US20130033638A1 - Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same - Google Patents

Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same Download PDF

Info

Publication number
US20130033638A1
US20130033638A1 US13/566,002 US201213566002A US2013033638A1 US 20130033638 A1 US20130033638 A1 US 20130033638A1 US 201213566002 A US201213566002 A US 201213566002A US 2013033638 A1 US2013033638 A1 US 2013033638A1
Authority
US
United States
Prior art keywords
subject
moving speed
peak position
image pickup
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/566,002
Other versions
US9152010B2 (en
Inventor
Masataka Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMADA, MASATAKA
Publication of US20130033638A1 publication Critical patent/US20130033638A1/en
Priority to US14/848,863 priority Critical patent/US9667856B2/en
Application granted granted Critical
Publication of US9152010B2 publication Critical patent/US9152010B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • G02B7/38Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals measured at different points on the optical axis, e.g. focussing on two or more planes and comparing image data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/002Details of arrangement of components in or on camera body

Definitions

  • the invention relates to an auto focus (AF) adjusting method, an AF adjusting apparatus, and a digital photographing apparatus including the same.
  • AF contrast auto focus
  • phase difference AF phase difference AF
  • the contrast AF method is a method of acquiring contrast values with respect to image signals generated from an image pickup sensor while performing photographing by changing a position of a focus lens, and driving the focus lens to a focus lens position of a peak contrast value.
  • a peak position that is a focal position in the contrast AF method, it is not easy to focus when a moving subject is photographed.
  • An embodiment of the invention provides an auto focus (AF) adjusting method and an AF adjusting apparatus, whereby a moving subject can be quickly and correctly focused by using a contrast AF method even when continuous photographing is performed, and a digital photographing apparatus including the same
  • an auto focus (AF) adjusting apparatus including: an image pickup lens in which the position of a focus lens is variable for focus adjustment; a focus lens driver for driving the focus lens; an image pickup device for generating an image signal by picking up light which has passed through the image pickup lens; an AF calculator for calculating focus detection evaluation values from the image signal; a peak detector for detecting the peak position of the focus detection evaluation values; a shutter for controlling light exposure of the image pickup device; and a speed calculator for calculating the moving speed of a subject by using the peak position, wherein, when continuous photographing for continuously capturing still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using a moving speed calculated in the light exposure preparation interval before capturing starts.
  • the shutter may be a mechanical shutter including a front curtain and a rear curtain.
  • the moving body compensation driving may be performed before driving to change the shutter to a closed state is completed.
  • the shutter may be an electronic front curtain shutter including an electronic front curtain for beginning light exposure by resetting electric charges and a mechanical rear curtain for ending the light exposure.
  • the moving body compensation driving may be performed in an interval before beginning to drive the front curtain for image capturing after stopping driving for selectively reading electric charges from the image pickup device.
  • the shutter may be a global shutter including an electronic front curtain for beginning light exposure by resetting electric charges and an electronic rear curtain for ending the light exposure.
  • the moving body compensation driving may be performed in an interval before beginning to drive the front curtain for image capturing after stopping driving for selectively reading electric charges from the image pickup device.
  • the AF adjusting apparatus may end displaying before image capturing, and the moving body compensation driving may be performed in an interval before beginning the image capturing after ending the displaying.
  • the detection of the peak position may be performed by driving the focus lens back and forth.
  • detecting a peak position multiple times may be performed in the image pickup interval before the light exposure preparation interval, and the moving speed of the subject may be calculated from a result of the detecting of a peak position multiple times.
  • the peak position detection may be performed at least once in the image pickup interval before the light exposure preparation interval for every image capturing, and the moving speed of the subject may be calculated by using a peak position result detected in the image pickup interval for current image capturing and a peak position result detected in the image pickup interval for previous image capturing.
  • the peak position detection may be performed once in the image pickup interval before the light exposure preparation interval, and when the moving speed of the subject is slow, the peak position detection may be performed multiple times in the image pickup interval before the light exposure preparation interval.
  • the moving speed of the subject may be determined by using the moving speed of the subject acquired until the continuous photographing starts or the moving speed of the subject obtained in previous capturing during the continuous photographing.
  • the acquired moving speed and a moving speed of the subject acquired during the continuous photographing may both be used to predict the peak position in capturing. But when the moving speed of the subject is not acquired before the continuous photographing starts, the moving speed of the subject acquired during the continuous photographing may be used to predict the peak position in capturing.
  • the moving body compensation driving may be performed by predicting the peak position from the moving speed of the subject and a time until capturing.
  • the moving body compensation driving may be performed by predicting the peak position according to movement of the subject in an interval from a light exposure end time to an image pickup start time before the light exposure preparation interval for image capturing by using the acquired moving speed.
  • an auto focus (AF) adjusting method of an AF adjusting apparatus capable of continuous photographing in which still images are continuously captured, the AF adjusting method including: generating an image signal by picking up light from a subject; calculating focus detection evaluation values from the image signal; detecting the peak position of the focus detection evaluation values in an image pickup interval before a light exposure preparation interval for image capturing during the continuous photographing; calculating the moving speed of the subject by using the peak position; and compensating for the focal position by using the moving speed calculated in the light exposure preparation interval.
  • a digital photographing apparatus capable of performing auto focus (AF) adjustment
  • the digital photographing apparatus including: an image pickup lens in which the position of a focus lens is variable for focus adjustment; a focus lens driver for driving the focus lens; an image pickup device for generating an image signal by picking up light which has passed through the image pickup lens; an AF calculator for calculating focus detection evaluation values from the image signal; a peak detector for detecting the peak position of the focus detection evaluation values; a shutter for controlling light exposure of the image pickup device; and a speed calculator for calculating the moving speed of a subject by using the peak position, wherein, when continuous photographing for continuously capturing still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using the moving speed calculated in the light exposure preparation interval before capturing starts.
  • AF auto focus
  • the moving body compensation driving may be performed by predicting the peak position according to movement of the subject in an interval from a light exposure end time to an image pickup start time before the light exposure preparation interval for image capturing by using the acquired moving speed.
  • an AF adjusting apparatus and a digital photographing apparatus including the same can quickly and correctly focus on a moving subject even when continuous photographing is performed.
  • FIG. 1 is a block diagram of a digital photographing apparatus according to an embodiment
  • FIG. 2 is a block diagram of a camera controller according to an embodiment
  • FIG. 3 illustrates graphs to describe an auto focus (AF) operation in a contrast AF method
  • FIG. 4 is an AF operation timing diagram of the digital photographing apparatus according to an embodiment
  • FIG. 5 is a timing diagram indicating a relationship between operation timing of the digital photographing apparatus and a position of a focus lens
  • FIG. 6 is a graph that illustrates performing moving body prediction AF, according to an embodiment
  • FIG. 7 is a graph to describe a method of performing moving body prediction AF, according to another embodiment.
  • FIG. 8 is a timing diagram of the moving body prediction AF performed with reference to FIG. 7 ;
  • FIG. 9 is a timing diagram indicating a moving body compensation driving method according to an embodiment
  • FIGS. 10 to 14 are timing diagrams indicating a moving body compensation driving method according to other embodiments.
  • FIG. 15 is a flowchart illustrating a method of controlling the digital photographing apparatus, according to an embodiment
  • FIGS. 16 and 17 are flowcharts illustrating a method of controlling the digital photographing apparatus, according to another embodiment
  • FIGS. 18 to 19B are flowcharts illustrating a method of controlling the digital photographing apparatus, according to another embodiment
  • FIGS. 20A and 20B are flowcharts illustrating another embodiment of FIG. 19B .
  • FIG. 21 is a flowchart illustrating another embodiment of FIGS. 19A and 19B .
  • the digital photographing apparatus 1 includes an interchangeable lens 100 and a main body 200 .
  • the interchangeable lens 100 includes a focus detection function
  • the main body 200 includes a function of controlling the interchangeable lens 100 to drive a focus lens 104 .
  • the interchangeable lens (hereinafter referred to as lens) 100 includes an image forming optical system 101 , a zoom lens position sensing sensor 103 , a lens driving actuator 105 , a focus lens position sensing sensor 106 , an iris driving actuator 108 , a lens controller 110 , and a lens mount 109 .
  • the image forming optical system 101 includes a zoom lens 102 for zoom adjustment, the focus lens 104 for changing a focal position, and an iris 107 .
  • the zoom lens 102 and the focus lens 104 may each be a lens group in which a plurality of lenses are combined.
  • a combination of the zoom lens 102 and the focus lens 104 is called an image pickup lens.
  • the zoom lens position sensing sensor 103 and the focus lens position sensing sensor 106 sense positions of the zoom lens 102 and the focus lens 104 , respectively.
  • Timing for sensing the position of the focus lens 104 may be set by the lens controller 110 or a camera controller 209 , which will be described below.
  • the timing for sensing the position of the focus lens 104 may be timing for performing auto focusing (AF) detection from an image signal.
  • the lens driving actuator 105 and the iris driving actuator 108 drive the zoom lens 102 and the focus lens 104 and the iris 107 under control of the lens controller 110 , respectively.
  • the lens driving actuator 105 drives the focus lens 104 in an optical axis direction. That is, the lens driving actuator 105 may be an example of a focus lens driver.
  • the lens controller 110 transmits the sensed position information of the focus lens 104 to the main body 200 .
  • the lens controller 110 can transmit the sensed position information of the focus lens 104 to the main body 200 .
  • the lens mount 109 includes lens-side communication pins engaged with camera-side communication pins, which are described below, to be used as a communication path of data, a control signal, etc.
  • the main body 200 may include a view finder (EVF) 201 , a shutter 203 , an image pickup device 204 , an image pickup device controller 205 , a display unit 206 , a manipulation unit 207 , the camera controller 209 , and a camera mount 208 .
  • EMF view finder
  • the EVF 201 may include a Liquid Crystal Display (LCD) 202 , to display an image during image pickup in real time.
  • LCD Liquid Crystal Display
  • the shutter 203 determines the time for exposing the image pickup device 204 to light, i.e., an exposure time.
  • an exposure time i.e., an exposure time.
  • the shutter 203 is not limited thereto.
  • the shutter 203 may be an electronic front curtain shutter including an electronic front curtain for beginning light exposure by resetting accumulated electric charges and a mechanical rear curtain.
  • the shutter 203 may be a global shutter including an electronic front curtain beginning light exposure by resetting accumulated electric charges and an electronic rear curtain for ending the light exposure by transmitting accumulated electric charges to a light non-exposure part.
  • the image pickup device 204 generates an image signal by picking up image light which has passed through the image forming optical system 101 of the lens 100 .
  • the image pickup device 204 may include a plurality of photoelectric conversion elements arranged in a matrix form and a vertical or/and horizontal transmission line for reading an image signal by moving electric charges from the plurality of photoelectric conversion elements.
  • a Charge-Coupled Device (CCD) sensor, a Complementary Metal Oxide Semiconductor (CMOS) sensor, or other image sensor may be used.
  • the image pickup device controller 205 generates a timing signal and controls the image pickup device 204 to pick up an image by synchronizing the timing signal. In addition, the image pickup device controller 205 sequentially reads an image signal as electric charge accumulation to scanning lines ends. The read image signal is used for AF detection by the camera controller 209 .
  • the display unit 206 displays various kinds of images and information.
  • an Organic Light Emitting Diode (OLED) display, a Liquid Crystal Display (LCD), or the like may be used.
  • the display unit 206 may temporarily stop displaying a live-view image before capturing a still image.
  • the manipulation unit 207 allows a user to input various kinds of instructions for operating the digital photographing apparatus 1 .
  • the manipulation unit 207 may include various buttons such as a shutter release button, a main switch, a mode dial, and a menu button.
  • the camera controller 209 calculates a contrast value and performs AF detection using an image signal generated by the image pickup device 204 .
  • the camera controller 209 stores a contrast value at every AF detection time in response to the timing signal generated by the image pickup device controller 205 and calculates a focal position using the lens position information received from the lens 100 and the stored contrast value. A calculation result of the focal position is transmitted to the lens 100 .
  • the camera mount 208 includes the camera-side communication pins. In addition, power may be supplied to the lens controller 110 via the camera mount 208 .
  • an operation of the digital photographing apparatus 1 is started by manipulation of the main switch of the manipulation unit 207 .
  • the digital photographing apparatus 1 performs a live view display as described below.
  • Image light of the subject which has passed through the image forming optical system 101 , is incident on the image pickup device 204 .
  • the shutter 203 is open.
  • the incident image light is converted into an electrical signals by the image pickup device 204 , thereby generating an image signal.
  • the image pickup device 204 operates by a timing signal generated by the image pickup device controller 205 .
  • the generated image signal of the subject is converted into displayable data by the camera controller 209 and is output to the EVF 201 and the display unit 206 .
  • This operation is the live view display, and live view images displayed by the live view display may be continuously displayed as a moving picture.
  • the digital photographing apparatus 1 After the live view display is performed, if the shutter release button, one component of the manipulation unit 207 , is pressed in a half-pressed state the digital photographing apparatus 1 starts an AF operation.
  • the AF operation is performed using the image signal generated by the image pickup device 204 .
  • a focal position is calculated from a focus detection evaluation value (hereinafter, referred to as ‘AF evaluation value’) associated with a contrast value, and the lens 100 is driven based on the calculation result.
  • the AF evaluation value is calculated by the camera controller 209 .
  • the camera controller 209 calculates information for control of the focus lens 104 from the AF evaluation value and transmits the information to the lens controller 110 via the lens-side and the camera-side communication pins included in the lens mount 109 and the camera mount 208 , respectively.
  • the lens controller 110 performs AF by driving the focus lens 104 in an optical axis direction by controlling the lens driving actuator 105 based on the received information.
  • the position of the focus lens 104 is monitored by the focus lens position sensing sensor 106 , thereby establishing a feedback control.
  • the zoom lens position sensing sensor 103 senses the position of the zoom lens 102 , and the lens controller 110 performs AF again by modifying AF control parameters of the focus lens 104 .
  • the digital photographing apparatus 1 When an image of the subject is in complete focus, the digital photographing apparatus 1 performs light exposure in a fully-pressed state of the shutter release button. At this time, the camera controller 209 fully closes the shutter 203 and transmits measured light information acquired up to that time to the lens controller 110 as iris control information.
  • the lens controller 110 controls the iris driving actuator 108 based on the iris control information to operate the iris 107 to a proper iris value.
  • the camera controller 209 controls the shutter 203 based on the measured light information to capture an image of the subject by opening the shutter 203 for a proper exposure time.
  • the captured image is image signal processed (and which may be compressed) and stored on a memory card ( 212 of FIG. 2 ). At the same time, the captured image is output to the EVF 201 and the display unit 206 to display a subject. Such an image is called a quick view image.
  • the camera controller 209 may include a pre-processor 220 , a signal processor 221 , a compression and decompression unit 222 , a display controller 223 , a Central Processing Unit (CPU) 224 , a memory controller 225 , an audio controller 226 , a card controller 227 , a timer 228 , and a main bus 230 .
  • a pre-processor 220 may include a signal processor 221 , a compression and decompression unit 222 , a display controller 223 , a Central Processing Unit (CPU) 224 , a memory controller 225 , an audio controller 226 , a card controller 227 , a timer 228 , and a main bus 230 .
  • CPU Central Processing Unit
  • the camera controller 209 provides various kinds of instructions and data to each component of the camera controller 209 via the main bus 230 .
  • the pre-processor 220 receives an image signal generated by the image pickup device 204 and performs calculation of Auto White Balance (AWB), Auto Exposure (AE), and AF.
  • the pre-processor 220 calculates an AF evaluation value for focus adjustment, an AE evaluation value for exposure adjustment, and an AWB evaluation value for white balance adjustment.
  • the pre-processor 220 may be an example of an AF calculator.
  • the signal processor 221 performs a series of image signal processing operations, such as gamma compensation, to generate a live view image or a captured image displayable on the display unit 206 .
  • the compression and decompression unit 222 performs compression and decompression of an image signal on which image signal processing has been performed.
  • an image signal is compressed in a compression format such as, for example, Joint Photographic Experts Group (JPEG) compression format or H.264 compression format.
  • JPEG Joint Photographic Experts Group
  • H.264 compression format An image file including image data generated by the compression processing is transmitted to and recorded in a memory card 212 .
  • the display controller 223 controls the image output to a display screen such as the LCD 202 of the EVF 201 or the display unit 206 .
  • the CPU 224 generally controls an operation of each component of the camera controller 209 .
  • the CPU 224 performs communication with the lens 100 .
  • the CPU 224 may detect a peak position of each AF evaluation value from AF evaluation values calculated by the pre-processor 220 .
  • the CPU 224 may calculate the moving speed of a subject by using the detected peak positions. That is, the CPU 224 may be an example of a peak detector and a speed calculator. However, the invention is not limited thereto, and another component may perform the peak detection and speed calculation function instead of the CPU 224 .
  • the memory controller 225 controls a memory 210 to temporarily record data such as a captured image or associated information
  • the audio controller 226 controls a microphone or speaker 211
  • the card controller 227 controls the memory card 212 to record captured images.
  • the timer 228 measures time.
  • the lens 100 is an exchangeable lens detachably attached to the main body 200
  • the digital photographing apparatus 1 may include the lens 100 and the main body 200 one integrated body.
  • the lens mount 109 and the camera mount 208 may be excluded, and the camera controller 209 may perform a function of the lens controller 110 .
  • the camera controller 209 may directly control the lens driving actuator 105 and the iris driving actuator 108 and receive position information from the zoom lens position sensing sensor 103 and the focus lens position sensing sensor 106 .
  • FIG. 3 illustrates an AF operation according to an embodiment of the contrast AF method.
  • the AF operation is performed by repeatedly calculating an AF evaluation value associated with a contrast value from an image signal and detecting a focal position with a position of the focus lens 104 at which a calculated AF evaluation value is a maximum value.
  • Each horizontal axis of FIG. 3 indicates a position of the focus lens 104
  • each vertical axis indicates an AF evaluation value.
  • operation A scanning is performed by high-speed driving the focus lens 104 from one side to the other side (hereinafter, referred to as ‘operation A’).
  • the scanning indicates calculating an AF evaluation value while driving the focus lens 104 .
  • An approximate peak position is detected by operation A.
  • the peak detection is performed again by reversing the driving direction of the focus lens 104 and more slowly driving the focus lens 104 than during operation A (hereinafter, referred to as ‘operation B’).
  • AF detection may be performed by operation B at a higher accuracy than operation A.
  • the driving direction of the focus lens 104 is reversed again, and the focus lens 104 is driven towards the focal position according to the detected peak (hereinafter, referred to as ‘operation C’).
  • operation C a device for driving a lens usually has a backlash causing an error of a lens position according to a driving direction.
  • the backlash needs to be removed, and in operation C, the focus lens 104 is driven over the focal position.
  • operation D the driving direction of the focus lens 104 is reversed again, and the focus lens 104 is driven in the same direction as the driving direction according to operation B to stop at the focal position (hereinafter, referred to as ‘operation D’).
  • AF evaluation values are calculated by performing a scanning operation even in operation C, and the calculated AF evaluation values are used to detect movement of a subject.
  • the AF operation is performed by operations A to D.
  • FIG. 4 is an AF operation timing diagram of the digital photographing apparatus 1 according to an embodiment.
  • timing diagrams of an accumulation start signal, an electric charge accumulation signal of a first scanning line, AFarea[ ] to AFarea[a] electric charge accumulation signals used for AF detection, an electric charge accumulation signal of an nth scanning line, and a reading start signal are sequentially shown from the top.
  • an AF evaluation value calculation timing diagram, a lens synchronization position of a central position of an image for which an AF evaluation value calculation is performed, and position information of the focus lens 104 at a timing corresponding to the lens synchronization position are shown.
  • AFarea[ 1 ] to AFarea[a] denote scanning lines included in an area for which AF detection is performed.
  • accumulation start signals P 1 , P 2 , . . . are applied, electric charges are accumulated due to image light incident on first to nth scanning lines. At times when electric charge accumulation of the first scanning line ends, reading start signals S 1 , S 2 , . . . of an image signal are generated. Due to the reading start signals 51 , S 2 , . . . , image signals are sequentially read from the first scanning line. The read image signals are transmitted to the camera controller 209 . At times when electric charge accumulation of AFarea[ 1 ] to AFarea[a] included in an AF detection area ends, AF evaluation values V 1 , V 2 , . . . are calculated using the image signals read by the pre-processor 220 . While calculating the AF evaluation values V 1 , V 2 , . . . , the focus lens 104 continuously moves at a constant speed.
  • the focus lens 104 is driven in a reverse direction. That is, at the time when the fourth AF evaluation value V 4 is calculated, the AF operation proceeds from operation A to operation B.
  • the operations C and D follow similarly.
  • FIG. 5 is a timing diagram indicating the relationship between operation timing of the digital photographing apparatus 1 and the position of the focus lens 104 .
  • the horizontal axis indicates time, and the vertical axis sequentially indicates from the top a position of the focus lens 104 , a half-press signal S 1 of the shutter release button, a full-press signal S 2 of the shutter release button, an image view signal IMAGE VIEW for displaying a captured image, a shutter signal SHUTTER, an iris signal DIAPHRAGM, a light exposure signal EXPOSE for the image pickup device 204 , and a data read signal.
  • a case where the half-press signal S 1 and the full-press signal S 2 are activated at almost the same time is illustrated.
  • the AF operation starts by the half-press signal S 1 at a time t 0 , thereby driving the focus lens 104 at a high, constant speed. That is, this corresponds to operation A of FIG. 3 .
  • the focus lens 104 is driven in a reverse direction at a low, constant speed. That is, this corresponds to operation B of FIG. 3 .
  • the peak value of the AF evaluation values is detected by operation B.
  • operation C is performed by reversing the driving direction of the focus lens 104
  • operation D is performed to remove backlash. Accordingly, the focus lens 104 is at an in-focus position, and the AF operation ends at a time t 1 .
  • the display unit 206 stops displaying, and the shutter 203 is closed. Thereafter, the iris 107 is operated from an open state to a proper iris value. When a preparation for an image capture ends, the shutter 203 is opened, thereby starting light exposure at a time t 2 .
  • a time between the in-focus time t 1 and the time t 2 when the shutter 203 is open for light exposure is called a release time lag.
  • a time between a time when the full-press signal S 2 is activated and the time t 2 when the shutter 203 is open is called the release time lag.
  • FIG. 6 is a graph to describe a method of performing moving body prediction AF, according to an embodiment of the invention.
  • the horizontal axis indicates a position of the focus lens 104 , wherein the right side indicates a near direction.
  • the vertical axis indicates an AF evaluation value.
  • the graph of FIG. 6 shows a distribution of AF evaluation values of a moving body.
  • operation A and operation B are performed, thereby obtaining an initial AF evaluation value peak position.
  • the obtained peak position is B 1 .
  • operation C is performed, and a peak position is detected by calculating AF evaluation values.
  • the peak position detected by operation C is an approximate position obtained by subtracting a backlash amount from an original peak position.
  • the peak position detected by operation C is almost the same as B 1 when a subject does not move. However, when the subject moves, the peak position detected by operation C moves to C 1 . At this time, if B 1 is different from C 1 +BKL (backlash amount), it is determined that the subject has moved. Thus, operation B is performed again without performing operation D of FIG. 3 . As a result, B 2 is detected as a new peak position. That is, it is determined that the subject is a moving body and the peak position has moved to B 2 .
  • a speed Sv of the subject may be calculated from a transition between the peak positions B 1 and B 2 and a time T 1 taken for the transition according to the equation below.
  • the position Rx of the focus lens 104 at which an AF evaluation value at a light exposure start time is a peak position can be obtained, and the moving body prediction AF is performed by driving the focus lens 104 to the position Rx.
  • the focal distance of a front side of the image pickup lens is f
  • the focal distance of a rear side thereof is f′
  • the distance from the focal position of the front side of the image pickup lens to the subject is d
  • the distance from the focal position of the rear side thereof to an image surface is z
  • an image surface position when the subject approaches the digital photographing apparatus 1 at a constant speed is Z(t)
  • FIG. 7 illustrates a method of performing moving body prediction AF, according to another embodiment.
  • the horizontal axis indicates the position of the focus lens 104
  • the vertical axis indicates an AF evaluation value.
  • a method of detecting a focus of a moving body by a wobbling operation is used.
  • LVpk denotes a peak position of AF evaluation values
  • Vpk denotes a peak value of the AF evaluation values
  • PK denotes a peak point on the graph.
  • FIG. 8 is a timing diagram of the moving body prediction AF performed with reference to FIG. 7 .
  • light exposure by the image pickup device 204 is performed once a field (1VD), and the wobbling operation is performed in a fourth period.
  • (a) is a timing diagram of a vertical synchronization signal VD
  • (b) is a timing diagram of the position of the focus lens 104
  • (c) is a timing diagram of light exposure
  • (d) is a timing diagram of reading an image signal
  • (e) is a timing diagram of the read timing signal
  • (f) is a timing diagram of reading an AF evaluation value
  • (g) is a timing diagram of the lens driving control signal.
  • the focus lens 104 moves from a far direction to a near direction by, for example, 3F ⁇ , where F denotes the iris value and 6 denotes the depth-of-focus value.
  • An image signal is acquired even when the focus lens 104 is moving.
  • the above-described operations are performed in a one-field unit and completed by a total of 4 fields.
  • an AF evaluation value is acquired at timing AF 3 of the next field, and the control signal is generated at timing LD 4 of the next field by using the AF evaluation value acquisition result.
  • the above-described operations correspond to the wobbling operation, and in-focus is achieved at a contrast peak position using the above-described method.
  • the moving body prediction AF described with reference to FIG. 6 is performed by using the wobbling operation. That is, the peak positions B 1 and B 2 are obtained by performing the wobbling operation.
  • FIG. 9 is a timing diagram indicating a moving body compensation driving method according to an embodiment of the invention.
  • the horizontal axis and the vertical axis are respectively the same as those in FIG. 5 .
  • the half-press signal S 1 and the full-press signal S 2 are activated at the same time. However, it is assumed that the subject is moving.
  • the AF operation starts by the activation of the half-press signal S 1 at a time t 0 , thereby driving the focus lens 104 at a high, constant speed to perform operation A of FIG. 3 .
  • the focus lens 104 is driven in a reverse direction at a low, constant speed to perform operation B of FIG. 3 .
  • the peak value of the AF evaluation values is detected by operation B.
  • operation C is performed by reversing the driving direction of the focus lens 104 .
  • a capture preparation operation starts at a time t 1 . That is, the shutter 203 in a usual open state is changed to a closed state, and the iris 107 is controlled.
  • An interval between t 1 and t 2 for driving the shutter 203 and the iris 107 is a light exposure preparation interval.
  • the display unit 206 stops displaying an image.
  • operation C and operation D for removing a backlash are performed. When the operation D ends, the AF operation ends.
  • the shutter 203 When the capture preparation operation ends at a time t 2 , the shutter 203 is open, thereby starting light exposure of the image pickup device 204 . That is, an image is captured. Thereafter, the shutter 203 is closed at a time t 3 . Thereafter, information of the image pickup device 204 is read. After reading the information, the shutter 203 and the iris 107 are open again at a time t 4 .
  • the next photographing starts at a time t 5 , wherein the digital photographing apparatus 1 performing AF first of all performs the AF operation at this time.
  • a peak position detection operation is performed three times. Calculation of the moving speed of the subject according to detecting the peak position three times may be performed using the method described with reference to FIG. 6 . Of course, when the subject does not move, the AF operation may be completed by one peak position detection operation.
  • an in-focus position in image capturing is predicted by performing the moving body prediction AF before a light exposure preparation interval, i.e., an interval between t 5 and t 6 . Thereafter, compensation driving of the focus lens 104 towards an in-focus prediction position FOCUS 5 is performed by performing moving body compensation driving in the light exposure preparation interval, i.e., an interval between t 6 and t 7 . Specifically, the moving body compensation driving may be performed until driving of the shutter 203 to a closed state is completed.
  • the moving speed of the subject is calculated from information regarding lens positions FOCUS 2 to FOCUS 4 and time information thereof, the lens position FOCUS 5 is calculated from the moving speed of the subject, and operations C and D as the AF operation are performed towards the calculated lens position FOCUS 5 .
  • the wobbling operation may be performed to detect a peak position in the continuous photographing.
  • driving the focus lens 104 to detect a peak position when the shutter 203 is in the usual open state during the continuous photographing is performed by a combination of operation A and operation B at a low speed as the AF operation.
  • the driving of the focus lens 104 may be performed by a combination of operation B and operation C.
  • An average value of moving speeds of a subject is performed because, when the subject is far away and the magnification on the image surface is low, the image surface speed is also slow, and accordingly an error may occur in speed detection.
  • FIG. 10 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention. The current embodiment will be described with respect to how it differs from the embodiment of FIG. 9 .
  • the moving body compensation driving for capturing a second image of the continuous photographing is performed by using an already acquired moving speed of the subject
  • the focus lens 104 is driven from the lens position FOCUS 1 adjusted to capture the first image to the lens position FOCUS 2 in an interval in which the shutter 203 starts to transition to the usual open state after the light exposure for capturing the first image is completed, i.e., an interval between t 3 and t 4 .
  • the lens position FOCUS 2 of the focus lens 104 is obtained as follows.
  • a moving amount ⁇ R 0 of the subject for Tf is obtained.
  • an AF operation time after the first image of the continuous photographing is captured may be reduced.
  • FIG. 11 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention.
  • an actuator with no backlash by using VCM or the like is used, and a system with no backlash even in position detection by detecting a position of the focus lens 104 optically is used.
  • a dashed line between FOCUS 1 and FOCUS 2 and a dashed line between FOCUS 4 and FOCUS 5 are lines indicating positions at which the focus lens 104 changes its moving direction and are irrelevant to the focal position.
  • operation D for removing the backlash is omitted.
  • FIG. 12 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention.
  • the moving body compensation driving does not have to be performed in capturing a first image of continuous photographing because an initial moving speed of a subject is slow, it is predicted after capturing the first image that a position of the subject is over a depth of field (DOF), causing a change of an image on an image surface.
  • DOF depth of field
  • a first image of continuous photographing is captured in an interval between t 0 and t 3 without performing the moving body compensation driving.
  • the moving body compensation driving is performed in an interval between t 3 and t 4 to capture the next image in an interval in which AF evaluation values cannot be calculated immediately after capturing the first image, i.e., in a state where light does not arrive at the image pickup device 204 .
  • a scanning operation according to a back-and-forth operation is performed, for example, three times, and the moving speed of the subject is detected from a change of a peak position of AF evaluation values in an interval between t 5 and t 6 .
  • the moving body compensation driving is performed in an interval between t 6 and t 7 before a second image of the continuous photographing is captured.
  • the back-and-forth scanning operation for detecting a peak position is limited to one time. Then, a moving speed of the subject may be obtained from a peak position acquired in a previous capturing operation and a peak position acquired by one back-and-forth scanning operation in a current capturing operation.
  • the continuous photographing speed may be increased.
  • the moving body prediction AF operation is changed from three back-and-forth scanning operations to one back-and-forth scanning operation in the middle of the moving body prediction AF in the current embodiment, the invention is not limited thereto.
  • the speed of continuous photographing is important, if it is determined that the subject is moving, a peak position is obtained by performing only one back-and-forth scanning operation, and in capturing from a third image, the moving speed of the subject may be obtained from a plurality of peak positions acquired by the one back-and-forth scanning operation.
  • the moving speed of the subject may be obtained from peak positions acquired by performing a back-and-forth scanning operation two or three times, and when the subject moves at a high speed on the image surface during the continuous photographing, the number of back-and-forth scanning operations may be reduced according to the moving speed of the subject, such that a peak position is acquired by performing the back-and-forth scanning operation once.
  • FIG. 13 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention.
  • an electronic front curtain shutter is used instead of a mechanical shutter used in FIG. 12 .
  • the electronic front curtain shutter is well-known technology, a detailed description thereof is omitted, and the current embodiment will be described with respect to how it differs from the embodiment of FIG. 12 .
  • the image pickup device 204 transmits an image signal generated by an operation of selectively reading electric charges to the display unit 206 to display a live-view image.
  • the AF operation starts by the half-press signal S 1 , and the capture preparation operation is performed in a light exposure preparation interval by the full-press signal S 2 (between t 0 and t 2 ). That is, the display unit 206 stops displaying according to the operation of selectively reading electric charges, the shutter 203 is closed, and the iris 107 is controlled.
  • the rear curtain is changed to a closed state.
  • the rear curtain is a shutter for blocking light after a front curtain is driven, the closed state of the rear curtain indicates a state of transitioning to a position immediately before light is blocked.
  • a reset timing signal RESET is applied to the image pickup device 204 , thereby starting the light exposure at the time t 2 .
  • the light exposure replaces a mechanical front curtain by sequentially resetting the image pickup device 204 from the top to the bottom.
  • the rear curtain is driven, thereby blocking the light incident on the image pickup device 204 . Electric charges accumulated by the image pickup device 204 are read, and the image pickup device 204 is blocked from light by the rear curtain during the reading.
  • the rear curtain is in an open state again, and a scanning operation for acquiring AF evaluation values by receiving light in the image pickup device 204 is performed. Because a method of obtaining a moving speed of a subject thereafter is the same as that of FIG. 12 , a detailed description thereof is omitted.
  • FIG. 14 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention.
  • a global shutter in which a shutter function is included in the image pickup device 204 is used instead of a mechanical shutter used in FIG. 12 .
  • the global shutter starts light exposure by simultaneously resetting electric charges with respect to a whole screen and ends the light exposure by simultaneously transmitting accumulated electric charges to the light non-exposure part with respect to the whole screen. Because the global shutter is well-known technology, a detailed description thereof is omitted, and the current embodiment will be described with respect to how it differs from the embodiment of FIG. 12 .
  • the image pickup device 204 transmits an image signal generated by an operation of selectively reading electric charges to the display unit 206 to display a live-view image.
  • the AF operation starts by the half-press signal S 1 , and the capture preparation operation is performed in a light exposure preparation interval by the full-press signal S 2 (between t 0 and t 2 ). That is, the display unit 206 stops displaying according to the operation of selectively reading electric charges, and the iris 107 is controlled.
  • a reset timing signal RESET is applied to the image pickup device 204 , thereby starting the light exposure at the time t 2 .
  • the light exposure starts by simultaneously applying the reset timing signal RESET to a whole screen of the image pickup device 204 .
  • the light exposure ends by simultaneously applying an electric charge transfer signal TRANSFER to the whole screen of the image pickup device 204 at a time t 3 .
  • Electric charges accumulated by the image pickup device 204 are read by a data read signal DATA READ. While the data reading is being performed, a gate is closed so that a new electric charge does not flow to an electric charge storage unit (not shown) in which transmitted electric charges are stored even if the image pickup device 204 receives light. That is, the image pickup device 204 is in the same state as a light-blocked state.
  • FIG. 15 is a flowchart illustrating a method of controlling the digital photographing apparatus 1 , according to an embodiment of the present invention.
  • FIG. 15 illustrates an operation (operation 1 ) of starting the digital photographing apparatus 1 .
  • a manipulation of the manipulation unit 207 is detected in operation S 101 .
  • a mode of the digital photographing apparatus 1 is set in operation S 102 .
  • lens information for operating the digital photographing apparatus 1 is received from the lens 100 and stored.
  • the lens information includes various kinds of lens-unique parameters and may be information for controlling AF, AE, AWB, and image quality. While the lens information is received from the lens 100 in the digital photographing apparatus 1 using the exchangeable lens 100 , as shown in FIG. 1 , operation S 103 may be skipped in digital photographing apparatuses such as a camera or other device with a non-exchangeable lens.
  • the image pickup device 204 starts periodic photographing.
  • the image pickup device 204 performs light measurement to calculate AE and AWB.
  • periodically captured images are displayed as live-view images.
  • operation S 107 It is determined in operation S 107 whether the main switch is turned off. If the main switch is not turned off, operations S 101 to S 106 are repeated. Otherwise, if the main switch is turned off, the operation of the digital photographing apparatus 1 stops in operation S 108 . Accordingly, operation 1 ends.
  • FIGS. 16 and 17 are flowcharts illustrating a method of controlling the digital photographing apparatus 1 , according to another embodiment of the invention.
  • FIGS. 16 and 17 illustrate an operation (operation 2 ) performed by applying the half-press signal S 1 due to a halfway press of the shutter release button during a live-view display.
  • the digital photographing apparatus 1 commands to drive the focus lens 104 in a second direction at a high, constant speed by an interrupt operation in operation S 201 . That is, operation A of the AF operation is performed.
  • operation S 202 an AF evaluation value is calculated while driving the focus lens 104 . It is determined in operation S 203 whether the AF evaluation value has passed a peak. If the AF evaluation value has not passed the peak, the digital photographing apparatus 1 proceeds back to operation S 202 . Otherwise, if the AF evaluation value has passed the peak, a moving body prediction flag is reset in operation S 204 . This is an initial setting value of the moving body prediction flag.
  • operation S 205 the digital photographing apparatus 1 commands to drive the focus lens 104 in a first direction at a low, constant speed by changing the driving direction. That is, operation B of the AF operation is performed.
  • operation S 206 an AF evaluation value is calculated. Then, it is determined in operation S 207 whether the AF evaluation value has passed a peak. If the AF evaluation value has not passed the peak, the digital photographing apparatus 1 proceeds back to operation S 206 . Otherwise, if the AF evaluation value has passed the peak, a peak position B 0 is stored in operation S 208 .
  • the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a high, constant speed again to remove backlash. That is, operation C of the AF operation is performed.
  • operation S 210 an AF evaluation value is calculated. Then, it is determined in operation S 211 whether the AF evaluation value has passed a peak. If the AF evaluation value has not passed the peak, the digital photographing apparatus 1 proceeds back to operation S 210 . Otherwise, if the AF evaluation value has passed the peak, the focus lens 104 is driven towards the peak position B 0 in the first direction at a high speed in operation S 212 . That is, operation D of the AF operation is performed. At this time, an AF evaluation value does not have to be calculated.
  • the AF operation is completed by the above-described procedures, and it is indicated in operation S 213 that the AF operation has successfully ended.
  • AF evaluation values are continuously calculated in operation S 214 . Then, it is determined in operation S 215 whether a change in the AF evaluation values exists. If a change in the AF evaluation values does not exist, the digital photographing apparatus 1 maintains the focus lens 104 in the current state and waits for the full-press signal S 2 according to a full press of the shutter release button while repeatedly performing operation S 214 . Otherwise, if a change in the AF evaluation values exists, it is determined that the subject has been changed. That is, it is determined that the subject is possibly moving.
  • the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a low, constant speed in operation S 216 .
  • an AF evaluation value is calculated while driving the focus lens 104 . It is determined in operation S 218 whether the AF evaluation value has passed a peak while driving the focus lens 104 within a reference amount or whether the focus lens 104 has been driven over the reference amount.
  • the digital photographing apparatus 1 proceeds back to operation S 217 . Otherwise, if any of the above conditions is satisfied, the digital photographing apparatus 1 commands to drive the focus lens 104 in the first direction at a low, constant speed in operation S 219 . In operation S 220 , an AF evaluation value is calculated while driving the focus lens 104 .
  • the method proceeds back to operation S 220 . Otherwise, if any of the above conditions is satisfied, the peak position B 1 shown in FIG. 6 is acquired in operation S 222 . It is determined in operation S 223 whether B 0 is identical to B 1 . If B 0 is identical to B 1 the method proceeds back to operation S 213 . Otherwise, if B 0 is different from B 1 or if no peak is acquired, the digital photographing apparatus 1 proceeds to operation A 21 .
  • the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a low, constant speed in operation S 231 .
  • operation S 233 an AF evaluation value is calculated again. It is determined in operation S 233 whether the AF evaluation value has passed a peak while driving the focus lens 104 within the reference amount or whether the focus lens 104 has been driven over the reference amount, as in operation S 218 . If the above conditions are not satisfied, the digital photographing apparatus 1 proceeds back to operation S 232 . Otherwise, if any of the above conditions is satisfied, the peak position C 1 shown in FIG. 6 is acquired in operation S 234 .
  • B 1 It is determined in operation S 235 whether B 1 is identical to a sum of C 1 and an error BKL due to backlash. If B 1 is identical to the sum of C 1 and the error BKL, the digital photographing apparatus 1 determines that the subject has not moved and proceeds back to operation S 204 .
  • B 1 does not have to be numerically identical to the sum of C 1 and the error BKL, and if B 1 is substantially the same as the sum of C 1 and the error BKL or if a difference between B 1 and the sum of C 1 and the error BKL is within a predetermined error range, it may be determined that B 1 is identical to the sum of C 1 and the error BKL.
  • the digital photographing apparatus 1 commands to drive the focus lens 104 in the first direction at a low, constant speed in operation S 236 .
  • operation S 237 an AF evaluation value is calculated while driving the focus lens 104 .
  • B 2 It is determined in operation S 240 whether B 2 is acquired. If B 2 is not acquired, it is determined that the possibility that the digital photographing apparatus 1 is in a panning state is high, and the digital photographing apparatus 1 proceeds back to operation S 204 to perform the AF operation again. Otherwise, if B 2 is acquired, it is determined that the subject is moving, and the moving speed of the subject and a compensation amount for the moving body compensation driving are calculated in operation S 241 .
  • the moving body prediction flag is set.
  • the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a low speed, wherein the moving body compensation driving is performed by ⁇ B 3 . Thereafter, the digital photographing apparatus 1 proceeds back to operation S 232 .
  • FIGS. 18 to 19B are flowcharts illustrating a method of controlling the digital photographing apparatus 1 , according to another embodiment of the invention.
  • FIGS. 18 to 19B illustrate an operation (operation 3 ) performed by applying the full-press signal S 2 by a full press of the shutter release button while moving body tracking is being repeated.
  • operation 3 starts after an initial in-focus is determined, i.e., after operations A and B of the AF operation end.
  • operation S 301 the display unit 206 is turned off, the shutter 203 is in a closed state by driving the shutter 203 to block light incident on the image pickup device 204 , and the iris 107 is driven to a proper iris value.
  • operation S 302 it is determined whether the moving body prediction flag is set.
  • operation S 305 the focus lens 104 is driven in the second and first directions at a high speed to move to the peak position.
  • operation S 306 it is determined whether driving the shutter 203 and the iris 107 is completed.
  • the operating time of operation S 305 is designed to be shorter than the driving time of the shutter 203 and the iris 107 , the invention is not limited thereto. For example, if the operating time of operation S 305 is longer than the driving time of the shutter 203 and the iris 107 , whether operation S 305 has ended may be simultaneously determined when operation S 306 is performed.
  • operation S 306 If it is determined in operation S 306 that driving the shutter 203 and the iris 107 is not completed, the digital photographing apparatus 1 proceeds back to operation S 305 . Otherwise, if it is determined in operation S 306 that driving the shutter 203 and the iris 107 is completed, light exposure starts in operation S 307 . When the light exposure ends, data is read in operation S 308 . The read data is applied to the camera controller 209 , wherein the camera controller 209 performs signal processing on the read data and captures the read data as a still image.
  • a moving body compensation is performed for the next capturing after the current capturing. By doing this, the continuous photographing speed may increase. This process corresponds to operations S 309 to S 311 .
  • the moving amount ⁇ R 0 corresponds to a moving body compensation driving amount immediately after light exposure, as shown in FIG. 10 .
  • operation S 311 the focus lens 104 is driven in the second and first directions at a high speed to meet a peak position compensated for by ⁇ R 0 .
  • operation S 312 it is determined whether the data reading has ended. At this time, operation S 312 may be simultaneously performed with determining whether the moving body compensation driving has ended. If the data reading has ended, driving for opening the shutter 203 and driving for returning the iris 107 to an open state are performed, and the display unit 206 is turned on in operation S 313 .
  • operation S 314 the moving body prediction flag is reset. Although the moving body prediction flag is first reset under an assumption that the subject is not moving in the current embodiment, the invention is not limited thereto. For example, the moving body prediction flag may not be reset during continuous photographing, and this case is advantageous when a subject is moving at a high speed.
  • AF evaluation values are calculated again in operation S 315 . Then, it is determined in operation S 316 whether a change in the AF evaluation values exists. Whether a change in the AF evaluation values exists may be determined from more than two AF evaluation values. However, the invention is not limited thereto. If a change in the AF evaluation values does not exist, it is determined that a peak position in next capturing is the same as a peak position in previous capturing, and the digital photographing apparatus 1 proceeds back to operation S 301 . Otherwise, if a change in the AF evaluation values exists, it is determined that the subject is moving or the digital photographing apparatus 1 is in the panning state, and the digital photographing apparatus 1 proceeds to an operation A 31 .
  • Sv is obtained by using B 1 and B 2 obtained in the same shutter open interval between successive capturing operations.
  • the moving speed Sv of a subject may be obtained from B 1 obtained in previous capturing and B 2 obtained before current capturing.
  • the moving speed of the subject may be obtained according to the flowcharts of FIGS. 19A and 19B , and when a subject is moving at a high speed, the moving speed of the subject may be obtained from B 1 obtained in previous capturing and B 2 obtained before current capturing.
  • a method of obtaining the moving speed of a subject may vary according to the moving speed of the subject.
  • the moving speed of a subject may be calculated by using a second or higher order equation.
  • the moving body prediction flag is set in operation S 336 , and the digital photographing apparatus 1 proceeds back to operation S 301 .
  • FIGS. 20A and 20B are flowcharts illustrating another embodiment of an operation A 32 a of FIG. 19B .
  • the moving speed of a subject is obtained by using three pieces of information B 1 , B 2 , and B 3 as described with reference to FIG. 9 .
  • the current embodiment will be described with respect to how it differs from operation A 32 a of FIG. 19B .
  • operations S 401 to S 409 are the same as operations S 325 to S 333 of FIG. 19B .
  • operation S 410 the moving speed Sv 1 of a subject is obtained from B 1 and B 2 .
  • Sv 1 may be obtained by (B 1 ⁇ B 2 )/T 1 .
  • operations S 411 to S 419 a peak position B 3 is obtained by performing a scanning operation from B 2 to B 3 .
  • the moving speed Sv 2 of the subject is obtained from B 2 and B 3 in operation S 421 . This is the moving speed of the subject from B 2 to B 3 of FIG. 6 .
  • Sv 2 is obtained by (B 2 ⁇ B 3 )/T 2 .
  • the average value Sv of the moving speeds is obtained by (Sv 1 +Sv 2 )/2.
  • a compensation amount ⁇ B 4 for the moving body compensation driving is obtained by Sv*T 3 in operation S 421 .
  • FIG. 21 is a flowchart illustrating another embodiment of operation A 31 of FIGS. 19A and 19B .
  • the current embodiment illustrates a method of performing moving body prediction AF by using the wobbling operation.
  • nF ⁇ / 2 the focus lens 104 is driven in the first direction by a very small amount of nF ⁇ / 2 .
  • n may be a number of about 1 to 3
  • F denotes an iris value
  • 6 denotes an allowable circle of confusion of the digital photographing apparatus 1
  • F ⁇ denotes a DOF.
  • an AF evaluation value V 1 is acquired.
  • V 1 it is determined whether V 1 is the same as V 2 . If V 1 is the same as V 2 , it is determined that the subject is not moving, and the digital photographing apparatus 1 proceeds back to operation S 301 to perform a capturing operation. Otherwise, if V 1 is different from V 2 , the focus lens 104 is driven in the first direction by a very small amount of nF ⁇ in operation S 506 , and an AF evaluation value is calculated in operation S 507 .
  • operation S 508 it is determined whether the calculated AF evaluation value has passed a peak position. If it is determined that the calculated AF evaluation value has not passed a peak position, the digital photographing apparatus 1 proceeds back to operation S 506 . If the subject is not moving, the calculated AF evaluation value has generally passed a peak position, and if the calculated AF evaluation value has not passed a peak position, it is obvious that the subject is moving. Thus, if it is determined that the calculated AF evaluation value has passed a peak position, the peak position B 1 is acquired in operation S 509 .
  • operations S 510 to S 512 it is determined whether an AF evaluation value has passed a peak position, by driving the focus lens 10 in the second direction.
  • operations S 513 to S 515 it is determined whether an AF evaluation value has passed a peak position, by driving the focus lens 10 in the first direction.
  • the moving body prediction flag is set, and the digital photographing apparatus 1 proceeds back to operation S 301 .
  • the digital photographing apparatus 1 may capture images by correctly and quickly focusing a subject by performing moving body prediction AF and moving body compensation driving when the subject is moving.
  • a program for executing a driving method according to the above-described embodiments and their modifications in the digital photographing apparatus 1 may be stored in a computer-readable recording medium (not shown).
  • the system or systems described herein may be implemented on any form of computer or computers and the components may be implemented as dedicated applications or in client-server architectures, including a web-based architecture, and can include functional programs, codes, and code segments.
  • Any of the computers may comprise a processor, a memory for storing program data and executing it, a permanent storage such as a disk drive, a communications port for handling communications with external devices, and user interface devices, including a display, keyboard, mouse, etc.
  • these software modules may be stored as program instructions or computer readable codes executable on the processor on a computer-readable media such as read-only memory (ROM), random-access memory (RAM), CD-ROMs, magnetic tapes, floppy disks, and optical data storage devices.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. This media is readable by the computer, stored in the memory, and executed by the processor.
  • the embodiments herein may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware and/or software components that perform the specified functions.
  • the described embodiments may employ various integrated circuit components, e.g., memory elements, processing elements, logic elements, look-up tables, and the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
  • the elements of the described embodiments are implemented using software programming or software elements the invention may be implemented with any programming or scripting language such as C, C++, Java, assembler, or the like, with the various algorithms being implemented with any combination of data structures, objects, processes, routines or other programming elements.
  • Functional aspects may be implemented in algorithms that execute on one or more processors.
  • the embodiments of the invention could employ any number of conventional techniques for electronics configuration, signal processing and/or control, data processing and the like.
  • the words “mechanism” and “element” are used broadly and are not limited to mechanical or physical embodiments, but can include software routines in conjunction with processors, etc.

Abstract

An auto focus (AF) adjusting method, an AF adjusting apparatus, and a digital photographing apparatus including the same, the AF adjusting apparatus including: an AF calculator for calculating focus detection evaluation values; a peak detector for detecting a peak position of the focus detection evaluation values; and a speed calculator for calculating a moving speed of a subject by using the peak position. When continuous photographing of still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using a moving speed calculated in the light exposure preparation interval before capturing starts.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATION
  • This application claims the benefit of Korean Patent Application No. 10-2011-0078201, filed on Aug. 5, 2011, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
  • BACKGROUND
  • 1. Field
  • The invention relates to an auto focus (AF) adjusting method, an AF adjusting apparatus, and a digital photographing apparatus including the same.
  • 2. Description of the Related Art
  • In digital photographing apparatuses, such as cameras and camcorders, as well as smartphones and other devices that include a digital imaging module, to capture a clear still image or a clear moving picture, it is important to correctly focus on a subject. There is a contrast auto focus (AF) method and a phase difference AF method as for automatically performing focus adjustment.
  • The contrast AF method is a method of acquiring contrast values with respect to image signals generated from an image pickup sensor while performing photographing by changing a position of a focus lens, and driving the focus lens to a focus lens position of a peak contrast value. However, because it takes time to detect a peak position, that is a focal position in the contrast AF method, it is not easy to focus when a moving subject is photographed.
  • SUMMARY
  • An embodiment of the invention provides an auto focus (AF) adjusting method and an AF adjusting apparatus, whereby a moving subject can be quickly and correctly focused by using a contrast AF method even when continuous photographing is performed, and a digital photographing apparatus including the same
  • According to an embodiment, there is provided an auto focus (AF) adjusting apparatus including: an image pickup lens in which the position of a focus lens is variable for focus adjustment; a focus lens driver for driving the focus lens; an image pickup device for generating an image signal by picking up light which has passed through the image pickup lens; an AF calculator for calculating focus detection evaluation values from the image signal; a peak detector for detecting the peak position of the focus detection evaluation values; a shutter for controlling light exposure of the image pickup device; and a speed calculator for calculating the moving speed of a subject by using the peak position, wherein, when continuous photographing for continuously capturing still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using a moving speed calculated in the light exposure preparation interval before capturing starts.
  • The shutter may be a mechanical shutter including a front curtain and a rear curtain.
  • The moving body compensation driving may be performed before driving to change the shutter to a closed state is completed.
  • The shutter may be an electronic front curtain shutter including an electronic front curtain for beginning light exposure by resetting electric charges and a mechanical rear curtain for ending the light exposure.
  • The moving body compensation driving may be performed in an interval before beginning to drive the front curtain for image capturing after stopping driving for selectively reading electric charges from the image pickup device.
  • Alternatively, the shutter may be a global shutter including an electronic front curtain for beginning light exposure by resetting electric charges and an electronic rear curtain for ending the light exposure.
  • Alternatively, the moving body compensation driving may be performed in an interval before beginning to drive the front curtain for image capturing after stopping driving for selectively reading electric charges from the image pickup device.
  • The AF adjusting apparatus may end displaying before image capturing, and the moving body compensation driving may be performed in an interval before beginning the image capturing after ending the displaying.
  • The detection of the peak position may be performed by driving the focus lens back and forth.
  • During continuous photographing, detecting a peak position multiple times may be performed in the image pickup interval before the light exposure preparation interval, and the moving speed of the subject may be calculated from a result of the detecting of a peak position multiple times.
  • During continuous photographing, the peak position detection may be performed at least once in the image pickup interval before the light exposure preparation interval for every image capturing, and the moving speed of the subject may be calculated by using a peak position result detected in the image pickup interval for current image capturing and a peak position result detected in the image pickup interval for previous image capturing.
  • During continuous photographing, when the moving speed of the subject is fast, the peak position detection may be performed once in the image pickup interval before the light exposure preparation interval, and when the moving speed of the subject is slow, the peak position detection may be performed multiple times in the image pickup interval before the light exposure preparation interval.
  • During continuous photographing, the moving speed of the subject may be determined by using the moving speed of the subject acquired until the continuous photographing starts or the moving speed of the subject obtained in previous capturing during the continuous photographing.
  • When the moving speed of the subject is acquired before the continuous photographing starts, the acquired moving speed and a moving speed of the subject acquired during the continuous photographing may both be used to predict the peak position in capturing. But when the moving speed of the subject is not acquired before the continuous photographing starts, the moving speed of the subject acquired during the continuous photographing may be used to predict the peak position in capturing.
  • The moving body compensation driving may be performed by predicting the peak position from the moving speed of the subject and a time until capturing.
  • When the moving speed of the subject is acquired, the moving body compensation driving may be performed by predicting the peak position according to movement of the subject in an interval from a light exposure end time to an image pickup start time before the light exposure preparation interval for image capturing by using the acquired moving speed.
  • According to another embodiment, there is provided an auto focus (AF) adjusting method of an AF adjusting apparatus capable of continuous photographing in which still images are continuously captured, the AF adjusting method including: generating an image signal by picking up light from a subject; calculating focus detection evaluation values from the image signal; detecting the peak position of the focus detection evaluation values in an image pickup interval before a light exposure preparation interval for image capturing during the continuous photographing; calculating the moving speed of the subject by using the peak position; and compensating for the focal position by using the moving speed calculated in the light exposure preparation interval.
  • According to another embodiment, there is provided a digital photographing apparatus capable of performing auto focus (AF) adjustment, the digital photographing apparatus including: an image pickup lens in which the position of a focus lens is variable for focus adjustment; a focus lens driver for driving the focus lens; an image pickup device for generating an image signal by picking up light which has passed through the image pickup lens; an AF calculator for calculating focus detection evaluation values from the image signal; a peak detector for detecting the peak position of the focus detection evaluation values; a shutter for controlling light exposure of the image pickup device; and a speed calculator for calculating the moving speed of a subject by using the peak position, wherein, when continuous photographing for continuously capturing still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using the moving speed calculated in the light exposure preparation interval before capturing starts.
  • When the moving speed of the subject is acquired, the moving body compensation driving may be performed by predicting the peak position according to movement of the subject in an interval from a light exposure end time to an image pickup start time before the light exposure preparation interval for image capturing by using the acquired moving speed.
  • According to the above-described configuration, an AF adjusting apparatus and a digital photographing apparatus including the same according to embodiments of the invention can quickly and correctly focus on a moving subject even when continuous photographing is performed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
  • FIG. 1 is a block diagram of a digital photographing apparatus according to an embodiment;
  • FIG. 2 is a block diagram of a camera controller according to an embodiment;
  • FIG. 3 illustrates graphs to describe an auto focus (AF) operation in a contrast AF method;
  • FIG. 4 is an AF operation timing diagram of the digital photographing apparatus according to an embodiment;
  • FIG. 5 is a timing diagram indicating a relationship between operation timing of the digital photographing apparatus and a position of a focus lens;
  • FIG. 6 is a graph that illustrates performing moving body prediction AF, according to an embodiment;
  • FIG. 7 is a graph to describe a method of performing moving body prediction AF, according to another embodiment;
  • FIG. 8 is a timing diagram of the moving body prediction AF performed with reference to FIG. 7;
  • FIG. 9 is a timing diagram indicating a moving body compensation driving method according to an embodiment;
  • FIGS. 10 to 14 are timing diagrams indicating a moving body compensation driving method according to other embodiments;
  • FIG. 15 is a flowchart illustrating a method of controlling the digital photographing apparatus, according to an embodiment;
  • FIGS. 16 and 17 are flowcharts illustrating a method of controlling the digital photographing apparatus, according to another embodiment;
  • FIGS. 18 to 19B are flowcharts illustrating a method of controlling the digital photographing apparatus, according to another embodiment;
  • FIGS. 20A and 20B are flowcharts illustrating another embodiment of FIG. 19B; and
  • FIG. 21 is a flowchart illustrating another embodiment of FIGS. 19A and 19B.
  • DETAILED DESCRIPTION
  • The invention may allow various changes or modifications and various changes in form, and exemplary embodiments will be illustrated in drawings and described in detail in the specification. However, it should be understood that the exemplary embodiments do not limit the inventive concept to a specific disclosing form but include every modified, equivalent, or replaced from within the spirit and scope of the invention.
  • Hereinafter, exemplary embodiments are shown and described. Like reference numerals in the drawings denote like elements, and thus their repetitive description will be omitted.
  • [Configuration and Operation of a Digital Photographing Apparatus 1]
  • Referring to FIG. 1, the digital photographing apparatus 1 includes an interchangeable lens 100 and a main body 200. The interchangeable lens 100 includes a focus detection function, and the main body 200 includes a function of controlling the interchangeable lens 100 to drive a focus lens 104.
  • The interchangeable lens (hereinafter referred to as lens) 100 includes an image forming optical system 101, a zoom lens position sensing sensor 103, a lens driving actuator 105, a focus lens position sensing sensor 106, an iris driving actuator 108, a lens controller 110, and a lens mount 109.
  • The image forming optical system 101 includes a zoom lens 102 for zoom adjustment, the focus lens 104 for changing a focal position, and an iris 107. The zoom lens 102 and the focus lens 104 may each be a lens group in which a plurality of lenses are combined. Hereinafter, a combination of the zoom lens 102 and the focus lens 104 is called an image pickup lens.
  • The zoom lens position sensing sensor 103 and the focus lens position sensing sensor 106 sense positions of the zoom lens 102 and the focus lens 104, respectively. Timing for sensing the position of the focus lens 104 may be set by the lens controller 110 or a camera controller 209, which will be described below. For example, the timing for sensing the position of the focus lens 104 may be timing for performing auto focusing (AF) detection from an image signal.
  • The lens driving actuator 105 and the iris driving actuator 108 drive the zoom lens 102 and the focus lens 104 and the iris 107 under control of the lens controller 110, respectively. Specifically, the lens driving actuator 105 drives the focus lens 104 in an optical axis direction. That is, the lens driving actuator 105 may be an example of a focus lens driver.
  • The lens controller 110 transmits the sensed position information of the focus lens 104 to the main body 200. When the position of the focus lens 104 varies, or when the camera controller 209 requests for the position information of the focus lens 104, the lens controller 110 can transmit the sensed position information of the focus lens 104 to the main body 200.
  • The lens mount 109 includes lens-side communication pins engaged with camera-side communication pins, which are described below, to be used as a communication path of data, a control signal, etc.
  • A configuration of the main body 200 will now be described.
  • The main body 200 may include a view finder (EVF) 201, a shutter 203, an image pickup device 204, an image pickup device controller 205, a display unit 206, a manipulation unit 207, the camera controller 209, and a camera mount 208.
  • The EVF 201 may include a Liquid Crystal Display (LCD) 202, to display an image during image pickup in real time.
  • The shutter 203 determines the time for exposing the image pickup device 204 to light, i.e., an exposure time. Although both a front curtain and a rear curtain of the shutter 203 are mechanical in FIG. 1, the shutter 203 is not limited thereto. For example, the shutter 203 may be an electronic front curtain shutter including an electronic front curtain for beginning light exposure by resetting accumulated electric charges and a mechanical rear curtain. Alternatively, the shutter 203 may be a global shutter including an electronic front curtain beginning light exposure by resetting accumulated electric charges and an electronic rear curtain for ending the light exposure by transmitting accumulated electric charges to a light non-exposure part.
  • The image pickup device 204 generates an image signal by picking up image light which has passed through the image forming optical system 101 of the lens 100. The image pickup device 204 may include a plurality of photoelectric conversion elements arranged in a matrix form and a vertical or/and horizontal transmission line for reading an image signal by moving electric charges from the plurality of photoelectric conversion elements. For the image pickup device 204, a Charge-Coupled Device (CCD) sensor, a Complementary Metal Oxide Semiconductor (CMOS) sensor, or other image sensor may be used.
  • The image pickup device controller 205 generates a timing signal and controls the image pickup device 204 to pick up an image by synchronizing the timing signal. In addition, the image pickup device controller 205 sequentially reads an image signal as electric charge accumulation to scanning lines ends. The read image signal is used for AF detection by the camera controller 209.
  • The display unit 206 displays various kinds of images and information. For the display unit 206, an Organic Light Emitting Diode (OLED) display, a Liquid Crystal Display (LCD), or the like may be used. The display unit 206 may temporarily stop displaying a live-view image before capturing a still image.
  • The manipulation unit 207 allows a user to input various kinds of instructions for operating the digital photographing apparatus 1. The manipulation unit 207 may include various buttons such as a shutter release button, a main switch, a mode dial, and a menu button.
  • The camera controller 209 calculates a contrast value and performs AF detection using an image signal generated by the image pickup device 204. In addition, the camera controller 209 stores a contrast value at every AF detection time in response to the timing signal generated by the image pickup device controller 205 and calculates a focal position using the lens position information received from the lens 100 and the stored contrast value. A calculation result of the focal position is transmitted to the lens 100.
  • The camera mount 208 includes the camera-side communication pins. In addition, power may be supplied to the lens controller 110 via the camera mount 208.
  • An operation of the lens 100 and the main body 200 will now be described.
  • When an image is to be captured, an operation of the digital photographing apparatus 1 is started by manipulation of the main switch of the manipulation unit 207. The digital photographing apparatus 1 performs a live view display as described below.
  • Image light of the subject, which has passed through the image forming optical system 101, is incident on the image pickup device 204. At this time, the shutter 203 is open. The incident image light is converted into an electrical signals by the image pickup device 204, thereby generating an image signal. The image pickup device 204 operates by a timing signal generated by the image pickup device controller 205. The generated image signal of the subject is converted into displayable data by the camera controller 209 and is output to the EVF 201 and the display unit 206. This operation is the live view display, and live view images displayed by the live view display may be continuously displayed as a moving picture.
  • After the live view display is performed, if the shutter release button, one component of the manipulation unit 207, is pressed in a half-pressed state the digital photographing apparatus 1 starts an AF operation. The AF operation is performed using the image signal generated by the image pickup device 204. In a contrast AF method, a focal position is calculated from a focus detection evaluation value (hereinafter, referred to as ‘AF evaluation value’) associated with a contrast value, and the lens 100 is driven based on the calculation result. The AF evaluation value is calculated by the camera controller 209. The camera controller 209 calculates information for control of the focus lens 104 from the AF evaluation value and transmits the information to the lens controller 110 via the lens-side and the camera-side communication pins included in the lens mount 109 and the camera mount 208, respectively.
  • The lens controller 110 performs AF by driving the focus lens 104 in an optical axis direction by controlling the lens driving actuator 105 based on the received information. The position of the focus lens 104 is monitored by the focus lens position sensing sensor 106, thereby establishing a feedback control.
  • When the zoom lens 102 zooms according to a user's operation, the zoom lens position sensing sensor 103 senses the position of the zoom lens 102, and the lens controller 110 performs AF again by modifying AF control parameters of the focus lens 104.
  • When an image of the subject is in complete focus, the digital photographing apparatus 1 performs light exposure in a fully-pressed state of the shutter release button. At this time, the camera controller 209 fully closes the shutter 203 and transmits measured light information acquired up to that time to the lens controller 110 as iris control information. The lens controller 110 controls the iris driving actuator 108 based on the iris control information to operate the iris 107 to a proper iris value. The camera controller 209 controls the shutter 203 based on the measured light information to capture an image of the subject by opening the shutter 203 for a proper exposure time.
  • The captured image is image signal processed (and which may be compressed) and stored on a memory card (212 of FIG. 2). At the same time, the captured image is output to the EVF 201 and the display unit 206 to display a subject. Such an image is called a quick view image.
  • [Configuration of the Camera Controller 209]
  • Referring to FIG. 2, the camera controller 209 may include a pre-processor 220, a signal processor 221, a compression and decompression unit 222, a display controller 223, a Central Processing Unit (CPU) 224, a memory controller 225, an audio controller 226, a card controller 227, a timer 228, and a main bus 230.
  • The camera controller 209 provides various kinds of instructions and data to each component of the camera controller 209 via the main bus 230.
  • The pre-processor 220 receives an image signal generated by the image pickup device 204 and performs calculation of Auto White Balance (AWB), Auto Exposure (AE), and AF. The pre-processor 220 calculates an AF evaluation value for focus adjustment, an AE evaluation value for exposure adjustment, and an AWB evaluation value for white balance adjustment. The pre-processor 220 may be an example of an AF calculator.
  • The signal processor 221 performs a series of image signal processing operations, such as gamma compensation, to generate a live view image or a captured image displayable on the display unit 206.
  • The compression and decompression unit 222 performs compression and decompression of an image signal on which image signal processing has been performed. In the case of compression, an image signal is compressed in a compression format such as, for example, Joint Photographic Experts Group (JPEG) compression format or H.264 compression format. An image file including image data generated by the compression processing is transmitted to and recorded in a memory card 212.
  • The display controller 223 controls the image output to a display screen such as the LCD 202 of the EVF 201 or the display unit 206.
  • The CPU 224 generally controls an operation of each component of the camera controller 209. In addition, in the case of the digital photographing apparatus 1 illustrated in FIG. 1, the CPU 224 performs communication with the lens 100.
  • According to the current embodiment, the CPU 224 may detect a peak position of each AF evaluation value from AF evaluation values calculated by the pre-processor 220. In addition, the CPU 224 may calculate the moving speed of a subject by using the detected peak positions. That is, the CPU 224 may be an example of a peak detector and a speed calculator. However, the invention is not limited thereto, and another component may perform the peak detection and speed calculation function instead of the CPU 224.
  • The memory controller 225 controls a memory 210 to temporarily record data such as a captured image or associated information, and the audio controller 226 controls a microphone or speaker 211. The card controller 227 controls the memory card 212 to record captured images.
  • The timer 228 measures time.
  • Although it has been described with reference to FIGS. 1 and 2 that the lens 100 is an exchangeable lens detachably attached to the main body 200, the invention is not limited thereto. For example, the digital photographing apparatus 1 may include the lens 100 and the main body 200 one integrated body. In this case, the lens mount 109 and the camera mount 208 may be excluded, and the camera controller 209 may perform a function of the lens controller 110. For example, the camera controller 209 may directly control the lens driving actuator 105 and the iris driving actuator 108 and receive position information from the zoom lens position sensing sensor 103 and the focus lens position sensing sensor 106.
  • [AF Operating Method]
  • FIG. 3 illustrates an AF operation according to an embodiment of the contrast AF method. In the contrast AF method, the AF operation is performed by repeatedly calculating an AF evaluation value associated with a contrast value from an image signal and detecting a focal position with a position of the focus lens 104 at which a calculated AF evaluation value is a maximum value. Each horizontal axis of FIG. 3 indicates a position of the focus lens 104, and each vertical axis indicates an AF evaluation value.
  • First, as shown in graph (a), to detect a peak of AF evaluation value, scanning is performed by high-speed driving the focus lens 104 from one side to the other side (hereinafter, referred to as ‘operation A’). Here, the scanning indicates calculating an AF evaluation value while driving the focus lens 104. An approximate peak position is detected by operation A.
  • Thereafter, as shown in graph (b), the peak detection is performed again by reversing the driving direction of the focus lens 104 and more slowly driving the focus lens 104 than during operation A (hereinafter, referred to as ‘operation B’). AF detection may be performed by operation B at a higher accuracy than operation A.
  • Thereafter, as shown in graph (c), the driving direction of the focus lens 104 is reversed again, and the focus lens 104 is driven towards the focal position according to the detected peak (hereinafter, referred to as ‘operation C’). At this time, a device for driving a lens usually has a backlash causing an error of a lens position according to a driving direction. Thus, the backlash needs to be removed, and in operation C, the focus lens 104 is driven over the focal position.
  • Finally, as shown in graph (d), the driving direction of the focus lens 104 is reversed again, and the focus lens 104 is driven in the same direction as the driving direction according to operation B to stop at the focal position (hereinafter, referred to as ‘operation D’).
  • According to embodiments of the invention, AF evaluation values are calculated by performing a scanning operation even in operation C, and the calculated AF evaluation values are used to detect movement of a subject.
  • The AF operation is performed by operations A to D.
  • [Operation of the Digital Photographing Apparatus 1]
  • FIG. 4 is an AF operation timing diagram of the digital photographing apparatus 1 according to an embodiment.
  • Referring to FIG. 4, timing diagrams of an accumulation start signal, an electric charge accumulation signal of a first scanning line, AFarea[ ] to AFarea[a] electric charge accumulation signals used for AF detection, an electric charge accumulation signal of an nth scanning line, and a reading start signal are sequentially shown from the top. Together with the plurality of timing diagrams, an AF evaluation value calculation timing diagram, a lens synchronization position of a central position of an image for which an AF evaluation value calculation is performed, and position information of the focus lens 104 at a timing corresponding to the lens synchronization position are shown. Here, AFarea[1] to AFarea[a] denote scanning lines included in an area for which AF detection is performed.
  • When accumulation start signals P1, P2, . . . are applied, electric charges are accumulated due to image light incident on first to nth scanning lines. At times when electric charge accumulation of the first scanning line ends, reading start signals S1, S2, . . . of an image signal are generated. Due to the reading start signals 51, S2, . . . , image signals are sequentially read from the first scanning line. The read image signals are transmitted to the camera controller 209. At times when electric charge accumulation of AFarea[1] to AFarea[a] included in an AF detection area ends, AF evaluation values V1, V2, . . . are calculated using the image signals read by the pre-processor 220. While calculating the AF evaluation values V1, V2, . . . , the focus lens 104 continuously moves at a constant speed.
  • In the current embodiment, at a time when a fourth AF evaluation value V4 is calculated, it is determined that the fourth AF evaluation value V4 is less than a previous AF evaluation value, i.e., that the fourth AF evaluation value V4 has passed a peak position. Thus, as shown in FIG. 4, from this time, the focus lens 104 is driven in a reverse direction. That is, at the time when the fourth AF evaluation value V4 is calculated, the AF operation proceeds from operation A to operation B. The operations C and D follow similarly.
  • FIG. 5 is a timing diagram indicating the relationship between operation timing of the digital photographing apparatus 1 and the position of the focus lens 104. The horizontal axis indicates time, and the vertical axis sequentially indicates from the top a position of the focus lens 104, a half-press signal S1 of the shutter release button, a full-press signal S2 of the shutter release button, an image view signal IMAGE VIEW for displaying a captured image, a shutter signal SHUTTER, an iris signal DIAPHRAGM, a light exposure signal EXPOSE for the image pickup device 204, and a data read signal. In the current embodiment, a case where the half-press signal S1 and the full-press signal S2 are activated at almost the same time is illustrated.
  • Referring to FIG. 5, the AF operation starts by the half-press signal S1 at a time t0, thereby driving the focus lens 104 at a high, constant speed. That is, this corresponds to operation A of FIG. 3. When a peak value of AF evaluation values is detected, the focus lens 104 is driven in a reverse direction at a low, constant speed. That is, this corresponds to operation B of FIG. 3. The peak value of the AF evaluation values is detected by operation B. Thereafter, operation C is performed by reversing the driving direction of the focus lens 104, and finally, operation D is performed to remove backlash. Accordingly, the focus lens 104 is at an in-focus position, and the AF operation ends at a time t1.
  • When the AF operation ends, the display unit 206 stops displaying, and the shutter 203 is closed. Thereafter, the iris 107 is operated from an open state to a proper iris value. When a preparation for an image capture ends, the shutter 203 is opened, thereby starting light exposure at a time t2.
  • Here, a time between the in-focus time t1 and the time t2 when the shutter 203 is open for light exposure is called a release time lag. In this case, if the full-press signal S2 is activated after in-focus, a time between a time when the full-press signal S2 is activated and the time t2 when the shutter 203 is open is called the release time lag.
  • When the shutter 203 is open, light exposure of the image pickup device 204 starts at the time t2, and after the light exposure is performed for a proper time, the shutter 203 is closed again at a time t3. Then, electric charges accumulated by the image pickup device 204 are transmitted to the camera controller 209 to read an image signal. Thereafter, the shutter 203 and the iris 107 are opened again at a time t4 to be in an open state at a time t5.
  • Meanwhile, when a subject moves in an optical axis direction of the image pickup lens, there is a time lag between a time when a focal position is detected and a final in-focus time in operation B of the AF operation, and accordingly, the subject moves during the time lag. Moreover, the subject also moves in an interval in which the release time lag occurs. That is, the subject is not in focus during light exposure. Thus, in embodiments of the invention, such out-of-focus is compensated for. In this case, because a focal position of the moving subject is predicted, this operation is called moving body prediction AF, as will be described now with reference to FIGS. 6 and 7.
  • FIG. 6 is a graph to describe a method of performing moving body prediction AF, according to an embodiment of the invention. The horizontal axis indicates a position of the focus lens 104, wherein the right side indicates a near direction. The vertical axis indicates an AF evaluation value. The graph of FIG. 6 shows a distribution of AF evaluation values of a moving body.
  • Referring to FIG. 6, when the AF operation starts, operation A and operation B are performed, thereby obtaining an initial AF evaluation value peak position. The obtained peak position is B1. Thereafter, operation C is performed, and a peak position is detected by calculating AF evaluation values. However, the peak position detected by operation C is an approximate position obtained by subtracting a backlash amount from an original peak position.
  • The peak position detected by operation C is almost the same as B1 when a subject does not move. However, when the subject moves, the peak position detected by operation C moves to C1. At this time, if B1 is different from C1+BKL (backlash amount), it is determined that the subject has moved. Thus, operation B is performed again without performing operation D of FIG. 3. As a result, B2 is detected as a new peak position. That is, it is determined that the subject is a moving body and the peak position has moved to B2.
  • When the subject moves, an image surface speed of the subject is calculated. When the subject moves at a relatively slow, constant speed, the image surface speed may also approach a constant speed. Thus, a speed Sv of the subject may be calculated from a transition between the peak positions B1 and B2 and a time T1 taken for the transition according to the equation below.

  • Sv=(B1−B2)/T1
  • If it is assumed that the time between when B2 is calculated and when the next peak position of AF evaluation values is T2, a focus compensation value ΔB3 during T2 is obtained by ΔB3=Sv*T2. When the full-press signal S2 is activated to start a shutter release, a compensation value ΔR due to the release time lag Tr is also obtained by ΔR=Sv*Tr.
  • By the above-described method, the position Rx of the focus lens 104 at which an AF evaluation value at a light exposure start time is a peak position can be obtained, and the moving body prediction AF is performed by driving the focus lens 104 to the position Rx.
  • Here, the use of B1 and B2 to obtain Sv is to not include an error due to a backlash into the calculation. When backlash does not occur even though the focus lens 104 is driven in a reverse direction, Sv can be calculated by using the peak position C1 of AF evaluation values that is calculated in operation C, i.e., Sv=(B1−C1)/T1.
  • Although the speed of a subject is calculated by using only B1 and B2 in the current embodiment, an error exists in each AF evaluation value due to noise. Thus, an average value further including B3 may be used. That is, Sv may be obtained by calculating Sv1=(B1−B2)/T1, Sv2=(B2−B3)/T2, and Sv=(Sv1+Sv2)/2. A compensation value ΔB4 during the AF operation may be obtained from the obtained value Sv by ΔB4=Sv*T3, and the compensation value ΔR due to the release time lag Tr may also be obtained by ΔR=Sv*Tr.
  • When the speed of a subject is fast, the following equation may be used. If it is assumed that the focal distance of a front side of the image pickup lens is f, the focal distance of a rear side thereof is f′, the distance from the focal position of the front side of the image pickup lens to the subject is d, the distance from the focal position of the rear side thereof to an image surface is z, and an image surface position when the subject approaches the digital photographing apparatus 1 at a constant speed is Z(t), the following equation can be obtained.
  • Z ( t ) = ff d - z t t
  • When this equation is approximated to a two-dimensional equation, Z(t)At2+Bt+C is obtained. By using the time until the next AF evaluation value is calculated or the time due to the release time lag as a value of t, the moving body prediction AF in a release operation may be performed.
  • FIG. 7 illustrates a method of performing moving body prediction AF, according to another embodiment. In FIG. 7, the horizontal axis indicates the position of the focus lens 104, and the vertical axis indicates an AF evaluation value. In the current embodiment, a method of detecting a focus of a moving body by a wobbling operation is used.
  • Referring to FIG. 7, LVpk denotes a peak position of AF evaluation values, Vpk denotes a peak value of the AF evaluation values, and PK denotes a peak point on the graph. When the focus lens 104 is minutely vibrated by dx in an optical axis direction, an AF evaluation value is also minutely changed by dy. In the current embodiment, a focus of the moving body is detected by using this characteristic.
  • FIG. 8 is a timing diagram of the moving body prediction AF performed with reference to FIG. 7. In FIG. 8, light exposure by the image pickup device 204 is performed once a field (1VD), and the wobbling operation is performed in a fourth period.
  • Referring to FIG. 8, (a) is a timing diagram of a vertical synchronization signal VD, (b) is a timing diagram of the position of the focus lens 104, (c) is a timing diagram of light exposure, (d) is a timing diagram of reading an image signal, (e) is a timing diagram of the read timing signal, (f) is a timing diagram of reading an AF evaluation value, and (g) is a timing diagram of the lens driving control signal.
  • First, the focus lens 104 moves from a far direction to a near direction by, for example, 3Fδ, where F denotes the iris value and 6 denotes the depth-of-focus value. An image signal is acquired even when the focus lens 104 is moving. Thereafter, the focus lens 104 stops at a near position, and an image signal is acquired. Thereafter, the focus lens 104 moves in the far direction and stops. The above-described operations are performed in a one-field unit and completed by a total of 4 fields.
  • When the image signal reading by the light exposure of (c) is performed, an integral time varies according to brightness. In addition, an image signal acquired during e1 is read at timing VR2 of the next field. Each of the operations is achieved within one field.
  • Thereafter, an AF evaluation value is acquired at timing AF3 of the next field, and the control signal is generated at timing LD4 of the next field by using the AF evaluation value acquisition result.
  • The above-described operations correspond to the wobbling operation, and in-focus is achieved at a contrast peak position using the above-described method.
  • In the current embodiment, the moving body prediction AF described with reference to FIG. 6 is performed by using the wobbling operation. That is, the peak positions B1 and B2 are obtained by performing the wobbling operation.
  • Hereinafter, an operation of the digital photographing apparatus 1 to which the moving body prediction AF is applied will be described.
  • FIG. 9 is a timing diagram indicating a moving body compensation driving method according to an embodiment of the invention. In the timing diagram of FIG. 9, the horizontal axis and the vertical axis are respectively the same as those in FIG. 5. In addition, the half-press signal S1 and the full-press signal S2 are activated at the same time. However, it is assumed that the subject is moving.
  • Referring to FIG. 9, the AF operation starts by the activation of the half-press signal S1 at a time t0, thereby driving the focus lens 104 at a high, constant speed to perform operation A of FIG. 3. When a peak value of AF evaluation values is detected, the focus lens 104 is driven in a reverse direction at a low, constant speed to perform operation B of FIG. 3. The peak value of the AF evaluation values is detected by operation B.
  • Thereafter, operation C is performed by reversing the driving direction of the focus lens 104. In the current embodiment, during operation C, a capture preparation operation starts at a time t1. That is, the shutter 203 in a usual open state is changed to a closed state, and the iris 107 is controlled. An interval between t1 and t2 for driving the shutter 203 and the iris 107 is a light exposure preparation interval. In addition, the display unit 206 stops displaying an image. During the capture preparation operation, operation C and operation D for removing a backlash are performed. When the operation D ends, the AF operation ends.
  • When the capture preparation operation ends at a time t2, the shutter 203 is open, thereby starting light exposure of the image pickup device 204. That is, an image is captured. Thereafter, the shutter 203 is closed at a time t3. Thereafter, information of the image pickup device 204 is read. After reading the information, the shutter 203 and the iris 107 are open again at a time t4.
  • After the series of operations, in a case of continuous photographing, the next photographing starts at a time t5, wherein the digital photographing apparatus 1 performing AF first of all performs the AF operation at this time. In the current embodiment, a peak position detection operation is performed three times. Calculation of the moving speed of the subject according to detecting the peak position three times may be performed using the method described with reference to FIG. 6. Of course, when the subject does not move, the AF operation may be completed by one peak position detection operation.
  • In detail, an in-focus position in image capturing is predicted by performing the moving body prediction AF before a light exposure preparation interval, i.e., an interval between t5 and t6. Thereafter, compensation driving of the focus lens 104 towards an in-focus prediction position FOCUS5 is performed by performing moving body compensation driving in the light exposure preparation interval, i.e., an interval between t6 and t7. Specifically, the moving body compensation driving may be performed until driving of the shutter 203 to a closed state is completed. In the current embodiment, the moving speed of the subject is calculated from information regarding lens positions FOCUS2 to FOCUS4 and time information thereof, the lens position FOCUS5 is calculated from the moving speed of the subject, and operations C and D as the AF operation are performed towards the calculated lens position FOCUS5.
  • Unless the continuous photographing ends, the above-described operations are repeated. The wobbling operation may be performed to detect a peak position in the continuous photographing.
  • In the current embodiment, driving the focus lens 104 to detect a peak position when the shutter 203 is in the usual open state during the continuous photographing is performed by a combination of operation A and operation B at a low speed as the AF operation. Alternatively, the driving of the focus lens 104 may be performed by a combination of operation B and operation C.
  • When the moving speed Sv0 of the subject has been detected before the first image of the continuous photographing is captured and the moving speed Sv0 is slow, an average value Sv=(Sv0+Sv1)/2 of the moving speed Sv0 and the moving speed Sv1 acquired after the first image is captured is obtained and may be used for the moving body prediction AF and the moving body compensation driving from a second image capture. An average value of moving speeds of a subject is performed because, when the subject is far away and the magnification on the image surface is low, the image surface speed is also slow, and accordingly an error may occur in speed detection. Furthermore, when continuous photographing of a subject of which an image surface speed is slow is continuously performed, an average value Sv=(Sv1+Sv2)/2 of the moving speed Sv1 in a previous capture and the moving speed Sv2 in a current capture may be used for the moving body prediction AF and the moving body compensation driving.
  • FIG. 10 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention. The current embodiment will be described with respect to how it differs from the embodiment of FIG. 9.
  • Referring to FIG. 10, in the current embodiment, when it is detected that a subject is moving before light exposure for capturing a first image of continuous photographing, immediately after the light exposure for capturing the first image is completed at the time t3, the moving body compensation driving for capturing a second image of the continuous photographing is performed by using an already acquired moving speed of the subject
  • The focus lens 104 is driven from the lens position FOCUS1 adjusted to capture the first image to the lens position FOCUS2 in an interval in which the shutter 203 starts to transition to the usual open state after the light exposure for capturing the first image is completed, i.e., an interval between t3 and t4. In this case, the lens position FOCUS2 of the focus lens 104 is obtained as follows.
  • From the moving speed Sv of the subject, which is acquired until the image of the continuous photographing, and a time Tf from a light exposure start time to a time for driving the shutter 203 to the usual open state, a moving amount ΔR0 of the subject for Tf is obtained. An equation to obtain ΔR0 is ΔR0=Sv*Tf. Then, the lens position FOCUS2 is obtained by FOCUS2=FOCUS1+R0.
  • As described above, by performing the moving body compensation driving in advance of the moving body prediction AF according to the embodiment of FIG. 9, an AF operation time after the first image of the continuous photographing is captured may be reduced.
  • FIG. 11 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention. In the current embodiment, an actuator with no backlash by using VCM or the like is used, and a system with no backlash even in position detection by detecting a position of the focus lens 104 optically is used.
  • In the current embodiment, peak positions acquired in both directions of the operations B and C in the AF operation are used to detect the moving speed of a subject. That is, the moving speed of the subject is obtained by the above-described equation Sv=(B1−C1)/T1. Here, a dashed line between FOCUS1 and FOCUS2 and a dashed line between FOCUS4 and FOCUS5 are lines indicating positions at which the focus lens 104 changes its moving direction and are irrelevant to the focal position. In addition, it is reconfirmed during operation B that the subject is a moving body, and a capture preparation operation starts. In operation B, the moving body compensation driving is performed, thereby moving the focus lens 104 to a focal position in image capturing.
  • Because there is no backlash in the current embodiment, operation D for removing the backlash is omitted.
  • FIG. 12 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention. In the current embodiment, although the moving body compensation driving does not have to be performed in capturing a first image of continuous photographing because an initial moving speed of a subject is slow, it is predicted after capturing the first image that a position of the subject is over a depth of field (DOF), causing a change of an image on an image surface.
  • Referring to FIG. 12, a first image of continuous photographing is captured in an interval between t0 and t3 without performing the moving body compensation driving. The moving body compensation driving is performed in an interval between t3 and t4 to capture the next image in an interval in which AF evaluation values cannot be calculated immediately after capturing the first image, i.e., in a state where light does not arrive at the image pickup device 204. In an interval in which AF evaluation values can be calculated, a scanning operation according to a back-and-forth operation is performed, for example, three times, and the moving speed of the subject is detected from a change of a peak position of AF evaluation values in an interval between t5 and t6. Thereafter, the moving body compensation driving is performed in an interval between t6 and t7 before a second image of the continuous photographing is captured.
  • Even if the actual moving speed of the subject is constant, an image surface speed of the object is faster than before from capturing a third image of the continuous photographing. Thus, to respond to this fast speed, the back-and-forth scanning operation for detecting a peak position is limited to one time. Then, a moving speed of the subject may be obtained from a peak position acquired in a previous capturing operation and a peak position acquired by one back-and-forth scanning operation in a current capturing operation.
  • When a fourth image of the continuous photographing is captured, the moving speed of the subject is obtained from the peak position acquired by the one back-and-forth scanning operation in the third image capturing operation and a peak position acquired by one back-and-forth scanning operation in a current capturing operation. For example, if it is assumed that the time between capturing operations in continuous photographing is tc1 and peak positions acquired by one back-and-forth scanning operation in the capturing operations are Bc1 and Bc2, the moving speed Scv of a subject may be obtained by Scv=(Bc1−Bc2)/tc1.
  • Accordingly, by reducing the time taken for the moving body prediction AF and the moving body compensation driving, the continuous photographing speed may be increased.
  • Although the moving body prediction AF operation is changed from three back-and-forth scanning operations to one back-and-forth scanning operation in the middle of the moving body prediction AF in the current embodiment, the invention is not limited thereto. For example, when the speed of continuous photographing is important, if it is determined that the subject is moving, a peak position is obtained by performing only one back-and-forth scanning operation, and in capturing from a third image, the moving speed of the subject may be obtained from a plurality of peak positions acquired by the one back-and-forth scanning operation.
  • In addition, when the subject moves at a low speed on an image surface during continuous photographing, the moving speed of the subject may be obtained from peak positions acquired by performing a back-and-forth scanning operation two or three times, and when the subject moves at a high speed on the image surface during the continuous photographing, the number of back-and-forth scanning operations may be reduced according to the moving speed of the subject, such that a peak position is acquired by performing the back-and-forth scanning operation once.
  • FIG. 13 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention. In the current embodiment, an electronic front curtain shutter is used instead of a mechanical shutter used in FIG. 12. Because the electronic front curtain shutter is well-known technology, a detailed description thereof is omitted, and the current embodiment will be described with respect to how it differs from the embodiment of FIG. 12.
  • Referring to FIG. 13, the image pickup device 204 transmits an image signal generated by an operation of selectively reading electric charges to the display unit 206 to display a live-view image. The AF operation starts by the half-press signal S1, and the capture preparation operation is performed in a light exposure preparation interval by the full-press signal S2 (between t0 and t2). That is, the display unit 206 stops displaying according to the operation of selectively reading electric charges, the shutter 203 is closed, and the iris 107 is controlled. At this time, because only a rear curtain is a mechanical shutter in the current embodiment, the rear curtain is changed to a closed state. However, because the rear curtain is a shutter for blocking light after a front curtain is driven, the closed state of the rear curtain indicates a state of transitioning to a position immediately before light is blocked.
  • Thereafter, light exposure starts by driving the front curtain. Because the front curtain is an electronic front curtain in the current embodiment, a reset timing signal RESET is applied to the image pickup device 204, thereby starting the light exposure at the time t2. The light exposure replaces a mechanical front curtain by sequentially resetting the image pickup device 204 from the top to the bottom. At the timing when the light exposure ends, the rear curtain is driven, thereby blocking the light incident on the image pickup device 204. Electric charges accumulated by the image pickup device 204 are read, and the image pickup device 204 is blocked from light by the rear curtain during the reading.
  • After the data reading ends, the rear curtain is in an open state again, and a scanning operation for acquiring AF evaluation values by receiving light in the image pickup device 204 is performed. Because a method of obtaining a moving speed of a subject thereafter is the same as that of FIG. 12, a detailed description thereof is omitted.
  • FIG. 14 is a timing diagram indicating a moving body compensation driving method according to another embodiment of the invention. In the current embodiment, a global shutter in which a shutter function is included in the image pickup device 204 is used instead of a mechanical shutter used in FIG. 12. The global shutter starts light exposure by simultaneously resetting electric charges with respect to a whole screen and ends the light exposure by simultaneously transmitting accumulated electric charges to the light non-exposure part with respect to the whole screen. Because the global shutter is well-known technology, a detailed description thereof is omitted, and the current embodiment will be described with respect to how it differs from the embodiment of FIG. 12.
  • Referring to FIG. 14, the image pickup device 204 transmits an image signal generated by an operation of selectively reading electric charges to the display unit 206 to display a live-view image. The AF operation starts by the half-press signal S1, and the capture preparation operation is performed in a light exposure preparation interval by the full-press signal S2 (between t0 and t2). That is, the display unit 206 stops displaying according to the operation of selectively reading electric charges, and the iris 107 is controlled.
  • Thereafter, light exposure starts by driving a front curtain. Because the front curtain is an electronic front curtain in the current embodiment, a reset timing signal RESET is applied to the image pickup device 204, thereby starting the light exposure at the time t2. In detail, the light exposure starts by simultaneously applying the reset timing signal RESET to a whole screen of the image pickup device 204. The light exposure ends by simultaneously applying an electric charge transfer signal TRANSFER to the whole screen of the image pickup device 204 at a time t3.
  • Electric charges accumulated by the image pickup device 204, i.e., an image signal, are read by a data read signal DATA READ. While the data reading is being performed, a gate is closed so that a new electric charge does not flow to an electric charge storage unit (not shown) in which transmitted electric charges are stored even if the image pickup device 204 receives light. That is, the image pickup device 204 is in the same state as a light-blocked state.
  • When the reading of data from the electric charge storage unit ends, continuous photographing is performed by repeatedly resetting and transmitting electric charges. Because a method of obtaining the moving speed of a subject thereafter is the same as that of FIG. 12, a detailed description thereof is omitted.
  • [Method of Controlling the Digital Photographing Apparatus 1]
  • FIG. 15 is a flowchart illustrating a method of controlling the digital photographing apparatus 1, according to an embodiment of the present invention. FIG. 15 illustrates an operation (operation 1) of starting the digital photographing apparatus 1.
  • Referring to FIG. 15, when the digital photographing apparatus 1 starts operating by turning the main switch of the digital photographing apparatus 1 on, a manipulation of the manipulation unit 207 is detected in operation S101. According to the detection, a mode of the digital photographing apparatus 1 is set in operation S102. In operation S103, lens information for operating the digital photographing apparatus 1 is received from the lens 100 and stored. The lens information includes various kinds of lens-unique parameters and may be information for controlling AF, AE, AWB, and image quality. While the lens information is received from the lens 100 in the digital photographing apparatus 1 using the exchangeable lens 100, as shown in FIG. 1, operation S103 may be skipped in digital photographing apparatuses such as a camera or other device with a non-exchangeable lens.
  • In operation S104, the image pickup device 204 starts periodic photographing. In operation S105, the image pickup device 204 performs light measurement to calculate AE and AWB. In operation S106, periodically captured images are displayed as live-view images.
  • It is determined in operation S107 whether the main switch is turned off. If the main switch is not turned off, operations S101 to S106 are repeated. Otherwise, if the main switch is turned off, the operation of the digital photographing apparatus 1 stops in operation S108. Accordingly, operation 1 ends.
  • FIGS. 16 and 17 are flowcharts illustrating a method of controlling the digital photographing apparatus 1, according to another embodiment of the invention. FIGS. 16 and 17 illustrate an operation (operation 2) performed by applying the half-press signal S1 due to a halfway press of the shutter release button during a live-view display.
  • Referring to FIGS. 16 and 17, when the half-press signal S1 is applied, the digital photographing apparatus 1 commands to drive the focus lens 104 in a second direction at a high, constant speed by an interrupt operation in operation S201. That is, operation A of the AF operation is performed. In operation S202, an AF evaluation value is calculated while driving the focus lens 104. It is determined in operation S203 whether the AF evaluation value has passed a peak. If the AF evaluation value has not passed the peak, the digital photographing apparatus 1 proceeds back to operation S202. Otherwise, if the AF evaluation value has passed the peak, a moving body prediction flag is reset in operation S204. This is an initial setting value of the moving body prediction flag.
  • In operation S205, the digital photographing apparatus 1 commands to drive the focus lens 104 in a first direction at a low, constant speed by changing the driving direction. That is, operation B of the AF operation is performed. In operation S206, an AF evaluation value is calculated. Then, it is determined in operation S207 whether the AF evaluation value has passed a peak. If the AF evaluation value has not passed the peak, the digital photographing apparatus 1 proceeds back to operation S206. Otherwise, if the AF evaluation value has passed the peak, a peak position B0 is stored in operation S208.
  • In operation S209, the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a high, constant speed again to remove backlash. That is, operation C of the AF operation is performed. In operation S210, an AF evaluation value is calculated. Then, it is determined in operation S211 whether the AF evaluation value has passed a peak. If the AF evaluation value has not passed the peak, the digital photographing apparatus 1 proceeds back to operation S210. Otherwise, if the AF evaluation value has passed the peak, the focus lens 104 is driven towards the peak position B0 in the first direction at a high speed in operation S212. That is, operation D of the AF operation is performed. At this time, an AF evaluation value does not have to be calculated. The AF operation is completed by the above-described procedures, and it is indicated in operation S213 that the AF operation has successfully ended.
  • Even after the AF operation successfully ends, AF evaluation values are continuously calculated in operation S214. Then, it is determined in operation S215 whether a change in the AF evaluation values exists. If a change in the AF evaluation values does not exist, the digital photographing apparatus 1 maintains the focus lens 104 in the current state and waits for the full-press signal S2 according to a full press of the shutter release button while repeatedly performing operation S214. Otherwise, if a change in the AF evaluation values exists, it is determined that the subject has been changed. That is, it is determined that the subject is possibly moving.
  • If it is determined in operation S215 that a change in the AF evaluation values exists, the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a low, constant speed in operation S216. In operation S217, an AF evaluation value is calculated while driving the focus lens 104. It is determined in operation S218 whether the AF evaluation value has passed a peak while driving the focus lens 104 within a reference amount or whether the focus lens 104 has been driven over the reference amount.
  • If the above conditions are not satisfied, the digital photographing apparatus 1 proceeds back to operation S217. Otherwise, if any of the above conditions is satisfied, the digital photographing apparatus 1 commands to drive the focus lens 104 in the first direction at a low, constant speed in operation S219. In operation S220, an AF evaluation value is calculated while driving the focus lens 104.
  • It is determined in operation S221 whether the AF evaluation value has passed a peak while driving the focus lens 104 within the reference amount or whether the focus lens 104 has been driven over the reference amount, as in operation S218.
  • If the above conditions are not satisfied, the method proceeds back to operation S220. Otherwise, if any of the above conditions is satisfied, the peak position B1 shown in FIG. 6 is acquired in operation S222. It is determined in operation S223 whether B0 is identical to B1. If B0 is identical to B1 the method proceeds back to operation S213. Otherwise, if B0 is different from B1 or if no peak is acquired, the digital photographing apparatus 1 proceeds to operation A21.
  • If B0 is different from B1 or no peak is acquired in operation S223, the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a low, constant speed in operation S231. In operation S233, an AF evaluation value is calculated again. It is determined in operation S233 whether the AF evaluation value has passed a peak while driving the focus lens 104 within the reference amount or whether the focus lens 104 has been driven over the reference amount, as in operation S218. If the above conditions are not satisfied, the digital photographing apparatus 1 proceeds back to operation S232. Otherwise, if any of the above conditions is satisfied, the peak position C1 shown in FIG. 6 is acquired in operation S234.
  • It is determined in operation S235 whether B1 is identical to a sum of C1 and an error BKL due to backlash. If B1 is identical to the sum of C1 and the error BKL, the digital photographing apparatus 1 determines that the subject has not moved and proceeds back to operation S204. Here, B1 does not have to be numerically identical to the sum of C1 and the error BKL, and if B1 is substantially the same as the sum of C1 and the error BKL or if a difference between B1 and the sum of C1 and the error BKL is within a predetermined error range, it may be determined that B1 is identical to the sum of C1 and the error BKL. Otherwise, if B1 is different from the sum of C1 and the error BKL, the digital photographing apparatus 1 commands to drive the focus lens 104 in the first direction at a low, constant speed in operation S236. In operation S237, an AF evaluation value is calculated while driving the focus lens 104.
  • It is determined in operation S238 whether the AF evaluation value has passed a peak while driving the focus lens 104 within the reference amount or whether the focus lens 104 has been driven over the reference amount, as in operation S218. If the above conditions are not satisfied, the digital photographing apparatus 1 proceeds back to operation S237. Otherwise, if any of the above conditions is satisfied, the peak position B2 shown in FIG. 6 is acquired in operation S239.
  • It is determined in operation S240 whether B2 is acquired. If B2 is not acquired, it is determined that the possibility that the digital photographing apparatus 1 is in a panning state is high, and the digital photographing apparatus 1 proceeds back to operation S204 to perform the AF operation again. Otherwise, if B2 is acquired, it is determined that the subject is moving, and the moving speed of the subject and a compensation amount for the moving body compensation driving are calculated in operation S241. The moving speed of the subject and the compensation amount may be obtained by Sv=(B1−B2)/T1 and ΔB3=Sv*T2, respectively.
  • In operation S242, the moving body prediction flag is set. In operation S243, the digital photographing apparatus 1 commands to drive the focus lens 104 in the second direction at a low speed, wherein the moving body compensation driving is performed by ΔB3. Thereafter, the digital photographing apparatus 1 proceeds back to operation S232.
  • FIGS. 18 to 19B are flowcharts illustrating a method of controlling the digital photographing apparatus 1, according to another embodiment of the invention. FIGS. 18 to 19B illustrate an operation (operation 3) performed by applying the full-press signal S2 by a full press of the shutter release button while moving body tracking is being repeated. When the half-press signal S1 and the full-press signal S2 are turned on from the beginning, operation 3 starts after an initial in-focus is determined, i.e., after operations A and B of the AF operation end.
  • Referring to FIGS. 18 to 19B, in operation S301, the display unit 206 is turned off, the shutter 203 is in a closed state by driving the shutter 203 to block light incident on the image pickup device 204, and the iris 107 is driven to a proper iris value. In operation S302, it is determined whether the moving body prediction flag is set.
  • If the moving body prediction flag is not set, the digital photographing apparatus 1 proceeds to operation S305. Otherwise, if the moving body prediction flag is set, a compensation value ΔR is obtained by ΔR=Sv*T in operation S303, and a peak position is compensated for by ΔR in operation S304.
  • In operation S305, the focus lens 104 is driven in the second and first directions at a high speed to move to the peak position. In operation S306, it is determined whether driving the shutter 203 and the iris 107 is completed. In the current embodiment, although the operating time of operation S305 is designed to be shorter than the driving time of the shutter 203 and the iris 107, the invention is not limited thereto. For example, if the operating time of operation S305 is longer than the driving time of the shutter 203 and the iris 107, whether operation S305 has ended may be simultaneously determined when operation S306 is performed.
  • If it is determined in operation S306 that driving the shutter 203 and the iris 107 is not completed, the digital photographing apparatus 1 proceeds back to operation S305. Otherwise, if it is determined in operation S306 that driving the shutter 203 and the iris 107 is completed, light exposure starts in operation S307. When the light exposure ends, data is read in operation S308. The read data is applied to the camera controller 209, wherein the camera controller 209 performs signal processing on the read data and captures the read data as a still image.
  • If a subject is moving, in continuous photographing, a moving body compensation is performed for the next capturing after the current capturing. By doing this, the continuous photographing speed may increase. This process corresponds to operations S309 to S311.
  • In operation S309, it is determined whether the moving body prediction flag is set. If the moving body prediction flag is not set, the digital photographing apparatus 1 proceeds to operation S312. Otherwise, if the moving body prediction flag is set, a moving amount ΔR0 of the subject is obtained by ΔR0=Sv*Tf in operation S310. The moving amount ΔR0 corresponds to a moving body compensation driving amount immediately after light exposure, as shown in FIG. 10. In operation S311, the focus lens 104 is driven in the second and first directions at a high speed to meet a peak position compensated for by ΔR0.
  • In operation S312, it is determined whether the data reading has ended. At this time, operation S312 may be simultaneously performed with determining whether the moving body compensation driving has ended. If the data reading has ended, driving for opening the shutter 203 and driving for returning the iris 107 to an open state are performed, and the display unit 206 is turned on in operation S313. In operation S314, the moving body prediction flag is reset. Although the moving body prediction flag is first reset under an assumption that the subject is not moving in the current embodiment, the invention is not limited thereto. For example, the moving body prediction flag may not be reset during continuous photographing, and this case is advantageous when a subject is moving at a high speed.
  • After the moving body prediction flag is reset, AF evaluation values are calculated again in operation S315. Then, it is determined in operation S316 whether a change in the AF evaluation values exists. Whether a change in the AF evaluation values exists may be determined from more than two AF evaluation values. However, the invention is not limited thereto. If a change in the AF evaluation values does not exist, it is determined that a peak position in next capturing is the same as a peak position in previous capturing, and the digital photographing apparatus 1 proceeds back to operation S301. Otherwise, if a change in the AF evaluation values exists, it is determined that the subject is moving or the digital photographing apparatus 1 is in the panning state, and the digital photographing apparatus 1 proceeds to an operation A31.
  • Otherwise, if it is determined in operation S316 that a change in the AF evaluation values exists, the same operations as operations S216 to S223 of FIG. 16 are performed. Thereafter, if it is determined in operation S324 that a previous peak position B0 is the same as a current peak position B1, the digital photographing apparatus 1 proceeds back to operation S301 to perform a capturing operation. Otherwise, if it is determined in operation S324 that the previous peak position B0 is different from the current peak position B1, a peak position C1 is acquired by performing operation C as in operations S231 to S240 of FIG. 17. However, if it is determined in operation S329 that B1 is the same as C1+BKL, the digital photographing apparatus 1 proceeds back to operation S301. Otherwise, if it is determined in operation S329 that B1 is different from C1+BKL, a peak position B2 is acquired by performing operation C in operations S330 to S333.
  • If it is determined in operation S334 that B2 is not acquired, it is determined that the possibility that the digital photographing apparatus 1 is in the panning state is high, and the digital photographing apparatus 1 proceeds back to operation S317 to detect a peak position again. Otherwise, if it is determined in operation S334 that B2 is acquired, a moving speed Sv of the subject is obtained by Sv=(B1−B2)/T1 in operation S335.
  • In the current embodiment, Sv is obtained by using B1 and B2 obtained in the same shutter open interval between successive capturing operations. However, as in the embodiments described with reference to FIGS. 12 to 14, the moving speed Sv of a subject may be obtained from B1 obtained in previous capturing and B2 obtained before current capturing. In addition, when a subject is moving at a low speed, the moving speed of the subject may be obtained according to the flowcharts of FIGS. 19A and 19B, and when a subject is moving at a high speed, the moving speed of the subject may be obtained from B1 obtained in previous capturing and B2 obtained before current capturing. As described above, a method of obtaining the moving speed of a subject may vary according to the moving speed of the subject. In addition, the moving speed of a subject may be calculated by using a second or higher order equation.
  • When the calculation of the moving speed of the subject is completed, the moving body prediction flag is set in operation S336, and the digital photographing apparatus 1 proceeds back to operation S301.
  • FIGS. 20A and 20B are flowcharts illustrating another embodiment of an operation A32 a of FIG. 19B. In the current embodiment, the moving speed of a subject is obtained by using three pieces of information B1, B2, and B3 as described with reference to FIG. 9. The current embodiment will be described with respect to how it differs from operation A32 a of FIG. 19B.
  • Referring to FIGS. 20A and 20B, operations S401 to S409 are the same as operations S325 to S333 of FIG. 19B. In operation S410, the moving speed Sv1 of a subject is obtained from B1 and B2. Sv1 may be obtained by (B1−B2)/T1. As described above, in operations S411 to S419, a peak position B3 is obtained by performing a scanning operation from B2 to B3.
  • If it is determined in operation S420 that B3 is not acquired, it is determined that the digital photographing apparatus 1 is in the panning state, and the digital photographing apparatus 1 proceeds back to operation S317 to perform an AF scanning operation again. Otherwise, if it is determined in operation S420 that B3 is acquired, the moving speed Sv2 of the subject is obtained from B2 and B3 in operation S421. This is the moving speed of the subject from B2 to B3 of FIG. 6. Sv2 is obtained by (B2−B3)/T2. Thereafter, the average value Sv of the moving speeds is obtained by (Sv1+Sv2)/2. After the average moving speed of the subject is obtained, a compensation amount ΔB4 for the moving body compensation driving is obtained by Sv*T3 in operation S421.
  • In operation S422, the moving body prediction flag is set, and the digital photographing apparatus 1 proceeds back to operation S301 to perform capturing through the moving body compensation driving.
  • FIG. 21 is a flowchart illustrating another embodiment of operation A31 of FIGS. 19A and 19B. The current embodiment illustrates a method of performing moving body prediction AF by using the wobbling operation.
  • Referring to FIG. 21, in operation S501, the focus lens 104 is driven in the first direction by a very small amount of nFδ/2. Here, n may be a number of about 1 to 3, F denotes an iris value, 6 denotes an allowable circle of confusion of the digital photographing apparatus 1, and Fδ denotes a DOF. In operation S502, an AF evaluation value V1 is acquired.
  • In operation S503, the focus lens 104 is driven in the second direction by a very small amount of nFδ. In operation S504, an AF evaluation value V2 is acquired.
  • In operation 505, it is determined whether V1 is the same as V2. If V1 is the same as V2, it is determined that the subject is not moving, and the digital photographing apparatus 1 proceeds back to operation S301 to perform a capturing operation. Otherwise, if V1 is different from V2, the focus lens 104 is driven in the first direction by a very small amount of nFδ in operation S506, and an AF evaluation value is calculated in operation S507.
  • In operation S508 it is determined whether the calculated AF evaluation value has passed a peak position. If it is determined that the calculated AF evaluation value has not passed a peak position, the digital photographing apparatus 1 proceeds back to operation S506. If the subject is not moving, the calculated AF evaluation value has generally passed a peak position, and if the calculated AF evaluation value has not passed a peak position, it is obvious that the subject is moving. Thus, if it is determined that the calculated AF evaluation value has passed a peak position, the peak position B1 is acquired in operation S509.
  • In operations S510 to S512, it is determined whether an AF evaluation value has passed a peak position, by driving the focus lens 10 in the second direction. In operations S513 to S515, it is determined whether an AF evaluation value has passed a peak position, by driving the focus lens 10 in the first direction.
  • In operation S516, a peak position B2 is acquired, and in operation S517, a moving speed Sv (=(B1−B2)/T1) of the subject and a driving amount ΔB3(=Sv*T2) for moving body compensation are obtained. In operation S518, the moving body prediction flag is set, and the digital photographing apparatus 1 proceeds back to operation S301.
  • As described above, the digital photographing apparatus 1 according to the embodiments of the invention may capture images by correctly and quickly focusing a subject by performing moving body prediction AF and moving body compensation driving when the subject is moving.
  • A program for executing a driving method according to the above-described embodiments and their modifications in the digital photographing apparatus 1 may be stored in a computer-readable recording medium (not shown).
  • The system or systems described herein may be implemented on any form of computer or computers and the components may be implemented as dedicated applications or in client-server architectures, including a web-based architecture, and can include functional programs, codes, and code segments. Any of the computers may comprise a processor, a memory for storing program data and executing it, a permanent storage such as a disk drive, a communications port for handling communications with external devices, and user interface devices, including a display, keyboard, mouse, etc. When software modules are involved, these software modules may be stored as program instructions or computer readable codes executable on the processor on a computer-readable media such as read-only memory (ROM), random-access memory (RAM), CD-ROMs, magnetic tapes, floppy disks, and optical data storage devices. The computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. This media is readable by the computer, stored in the memory, and executed by the processor.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated as incorporated by reference and were set forth in its entirety herein.
  • For the purposes of promoting an understanding of the principles of the invention, reference has been made to the preferred embodiments illustrated in the drawings, and specific language has been used to describe these embodiments. However, no limitation of the scope of the invention is intended by this specific language, and the invention should be construed to encompass all embodiments that would normally occur to one of ordinary skill in the art.
  • The embodiments herein may be described in terms of functional block components and various processing steps. Such functional blocks may be realized by any number of hardware and/or software components that perform the specified functions. For example, the described embodiments may employ various integrated circuit components, e.g., memory elements, processing elements, logic elements, look-up tables, and the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices. Similarly, where the elements of the described embodiments are implemented using software programming or software elements the invention may be implemented with any programming or scripting language such as C, C++, Java, assembler, or the like, with the various algorithms being implemented with any combination of data structures, objects, processes, routines or other programming elements. Functional aspects may be implemented in algorithms that execute on one or more processors. Furthermore, the embodiments of the invention could employ any number of conventional techniques for electronics configuration, signal processing and/or control, data processing and the like. The words “mechanism” and “element” are used broadly and are not limited to mechanical or physical embodiments, but can include software routines in conjunction with processors, etc.
  • The particular implementations shown and described herein are illustrative examples of the invention and are not intended to otherwise limit the scope of the invention in any way. For the sake of brevity, conventional electronics, control systems, software development and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail. Furthermore, the connecting lines, or connectors shown in the various figures presented are intended to represent exemplary functional relationships and/or physical or logical couplings between the various elements. It should be noted that many alternative or additional functional relationships, physical connections or logical connections may be present in a practical device. Moreover, no item or component is essential to the practice of the invention unless the element is specifically described as “essential” or “critical”.
  • The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings. Expressions such as “at least one of,” when preceding a list of elements, modify the entire list of elements and do not modify the individual elements of the list.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) should be construed to cover both the singular and the plural. Furthermore, recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. Finally, the steps of all methods described herein are performable in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. Numerous modifications and adaptations will be readily apparent to those skilled in this art without departing from the spirit and scope of the invention.

Claims (19)

1. An auto focus (AF) adjusting apparatus comprising:
an image pickup lens in which the position of a focus lens is variable for focus adjustment;
a focus lens driver for driving the focus lens;
an image pickup device for generating an image signal by picking up light which has passed through the image pickup lens;
an AF calculator for calculating focus detection evaluation values from the image signal;
a peak detector for detecting the peak position of the focus detection evaluation values;
a shutter for controlling light exposure of the image pickup device; and
a speed calculator for calculating the moving speed of a subject by using the peak position,
wherein, when continuous photographing for continuously capturing still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using the moving speed calculated in the light exposure preparation interval before capturing starts.
2. The AF adjusting apparatus of claim 1, wherein the shutter is a mechanical shutter including a front curtain and a rear curtain.
3. The AF adjusting apparatus of claim 2, wherein the moving body compensation driving is performed before driving to change the shutter to a closed state is completed.
4. The AF adjusting apparatus of claim 1, wherein the shutter is an electronic front curtain shutter including an electronic front curtain for beginning light exposure by resetting electric charges and a mechanical rear curtain for ending the light exposure.
5. The AF adjusting apparatus of claim 4, wherein the moving body compensation driving is performed in an interval before beginning to drive the front curtain for image capturing after stopping driving for selectively reading electric charges from the image pickup device.
6. The AF adjusting apparatus of claim 1, wherein the shutter is a global shutter including an electronic front curtain for beginning light exposure by resetting electric charges and an electronic rear curtain for ending the light exposure.
7. The AF adjusting apparatus of claim 6, wherein the moving body compensation driving is performed in an interval before beginning to drive the front curtain for image capturing after stopping driving for selectively reading electric charges from the image pickup device.
8. The AF adjusting apparatus of claim 1, wherein the AF adjusting apparatus ends displaying before image capturing, and
the moving body compensation driving is performed in an interval before beginning the image capturing after ending the displaying.
9. The AF adjusting apparatus of claim 1, wherein the detection of the peak position is performed by driving the focus lens back and forth.
10. The AF adjusting apparatus of claim 1, wherein, during the continuous photographing, detecting a peak position multiple times is performed in the image pickup interval before the light exposure preparation interval, and the moving speed of the subject is calculated from a result of the detecting of a peak position multiple times.
11. The AF adjusting apparatus of claim 1, wherein, during the continuous photographing, the peak position detection is performed at least once in the image pickup interval before the light exposure preparation interval for every image capturing, and the moving speed of the subject is calculated by using a peak position result detected in the image pickup interval for current image capturing and a peak position result detected in the image pickup interval for previous image capturing.
12. The AF adjusting apparatus of claim 1, wherein, during the continuous photographing, when the moving speed of the subject is fast, the peak position detection is performed once in the image pickup interval before the light exposure preparation interval, and when the moving speed of the subject is slow, the peak position detection is performed multiple times in the image pickup interval before the light exposure preparation interval.
13. The AF adjusting apparatus of claim 1, wherein, during the continuous photographing, the moving speed of the subject is determined by using a moving speed of the subject acquired before the continuous photographing starts or a moving speed of the subject obtained in previous capturing during the continuous photographing.
14. The AF adjusting apparatus of claim 1, wherein, when the moving speed of the subject before the continuous photographing starts is acquired, the acquired moving speed and a moving speed of the subject acquired during the continuous photographing are used to predict a peak position in capturing, and
when the moving speed of the subject before the continuous photographing starts is not acquired, the moving speed of the subject acquired during the continuous photographing is used to predict a peak position in capturing.
15. The AF adjusting apparatus of claim 14, wherein the moving body compensation driving is performed by predicting a peak position from the moving speed of the subject and a time before capturing.
16. The AF adjusting apparatus of claim 1, wherein, when the moving speed of the subject is acquired, the moving body compensation driving is performed by predicting a peak position according to movement of the subject in an interval from a light exposure end time to an image pickup start time before the light exposure preparation interval for image capturing by using the acquired moving speed.
17. An auto focus (AF) adjusting method of an AF adjusting apparatus capable of continuous photographing in which still images are continuously captured, the AF adjusting method comprising:
generating an image signal by picking up light reflected from a subject;
calculating focus detection evaluation values from the image signal;
detecting the peak position of the focus detection evaluation values in an image pickup interval before a light exposure preparation interval for image capturing during the continuous photographing;
calculating the moving speed of the subject by using the peak position; and
compensating for a focal position by using the moving speed calculated in the light exposure preparation interval.
18. A digital photographing apparatus capable of performing auto focus (AF) adjustment, the digital photographing apparatus comprising:
an image pickup lens in which the position of a focus lens is variable for focus adjustment;
a focus lens driver for driving the focus lens;
an image pickup device for generating an image signal by picking up light which has passed through the image pickup lens;
an AF calculator for calculating focus detection evaluation values from the image signal;
a peak detector for detecting the peak position of the focus detection evaluation values;
a shutter for controlling light exposure of the image pickup device; and
a speed calculator for calculating the moving speed of a subject by using the peak position,
wherein, when continuous photographing for continuously capturing still images is performed, the peak detector detects the peak position in an image pickup interval before a light exposure preparation interval for image capturing, and the focus lens driver performs moving body compensation driving for compensating for a focal position by using the moving speed calculated in the light exposure preparation interval before capturing starts.
19. The digital photographing apparatus of claim 18, wherein, when the moving speed of the subject is acquired, the moving body compensation driving is performed by predicting the peak position according to movement of the subject in an interval from a light exposure end time to an image pickup start time before the light exposure preparation interval for image capturing by using the acquired moving speed.
US13/566,002 2011-08-05 2012-08-03 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same Active 2033-01-12 US9152010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/848,863 US9667856B2 (en) 2011-08-05 2015-09-09 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0078201 2011-08-05
KR1020110078201A KR101710633B1 (en) 2011-08-05 2011-08-05 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/848,863 Continuation US9667856B2 (en) 2011-08-05 2015-09-09 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same

Publications (2)

Publication Number Publication Date
US20130033638A1 true US20130033638A1 (en) 2013-02-07
US9152010B2 US9152010B2 (en) 2015-10-06

Family

ID=47615388

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/566,002 Active 2033-01-12 US9152010B2 (en) 2011-08-05 2012-08-03 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same
US14/848,863 Expired - Fee Related US9667856B2 (en) 2011-08-05 2015-09-09 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/848,863 Expired - Fee Related US9667856B2 (en) 2011-08-05 2015-09-09 Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same

Country Status (5)

Country Link
US (2) US9152010B2 (en)
KR (1) KR101710633B1 (en)
CN (1) CN102917169B (en)
GB (1) GB2507201B (en)
WO (1) WO2013022235A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258171A1 (en) * 2012-03-29 2013-10-03 Olympus Imaging Corp. Focus adjustment unit and camera system
US20140184888A1 (en) * 2013-01-02 2014-07-03 Samsung Elecronics Co., Ltd. Digital photographing apparatus and method of controlling the same
US20150042868A1 (en) * 2013-08-09 2015-02-12 Canon Kabushiki Kaisha Automatic focus adjustment apparatus
JP2017040879A (en) * 2015-08-21 2017-02-23 キヤノン株式会社 Imaging apparatus, control method, program, and storage medium
US20170094151A1 (en) * 2015-09-28 2017-03-30 Canon Kabushiki Kaisha Focus detecting apparatus, and method of prediction for the same
CN111226153A (en) * 2018-08-02 2020-06-02 深圳市大疆创新科技有限公司 Control device, method, and program
CN113376784A (en) * 2021-04-20 2021-09-10 武汉智谱科技有限公司 Electromechanical active compensation method for full-temperature-section clear points of continuous zoom lens
US11249279B2 (en) * 2016-02-10 2022-02-15 Sony Group Corporation Imaging apparatus and control method of imaging apparatus
US11277555B2 (en) * 2019-06-28 2022-03-15 Canon Kabushiki Kaisha Image pickup apparatus that performs focus bracketing, control method therefor, and storage medium
CN115166934A (en) * 2022-06-09 2022-10-11 杭州海康威视数字技术股份有限公司 Camera device and image processing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105446055B (en) * 2014-06-16 2019-04-16 南昌欧菲光电技术有限公司 Camera mould group and its focusing method
JP2016006449A (en) * 2014-06-20 2016-01-14 キヤノン株式会社 Image pickup apparatus and control method thereof
KR101714349B1 (en) * 2014-12-29 2017-03-09 주식회사 슈프리마 Biometric image output-control method and biometric authentification apparatus
JP6706819B2 (en) * 2016-02-15 2020-06-10 パナソニックIpマネジメント株式会社 Imaging device and interchangeable lens with zoom mechanism
CN106161874A (en) * 2016-08-05 2016-11-23 广东欧珀移动通信有限公司 Based reminding method when having an exception in monitoring space and device
CN106961552B (en) * 2017-03-27 2019-10-29 联想(北京)有限公司 A kind of focusing control method and electronic equipment
US11265480B2 (en) * 2019-06-11 2022-03-01 Qualcomm Incorporated Systems and methods for controlling exposure settings based on motion characteristics associated with an image sensor
JP7119148B2 (en) 2021-02-19 2022-08-16 キヤノン株式会社 ACCESSORY DEVICE, IMAGING DEVICE, CONTROL METHOD AND STORAGE MEDIUM

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001158A1 (en) * 2002-05-28 2004-01-01 Shinya Aoki Digital camera
US20040135891A1 (en) * 1998-07-17 2004-07-15 Mitsuyoshi Shindo Photographing apparatus
US20050052553A1 (en) * 2003-09-09 2005-03-10 Toshihito Kido Image capturing apparatus
US20050099522A1 (en) * 2002-04-19 2005-05-12 Satoshi Kondo Variable length encoding method and variable length decoding method
US20050212950A1 (en) * 2004-03-26 2005-09-29 Chinon Kabushiki Kaisha Focal length detecting method, focusing device, image capturing method and image capturing apparatus
US20050285967A1 (en) * 2004-06-15 2005-12-29 Hirofumi Suda Focus control apparatus and optical apparatus
US20060008265A1 (en) * 2004-07-12 2006-01-12 Kenji Ito Optical apparatus
US20070189745A1 (en) * 2006-02-13 2007-08-16 Canon Kabushiki Kaisha Camera system with image stabilizing function, camera body thereof, and interchangeable lens thereof
US20080239136A1 (en) * 2004-04-26 2008-10-02 Kunihiko Kanai Focal Length Detecting For Image Capture Device
US20090268083A1 (en) * 2007-06-18 2009-10-29 Canon Kabushiki Kaisha Imaging system, image sensor, and method of controlling imaging system
US20110141344A1 (en) * 2007-04-04 2011-06-16 Nikon Corporation Digital camera
US20110149129A1 (en) * 2009-12-18 2011-06-23 Samsung Electronics Co., Ltd. Multi-step exposed image acquisition method by electronic shutter and photographing apparatus using the same
US20110228163A1 (en) * 2010-03-17 2011-09-22 Panasonic Corporation Imaging apparatus, camera body and interchangeable lens

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109249A (en) * 1989-10-12 1992-04-28 Ricoh Company, Ltd. Camera with a function of preventing a hand moving blur
DE4139449A1 (en) 1990-11-29 1992-07-02 Asahi Optical Co Ltd AUTOMATIC FOCUSING DEVICE
EP0579404B1 (en) * 1992-06-29 1999-08-25 Canon Kabushiki Kaisha Lens control apparatus
JP2000131598A (en) 1998-10-23 2000-05-12 Olympus Optical Co Ltd Automatic focusing device
JP2001169160A (en) * 1999-12-14 2001-06-22 Minolta Co Ltd Digital camera and image display method for digital camera
US7515200B2 (en) 2001-08-10 2009-04-07 Canon Kabushiki Kaisha Image sensing apparatus, focus adjustment method, and focus adjustment computer control program
JP3728241B2 (en) 2001-12-20 2005-12-21 キヤノン株式会社 Focus adjustment apparatus, imaging apparatus, focusing method, program, and storage medium
JP3979881B2 (en) * 2002-06-13 2007-09-19 オリンパス株式会社 Multi-point autofocus camera
US6768867B2 (en) 2002-05-17 2004-07-27 Olympus Corporation Auto focusing system
JP2005134820A (en) * 2003-10-31 2005-05-26 Canon Inc Automatic focusing device and program
JP4674471B2 (en) * 2005-01-18 2011-04-20 株式会社ニコン Digital camera
JP4349302B2 (en) * 2005-03-04 2009-10-21 ソニー株式会社 Focus control device, imaging device, and focus control method
CN103647892B (en) * 2005-12-06 2017-06-23 松下电器产业株式会社 The control method of digital camera, camera body, camera system and the digital camera
US7634185B2 (en) 2006-02-02 2009-12-15 Canon Kabushiki Kaisha Focusing device, image pickup apparatus, and control method
JP2007206433A (en) * 2006-02-02 2007-08-16 Canon Inc Focusing apparatus, imaging apparatus, and control method
JP2008058556A (en) * 2006-08-31 2008-03-13 Sanyo Electric Co Ltd Video camera
JP5019119B2 (en) 2007-11-22 2012-09-05 オリンパスイメージング株式会社 camera
JP5111125B2 (en) * 2008-01-22 2012-12-26 キヤノン株式会社 Imaging device
CN102016680B (en) * 2008-04-21 2013-12-11 松下电器产业株式会社 Interchangeable lens, camera body, and camera system
JP2010008507A (en) 2008-06-24 2010-01-14 Olympus Imaging Corp Camera
JP5408936B2 (en) 2008-09-13 2014-02-05 キヤノン株式会社 Automatic focus adjustment device, control method of automatic focus adjustment device, and focus adjustment control program
JP2010107711A (en) 2008-10-30 2010-05-13 Panasonic Corp Focal point control device and imaging apparatus
JP2010169882A (en) 2009-01-22 2010-08-05 Olympus Imaging Corp Digital camera and optical equipment
JP2011040902A (en) 2009-08-07 2011-02-24 Toshiba Corp Image capturing apparatus and control apparatus for the same
US8928787B2 (en) * 2009-12-22 2015-01-06 Samsung Electronics Co., Ltd. Photographing apparatus and photographing method
JP5394296B2 (en) * 2010-03-25 2014-01-22 富士フイルム株式会社 Imaging apparatus and image processing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135891A1 (en) * 1998-07-17 2004-07-15 Mitsuyoshi Shindo Photographing apparatus
US20050099522A1 (en) * 2002-04-19 2005-05-12 Satoshi Kondo Variable length encoding method and variable length decoding method
US20040001158A1 (en) * 2002-05-28 2004-01-01 Shinya Aoki Digital camera
US20050052553A1 (en) * 2003-09-09 2005-03-10 Toshihito Kido Image capturing apparatus
US20050212950A1 (en) * 2004-03-26 2005-09-29 Chinon Kabushiki Kaisha Focal length detecting method, focusing device, image capturing method and image capturing apparatus
US20080239136A1 (en) * 2004-04-26 2008-10-02 Kunihiko Kanai Focal Length Detecting For Image Capture Device
US20050285967A1 (en) * 2004-06-15 2005-12-29 Hirofumi Suda Focus control apparatus and optical apparatus
US20060008265A1 (en) * 2004-07-12 2006-01-12 Kenji Ito Optical apparatus
US20070189745A1 (en) * 2006-02-13 2007-08-16 Canon Kabushiki Kaisha Camera system with image stabilizing function, camera body thereof, and interchangeable lens thereof
US20110141344A1 (en) * 2007-04-04 2011-06-16 Nikon Corporation Digital camera
US20090268083A1 (en) * 2007-06-18 2009-10-29 Canon Kabushiki Kaisha Imaging system, image sensor, and method of controlling imaging system
US20110149129A1 (en) * 2009-12-18 2011-06-23 Samsung Electronics Co., Ltd. Multi-step exposed image acquisition method by electronic shutter and photographing apparatus using the same
US20110228163A1 (en) * 2010-03-17 2011-09-22 Panasonic Corporation Imaging apparatus, camera body and interchangeable lens

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130258171A1 (en) * 2012-03-29 2013-10-03 Olympus Imaging Corp. Focus adjustment unit and camera system
US9083878B2 (en) * 2012-03-29 2015-07-14 Olympus Imaging Corp. Focus adjustment unit and camera system
US20140184888A1 (en) * 2013-01-02 2014-07-03 Samsung Elecronics Co., Ltd. Digital photographing apparatus and method of controlling the same
KR20140092504A (en) * 2013-01-02 2014-07-24 삼성전자주식회사 High speed continuous shooting Digital photographing apparatus and method for controlling the same
KR101979803B1 (en) 2013-01-02 2019-05-17 삼성전자주식회사 High speed continuous shooting Digital photographing apparatus and method for controlling the same
US9448463B2 (en) * 2013-01-02 2016-09-20 Samsung Electronics Co., Ltd. Focus control in continuous shooting in digital photographing apparatus
US9618826B2 (en) * 2013-08-09 2017-04-11 Canon Kabushiki Kaisha Automatic focus adjustment apparatus and method for driving a camera lens
US20150042868A1 (en) * 2013-08-09 2015-02-12 Canon Kabushiki Kaisha Automatic focus adjustment apparatus
JP2017040879A (en) * 2015-08-21 2017-02-23 キヤノン株式会社 Imaging apparatus, control method, program, and storage medium
US20170094151A1 (en) * 2015-09-28 2017-03-30 Canon Kabushiki Kaisha Focus detecting apparatus, and method of prediction for the same
US9900493B2 (en) * 2015-09-28 2018-02-20 Canon Kabushiki Kaisha Focus detecting apparatus, and method of prediction for the same
US11249279B2 (en) * 2016-02-10 2022-02-15 Sony Group Corporation Imaging apparatus and control method of imaging apparatus
CN111226153A (en) * 2018-08-02 2020-06-02 深圳市大疆创新科技有限公司 Control device, method, and program
US11277555B2 (en) * 2019-06-28 2022-03-15 Canon Kabushiki Kaisha Image pickup apparatus that performs focus bracketing, control method therefor, and storage medium
CN113376784A (en) * 2021-04-20 2021-09-10 武汉智谱科技有限公司 Electromechanical active compensation method for full-temperature-section clear points of continuous zoom lens
CN115166934A (en) * 2022-06-09 2022-10-11 杭州海康威视数字技术股份有限公司 Camera device and image processing method

Also Published As

Publication number Publication date
GB201321507D0 (en) 2014-01-22
US9152010B2 (en) 2015-10-06
WO2013022235A2 (en) 2013-02-14
US9667856B2 (en) 2017-05-30
CN102917169A (en) 2013-02-06
KR101710633B1 (en) 2017-02-27
CN102917169B (en) 2017-06-16
WO2013022235A3 (en) 2013-05-02
US20160073009A1 (en) 2016-03-10
KR20130015884A (en) 2013-02-14
GB2507201A (en) 2014-04-23
GB2507201B (en) 2015-10-07

Similar Documents

Publication Publication Date Title
US9667856B2 (en) Auto focus adjusting method, auto focus adjusting apparatus, and digital photographing apparatus including the same
US8213787B2 (en) Camera system and image forming apparatus
US8614762B2 (en) Auto-focusing apparatus
US8447179B2 (en) Method and apparatus for applying multi-autofocusing (AF) using contrast AF
US8797449B2 (en) Auto-focusing apparatus
US10708503B2 (en) Image capture system, image capturing apparatus, lens unit, control methods therefor, and storage medium
US8861949B2 (en) Apparatus and method of adjusting automatic focus
JP2018031877A (en) Image pickup device and focus adjusting method
JP2009199047A (en) Imaging apparatus and lens apparatus
US20120050556A1 (en) Digital photographing apparatus and method for controlling the same
US8736744B2 (en) Digital photographing apparatus and method of controlling the same
US8737831B2 (en) Digital photographing apparatus and method that apply high-speed multi-autofocusing (AF)
US8947582B2 (en) Digital photographing apparatus and method of controlling the same
US8970772B2 (en) Digital photographing apparatus
US8600226B2 (en) Focusing methods and apparatus, and recording media for recording the methods
JP2007225897A (en) Focusing position determination device and method
KR101979803B1 (en) High speed continuous shooting Digital photographing apparatus and method for controlling the same
US20130120642A1 (en) Digital photographing apparatus and method of controlling the same
JP5947489B2 (en) Focus adjustment device and focus adjustment method
JP2013242408A (en) Imaging device and control method of the same
JP5938268B2 (en) Imaging apparatus and control method thereof
JP2020053756A (en) Imaging apparatus and control method therefor
JP2018146606A (en) Image processing device, imaging apparatus, and control method
JP2020101730A (en) Imaging device and control method for the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAMADA, MASATAKA;REEL/FRAME:028716/0888

Effective date: 20120802

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8