaning apparatus 250 .
  • the wafer 60 includes alignment marks 200 A and 200 B located on opposite corners of the wafer 60 .
  • Contaminant particles 80 B may be located within or partially overlapping with the alignment marks 200 A- 200 B.
  • the alignment marks 200 A- 200 B and the contaminant particles 80 B are positioned within a wafer cleaning region 380 .
  • the wafer cleaning region 380 represents the effective region on the back side of the wafer 60 that can be cleaned by the wafer cleaning apparatus 250 .
  • the wafer cleaning region 380 is the cleaning path of the anti-electrostatic brush as the wafer 60 is spun.
  • the wafer cleaning region 380 has an annular ring shape in the illustrated embodiment. Stated differently, the annular ring shaped wafer cleaning region 380 may be viewed as the difference between two concentric circles having a radius R 1 (inner circle) and R 2 (outer circle), respectively.
  • the circle having the radius R 1 extends to the inner edge of the wafer cleaning region 380
  • the circle having the radius R 2 extends to the outer edge of the wafer cleaning region 380 .
  • the radius R 1 is in a range from about 70 mm to about 90 mm
  • the radius R 2 is in a range from about 90 mm to about 110 mm.
  • R 1 and R 2 may vary depending on the size of the wafer.
  • the wafer cleaning region 380 has a width 390 .
  • the width 390 represents the length of the brush used to clean the back side of the wafer.
  • the width 390 may be carefully chosen so that it is neither too big nor too small. If the width 390 is too big, then the corresponding brushing mechanism (and hence the wafer cleaning apparatus) may not be easily installed or implemented within the wafer pre-alignment unit. In other words, there may be practical space-related constraints on the upper limit of the width 390 .
  • the width 390 is carefully configured after taking various tradeoffs into consideration. In some embodiments, the width 390 is in a range from about 15 mm to about 25 mm.
  • the wafer cleaning region 380 is also spaced apart from an outer rim 395 of the wafer 60 by a distance 400 .
  • the distance 400 is sufficiently great to ensure that the brush of the wafer cleaning apparatus will not accidently brush the outer rim of the wafer 60 . This is because the brushing of the outer rim 395 (whether accidental or intentional) of the wafer 60 may result in scratching of the front side of the wafer 60 as well, which can damage semiconductor devices formed on the front side of the wafer 60 .
  • the distance 400 is intentionally reserved to prevent scratching of the front side of the wafer 60 .
  • the distance 400 is in a range from about 2 mm to about 3 mm.
  • the configuration of the wafer cleaning apparatus herein allows contaminant particles 80 B to be effectively removed so that they are no longer located within the edge region of the wafer 60 or interfering with the alignment marks 200 A- 200 B.
  • these back side contaminant particles 80 B may be brushed off the back side of the wafer 60 using a brushing mechanism and then be sucked away by an exhaust component. Consequently, the leveling system will not produce incorrect compensation signals to adjust the focus of the wafer 60 . Therefore, wafer yield and quality may be improved.
  • fabrication apparatuses and techniques according to various aspects of the present disclosure offer advantages over existing fabrication apparatuses and techniques. It is understood, however, that not all advantages are necessarily discussed herein for reasons of simplicity, and other embodiments of the present disclosure may offer additional advantages, and that no particular advantage is required for all embodiments.
  • the embodiments disclosed herein allow the contaminant particles located on the back side of a wafer to be cleaned, particularly the contaminant particles located near the edge of the wafer.
  • the contaminant particles located on the back side of the wafer tend to cause alignment problems, especially if these particles are overlapping with alignment marks.
  • Existing fabrication systems often lack effective tools and methods to remove these contaminant particles disposed near the edge on the back side of the wafer.
  • a versatile and compact wafer cleaning apparatus may be used to effectively and efficiently remove the particles formed on the back side of the wafer, particularly the particles near the edge of the wafer. As such, wafer alignment may be significantly improved.
  • the implementation of the wafer cleaning apparatus disclosed herein is simple and can be integrated within current fabrication tools.
  • the wafer cleaning apparatus can easily be installed within the wafer pre-alignment unit that is currently available and widely used in semiconductor fabrication.
  • the wafer cleaning apparatus consumes no additional space, nor does it require numerous other costly components.
  • the implementation of the wafer cleaning apparatus is simple, inexpensive, and compatible with existing fabrication processes. Further, once the wafer cleaning apparatus is installed, it can remain installed for a long period of time without needing servicing.
  • the apparatus includes: a mechanical structure that is operable to secure a position of a semiconductor wafer, the wafer having a front surface and a back surface; and a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface, wherein the predetermined region of the wafer at least partially overlaps with one or more alignment marks.
  • the apparatus is a component of a wafer handling system.
  • the apparatus is installed within a wafer pre-alignment unit of the wafer handling system.
  • the wafer cleaning device includes a brush operable to brush contaminant particles off of the predetermined region of the wafer on the back surface without generating static electricity.
  • the wafer cleaning device includes an exhaust component operable to collect and dispose of wafer particles brushed off by the brush.
  • the predetermined region of the wafer is located near an edge of the wafer.
  • the predetermined region of the wafer has an annular ring shape.
  • the predetermined region of the wafer is spaced apart from an outer rim of the wafer by a predetermined distance.
  • the system includes: a wafer handling system that includes a wafer pre-alignment unit; and a wafer cleaning mechanism installed within the wafer pre-alignment unit, the wafer cleaning mechanism being operable to clean an edge region of a semiconductor wafer from a back side of the wafer, wherein the wafer cleaning mechanism includes: a brush operable to brush contaminant particles off of the edge region of the back side of the wafer; and an exhaust component operable to gather the brushed-off contaminant particles.
  • the wafer has one or more alignment marks located in the edge region of the wafer.
  • the brush is operable to brush the wafer as the wafer is spun, thereby creating a cleaning path on the wafer, and wherein the one or more alignment overlaps with the cleaning path.
  • the cleaning path is shaped like an annular ring having a ring width substantially equal to a length of the brush.
  • the cleaning path is separated from an outer rim of the wafer by a predetermined distance.
  • the brush includes an anti-electrostatic brush.
  • the exhaust component includes a pipe and a vacuum generator.
  • Yet another one of the broader forms of the present disclosure involves a method of fabricating a semiconductor device.
  • the method includes: loading a semiconductor wafer into a wafer handling system, the semiconductor wafer having a front side and a back side and one or more alignment marks; removing contaminant particles from an edge region of the wafer from the back side, wherein the one or more alignment marks are located in the edge region; and collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
  • the loading the wafer includes loading the wafer into a wafer pre-alignment unit of the wafer handling system.
  • the removing includes brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
  • the collecting includes sucking the removed contaminant particles into a pipe.
  • the edge region of the wafer is shaped as an annular ring having a predetermined width, and wherein an outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The present disclosure provides an apparatus for fabricating a semiconductor device. The apparatus includes a mechanical structure that is operable to secure a position of a semiconductor wafer. The wafer has a front surface and a back surface. The apparatus includes a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface. The predetermined region of the wafer at least partially overlaps with one or more alignment marks. The present disclosure also provides a method of fabricating a semiconductor device. The method includes loading a semiconductor wafer into a wafer handling system. The method includes removing contaminant particles from an edge region of the wafer from the back side. The alignment marks are located in the edge region. The method includes collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.

Description

    BACKGROUND
  • The semiconductor integrated circuit (IC) industry has experienced rapid growth. Technological advances in IC materials and design have produced generations of ICs where each generation has smaller and more complex circuits than the previous generation. However, these advances have increased the complexity of processing and manufacturing ICs and, for these advances to be realized, similar developments in IC processing and manufacturing are needed. In the course of IC evolution, functional density (i.e., the number of interconnected devices per chip area) has generally increased while geometry size (i.e., the smallest component (or line) that can be created using a fabrication process) has decreased. This scaling down process generally provides benefits by increasing production efficiency and lowering associated costs.
  • As the scaling down process continues to advance, alignment and overlay issues become more important due to the ever-decreasing device sizes. A small alignment or overlay error during fabrication may lead to the failure of a wafer. In conventional semiconductor fabrication processes, various devices and techniques have been utilized to minimize misalignment during fabrication. For example, alignment marks may be used to ensure correct alignment between wafers as they are loaded into a semiconductor fabrication tool. As another example, a wafer leveling system may be used to ensure the wafer is flat during fabrication. However, particles generated by various fabrication processes may still cause alignment problems for conventional semiconductor fabrication processes, particularly if these particles are located on a back side of a wafer edge region. Consequently, the conventional semiconductor fabrication processes may produce failed wafers from time to time, thereby lowering yield and increasing fabrication costs.
  • Therefore, while existing semiconductor fabrication processes have been generally adequate for their intended purposes, they are not entirely satisfactory in every aspect.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
  • FIG. 1 is a flowchart illustrating a method for performing a wafer cleaning process according to various aspects of the present disclosure.
  • FIGS. 2-3 are simplified diagrammatic cross-sectional side views of a semiconductor wafer according to various aspects of the present disclosure.
  • FIG. 4 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure.
  • FIG. 5 is a simplified block diagram of a wafer cleaning apparatus according to various aspects of the present disclosure.
  • FIG. 6 is a simplified perspective view of a wafer cleaning apparatus according to various aspects of the present disclosure.
  • FIG. 7 is a diagrammatic top view of a semiconductor wafer according to various aspects of the present disclosure.
  • DETAILED DESCRIPTION
  • It is understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
  • Illustrated in FIG. 1 is a flowchart of a method 20 for cleaning a semiconductor wafer. The semiconductor wafer may be contain integrated circuit (IC) chips, systems on chip (SoC), or portion thereof, that may each include various passive and active microelectronic devices such as resistors, capacitors, inductors, diodes, metal-oxide semiconductor field effect transistors (MOSFET), complementary metal-oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), laterally diffused MOS (LDMOS) transistors, high power MOS transistors, or other types of transistors.
  • Referring to FIG. 1, the method 20 includes a block 30 in which a semiconductor wafer is loaded into a wafer handling system. The semiconductor wafer has a front side and a back side and one or more alignment marks. In some embodiments, the wafer is loaded into a wafer pre-alignment unit of the wafer handling system. The method 20 includes a block 40 in which contaminant particles are removed from an edge region of the wafer from the back side. The one or more alignment marks are located in the edge region. In some embodiments, the particles are removed by brushing the edge region using an anti-electrostatic brush while the wafer is being spun. The method 20 includes a block 50 in which the removed contaminant particles are collected, and then the collected particles are discarded out of the wafer handling system. In some embodiments, the contaminant particles are sucked into an exhaust pipe. In certain embodiments, the edge region of the wafer is shaped as an annular ring having a predetermined width. An outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance. It should be noted that additional processes may be provided before, during, and after the method 20 of FIG. 1, and that some other processes may only be briefly described herein.
  • FIG. 2 is a diagrammatic fragmentary cross-sectional side view of a portion of a semiconductor device during a fabrication stage. Referring to FIG. 2, the semiconductor device includes a wafer 60, which may also be referred to as a substrate. In some embodiments, the wafer 60 may include a silicon material. In other embodiments, the wafer 60 may alternatively be made of some other suitable elementary semiconductor, such as diamond or germanium; a suitable compound semiconductor, such as silicon carbide, indium arsenide, or indium phosphide; or a suitable alloy semiconductor, such as silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide. In various embodiments, the wafer 60 includes various doped features for various microelectronic components, such as complementary metal-oxide-semiconductor field-effect transistors (CMOSFETs), imaging sensors, memory cells, capacitive elements, inductive elements, and resistive elements.
  • During the course of semiconductor fabrication, a plurality of semiconductor fabrication processes 70 may be performed on the wafer 60, for example to form the various components therein. As examples, these fabrication processes 70 may include various lithography process, deposition processes, etching processes, polishing, annealing processes, rinsing processes, implantation processes, etc. The performance of these fabrication processes 70 may result in the formation of a plurality of contaminant particles 80. As examples, these contaminant particles 80 may include silicon dust, silicon oxide, or remnants of metal film, etc. As shown in FIG. 2, these contaminant particles 80 may have various shapes or sizes and may be formed in various regions of the wafer 60. The contaminant particles 80 may also be formed on either (or both) a front side (front surface) 90 of the wafer 60 or a back side 100 (back surface) of the wafer 60, where the front side 90 is a side on which most fabrication processes (such as lithography or etching processes) are performed.
  • The particles 80 are undesirable for a number of reasons. For example, they may cause delamination, incomplete film growth, leakage, misalignment, or otherwise degrade purity and integrity of the components of the wafer 60. As such, it is desirable to remove these contaminant particles 80 from the wafer 60. For the contaminant particles 80 located on the front side 90 of the wafer 60, they are removed relatively easily using various available cleaning processes and cleaning tools. Therefore, the contaminant particles 80 formed on the front side 90 of the wafer 60 typically will not cause big problems. On the other hand, many semiconductor fabrication processes lack adequate tools or techniques to effectively remove contaminant particles 80 on the back side 100 of the wafer 60. Hence, it is quite possible that the contaminant particles 80 on the back side 100 of the wafer 60 may remain for subsequent semiconductor fabrication processes. The presence of these back side contaminant particles may cause problems, particularly alignment-related problems.
  • In an effort to overcome this problem, various tools and techniques may be used to substantially mitigate the problems caused by contaminant particles 80 formed on the back side 100. For example, one problem caused by the presence of the contaminant particles 80 on the back side 100 of the wafer 60 is that the wafer 60 may be tilted. This is illustrated in FIG. 3, which is a simplified cross-sectional side view of the wafer 60 and a wafer-holding device 120. As shown in FIG. 3, the wafer 60 is located on the wafer-holding device 120. The wafer holding-device may be a chuck in some embodiments, such as an electronic chuck. Since one or more contaminant particle(s) 80A formed on the back side 100 of the wafer 60 are located in between the wafer-holding device 120 and the wafer 60, the wafer 60 is tilted with respect to the wafer-holding device 120. In other words, the wafer 60 is unlevel due to the presence of the contaminant particles 80A formed on the back side 100 of the wafer 60. It is understood that the wafer 60, the contaminant particle(s) 80A, and the wafer-holding device 120 are not drawn in scale, and that the degree of tilting of the wafer 60 may be exaggerated in FIG. 3.
  • The tilting of the wafer 60, if left unaddressed, may cause fabrication problems. Therefore, a leveling system (not illustrated) may be used to resolve for the wafer tilting issue. The leveling system does not necessarily remove any of the contaminant particles 80A from the back side 100 of the wafer 60. Rather, the leveling system may have sensors that are operable to detect the presence of the particles 80A on the back side 100 of the wafer 60 and adjust the wafer focus accordingly. Hence, through the detection of the particles 80A, the leveling system can determine how much the wafer 60 is out of focus as a result and consequently generate compensation signals to compensate for the tilting of the wafer 60. Stated differently, though the wafer 60 may still be somewhat tilted, the leveling system will allow the wafer 60 to be correctly-focused through appropriate amount of compensation adjustment, thereby minimizing harmful effects of wafer tilting.
  • One drawback of existing leveling systems, however, is that they may have a limited particle detection range. For most existing leveling systems, they may function effectively with respect to the detection and subsequent compensation of contaminant particles 80A near a center (or inner) region of the wafer 60. But the existing leveling systems may not be able to detect the contaminant particles formed near an edge region of the wafer 60, and therefore will not be able to provide accurate compensation to account for these edge region contaminant particles.
  • To illustrate the above point, refer to FIG. 4, a simplified top view of the wafer 60 is provided. The wafer 60 may be virtually divided into a plurality of scan fields 140. Each scan field 140 is a region of the wafer 60 that corresponds to an exposure region as the wafer undergoes a photolithography process. It is understood that each scan field 140 may include a plurality of wafer dies. The scan fields 140 are arranged into a plurality of arrays or grids. During the photolithography process, the wafer 60 may be “stepped through” one field at a time.
  • As part of the fabrication process, the wafer 60 is loaded into a wafer handling system. The wafer 60 should be aligned with previously-loaded wafers as well as subsequently-loaded wafers for reasons of uniformity and accuracy, assuming these wafers are directed toward the same product. Stated differently, each layer of the wafer 60 should be sufficiently aligned with a corresponding layer of all other wafers loaded into the wafer handling system. This type of wafer-to-wafer alignment may also be referred to as wafer overlay. In order to achieve sufficient overlay, a plurality of alignment marks may be implemented on the wafer 60. For the sake of providing an illustration, alignment marks 200A and 200B are illustrated herein.
  • According to various embodiments, the alignment marks 200A-200B are formed on the front side of the wafer 60. The alignment marks 200A-200B may be relatively small. For example, the sizes of the alignment marks 200A-200B may each be a few hundred nanometers (nm) or smaller. The alignment marks 200A-200B may also have any one of a plurality of suitable shapes. For example, the shapes may include squares, rectangles, or other polygons. In that regard, the shape, geometry, and relative size of the alignment marks 200A-200B illustrated in FIG. 4 do not necessarily represent or limit the shapes, geometries, and sizes of actual alignment marks on a real world wafer.
  • In some embodiments, the alignment marks 200A-200B are located on opposite corners of the wafer 60. Each alignment mark 200 may be partially overlapping with one of the scan fields 140. The alignment marks 200A-200B are also located near the edge of the wafer 60. Alternatively stated, the alignment marks 200A-200B are located away from a center region of the wafer 60, such that they are “out of the reach” of the leveling system for wafer tilt compensation discussed above. Thus, if one or more back side contaminant particles 80B are located within (or overlaps with) the alignment marks 200A-200B—such as in the example situation shown in FIG. 4—the presence of these contaminant particles 200A-200B may not be detected by the leveling system. Consequently, the disposition of the contaminant particles 80B on the alignment marks 200A-200B may result in substantial alignment problems for the wafer 60. For instance, the presence of the back side contaminant particles 80B on the alignment marks 200A-200B may cause the leveling system to produce incorrect compensation signals, thereby over-compensating or under-compensating the amount of wafer tilt. Hence, the wafer may be out of focus during subsequent fabrication stages. Wafer failures may therefore occur.
  • Note that even if the back side contaminant particles 80 are not located exactly on the alignment marks 200A-200B, they may still interfere with proper alignment between wafers as long as they are out of a detection range of the leveling system. Alternatively stated, contaminant particles 80 disposed near the edge of the back side 100 of the wafer 60 may potentially contribute to misalignment between wafers and as such are undesirable for at least this reason alone.
  • To overcome the issue caused by back side contaminant particles described above, a wafer back side cleaning apparatus is implemented according to various aspects of the present disclosure. Referring now to FIG. 5, an example simplified block diagram of a back side contaminant particle cleaning apparatus 250 is illustrated according various aspects of the present disclosure. The back side contaminant particle cleaning apparatus 250 is implemented inside a wafer pre-alignment unit 260 of a wafer handling system 270.
  • The contaminant particle cleaning apparatus 250 includes a mechanical structure 300, a brushing mechanism 310, and an exhaust component 320. The mechanical structure 300 may include a securing mechanism that attaches the contaminant particle cleaning apparatus 250 to the wafer pre-alignment unit 260. The mechanical structure may also include mechanisms that can receive a wafer (e.g., a wafer-holding device) and positionally secure the wafer so that the wafer is steady while being cleaned. In various embodiments, the mechanical structure 300 may include screws, rods, fasteners, crutches, clamps, chucks, or other suitable mechanical devices.
  • The brushing mechanism 310 may include an anti-electrostatic brush in various embodiments. Such anti-electrostatic brush is operable to brush contaminant particles off of the wafer surface without generating static electricity. This may be advantageous in at least two respects. In one respect, the absence of static electricity reduces the likelihood of causing electrostatic discharge (ESD) damages to the wafer. Stated differently, had static electricity been generated by the brushing of the wafer, the various electronic components on the wafer may suffer from ESD-related damages, as many electronic components are sensitive to ESD. Therefore, since the anti-electrostatic brush does not generate static electricity, ESD damages to the wafer may be avoided during the operation of the wafer cleaning apparatus 250.
  • In another respect, the presence of static electricity generally causes small contaminant particles to be attracted to (or stick to) the wafer surface. Thus, it would have been difficult to remove the contaminant particles from the wafer surface had a static-electricity-generating brush been used to brush the wafer surface. In comparison, the anti-electrostatic brush may remove the contaminant particles from the wafer surface with relative ease, since substantially no static electricity is produced by the anti-electrostatic brush during the brushing of the wafer.
  • The brushing mechanism 310 may also include a movable member that is operable to raise or lower the anti-electrostatic brush. This movable member may also be referred to as a brush up/down component. In some embodiments, the movable member is mechanically attached to the anti-electrostatic brush and may be electrically controlled to move the anti-electrostatic brush at programmed times. The anti-electrostatic brush may be moved up and down by a predetermined distance. In certain embodiments, the predetermined distance may be in a range between 0.5 millimeters (mm) and 1 mm. The brushing mechanism 310 may also include a spring that can provide a springing tension to the anti-electrostatic brush, thereby applying a force for the wafer brushing.
  • The exhaust component 320 is operable to evacuate the contaminant particles once they are brushed off of the wafer surface. In some embodiments, the exhaust component includes a hose or a pipe, through which the contaminant particles may exit the contaminant particle cleaning apparatus 250 (and also the wafer handling system 270). The hose may be coupled to the anti-electrostatic brush so as to collect the brushed-off contaminant particles. The exhaust component 320 may further include a vacuum generator, or alternatively be coupled to a vacuum generator. The vacuum generator can create a pressurized environment inside (and/or near) the exhaust component 320 so as to facilitate the removal of the contaminant particles. For example, the exhaust component 320 may include a fan that can create a suction force to “suck” the loosened contaminant particles into the hose or pipe. In certain embodiments, the exhaust component 320 may have an air flow rate in a range between 2 liters/minute to about 10 liters/minute. It is understood that the exhaust component 320 may also be used to remove moisture from inside the contaminant particle cleaning apparatus 250.
  • In some embodiments, the exhaust component 320 is activated simultaneously with the brushing mechanism 310. In other words, as the brushing mechanism 310 brushes off the contaminant particles from the back side of the wafer surface, the exhaust component 320 sucks away the brushed-off (or loosened) contaminant particles. In alterative embodiments, it is also contemplated that the exhaust component 320 and the brushing mechanism 310 may be activated at slightly different time slots.
  • Although FIG. 5 shows the mechanical structure 300, the brushing mechanism 310, and the exhaust component 320 as separate devices, they may be partially or wholly integrated in some embodiments. For example, the brushing mechanism 310 and the exhaust component 320 may be integrated as a single structure in certain embodiments. In addition, the contaminant particle cleaning apparatus 250 may further include other suitable devices or components, but they are not described or illustrated herein for the sake of simplicity.
  • The wafer handling system 270 may further contain a controller 340. The controller 340 may include one or more computer processors and/or memory components and may store and execute software program instructions. The controller 340 may be operable to govern the functioning of the various components of the wafer handling system 270, for instance the operation of the wafer pre-alignment unit 260. As an example, the controller 340 may be programmed to activate the contaminant particle cleaning apparatus 250 so that the brushing mechanism 310 begins brushing a wafer at a predetermined time. It is understood that the controller 340 may also contain one or more appropriate sensors, such as voltage sensors, current sensors, vibration sensors, temperature sensors, levelness sensors, moisture sensors, position sensors, accelerometer sensors, etc. These sensors may be utilized to guide or assist the operation of the controller 340. In some embodiments, one or more of these sensors may also be implemented outside the controller 340 but communicatively coupled to the controller 340.
  • Though the embodiment in FIG. 5 shows the controller 340 as a part of the wafer handling system 270, it is understood that the controller 340 or a similar controlling mechanism may be implemented outside the wafer handling system 270. Alternatively, the controller 340 may also be implemented inside (or as a part of) the wafer pre-alignment unit 260 in some embodiments, or even inside (or as a part of) the contaminant particle cleaning apparatus 250 in other embodiments. In other words, the location of the controller 340 is not critical and may change from embodiment to embodiment.
  • FIG. 6 is a diagrammatic three-dimension perspective view of a portion of a contaminant particle cleaning apparatus 250A that is an embodiment of the contaminant particle cleaning apparatus 250 of FIG. 5. The contaminant particle cleaning apparatus 250A is operable to hold the wafer 60. The back side 100 of the wafer 60 is facing toward the rest of the contaminant particle cleaning apparatus 250A. The contaminant particle cleaning apparatus 250A includes a brush crutch mechanism 350 as part of the mechanical structure 300 of FIG. 5. The brush crutch mechanism 350 is coupled to a brush module 360, which has both the brushing mechanism 310 and the exhaust component 320 of FIG. 5 integrated therein. In some embodiments, the brush crutch mechanism 350 may assist the raising and the lowering of the brush module 360 relative to the wafer 60.
  • As the wafer 60 spins, the brush module 360 is operable to brush off contaminant particles from the back side 100 of the wafer 60. In various embodiments, the brush module 360 is used to brush an edge region of the wafer 60, since contaminant particles located near the edge region causes significantly more problems than contaminant particles located near the center of the wafer 60. As discussed above with reference to FIG. 5, the brush module 360 may employ an anti-electrostatic brush to remove the contaminant particles without producing static electricity. Meanwhile, as the contaminant particles are brushed off the wafer 60, they are collected by the exhaust component located on the brush module 360. These contaminant particles may then be discarded later.
  • Although not illustrated for reasons of simplicity and clarity, it is understood that the wafer cleaning apparatus 250A is implemented within a wafer pre-alignment unit, which is a part of a wafer handling system. It is also understood that an electronic controller (also not illustrated) may be used to govern the operation of the wafer cleaning apparatus 250A. In some embodiments, a human operator may replace or supplement the functions of the electronic controller. Also, the shapes and configurations of the various components of the wafer cleaning apparatus 250A illustrated herein are purely examples, and they may be altered in other embodiments for account for designs concerns and manufacturing requirements.
  • FIG. 7 is a simplified diagrammatic top view of the wafer 60 provided to illustrate the operation of the wafer cleaning apparatus 250. The wafer 60 includes alignment marks 200A and 200B located on opposite corners of the wafer 60. Contaminant particles 80B may be located within or partially overlapping with the alignment marks 200A-200B.
  • The alignment marks 200A-200B and the contaminant particles 80B are positioned within a wafer cleaning region 380. The wafer cleaning region 380 represents the effective region on the back side of the wafer 60 that can be cleaned by the wafer cleaning apparatus 250. In some embodiments, the wafer cleaning region 380 is the cleaning path of the anti-electrostatic brush as the wafer 60 is spun. Thus, the wafer cleaning region 380 has an annular ring shape in the illustrated embodiment. Stated differently, the annular ring shaped wafer cleaning region 380 may be viewed as the difference between two concentric circles having a radius R1 (inner circle) and R2 (outer circle), respectively. The circle having the radius R1 extends to the inner edge of the wafer cleaning region 380, and the circle having the radius R2 extends to the outer edge of the wafer cleaning region 380. In some embodiments, the radius R1 is in a range from about 70 mm to about 90 mm, and the radius R2 is in a range from about 90 mm to about 110 mm. Of course, it is understood that R1 and R2 may vary depending on the size of the wafer.
  • The wafer cleaning region 380 has a width 390. The width 390 represents the length of the brush used to clean the back side of the wafer. The width 390 is the difference between the radii R2 and R1 in the illustrated embodiment, meaning width 390=R2−R1. The width 390 may be carefully chosen so that it is neither too big nor too small. If the width 390 is too big, then the corresponding brushing mechanism (and hence the wafer cleaning apparatus) may not be easily installed or implemented within the wafer pre-alignment unit. In other words, there may be practical space-related constraints on the upper limit of the width 390. On the other hand, if the width 390 is too small, then it may not be able to effectively clean the wafer 60, since it may miss some contaminant particles 80 located near the edge of the wafer 60, where the contaminant particles 80 are also undetectable by the leveling system. In other words, these contaminant particles 80 may not be effectively removed by the wafer cleaning apparatus and thus may still cause alignment problems. As such, the width 390 (i.e., length of the brush) of the wafer cleaning region is carefully configured after taking various tradeoffs into consideration. In some embodiments, the width 390 is in a range from about 15 mm to about 25 mm.
  • Note that the wafer cleaning region 380 is also spaced apart from an outer rim 395 of the wafer 60 by a distance 400. The distance 400 is sufficiently great to ensure that the brush of the wafer cleaning apparatus will not accidently brush the outer rim of the wafer 60. This is because the brushing of the outer rim 395 (whether accidental or intentional) of the wafer 60 may result in scratching of the front side of the wafer 60 as well, which can damage semiconductor devices formed on the front side of the wafer 60. Thus, the distance 400 is intentionally reserved to prevent scratching of the front side of the wafer 60. In some embodiments, the distance 400 is in a range from about 2 mm to about 3 mm.
  • As illustrated in FIG. 7, the configuration of the wafer cleaning apparatus herein allows contaminant particles 80B to be effectively removed so that they are no longer located within the edge region of the wafer 60 or interfering with the alignment marks 200A-200B. In accordance with various aspects of the present disclosure, these back side contaminant particles 80B may be brushed off the back side of the wafer 60 using a brushing mechanism and then be sucked away by an exhaust component. Consequently, the leveling system will not produce incorrect compensation signals to adjust the focus of the wafer 60. Therefore, wafer yield and quality may be improved.
  • It is understood that the implementations of the various devices disclosed herein are merely examples and are not intended to be limiting. Other implementations may be used in alternative embodiments as long as they are consistent with the spirit and the scope of the present disclosure. For example, although a brushing mechanism or technique is used to clean the back side of the wafer surface, other techniques such as air purge, vapor clean, or ultrasonic shock may be used instead in alternative embodiments.
  • The fabrication apparatuses and techniques according to various aspects of the present disclosure offer advantages over existing fabrication apparatuses and techniques. It is understood, however, that not all advantages are necessarily discussed herein for reasons of simplicity, and other embodiments of the present disclosure may offer additional advantages, and that no particular advantage is required for all embodiments.
  • One advantage is that the embodiments disclosed herein allow the contaminant particles located on the back side of a wafer to be cleaned, particularly the contaminant particles located near the edge of the wafer. As discussed above, the contaminant particles located on the back side of the wafer tend to cause alignment problems, especially if these particles are overlapping with alignment marks. Existing fabrication systems often lack effective tools and methods to remove these contaminant particles disposed near the edge on the back side of the wafer. According to various aspects of the present disclosure, however, a versatile and compact wafer cleaning apparatus may be used to effectively and efficiently remove the particles formed on the back side of the wafer, particularly the particles near the edge of the wafer. As such, wafer alignment may be significantly improved.
  • Another advantage is that the implementation of the wafer cleaning apparatus disclosed herein is simple and can be integrated within current fabrication tools. For example, the wafer cleaning apparatus can easily be installed within the wafer pre-alignment unit that is currently available and widely used in semiconductor fabrication. Hence, the wafer cleaning apparatus consumes no additional space, nor does it require numerous other costly components. As such, the implementation of the wafer cleaning apparatus is simple, inexpensive, and compatible with existing fabrication processes. Further, once the wafer cleaning apparatus is installed, it can remain installed for a long period of time without needing servicing.
  • One of the broader forms of the present disclosure involves an apparatus for fabricating a semiconductor device. The apparatus includes: a mechanical structure that is operable to secure a position of a semiconductor wafer, the wafer having a front surface and a back surface; and a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface, wherein the predetermined region of the wafer at least partially overlaps with one or more alignment marks.
  • In some embodiments, the apparatus is a component of a wafer handling system.
  • In some embodiments, the apparatus is installed within a wafer pre-alignment unit of the wafer handling system.
  • In some embodiments, the wafer cleaning device includes a brush operable to brush contaminant particles off of the predetermined region of the wafer on the back surface without generating static electricity.
  • In some embodiments, the wafer cleaning device includes an exhaust component operable to collect and dispose of wafer particles brushed off by the brush.
  • In some embodiments, the predetermined region of the wafer is located near an edge of the wafer.
  • In some embodiments, the predetermined region of the wafer has an annular ring shape.
  • In some embodiments, the predetermined region of the wafer is spaced apart from an outer rim of the wafer by a predetermined distance.
  • Another one of the broader forms of the present disclosure involves a semiconductor fabrication system. The system includes: a wafer handling system that includes a wafer pre-alignment unit; and a wafer cleaning mechanism installed within the wafer pre-alignment unit, the wafer cleaning mechanism being operable to clean an edge region of a semiconductor wafer from a back side of the wafer, wherein the wafer cleaning mechanism includes: a brush operable to brush contaminant particles off of the edge region of the back side of the wafer; and an exhaust component operable to gather the brushed-off contaminant particles.
  • In some embodiments, the wafer has one or more alignment marks located in the edge region of the wafer.
  • In some embodiments, the brush is operable to brush the wafer as the wafer is spun, thereby creating a cleaning path on the wafer, and wherein the one or more alignment overlaps with the cleaning path.
  • In some embodiments, the cleaning path is shaped like an annular ring having a ring width substantially equal to a length of the brush.
  • In some embodiments, the cleaning path is separated from an outer rim of the wafer by a predetermined distance.
  • In some embodiments, the brush includes an anti-electrostatic brush.
  • In some embodiments, the exhaust component includes a pipe and a vacuum generator.
  • Yet another one of the broader forms of the present disclosure involves a method of fabricating a semiconductor device. The method includes: loading a semiconductor wafer into a wafer handling system, the semiconductor wafer having a front side and a back side and one or more alignment marks; removing contaminant particles from an edge region of the wafer from the back side, wherein the one or more alignment marks are located in the edge region; and collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
  • In some embodiments, the loading the wafer includes loading the wafer into a wafer pre-alignment unit of the wafer handling system.
  • In some embodiments, the removing includes brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
  • In some embodiments, the collecting includes sucking the removed contaminant particles into a pipe.
  • In some embodiments, the edge region of the wafer is shaped as an annular ring having a predetermined width, and wherein an outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
  • The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.

Claims (20)

What is claimed is:
1. An apparatus for fabricating a semiconductor device, comprising:
a mechanical structure that is operable to secure a position of a semiconductor wafer, the wafer having a front surface and a back surface; and
a wafer cleaning device that is operable to clean a predetermined region of the wafer on the back surface, wherein the predetermined region of the wafer at least partially overlaps with one or more alignment marks.
2. The apparatus of claim 1, wherein the apparatus is a component of a wafer handling system.
3. The apparatus of claim 2, wherein the apparatus is installed within a wafer pre-alignment unit of the wafer handling system.
4. The apparatus of claim 1, wherein the wafer cleaning device includes a brush operable to brush contaminant particles off of the predetermined region of the wafer on the back surface.
5. The apparatus of claim 4, wherein the wafer cleaning device includes an exhaust component operable to collect and dispose of wafer particles brushed off by the brush.
6. The apparatus of claim 1, wherein the predetermined region of the wafer is located near an edge of the wafer.
7. The apparatus of claim 1, wherein the predetermined region of the wafer has an annular ring shape.
8. The apparatus of claim 1, wherein the predetermined region of the wafer is spaced apart from an outer rim of the wafer by a predetermined distance.
9. A semiconductor fabrication system, comprising:
a wafer handling system that includes a wafer pre-alignment unit; and
a wafer cleaning mechanism installed within the wafer pre-alignment unit, the wafer cleaning mechanism being operable to clean an edge region of a semiconductor wafer from a back side of the wafer, wherein the wafer cleaning mechanism includes:
a brush operable to brush contaminant particles off of the edge region of the back side of the wafer; and
an exhaust component operable to gather the brushed-off contaminant particles.
10. The semiconductor fabrication system of claim 9, wherein the wafer has one or more alignment marks located in the edge region of the wafer.
11. The semiconductor fabrication system of claim 10, wherein the brush is operable to brush the wafer as the wafer is spun, thereby creating a cleaning path on the wafer, and wherein the one or more alignment overlaps with the cleaning path.
12. The semiconductor fabrication system of claim 11, wherein the cleaning path is shaped like an annular ring having a ring width substantially equal to a length of the brush.
13. The semiconductor fabrication system of claim 11, wherein the cleaning path is separated from an outer rim of the wafer by a predetermined distance.
14. The semiconductor fabrication system of claim 9, wherein the brush includes an anti-electrostatic brush.
15. The semiconductor fabrication system of claim 9, wherein the exhaust component includes a pipe and a vacuum generator.
16. A method of fabricating a semiconductor device, comprising:
loading a semiconductor wafer into a wafer handling system, the semiconductor wafer having a front side and a back side and one or more alignment marks;
removing contaminant particles from an edge region of the wafer from the back side, wherein the one or more alignment marks are located in the edge region; and
collecting the removed contaminant particles and discarding the collected contaminant particles out of the wafer handling system.
17. The method of claim 16, wherein the loading the wafer includes loading the wafer into a wafer pre-alignment unit of the wafer handling system.
18. The method of claim 16, wherein the removing includes brushing the edge region using an anti-electrostatic brush while the wafer is being spun.
19. The method of claim 16, wherein the collecting includes sucking the removed contaminant particles into a pipe.
20. The method of claim 16, wherein the edge region of the wafer is shaped as an annular ring having a predetermined width, and wherein an outer boundary of the annular ring is spaced apart from an outer rim of the wafer by a predetermined distance.
US13/275,492 2011-10-18 2011-10-18 Removal of particles on back side of wafer Abandoned US20130092186A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/275,492 US20130092186A1 (en) 2011-10-18 2011-10-18 Removal of particles on back side of wafer
CN201210107221.XA CN103065934B (en) 2011-10-18 2012-04-12 Remove the microgranule on wafer back side
US15/295,731 US10115581B2 (en) 2011-10-18 2016-10-17 Removal of particles on back side of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/275,492 US20130092186A1 (en) 2011-10-18 2011-10-18 Removal of particles on back side of wafer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/295,731 Division US10115581B2 (en) 2011-10-18 2016-10-17 Removal of particles on back side of wafer

Publications (1)

Publication Number Publication Date
US20130092186A1 true US20130092186A1 (en) 2013-04-18

Family

ID=48085144

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/275,492 Abandoned US20130092186A1 (en) 2011-10-18 2011-10-18 Removal of particles on back side of wafer
US15/295,731 Active US10115581B2 (en) 2011-10-18 2016-10-17 Removal of particles on back side of wafer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/295,731 Active US10115581B2 (en) 2011-10-18 2016-10-17 Removal of particles on back side of wafer

Country Status (2)

Country Link
US (2) US20130092186A1 (en)
CN (1) CN103065934B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184042B1 (en) * 2014-08-14 2015-11-10 International Business Machines Corporation Wafer backside particle mitigation
US9318347B2 (en) 2014-08-14 2016-04-19 International Business Machines Corporation Wafer backside particle mitigation
US10115581B2 (en) 2011-10-18 2018-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. Removal of particles on back side of wafer
CN110720136A (en) * 2017-05-30 2020-01-21 伊利诺斯工具制品有限公司 Method and apparatus for wireless communication with brushes
CN114188244A (en) * 2021-11-17 2022-03-15 苏州康沃斯智能装备有限公司 Automatic code printing and inserting machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219509A1 (en) * 2017-06-01 2018-12-06 Asml Netherlands B.V. Particle removal apparatus and associated system
CN111029273B (en) * 2018-10-10 2022-04-05 沈阳芯源微电子设备股份有限公司 Low contact wafer upset system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059891A (en) * 1997-07-23 2000-05-09 Tokyo Electron Limited Apparatus and method for washing substrate
US20030184720A1 (en) * 2002-01-18 2003-10-02 Asml Netherlands, B.V. Lithographic apparatus, apparatus cleaning method, device manufacturing method and device manufactured thereby
US20060060213A1 (en) * 2004-09-21 2006-03-23 Walter Huber Manufacture of ultra-clean surfaces by selective
US20070159615A1 (en) * 2006-01-12 2007-07-12 Nikon Corporation Object transfer apparatus, exposure apparatus, object temperature control apparatus, object transfer method, and microdevice manufacturing method
US20080163899A1 (en) * 2006-12-20 2008-07-10 Yasushi Takiguchi Substrate cleaning apparatus, substrate cleaning method, and computer-readable storage medium
US20090113656A1 (en) * 2006-05-05 2009-05-07 Lam Research Corporation Apparatus for isolated bevel edge clean and method for using the same
US20090202951A1 (en) * 2008-02-12 2009-08-13 Tokyo Electron Limited Cleaning apparatus and cleaning method, coater/developer and coating and developing method, and computer readable storing medium
US20120014689A1 (en) * 2010-07-14 2012-01-19 Tokyo Electron Limited Substrate cleaning apparatus, coating and developing apparatus having the same and substrate cleaning method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475889A (en) * 1994-07-15 1995-12-19 Ontrak Systems, Inc. Automatically adjustable brush assembly for cleaning semiconductor wafers
KR100213992B1 (en) * 1995-05-12 1999-08-02 히가시 데쓰로 Cleaning apparatus
AU3488699A (en) * 1998-04-10 1999-11-01 Silicon Genesis Corporation Surface treatment process and system
US6446296B1 (en) * 2000-03-06 2002-09-10 Rite Track Equipment Services, Inc. Substrate cleaning apparatus with brush force control and method
JP5385537B2 (en) * 2008-02-26 2014-01-08 大日本スクリーン製造株式会社 Substrate processing equipment
JP2012028697A (en) * 2010-07-27 2012-02-09 Toshiba Corp Device and method for cleaning
US20130092186A1 (en) 2011-10-18 2013-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Removal of particles on back side of wafer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059891A (en) * 1997-07-23 2000-05-09 Tokyo Electron Limited Apparatus and method for washing substrate
US20030184720A1 (en) * 2002-01-18 2003-10-02 Asml Netherlands, B.V. Lithographic apparatus, apparatus cleaning method, device manufacturing method and device manufactured thereby
US20060060213A1 (en) * 2004-09-21 2006-03-23 Walter Huber Manufacture of ultra-clean surfaces by selective
US20070159615A1 (en) * 2006-01-12 2007-07-12 Nikon Corporation Object transfer apparatus, exposure apparatus, object temperature control apparatus, object transfer method, and microdevice manufacturing method
US20090113656A1 (en) * 2006-05-05 2009-05-07 Lam Research Corporation Apparatus for isolated bevel edge clean and method for using the same
US20080163899A1 (en) * 2006-12-20 2008-07-10 Yasushi Takiguchi Substrate cleaning apparatus, substrate cleaning method, and computer-readable storage medium
US20090202951A1 (en) * 2008-02-12 2009-08-13 Tokyo Electron Limited Cleaning apparatus and cleaning method, coater/developer and coating and developing method, and computer readable storing medium
US20120014689A1 (en) * 2010-07-14 2012-01-19 Tokyo Electron Limited Substrate cleaning apparatus, coating and developing apparatus having the same and substrate cleaning method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115581B2 (en) 2011-10-18 2018-10-30 Taiwan Semiconductor Manufacturing Company, Ltd. Removal of particles on back side of wafer
US9184042B1 (en) * 2014-08-14 2015-11-10 International Business Machines Corporation Wafer backside particle mitigation
US9318347B2 (en) 2014-08-14 2016-04-19 International Business Machines Corporation Wafer backside particle mitigation
CN110720136A (en) * 2017-05-30 2020-01-21 伊利诺斯工具制品有限公司 Method and apparatus for wireless communication with brushes
CN114188244A (en) * 2021-11-17 2022-03-15 苏州康沃斯智能装备有限公司 Automatic code printing and inserting machine

Also Published As

Publication number Publication date
CN103065934A (en) 2013-04-24
US20170040155A1 (en) 2017-02-09
CN103065934B (en) 2016-06-22
US10115581B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
US10115581B2 (en) Removal of particles on back side of wafer
TWI637432B (en) Foreign matter removing device, foreign matter removing method, peeling device, foreign matter detecting method, and foreign matter detecting device
US10522369B2 (en) Method and system for cleaning wafer and scrubber
KR102466078B1 (en) Chuck table mechanism
US9330898B2 (en) Separation system, separation method, program and computer storage medium
US20140190634A1 (en) Method and Apparatus for Drying a Wafer
TW201839834A (en) Cutting device has two cutting units to implement positioning at efficiency and low costs
JP6504890B2 (en) Foreign matter removing device, foreign matter removing method and stripping device
KR102551970B1 (en) Setup method of cutting apparatus
US8206198B2 (en) Wafer grinding machine and wafer grinding method
KR101399561B1 (en) A cleaning nozzle for advanced lithography process
JP6450633B2 (en) Foreign matter detection method, foreign matter detection device and peeling device
JP6474275B2 (en) Processing equipment
JP6758508B2 (en) Substrate processing method and substrate processing system
CN114378962A (en) Cutting device
JP6893732B2 (en) Manufacturing method of rectangular substrate support tray
CN110750033A (en) Wafer carrying platform of photoetching machine
JP2011071289A (en) Method of processing wafer
KR102039037B1 (en) Laser processing apparatus and method for manufacturing solar cell using the same
US20210331211A1 (en) Method of manufacturing semiconductor wafer and cleaning scrubber
KR100462565B1 (en) Vacuum Chuck of Semiconductor Manufacturing Equipment
US12080544B2 (en) Stacked wafer structure and method for forming the same
US20230040192A1 (en) Wet clean spray process chamber for substrates
KR102439827B1 (en) Laser processing apparatus and method for manufacturing solar cell using the same
TW202427657A (en) Processing device

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, HSUN-PENG;CHANG, HSIN-KUO;CHUNG, HAN-CHIH;AND OTHERS;SIGNING DATES FROM 20111024 TO 20111026;REEL/FRAME:027457/0787

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION