US20130056485A1 - Substrate transport carrier - Google Patents

Substrate transport carrier Download PDF

Info

Publication number
US20130056485A1
US20130056485A1 US13/582,709 US201113582709A US2013056485A1 US 20130056485 A1 US20130056485 A1 US 20130056485A1 US 201113582709 A US201113582709 A US 201113582709A US 2013056485 A1 US2013056485 A1 US 2013056485A1
Authority
US
United States
Prior art keywords
base
movable wall
movable
substrates
wall portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/582,709
Inventor
John Burns
Jeffery J. King
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Priority to US13/582,709 priority Critical patent/US20130056485A1/en
Assigned to ENTEGRIS, INC. reassignment ENTEGRIS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURNS, JOHN, KING, JEFFREY J.
Publication of US20130056485A1 publication Critical patent/US20130056485A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67373Closed carriers characterised by locking systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67386Closed carriers characterised by the construction of the closed carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a container for packaging items such as semiconductor wafers and solar cells. More particularly, the present invention relates to such a container with movable sidewalls for axially aligning substrates.
  • Substrates such as semiconductor wafers and solar cells are often transported in transport containers that maintain substrates in axially aligned stacks of substrates. Such containers must securely contain the substrates in proper position to avoid damage during shipping and handling. The containers must also be adequately cushioned to absorb impacts and must securely contain the substrates to avoid relative movement of the substrates.
  • substrates include semiconductor wafers and solar cells, including the silicon wafers to be made into operational solar cells.
  • Substrates must be properly aligned in their axial stacks in order to properly interface with support and cushioning mechanisms and to prevent damage to the substrates. This can be difficult due to the conventional manner in which containers are filled with substrates. In order for substrates to be inserted, the container must have an inside dimension that is greater than the outside dimension of the substrates. Therefore, as substrates are loaded into stacks, there is room for some variance between substrates in a stack and the substrates may be misaligned in the stack and vulnerable to damage.
  • One approach to aligning substrates is manually align the substrates in the stack and to include a plurality of foam cushions to hold the substrates in the aligned axial arrangement within the container by applying forces that tend to resist lateral movement.
  • forces that tend to resist lateral movement.
  • a transport container for semiconductor substrates and solar cell substrates includes a cover and a base having a plurality of side walls including movable wall portions with vertical pivot axis.
  • Movable wall portions can be connected to upright support structure with resilient movable polymer portions such as living hinges and can have an unconnected upper edge and an unconnected lower edge portions to allow the movable wall portions to move inwardly relative to base portion.
  • the cover can include a base engagement portion configured as a cam portion that engages a cover engagement portion on the movable wall portions as the cover is inserted onto the base. As the cam portions of the cover engage the cover engagement portions, the cam portions move the wall inwardly relative to the base to align the substrates.
  • the inward movement includes the upper portion, the intermediate portion, and the lower edge.
  • each of the two sides can move simultaneously.
  • the action movable wall can be upper portion in first and then the lower portion or the action can be that the upper and lower portions move in harmony, that is simultaneously. Control of the action depends on the hinge configuration and the cam portion-movable wall portion configuration.
  • the cam portion can then drop into a clearance position where it is no longer forcing the movable wall inwardly. This allows the movable wall to move back near its original position via the living hinges to remove the lateral force on the substrates and allow the stack to be seated in the substrate carrier without lateral engagement of the sides of the stack.
  • the lower portion of the movable wall may be retained inwardly.
  • a feature and advantage of embodiments of the present invention is movable walls that allow alignment of axially stacked substrates within a transport container with only direct lateral engagement of the substrates, including solar cells.
  • the cover engages the movable walls of the base causing them to move inwardly. This inward movement of the walls brings the stack of substrates into axial alignment with minimal chance of damage to the substrates.
  • a further feature and advantage of embodiments of the present invention is that the movable walls can release lateral pressure on the substrates after they have been axially aligned. After the movable walls have been moved inwardly by the cover, the engagement portion of the cover can enter a clearance portion of the base such that it no longer is applying inward pressure on the movable walls. The movable walls then release the lateral pressure on the substrates by returning to near their original position via the living hinge.
  • FIG. 1 a is perspective view of a base for a substrate transport container according to an embodiment of the present invention.
  • Figure lb is perspective view of a top cover for a substrate transport container according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a substrate transport container according to an embodiment of the present invention.
  • FIG. 3 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cover separated from the base.
  • FIG. 4 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cover engaging the base.
  • FIG. 5 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cam portion of the cover engaging the mid portion of the movable wall.
  • FIG. 6 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cam portion of the cover engaging the lower portion of the movable wall.
  • FIG. 7 is a perspective view of a pair of substrate transport containers according to an embodiment of the present invention in a stacked configuration.
  • FIG. 8 is a detailed perspective view of a movable wall portion with two living hinges on opposite sides of the walls.
  • FIG. 9 is a detailed perspective view of a movable wall portion with resilient hinges on only one side of the wall portion providing a horizontal moving wall.
  • FIG. 10 is a perspective view of another embodiment of a movable wall portion providing a horizontal moving wall.
  • a substrate transport container 100 for transporting substrates generally comprises a base 102 and top cover 103 to an embodiment of the present invention.
  • Base 102 has support structure configured as four quadrants 104 .
  • Each quadrant 104 can include various types of substrate supports.
  • Base 102 has a plurality of upwardly extending side walls 106 , discussed further herein.
  • the base 102 can include one or more apertures 108 extending therethrough. Apertures 108 can have various geometric configurations. This allows base 102 to interface with automation equipment of various configurations.
  • a piston can enter through one or more of the apertures 108 and contact stack of substrates therein. The piston can then be used to incrementally raise the stack so that the substrates can be sequentially removed from the stack.
  • base 102 includes side walls 106 , stationary walls 108 , and eight movable side wall portions 110 positioned two on each side of base 102 .
  • Side walls 104 can each comprise a movable wall portion 110 that is connected to pair of stationary walls 112 with living hinges 114 .
  • base 102 is not connected to the movable wall portion except through the hinges.
  • the movable wall portions 110 to be moved laterally relative to floor 119 of the base 102 .
  • the movable wall portions 110 define a stack receiving region 119 .
  • Each side wall 106 includes a cover guide portion 120 on each end of movable wall with a cover engagement portion 122 therebetween.
  • the stationary walls may define a substrate stack receiving region with the movable wall portions displaced outwardly therefrom. Then upon lowering of the top cover, in such a configuration the movable wall portions can be urged to extend inwardly past the inner perimeter defined by the stationary wall portions to provide the alignment function and or a retaining function.
  • FIGS. 3-6 depict the interaction of base 102 and cover 103 .
  • Substrates such as solar cells 123 are illustrated schematically.
  • the movable wall portion 110 has an outer retracted position R 1 indicated where the wall portion is in FIG. 3 and an extended position E 1 illustrated with the dotted lines.
  • Cover 103 includes a base engagement portion configured as a sliding cam portion 124 that includes a cam surface configured as wedge surface 126 and a vertical flat surface 128 .
  • the sliding cam portion 124 guided by cover guide portions 120 , comes into engagement with cover engagement portion 122 , a cam follower surface configured as ribs.
  • Wedge surface 126 engages movable wall portion 110 as a cam follower surface configured as ribs 125 , causing movable wall to begin to move inwardly. Because neither the upper edge 129 or the lower edge 131 of movable wall portion 110 is not connected to base 102 , movable wall portion 110 moves inwardly relative to floor 119 of base 102 , which remains stationary. This relative inward movement of movable wall portion 110 causes the movable wall portion to engage the stack 127 of solar cells or other substrates in the container to urge all substrates into proper alignment.
  • Wedge surface 126 slides along movable wall portion 110 until flat surface 128 engages cover engagement portion 122 as shown in FIGS. 4 and 5 .
  • Movable wall portion 110 continues to move inwardly relative to base to align the substrates as the flat surface 128 contacts cover engagement portion 122 as base 102 remains stationary.
  • base engagement portion 124 of cover 103 continues downward, it can enter a clearance section 134 of base 102 as illustrated in FIG. 6 .
  • Cover engagement portion 122 of movable wall portion 110 can taper inwardly at 132 adjacent clearance portion 134 below the ribs 122 , so that the cover 103 is no longer forcing the movable wall portion 110 inwardly into the stack of substrates.
  • the movable wall portion 110 can then flex back to a position at or near its original position, of FIG. 5 , before it was engaged by the cover 103 .
  • the substrates within the stack have been aligned, but there is no longer a circumferential force pressing against the substrates, eliminating the possibility of damage to substrates from this force.
  • the movable wall portion 110 can remain engaged with substrate stack throughout shipping in order to provide increased resistance against lateral movement of substrates.
  • FIGS. 8 and 9 depict movable wall portions 110 according to various embodiments of the present invention.
  • FIG. 8 depicts a movable wall portion 110 connected to base 102 with a pair of standard living hinges 114 as illustrated in the figures previously discussed.
  • the living hinges provide primarily as plurality of vertical axis of rotations a 1 , a 2 while also allowing some minimal rotation about a horizontal axis a 3 .
  • the living hinges constrain movement of the movable wall portion to primarily inwardly and outwardly.
  • FIG. 8 depicts another embodiment of a movable wall portion 110 . 1 having a pair of resilient hinge portions 140 and cover engagement portions 122 .
  • These resilient hinges 140 are configured as spring arms or fingers and provide a vertical axis of rotation a 4 .
  • the two fingers limit the amount the wall portion can rotate about a horizontal axis.
  • This movable wall portion can be moved as described in the previous embodiment by engagement of cam follower structure with the cam portion extending from the top cover. The wall portion moves in an arc defined by the length of the spring arm and increasing the length of the spring arm will flatten the arc. In the above embodiments the movement of the wall portion is constrained by the configuration of the hinges/spring arms.
  • the movable wall portion can be slidingly engaged with the base portion, such as a T-member 156 in a slot 158 or other structure on the base portion controlling the movement. Spring members can be connected to the movable wall portion to return the wall portion to an original position.
  • transport containers 100 can be configured to be stackable upon each other.
  • Containers 100 can include a perimeter having a plurality of notches 140 that allows for stacking by accommodating a portion of the perimeter 142 of an adjacent container.
  • Containers 100 can be stackable at an angle to each other, as shown in FIG. 7 , or can be stackable aligned with one another. Stacking containers 100 at an angle to each other provides the advantage of being able to view colored information plug 144 associated with a container without having to displace the container above.
  • the base and top cover may be conventionally injection molded.
  • the hinges can be formed by thinner material or may be a different polymer adhered to the stationary wall and movable wall by coinjection techniques. Other materials may also be suitable such as pulp.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Packaging Frangible Articles (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

A transport container for substrates such as semiconductor wafers and solar cell substrates includes a cover and a base having a plurality of side walls including movable wall portions with vertically extending hinges or hinges that provide a pivot about a vertical axis. The hinges can be resilient movable polymer portions such as living hinges and can have an unconnected upper edge and an unconnected lower edge to allow the movable wall portions to move inwardly relative to a floor of the base. The cover can include a base engagement portion configured as a cam portion that engages a cover engagement portion on the movable wall portions as the cover is inserted onto the base. As the cam portions of the cover engage the cover engagement portions, the cam portions move the wall inwardly relative to the base to align the substrates.

Description

    RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Ser. No. 61/309,747, filed Mar. 2, 2010 and which is incorporated by reference herein.
  • FIELD OF THE INVENTION
  • The present invention relates to a container for packaging items such as semiconductor wafers and solar cells. More particularly, the present invention relates to such a container with movable sidewalls for axially aligning substrates.
  • BACKGROUND OF THE INVENTION
  • Substrates such as semiconductor wafers and solar cells are often transported in transport containers that maintain substrates in axially aligned stacks of substrates. Such containers must securely contain the substrates in proper position to avoid damage during shipping and handling. The containers must also be adequately cushioned to absorb impacts and must securely contain the substrates to avoid relative movement of the substrates. When used herein “substrates” include semiconductor wafers and solar cells, including the silicon wafers to be made into operational solar cells.
  • Substrates must be properly aligned in their axial stacks in order to properly interface with support and cushioning mechanisms and to prevent damage to the substrates. This can be difficult due to the conventional manner in which containers are filled with substrates. In order for substrates to be inserted, the container must have an inside dimension that is greater than the outside dimension of the substrates. Therefore, as substrates are loaded into stacks, there is room for some variance between substrates in a stack and the substrates may be misaligned in the stack and vulnerable to damage.
  • Having a cover surface that slidingly engages the misaligned edges of a stack in order to align them can damage the edges of the substrates; this is particularly true for solar cell wafers which are extremely thin and fragile.
  • One approach to aligning substrates is manually align the substrates in the stack and to include a plurality of foam cushions to hold the substrates in the aligned axial arrangement within the container by applying forces that tend to resist lateral movement. However, it is possible for more fragile substrates, particularly solar cells, to be damaged by the application of such forces during shipping. It would therefore be desirable for a transport carrier to provide axial alignment of substrates while reducing the possibility of damage.
  • SUMMARY OF THE INVENTION
  • A transport container for semiconductor substrates and solar cell substrates includes a cover and a base having a plurality of side walls including movable wall portions with vertical pivot axis. Movable wall portions can be connected to upright support structure with resilient movable polymer portions such as living hinges and can have an unconnected upper edge and an unconnected lower edge portions to allow the movable wall portions to move inwardly relative to base portion. The cover can include a base engagement portion configured as a cam portion that engages a cover engagement portion on the movable wall portions as the cover is inserted onto the base. As the cam portions of the cover engage the cover engagement portions, the cam portions move the wall inwardly relative to the base to align the substrates. The inward movement includes the upper portion, the intermediate portion, and the lower edge. In particular embodiments, each of the two sides can move simultaneously. The action movable wall can be upper portion in first and then the lower portion or the action can be that the upper and lower portions move in harmony, that is simultaneously. Control of the action depends on the hinge configuration and the cam portion-movable wall portion configuration. In some embodiments, the cam portion can then drop into a clearance position where it is no longer forcing the movable wall inwardly. This allows the movable wall to move back near its original position via the living hinges to remove the lateral force on the substrates and allow the stack to be seated in the substrate carrier without lateral engagement of the sides of the stack. In other embodiments, the lower portion of the movable wall may be retained inwardly.
  • A feature and advantage of embodiments of the present invention is movable walls that allow alignment of axially stacked substrates within a transport container with only direct lateral engagement of the substrates, including solar cells. As the cover is engaged with the base, the cover engages the movable walls of the base causing them to move inwardly. This inward movement of the walls brings the stack of substrates into axial alignment with minimal chance of damage to the substrates.
  • A further feature and advantage of embodiments of the present invention is that the movable walls can release lateral pressure on the substrates after they have been axially aligned. After the movable walls have been moved inwardly by the cover, the engagement portion of the cover can enter a clearance portion of the base such that it no longer is applying inward pressure on the movable walls. The movable walls then release the lateral pressure on the substrates by returning to near their original position via the living hinge.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 a is perspective view of a base for a substrate transport container according to an embodiment of the present invention.
  • Figure lb is perspective view of a top cover for a substrate transport container according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a substrate transport container according to an embodiment of the present invention.
  • FIG. 3 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cover separated from the base.
  • FIG. 4 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cover engaging the base.
  • FIG. 5 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cam portion of the cover engaging the mid portion of the movable wall.
  • FIG. 6 is a partial cross sectional view of a substrate transport container according to an embodiment of the present invention with the cam portion of the cover engaging the lower portion of the movable wall.
  • FIG. 7 is a perspective view of a pair of substrate transport containers according to an embodiment of the present invention in a stacked configuration.
  • FIG. 8 is a detailed perspective view of a movable wall portion with two living hinges on opposite sides of the walls.
  • FIG. 9 is a detailed perspective view of a movable wall portion with resilient hinges on only one side of the wall portion providing a horizontal moving wall.
  • FIG. 10 is a perspective view of another embodiment of a movable wall portion providing a horizontal moving wall.
  • DETAILED DESCRIPTION
  • Referring to FIGS. 1 and 2, a substrate transport container 100 for transporting substrates such as semiconductor substrates and solar cell substrates generally comprises a base 102 and top cover 103 to an embodiment of the present invention. Base 102 has support structure configured as four quadrants 104. Each quadrant 104 can include various types of substrate supports. Base 102 has a plurality of upwardly extending side walls 106, discussed further herein.
  • The base 102 can include one or more apertures 108 extending therethrough. Apertures 108 can have various geometric configurations. This allows base 102 to interface with automation equipment of various configurations. In one embodiment, a piston can enter through one or more of the apertures 108 and contact stack of substrates therein. The piston can then be used to incrementally raise the stack so that the substrates can be sequentially removed from the stack.
  • In one embodiment depicted in FIGS. 1 and 8, base 102 includes side walls 106, stationary walls 108, and eight movable side wall portions 110 positioned two on each side of base 102. Side walls 104 can each comprise a movable wall portion 110 that is connected to pair of stationary walls 112 with living hinges 114. At a bottom 116 of movable wall portions 110, base 102 is not connected to the movable wall portion except through the hinges. There may be a gap 118 between movable wall portions 110 and the floor 119 of the base. The movable wall portions 110 to be moved laterally relative to floor 119 of the base 102. The movable wall portions 110 define a stack receiving region 119. Each side wall 106 includes a cover guide portion 120 on each end of movable wall with a cover engagement portion 122 therebetween. In other embodiments the stationary walls may define a substrate stack receiving region with the movable wall portions displaced outwardly therefrom. Then upon lowering of the top cover, in such a configuration the movable wall portions can be urged to extend inwardly past the inner perimeter defined by the stationary wall portions to provide the alignment function and or a retaining function.
  • FIGS. 3-6 depict the interaction of base 102 and cover 103. Substrates such as solar cells 123 are illustrated schematically. The movable wall portion 110 has an outer retracted position R1 indicated where the wall portion is in FIG. 3 and an extended position E1 illustrated with the dotted lines. Cover 103 includes a base engagement portion configured as a sliding cam portion 124 that includes a cam surface configured as wedge surface 126 and a vertical flat surface 128. As shown in FIGS. 4 and 5, as the cover 103 is lowered onto base 102, the sliding cam portion 124, guided by cover guide portions 120, comes into engagement with cover engagement portion 122, a cam follower surface configured as ribs. Wedge surface 126 engages movable wall portion 110 as a cam follower surface configured as ribs 125, causing movable wall to begin to move inwardly. Because neither the upper edge 129 or the lower edge 131 of movable wall portion 110 is not connected to base 102, movable wall portion 110 moves inwardly relative to floor 119 of base 102, which remains stationary. This relative inward movement of movable wall portion 110 causes the movable wall portion to engage the stack 127 of solar cells or other substrates in the container to urge all substrates into proper alignment.
  • Wedge surface 126 slides along movable wall portion 110 until flat surface 128 engages cover engagement portion 122 as shown in FIGS. 4 and 5. Movable wall portion 110 continues to move inwardly relative to base to align the substrates as the flat surface 128 contacts cover engagement portion 122 as base 102 remains stationary. As base engagement portion 124 of cover 103 continues downward, it can enter a clearance section 134 of base 102 as illustrated in FIG. 6. Cover engagement portion 122 of movable wall portion 110 can taper inwardly at 132 adjacent clearance portion 134 below the ribs 122, so that the cover 103 is no longer forcing the movable wall portion 110 inwardly into the stack of substrates. The movable wall portion 110 can then flex back to a position at or near its original position, of FIG. 5, before it was engaged by the cover 103. By this process, the substrates within the stack have been aligned, but there is no longer a circumferential force pressing against the substrates, eliminating the possibility of damage to substrates from this force. In another embodiment, the movable wall portion 110 can remain engaged with substrate stack throughout shipping in order to provide increased resistance against lateral movement of substrates.
  • FIGS. 8 and 9 depict movable wall portions 110 according to various embodiments of the present invention. FIG. 8 depicts a movable wall portion 110 connected to base 102 with a pair of standard living hinges 114 as illustrated in the figures previously discussed. Notably, the living hinges provide primarily as plurality of vertical axis of rotations a1, a2 while also allowing some minimal rotation about a horizontal axis a3. The living hinges constrain movement of the movable wall portion to primarily inwardly and outwardly. FIG. 8 depicts another embodiment of a movable wall portion 110.1 having a pair of resilient hinge portions 140 and cover engagement portions 122. These resilient hinges 140 are configured as spring arms or fingers and provide a vertical axis of rotation a4. The two fingers limit the amount the wall portion can rotate about a horizontal axis. This movable wall portion can be moved as described in the previous embodiment by engagement of cam follower structure with the cam portion extending from the top cover. The wall portion moves in an arc defined by the length of the spring arm and increasing the length of the spring arm will flatten the arc. In the above embodiments the movement of the wall portion is constrained by the configuration of the hinges/spring arms. In another embodiments, see FIG. 10, the movable wall portion can be slidingly engaged with the base portion, such as a T-member 156 in a slot 158 or other structure on the base portion controlling the movement. Spring members can be connected to the movable wall portion to return the wall portion to an original position.
  • Referring to FIG. 7, transport containers 100 can be configured to be stackable upon each other. Containers 100 can include a perimeter having a plurality of notches 140 that allows for stacking by accommodating a portion of the perimeter 142 of an adjacent container. Containers 100 can be stackable at an angle to each other, as shown in FIG. 7, or can be stackable aligned with one another. Stacking containers 100 at an angle to each other provides the advantage of being able to view colored information plug 144 associated with a container without having to displace the container above.
  • Although the figures illustrate a container for square substrates, the invention is also equally applicable to transport containers for circular substrates; such containers are known as coin stack wafer containers.
  • The base and top cover may be conventionally injection molded. The hinges can be formed by thinner material or may be a different polymer adhered to the stationary wall and movable wall by coinjection techniques. Other materials may also be suitable such as pulp.
  • The present invention may be embodied in other specific forms without departing from the spirit of any of the essential attributes thereof. Therefore, the illustrated embodiments should be considered in all respects as illustrative and not restrictive, reference being made to the appended claims rather than to the foregoing description to indicate the scope of the invention.

Claims (7)

1. A transport container for a stack of substrates, the container having a base and a top cover, the base having a stack receiving region defined by a plurality of movable vertical wall portions, the movable wall portions having two sides and a pair of vertically extending living hinges attached to the two sides allowing the movable wall portions to be moved horizontally toward and away from the stack receiving region, each movable wall having a top cover engaging surface positioned opposite from the stack receiving region;
the top cover having a plurality of cam portion arranged to engage each of the movable wall portions as the top cover is lowered into engagement with the base whereby the movable wall portion are urged inwardly toward the substrate receiving region.
2-4. (canceled)
5. The transport container of claim 1 wherein the floor, the stationary wall portions, the movable wall portions, and the hinges are all integral with one another.
6. A method of axially aligning substrates in a container, the method comprising the steps of:
placing a stack of not fully aligned substrates in a receiving region of a base of a transport container, the receiving region defined by a plurality of movable wall portions with a top edge and a bottom edge, each wall portion having a pair of sides with a living hinge on each side, the bottom edge separated from a floor of the base by a gap;
engaging the movable wall portions with cam portions attached to the top cover such that the movable wall portions are urged inwardly by flexing the living hinges and;
seating the top cover onto the base.
7. A substrate container comprising:
a base portion with a floor with a movable sidewall portion positioned above the floor with a gap there between, the movable sidewall portion flexibly attached to a stationary wall portion, by a pair of living hinges, the movable wall portion having a top edge and a bottom edge whereby both are movable horizontally as the movable wall portion moves.
8. The substrate container of claim 7 further comprising a top cover that is engageable with the base portion, the top cover having members that engage a surface on the movable wall to move the wall portion horizontally.
9.
US13/582,709 2010-03-02 2011-03-02 Substrate transport carrier Abandoned US20130056485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/582,709 US20130056485A1 (en) 2010-03-02 2011-03-02 Substrate transport carrier

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30974710P 2010-03-02 2010-03-02
PCT/US2011/026892 WO2011109537A2 (en) 2010-03-02 2011-03-02 Substrate transport carrier
US13/582,709 US20130056485A1 (en) 2010-03-02 2011-03-02 Substrate transport carrier

Publications (1)

Publication Number Publication Date
US20130056485A1 true US20130056485A1 (en) 2013-03-07

Family

ID=44542826

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/582,709 Abandoned US20130056485A1 (en) 2010-03-02 2011-03-02 Substrate transport carrier

Country Status (3)

Country Link
US (1) US20130056485A1 (en)
TW (1) TW201206775A (en)
WO (1) WO2011109537A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD800055S1 (en) * 2015-06-11 2017-10-17 Elie Rothschild Solar panel attachment base
US10242897B2 (en) 2015-12-14 2019-03-26 Solarcity Corporation Micro-environment container for photovoltaic cells

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240047249A1 (en) * 2022-08-02 2024-02-08 Visera Technologies Company Ltd. Transfer system for wafer cassettes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060266754A1 (en) * 2005-05-31 2006-11-30 Carmona Michael B Expandable and contractible food storage container

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5452795A (en) * 1994-11-07 1995-09-26 Gallagher; Gary M. Actuated rotary retainer for silicone wafer box
US6237771B1 (en) * 1999-12-28 2001-05-29 Noor Ul Haq Wafer shipping container
US7578392B2 (en) * 2003-06-06 2009-08-25 Convey Incorporated Integrated circuit wafer packaging system and method
US20070187286A1 (en) * 2006-02-16 2007-08-16 Pylant James D Wafer storage container and apparatus
WO2009048456A1 (en) * 2007-10-12 2009-04-16 Peak Plastic & Metal Products (International) Limited Wafer container with staggered wall structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060266754A1 (en) * 2005-05-31 2006-11-30 Carmona Michael B Expandable and contractible food storage container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD800055S1 (en) * 2015-06-11 2017-10-17 Elie Rothschild Solar panel attachment base
US10242897B2 (en) 2015-12-14 2019-03-26 Solarcity Corporation Micro-environment container for photovoltaic cells

Also Published As

Publication number Publication date
TW201206775A (en) 2012-02-16
WO2011109537A3 (en) 2012-03-01
WO2011109537A2 (en) 2011-09-09

Similar Documents

Publication Publication Date Title
EP3647231B1 (en) Transport vehicle and transport facility
CN216288355U (en) Wafer transfer system
US8919563B2 (en) Methods and apparatus for large diameter wafer handling
US20130299384A1 (en) Front opening wafer container with wafer cushion
JP4751827B2 (en) Equipment for storing or transporting a substrate and method using the same
CN113853673B (en) Process kit ring adapter and method of replacing process kit ring
US20070012594A1 (en) Shock absorbing horizontal transport wafer box
CN107112269A (en) The horizontal substrate container with overall turning spring housed for substrate
US20130056485A1 (en) Substrate transport carrier
MXPA04011771A (en) Modular rack.
EP3234991A1 (en) Wafer container with shock condition protection
KR100776337B1 (en) Tray for carrying substrate
US8540473B2 (en) Load port
US9768046B2 (en) Wafer storage container
US7565980B2 (en) Wafer box with radially pivoting latch elements
US20140076774A1 (en) Automated Wafer Container with Equipment Interface
CN107665843B (en) Wafer cassette, wafer stacking aid, wafer carrier, wafer transport system, method for loading wafer into wafer cassette and method for removing wafer from wafer cassette
JP2024509270A (en) Semiconductor substrate transport container with front opening and rear opening
JP6395223B2 (en) Boxing device and boxing method
CN210028343U (en) Plate-like object packaging box and plate-like object packaging box set
KR101267002B1 (en) Tilting plaform system for glass pannel sorting
CN219008425U (en) Tray and electronic system
US7971722B2 (en) Wafer container with restrainer
US20030059289A1 (en) Wafer cassette transport cart with self correcting fault alignment block and method
KR101803416B1 (en) Floating tray catch apparatus for semiconductor test device

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENTEGRIS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNS, JOHN;KING, JEFFREY J.;REEL/FRAME:029293/0343

Effective date: 20121003

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION