US20120268311A1 - Forward facing sensing system for vehicle - Google Patents
Forward facing sensing system for vehicle Download PDFInfo
- Publication number
- US20120268311A1 US20120268311A1 US13/540,856 US201213540856A US2012268311A1 US 20120268311 A1 US20120268311 A1 US 20120268311A1 US 201213540856 A US201213540856 A US 201213540856A US 2012268311 A1 US2012268311 A1 US 2012268311A1
- Authority
- US
- United States
- Prior art keywords
- vehicle
- sensing system
- image sensor
- windshield
- radar sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 231100001261 hazardous Toxicity 0.000 claims abstract description 24
- 238000001514 detection method Methods 0.000 claims description 44
- 238000003384 imaging method Methods 0.000 claims description 22
- 238000012545 processing Methods 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 10
- 230000003044 adaptive effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 230000005670 electromagnetic radiation Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000004891 communication Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 230000004438 eyesight Effects 0.000 description 8
- 238000005286 illumination Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000004297 night vision Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 238000003032 molecular docking Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000005355 Hall effect Effects 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001413 far-infrared spectroscopy Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/12—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
- B60T7/22—Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/03—Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
- G01S7/032—Constructional details for solid-state radar subsystems
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S2013/0236—Special technical features
- G01S2013/0245—Radar with phased array antenna
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9321—Velocity regulation, e.g. cruise control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9322—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using additional data, e.g. driver condition, road state or weather data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
- G01S2013/9327—Sensor installation details
- G01S2013/93276—Sensor installation details in the windshield area
Definitions
- the present invention generally relates to forward facing sensing systems and, more particularly, to forward facing sensing systems utilizing a radar sensor device.
- a radar radio detection and ranging
- ACC adaptive cruise control
- lidar lidar imaging detection and ranging
- the radar system is preferred for such vehicle applications because of its ability to detect better than the lidar system in fog or other inclement weather conditions.
- radar sensor devices are often located at the front grille of the vehicle and thus may be intrusive to the underhood packaging of the vehicle and the exterior styling of the vehicle.
- lidar sensing device or system at the windshield for scanning/detecting through the windshield
- radar systems are typically not suitable for such applications, since they typically are not suitable for viewing through glass, such as through the vehicle windshield (because the glass windshield may substantially attenuate the radar performance or ability to detect objects forward of the vehicle).
- the present invention provides a forward facing sensing system for detecting objects forward of the vehicle (such as for use with or in conjunction with an adaptive, cruise control system or other object detection system or the like), with a radar sensor device being located behind, and transmitting through [typically, transmitting at at least about 20 GHz frequency (such as 24 GHz) and more preferably at least about 60 GHz frequency (such as 60 GHz or 77 GHz or 79 GHz or thereabouts)], a radar transmitting portion established at the upper windshield area of the vehicle.
- the radar sensor device is positioned at a recess or pocket or opening formed at and along the upper edge of the windshield so as to have a forward transmitting and receiving direction for radar electromagnetic waves that is not through the glass panels of the windshield.
- the vehicle or sensing system preferably includes a sealing or cover element, such as a plastic cover element at the sensing device to seal/environmentally protect the radar sensor device within the cabin of the vehicle while allowing for transmission of and receipt of radar frequency electromagnetic radiation waves to and from the exterior of the vehicle.
- a sealing or cover element such as a plastic cover element at the sensing device to seal/environmentally protect the radar sensor device within the cabin of the vehicle while allowing for transmission of and receipt of radar frequency electromagnetic radiation waves to and from the exterior of the vehicle.
- a forward facing sensing system or radar sensing system for a vehicle includes a radar sensor device disposed at a pocket or recess or opening established at an upper edge of the vehicle windshield and having a forward transmitting and receiving direction that is not through the windshield.
- a cover panel is disposed at the radar sensor device and is substantially sealed at the vehicle windshield at or near the pocket at the upper edge of the vehicle windshield.
- the cover panel comprises a material that is substantially transmissive to radar frequency electromagnetic radiation waves.
- the radar sensor device transmits and receives radar frequency electromagnetic radiation waves that transmit through the cover panel.
- the system includes a control that is responsive to an output of the radar sensor device.
- a forward facing sensing system for a vehicle includes a radar sensor device operable to detect an object ahead of the vehicle, a forward facing image sensor having a forward field of view, and a control responsive to an output of the radar sensor device and responsive to an output of the forward facing image sensor.
- the control is operable to control sensing by the radar sensor device and the control is operable to control a focused or enhanced interrogation of a detected object (or area at which a detected object is detected) in response to a detection of an object forward of the vehicle by the radar sensor device.
- the control may be operable to at least one of (a) control enhanced interrogation of a detected object by the radar sensor device in response to the forward facing image sensor detecting an object (such as by enhancing the interrogation via a beam aiming or beam selection technique, such as by digital beam forming in a phased array antenna system or such as by digital beam steering or the like), and (b) control enhanced interrogation of a detected object by the forward facing image sensor in response to the radar sensor device detecting an object (such as by enhancing the interrogation via enhanced or intensified algorithmic processing of a portion of the image plane of the image sensor that is spatially related to the location of the detected object in the forward field of view of the image sensor).
- the control thus may be responsive to the forward facing image sensor to guide or control the focused interrogation of the detected object by the radar sensor device, or the control may be responsive to the radar sensor device to guide or control the focused or enhanced interrogation of the detected object by the forward facing image sensor (such as via directing or controlling the image sensor and/or its field of view or zoom function or via image processing of the captured image data, such as by providing enhanced processing of the area at which the object is detected).
- the forward facing image sensor and the radar sensor device may be commonly established on a semiconductor substrate.
- the semiconductor substrate may comprise one of (i) a germanium substrate, (ii) a gallium arsenide substrate, and (iii) a silicon germanium substrate.
- FIG. 1 is a perspective view of a vehicle incorporating a forward facing radar sensing system in accordance with the present invention.
- FIG. 2 is a perspective view of a windshield and radar sensing system of the present invention.
- a sensing system or forward facing sensing system or radar sensing system 10 for a vehicle 12 includes a radar sensor device 14 at an upper region of the vehicle windshield 12 a and with a forward transmitting and sensing direction forward of the vehicle and in the forward direction of travel of the vehicle ( FIG. 1 ).
- the windshield glass 12 a may be formed with a cutout or pocket 12 b at the upper edge.
- the pocket may be cut from the glass (so as to provide a cut opening at the upper edge of the glass windshield) or the glass may be formed with an inward bulge or pocket that provides an opening for the sensing device.
- the radar sensor device 14 thus may be disposed at the pocket 12 b and may have a clear or unobstructed view or sensing direction forward of the vehicle that does not pass through glass (and whereby the glass windshield will not attenuate the performance of the radar sensor device). Because the upper region of the vehicle windshield is typically not used, the radar sensor device 14 may be disposed thereat without being intrusive of other systems or elements and without adversely affecting the vehicle design and/or layout.
- the sensing system 10 is operable to detect objects or vehicles or the like in front of the vehicle as the vehicle is traveling along a road, such as in conjunction with an adaptive cruise control system or the like. Although shown and described as being a forward facing sensing system, aspects of the present invention may be suitable for other sensing systems, such as a rearward facing sensing system or the like.
- Radar sensor device 14 thus may be disposed within a windshield electronics module 16 or accessory module or overhead console of the vehicle, and within the vehicle cabin, without experiencing the adverse performance caused by the attenuation of radio or radar frequency electromagnetic radiation wave transmission through the windshield glass.
- the vehicle sheet metal may be adapted to receive and/or support the radar sensor device at the upper edge of the windshield, or to accommodate the radar sensor device as disposed in and/or supported by the windshield electronics module or the like.
- a cover element or plate 18 may be provided that substantially or entirely spans the opening at the pocket and that is sealed at the glass windshield and vehicle around the perimeter of the pocket, so as to limit or substantially preclude water intrusion or the like into the vehicle at the radar sensor device.
- the cover element 18 preferably comprises a plastic or polymeric or polycarbonate material that is transmissive to radar waves so as to limit or substantially preclude an adverse effect on the performance of the radar sensor device and system.
- the cover element may be colored to match or substantially match the shade band along the upper region of the windshield or to match or substantially match the windshield electronics module or other interior or exterior component of the vehicle. Because the radar sensor device does not require a transparent cover, the cover element may be opaque or substantially opaque and/or may function to substantially camouflage or render covert the sensor device and/or the windshield electronics module or the like.
- the radar sensor device may utilize known transmitting and receiving technology and may utilize a sweeping beam or a phased array or the like for scanning or sensing or interrogating the area in front of the vehicle.
- the forward facing radar sensing system may include or may be associated with a forward facing camera or imaging sensor 20 (which may be disposed at or in the windshield electronics module or accessory module or overhead console or at another accessory module or windshield electronics module or at the interior rearview mirror assembly 22 or the like), which has a forward field of view in the forward direction of travel of the vehicle.
- the sensing system may function to perform a “sweep” of the area in front of the vehicle and if an object or the like is detected (e.g., the radar sensing system detects a “blip”), the radar sensor device and system may hone in on or focus on or further interrogate the region where the object is detected and may perform a more focused or enhanced interrogation of the area at which the object was detected to determine if the object is an object of interest.
- the system may control enhanced interrogation of a detected object by the radar sensor device (such as a beam aiming or beam selection technique, such as by digital beam forming in a phased array antenna system or such as by digital beam steering).
- Such enhanced interrogation by the radar sensor device may be in response to the forward facing image sensor detecting an object in its forward field of view.
- the forward facing camera may guide or initiate or control the more focused interrogation of the suspected object of interest (such as further or enhanced interrogation by the camera and imaging system) in response to the initial detection by the radar sensing system.
- the radar sensing system may initially detect an object and the forward facing camera may be directed toward the detected object or otherwise controlled or processed to further interrogate the detected object (or area at which the object is detected) via the camera and image processing, or, alternately, the forward facing camera may initially detect an object and the system may select or aim a radar beam in a direction of a detected object.
- the enhanced interrogation of the object area by the forward facing camera may be accomplished via control of the camera's field of view or degree of zoom [for example, the camera may zoom into the area (via adjustment of a lens of the camera to enlarge an area of the field of view for enhanced processing) at which the object is detected] or via control of the image processing techniques.
- the image processor may provide enhanced processing of the captured image data at the area or zone at which the object is detected, such as by enhanced or intensified algorithmic processing of a portion of the image plane of the image sensor that is spatially related to the location of the detected object in the forward field of view of the image sensor, such as by enhanced processing of pixel outputs of pixels within a zone or sub-array of a pixelated imaging array sensor, such as by utilizing aspects of the imaging systems described in U.S. Pat. Nos. 7,123,168; 7,038,577; 7,004,606; 6,690,268; 6,396,397; 5,550,677; 5,670,935; 5,796,094; 5,877,897; and 6,498,620, and/or U.S.
- the sensing system of the present invention provides for cooperation or collaboration between the radar sensor device and the forward facing camera or image sensor in a way that benefits or enhances the sensing capabilities of the forward facing sensing system.
- the sensing system may thus operate with reduced processing until an object is initially detected, and then may provide further processing to determine if the object is an object of interest to the forward facing sensing system.
- the radar sensor device and forward facing camera may be commonly established on a semiconductor substrate, such as a substrate comprising a germanium substrate, a gallium arsenide substrate or a silicon germanium substrate or the like.
- the substrate may include or may incorporate at least some of the control circuitry for the radar sensor device and camera and/or may include or incorporate common circuitry for the radar sensor device and camera.
- the forward facing sensing system may be removably installed at the vehicle and may be removed therefrom, such as for service or replacement.
- the sensing system (including the radar sensor device and camera) may comprise a self-contained unit or system that is disposed at the upper region of the windshield.
- the radar sensor device and/or camera may be disposed within a windshield electronics module or the like, such as by utilizing aspects of the modules described in U.S. patent application Ser. No. 10/958,087, filed Oct. 4, 2004, now U.S. Pat. No. 7,188,963; and/or Ser. No. 11/201,661, filed Aug.
- the mirror assembly and/or windshield electronics module may include or incorporate a display, such as a static display, such as a static video display screen (such as a display utilizing aspects of the displays described in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference in their entireties, or a display-on-demand or transflective type display or other display utilizing aspects of the displays described in U.S. Pat. Nos. 6,690,268; 5,668,663 and/or 5,724,187, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; Ser. No.
- the display screen may comprise a display (such as a backlit LCD video display) that is movable to extend from the mirror casing when activated, such as a slide-out display of the types described in U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published on Mar. 9, 2006 as U.S. Publication No. US 2006/0050018; and/or Ser. No. 11/284,543, filed Nov.
- the display is episodically extended and/or actuated, such as to display driving instructions to the driver as the vehicle approaches a waypoint or turn along the selected route, and then retracted after the vehicle has passed the waypoint and continues along the selected route.
- the display on the video screen may be operable to display an alert to the driver of a potential hazardous condition detected ahead of or in the forward path of the vehicle.
- an output of a forward-viewing active night vision system incorporating an imaging sensor or camera device and near-IR floodlighting (such as those described in U.S. Pat. No. 5,877,897 and U.S. patent application Ser. No. 11/651,726, filed Jan. 10, 2007, now U.S. Pat. No.
- an output of another suitable forward facing sensor or system such a passive far-IR thermal imaging night vision sensor/camera may be processed by an image processor, such as, for example, an EyeQTM image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel.
- image processors include object detection software (such as the types described in U.S. Pat. No. 7,038,577; and/or Ser. No. 11/315,675, filed Dec. 22, 2005, now U.S. Pat. No. 7,720,580, which are hereby incorporated herein by reference in their entireties), and they analyze image data to detect objects.
- the image processor or control may determine if a potentially hazardous condition (such as an object or vehicle or person or deer or the like) may exist in the vehicle path and may provide an alert signal (such as by actuation of a visual indicator or an audible indicator or by an enhancement/overlay on a video display screen that is showing a video image to the driver of what the night vision sensor/camera is seeing) to prompt/alert the driver of a potential hazard (such as a deer or a pedestrian or a fallen rock or the like) as needed or appropriate.
- the display thus may provide an episodal alert so that the driver's attention is drawn to the display alert only when there is a potential hazard detected.
- Such a system avoids the driver from having to look forward out the windshield while often looking to or watching a monitor running a video of the camera's output, which is not particularly consumer-friendly and simply loads the driver with yet another task.
- the mirror reflective element of the mirror assembly may comprise a prismatic mirror reflector or an electrically variable reflectance mirror reflector, such as an electro-optic reflective element assembly or cell, such as an electrochromic reflective element assembly or cell.
- the rearview mirror assembly may comprise an electro-optic or electrochromic reflective element or cell, such as an electrochromic mirror assembly and electrochromic reflective element utilizing principles disclosed in commonly assigned U.S. Pat. Nos.
- Lynam “Electrochromic Automotive Day/Night Mirrors”, SAE Technical Paper Series 870636 (1987); N. R. Lynam, “Smart Windows for Automobiles”, SAE Technical Paper Series 900419 (1990); N. R. Lynam and A. Agrawal, “Automotive Applications of Chromogenic Materials”, Large Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granquist, EDS., Optical Engineering Press, Wash. (1990), which are hereby incorporated herein by reference in their entireties.
- the mirror reflective element may comprise a frameless reflective element, such as by utilizing aspects of the reflective elements described in PCT Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; and/or U.S. patent application Ser. No. 11/140,396, filed May 27, 2005, now U.S. Pat. No. 7,360,932; Ser. No. 11/226,628, filed Sep. 14, 2005, and published Mar. 23, 2006 as U.S. Publication No. US 2006/0061008; Ser. No.
- the reflective element may include a metallic perimeter band around the perimeter of the reflective element, such as by utilizing aspects of the reflective elements described in PCT Application No PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; PCT Application No. PCT/US03/29776, filed Sep. 19, 2003 and published Apr. 1; 2004 as International Publication No. WO 2004/026633; and/or PCT Application No. PCT/US03/35381, filed Nov. 5, 2003 and published May 21, 2004 as International Publication No. WO 2004/042457; and/or U.S. patent application Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No.
- the frameless reflective element thus is aesthetically pleasing to a person viewing the mirror assembly, since the reflective element (as recessed or partially recessed in the opening of the bezel portion of the mirror casing) does not include a separate frame or bezel portion around its perimeter edge.
- the metallic perimeter band may be selected to have a desired color or tint to match or contrast a color scheme or the like of the vehicle, such as described in PCT Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, which are hereby incorporated herein by reference in their entireties.
- an elemental semiconductor mirror such as a silicon metal mirror, such as disclosed in U.S. Pat. Nos. 6,286,965; 6,196,688; 5,535,056; 5,751,489; and 6,065,840, and/or in U.S. patent application Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177, which are all hereby incorporated herein by reference in their entireties, can be advantageous because such elemental semiconductor mirrors (such as can be formed by depositing a thin film of silicon) can be greater than 50 percent reflecting in the photopic (SAE J964a measured), while being also substantially transmitting of light (up to 20 percent or even more).
- SAE J964a measured substantially transmitting of light
- Such silicon mirrors also have the advantage of being able to be deposited onto a flat glass substrate and to be bent into a curved (such as a convex or aspheric) curvature, which is also advantageous since many passenger-side exterior rearview mirrors are bent or curved.
- the mirror assembly may comprise a prismatic mirror assembly, such as a prismatic mirror assembly utilizing aspects described in U.S. Pat. Nos. 6,318,870; 6,598,980; 5,327,288; 4,948,242; 4,826,289; 4,436,371; and 4,435,042; and PCT Application No. PCT/US04/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772; and U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860, which are hereby incorporated herein by reference in their entireties.
- a prismatic mirror assembly such as a prismatic mirror assembly utilizing aspects described in U.S. Pat. Nos. 6,318,870; 6,598,980; 5,327,288; 4,948,242; 4,826,289; 4,436,371; and 4,435,042; and PCT Application No. PCT/US
- the prismatic reflective element may comprise a conventional prismatic reflective element or prism, or may comprise a prismatic reflective element of the types described in PCT Application No PCT/US03/29776, filed Sep. 19, 2003 and published Apr. 1, 2004 as International Publication No WO 2004/026633; and/or U.S. patent application Ser. No. 10/709,434, filed May 5, 2004, now U.S. Pat. No. 7,420,756; Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar.
- the reflective element may comprise a bent, wide-angle mirror reflector rather than a flat mirror reflector.
- a bent, wide-angle mirror reflector it is preferable that the mirror reflector comprise a glass substrate coated with a bendable reflector coating (such as of silicon as described in U.S. Pat. Nos. 6,065,840; 5,959,792; 5,535,056 and 5,751,489, which are hereby incorporated by reference herein in their entireties.
- the mirror casing and/or windshield electronics module may be suitable for supporting larger or heavier components or circuitry that otherwise may not have been suitable for mounting or locating at or in a mirror casing.
- the mirror casing or module may house or support a battery or power pack for various electronic features or components, and/or may support a docking station for docking and/or holding a cellular telephone or hand-held personal data device or the like, such as by utilizing aspects of the systems described in U.S. Pat. No. 6,824,281, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, and/or U.S. patent application Ser. No.
- the mirror assembly and/or windshield electronics module may include or incorporate a navigation device that may include navigational circuitry and a GPS antenna to determine the geographical location of the vehicle and to provide routes to targeted or selected destinations, such as by utilizing aspects of known navigational devices and/or the devices of the types described in U.S. Pat. Nos. 4,862,594; 4,937,945; 5,131,154; 5,255,442; 5,632,092; 5,798,688; 5,971,552; 5,924,212; 6,243,003; 6,278,377; 6,420,975; 6,946,978; 6,477,464; 6,678,614; and/or 7,004,593, and/or U.S. patent application Ser. No.
- the mirror or navigation device may include a microphone, whereby the mirror or navigation device may provide voice activated control of the navigation device.
- the mounting structure and/or mirror casing and/or windshield electronics module may support compass sensors, such as compass sensors of the types described in may utilize aspects of the compass systems described in U.S. patent application Ser. No. 11/305,637, filed Dec. 16, 2005, now U.S. Pat. No. 7,329,013; Ser. No. 10/352,691, filed Jan. 28, 2003, now U.S. Pat. No. 6,922,902; Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983; Ser. No. 11/226,628, filed Sep. 14, 2005, and published on Mar. 23, 2006 as U.S. Publication No.
- the compass circuitry may include the compass sensor, such as a magneto-responsive sensor, such as a magneto-resistive sensor, such as the types disclosed in U.S. Pat. Nos. 5,255,442; 5,632,092; 5,802,727; 6,173,501; 6,427,349; and 6,513,252 (which are hereby incorporated herein by reference in their entireties), a magneto-capacitive sensor, a Hall-effect sensor, such as the types described in U.S. Pat. Nos.
- the mounting structure and/or mirror casing and/or windshield electronics module may support one or more imaging sensors or cameras, and may fixedly support them with the cameras set with a desired or appropriate forward and/or rearward field of view.
- the camera may be operable in conjunction with a forward facing imaging system, such as a rain sensing system, such as described in U.S. Pat. Nos. 6,968,736; 6,806,452; 6,516,664; 6,353,392; 6,313,454; 6,250,148; 6,341,523; and 6,824,281, and in U.S. patent application Ser. No. 10/958,087, filed Oct. 4, 2004, now U.S. Pat. No. 7,188,963; and/or Ser. No.
- the mounting structure and/or mirror casing may be pressed or loaded against the interior surface of the windshield to position or locate the image sensor in close proximity to the windshield and/or to optically couple the image sensor at the windshield.
- the mounting structure and/or mirror casing may include an aperture or apertures at its forward facing or mounting surface and the windshield may include apertures through the opaque frit layer (typically disposed at a mirror mounting location of a windshield) or the windshield may not include such a frit layer, depending on the particular application.
- the image sensor may be operable in conjunction with a forward or rearward vision system, such as an automatic headlamp control system and/or a lane departure warning system or object detection system and/or other forward vision or imaging systems, such as imaging or vision systems of the types described in U.S. Pat. Nos. 7,038,577; 7,005,974; 7,004,606; 6,690,268; 6,946,978; 6,757,109; 6,717,610; 6,396,397; 6,201,642; 6,353,392; 6,313,454; 5,550,677; 5,670,935; 5,796,094; 5,715,093; 5,877,897; 6,097,023; and 6,498,620, and/or U.S.
- a forward or rearward vision system such as an automatic headlamp control system and/or a lane departure warning system or object detection system and/or other forward vision or imaging systems, such as imaging or vision systems of the types described in U.S. Pat. Nos. 7,038,5
- the mirror casing thus may support one or more rearward facing imaging sensors or cameras, such as for rearward vision or imaging systems, such as for a rear vision system or back up aid of the types described in U.S. Pat. Nos. 6,717,610 and/or 6,201,642 (which are hereby incorporated herein by reference in their entireties), and/or a cabin monitoring system or baby view system of the types described in U.S. Pat. No. 6,690,268 (which is hereby incorporated herein by reference in its entirety), and/or the like.
- the fixed mounting structure and/or mirror casing and/or windshield electronics module may house or support a display device, such as a heads up display device (such as the types described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, which are hereby incorporated herein by reference in their entireties) that is operable to project a display at the area in front of the driver to enhance viewing of the display information without adversely affecting the driver's forward field of view.
- a display device such as a heads up display device (such as the types described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, which are
- the mirror casing may support a heads up display (HUD), such as a MicroHUDTM head-up display system available from MicroVision Inc. of Bothell, WA, and/or such as a HUD that utilizes aspects described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, which are hereby incorporated herein by reference in their entireties.
- HUD heads up display
- MicroVision's MicroHUDTM combines a MEMS-based micro display with an optical package of lenses and mirrors to achieve a compact high-performance HUD module that reflects a virtual image off the windscreen that appears to the driver to be close to the front of the car.
- This laser-scanning display can outperform many miniature flat panel LCD display screens because it can be clearly viewed in the brightest conditions and also dimmed to the very low brightness levels required for safe night-time driving.
- such a display device may be located at or in the mirror casing/mounting structure/windshield electronics module and may be non-movably mounted at the mirror casing or mounting structure or windshield electronics module, and may be operable to project the display information at the windshield of the vehicle so as to be readily viewed by the driver of the vehicle in the driver's forward field of view.
- the mounting structure and/or mirror casing and/or windshield electronics module may be fixedly attached to or supported at the vehicle windshield and may extend upward toward the headliner of the vehicle.
- the mirror assembly of the present invention may have enhanced wire management and may substantially conceal the wiring of the electronic components/accessories between the circuitry within the mirror casing and the headliner at the upper portion of the vehicle windshield.
- the mirror assembly may include wire management elements, such as the types described in U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005, and published Mar. 23, 2006 as U.S. Publication No. 2006/0061008; and/or Ser. No. 11/584,697, filed Oct. 20, 2006, now U.S. Pat. No. 7,510,287; and/or U.S.
- the mirror casing and/or mounting structure and/or windshield electronics module may abut the headliner and/or may be an extension of an overhead console of the vehicle (such as by utilizing aspects described in U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. 2006/0050018, and/or U.S. patent application Ser. No. 10/510,813, filed Aug. 23, 2002, now U.S. Pat. No.
- the mirror assembly of the present invention thus may allow for utilization of the area above the mirror reflective element for additional mirror content, such as additional electronic accessories or circuitry, and thus may provide for or accommodate additional mirror content/circuitry and/or vehicle content/circuitry.
- the mirror assembly and/or reflective element assembly may include one or more displays, such as for the accessories or circuitry described herein.
- the displays may comprise any suitable display, such as displays of the types described in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference in their entireties, or may be display-on-demand or transflective type displays or other displays, such as the types described in U.S. Pat. Nos. 6,690,268; 5,668,663 and/or 5,724,187, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; Ser. No. 11/021,065, filed Dec.
- the mirror assembly may include a video display that is selectively positionable, such as extendable/retractable or pivotable or foldable so as to be selectively positioned at a side or below the mirror casing when in use and storable within or at least partially within the mirror casing when not in use.
- the display may automatically extend/pivot to the in-use position in response to an actuating event, such as when the vehicle is shifted into its reverse gear for a rear vision system or back up aid.
- Such a video mirror display may be associated with a rearward facing camera at a rear of the vehicle and having a rearward field of view, such as at the license plate holder of the vehicle or at a rear trim portion (such as described in U.S. patent application Ser. No. 11/672,070, filed Feb. 7, 2007 (Attorney Docket DON01 P-1320), and U.S. provisional application Ser. No. 60/765,797, filed Feb. 7, 2006, which is hereby incorporated herein by reference in its entirety).
- the image data captured by the rearward facing camera may be communicated to the control or video display at the rearview mirror assembly (or elsewhere in the vehicle, such as at an overhead console or accessory module or the like) via any suitable communication means or protocol.
- the image data may be communicated via a fiber optic cable or a twisted pair of wires, or may be communicated wirelessly, such as via a BLUETOOTH® communication link or protocol or the like, or may be superimposed on a power line, such as a 12 volt power line of the vehicle, such as by utilizing aspects of the systems described in U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, which is hereby incorporated herein by reference in its entirety.
- the mirror assembly may include one or more user inputs for controlling or activating/deactivating one or more electrical accessories or devices of or associated with the mirror assembly.
- the mirror assembly may comprise any type of switches or buttons, such as touch or proximity sensing switches, such as touch or proximity switches of the types described in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540; and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, and/or U.S. Pat. Nos.
- the mirror assembly or accessory module or input may, when activated, provide a positive feedback (such as activation of an illumination source or the like, or such as via an audible signal, such as a chime or the like, or a tactile or haptic signal, or a rumble device or signal or the like) to the user so that the user is made aware that the input was successfully activated.
- a positive feedback such as activation of an illumination source or the like, or such as via an audible signal, such as a chime or the like, or a tactile or haptic signal, or a rumble device or signal or the like
- the user inputs or buttons may comprise user inputs for a garage door opening system, such as a vehicle based garage door opening system of the types described in U.S. Pat. Nos. 7,023,322; 6,396,408; 6,362,771; and 5,798,688, which are hereby incorporated herein by reference in their entireties.
- the user inputs may also or otherwise function to activate and deactivate a display or function or accessory, and/or may activate/deactivate and/or commence a calibration of a compass system of the mirror assembly and/or vehicle.
- the user inputs may also or otherwise comprise user inputs for a telematics system of the vehicle, such as, for example, an ONSTAR® system as found in General Motors vehicles and/or such as described in U.S. Pat. Nos. 4,862,594; 4,937,945; 5,131,154; 5,255,442; 5,632,092; 5,798,688; 5,971,552; 5,924,212; 6,243,003; 6,278,377; 6,420,975; 6,946,978; 6,477,464; 6,678,614; and/or 7,004,593, and/or U.S. patent application Ser. No. 10/645,762, filed Aug. 20, 2003, now U.S. Pat. No.
- the display and inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 6,877,888; 6,690,268; 6,824,281; 6,672,744; 6,386,742; and 6,124,886, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, and/or PCT Application No.
- the mirror assembly or accessory module may fixedly or non-movably support one or more other accessories or features, such as one or more electrical or electronic devices or accessories.
- illumination sources or lights such as map reading lights or one or more other lights or illumination sources, such as illumination sources of the types disclosed in U.S. Pat. Nos. 6,690,268; 5,938,321; 5,813,745; 5,820,245; 5,673,994; 5,649,756; 5,178,448; 5,671,996; 4,646,210; 4,733,336; 4,807,096; 6,042,253; 6,971,775; and/or 5,669,698, and/or U.S. patent application Ser. No. 10/054,633, filed Jan.
- the illumination sources and/or the circuit board may be connected to one or more buttons or inputs for activating and deactivating the illumination sources.
- the mirror assembly may also or otherwise include other accessories, such as microphones, such as analog microphones or digital microphones or the like, such as microphones of the types disclosed in U.S. Pat. Nos. 6,243,003; 6,278,377; and/or 6,420,975, and/or in U.S. patent application Ser. No. 10/529,715, filed Mar. 30, 2005, now U.S. Pat. No. 7,657,052.
- the mirror assembly may also or otherwise include other accessories, such as a telematics system, speakers, antennas, including global positioning system (GPS) or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552, a communication module, such as disclosed in U.S. Pat. No.
- transmitters and/or receivers such as for a garage door opener or a vehicle door unlocking system or the like (such as a remote keyless entry system), a digital network, such as described in U.S. Pat. No. 5,798,575, a hands-free phone attachment, an imaging system or components or circuitry or display thereof, such as an imaging and/or display system of the types described in U.S. Pat. Nos. 6,690,268 and 6,847,487; and/or U.S. provisional applications, Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; and/or Ser. No. 60/628,709, filed Nov.
- a remote keyless entry receiver such as displays that display a status of a door of the vehicle, a transmission selection (4wd/2wd or traction control (TCS) or the like), an antilock braking system, a road condition (that may warn the driver of icy road conditions) and/or the like, a trip computer, a tire pressure monitoring system (TPMS) receiver (such as described in U.S. Pat. Nos. 6,124,647; 6,294,989; 6,445,287; 6,472,979; and/or 6,731,205; and/or U.S. patent application Ser. No.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Radar Systems Or Details Thereof (AREA)
- Traffic Control Systems (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
Abstract
A forward facing sensing system for a vehicle includes a windshield electronics module disposed in the vehicle cabin behind the windshield, a radar sensor device disposed within the windshield electronics module with a sensing direction forward of the vehicle, an image sensor disposed within the windshield electronics module with a viewing direction forward of the vehicle, and a control operable to analyze images captured by the image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel. The control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle. The radar sensor device and the image sensor collaborate in a way that enhances the sensing capability of the sensing system for the potentially hazardous condition in the path of forward travel of the vehicle.
Description
- This application is a continuation of U.S. patent application Ser. No. 13/192,525, filed Jul. 28, 2011, now U.S. Pat. No. 8,217,830, which is a continuation of U.S. patent application Ser. No. 12/524,446, filed Jul. 24, 2009, now U.S. Pat. No. 8,013,780, which is a 371 application of PCT Application No. PCT/US2008/051833, filed Jan. 24, 2008, which claims the benefit of U.S. Provisional Patent Application No. 60/886,568, filed Jan. 25, 2007, which are incorporated herein by reference for all purposes.
- The present invention generally relates to forward facing sensing systems and, more particularly, to forward facing sensing systems utilizing a radar sensor device.
- It is known to provide a radar (radio detection and ranging) system (such as a 77 GHz radar or other suitable frequency radar) on a vehicle for sensing the area forward of a vehicle, such as for an adaptive cruise control (ACC) system or an ACC stop and go system or the like. It is also known to provide a lidar (laser imaging detection and ranging) system for sensing the area forward of a vehicle for similar applications. Typically, the radar system is preferred for such vehicle applications because of its ability to detect better than the lidar system in fog or other inclement weather conditions.
- Typically, such radar sensor devices are often located at the front grille of the vehicle and thus may be intrusive to the underhood packaging of the vehicle and the exterior styling of the vehicle. Although it is known to provide a lidar sensing device or system at the windshield for scanning/detecting through the windshield, radar systems are typically not suitable for such applications, since they typically are not suitable for viewing through glass, such as through the vehicle windshield (because the glass windshield may substantially attenuate the radar performance or ability to detect objects forward of the vehicle). It is also known to augment such a radar or lidar system with a forward facing camera or image sensor.
- The present invention provides a forward facing sensing system for detecting objects forward of the vehicle (such as for use with or in conjunction with an adaptive, cruise control system or other object detection system or the like), with a radar sensor device being located behind, and transmitting through [typically, transmitting at at least about 20 GHz frequency (such as 24 GHz) and more preferably at least about 60 GHz frequency (such as 60 GHz or 77 GHz or 79 GHz or thereabouts)], a radar transmitting portion established at the upper windshield area of the vehicle. The radar sensor device is positioned at a recess or pocket or opening formed at and along the upper edge of the windshield so as to have a forward transmitting and receiving direction for radar electromagnetic waves that is not through the glass panels of the windshield. The vehicle or sensing system preferably includes a sealing or cover element, such as a plastic cover element at the sensing device to seal/environmentally protect the radar sensor device within the cabin of the vehicle while allowing for transmission of and receipt of radar frequency electromagnetic radiation waves to and from the exterior of the vehicle.
- According to an aspect of the present invention, a forward facing sensing system or radar sensing system for a vehicle includes a radar sensor device disposed at a pocket or recess or opening established at an upper edge of the vehicle windshield and having a forward transmitting and receiving direction that is not through the windshield. A cover panel is disposed at the radar sensor device and is substantially sealed at the vehicle windshield at or near the pocket at the upper edge of the vehicle windshield. The cover panel comprises a material that is substantially transmissive to radar frequency electromagnetic radiation waves. The radar sensor device transmits and receives radar frequency electromagnetic radiation waves that transmit through the cover panel. The system includes a control that is responsive to an output of the radar sensor device.
- According to another aspect of the present invention, a forward facing sensing system for a vehicle includes a radar sensor device operable to detect an object ahead of the vehicle, a forward facing image sensor having a forward field of view, and a control responsive to an output of the radar sensor device and responsive to an output of the forward facing image sensor. The control is operable to control sensing by the radar sensor device and the control is operable to control a focused or enhanced interrogation of a detected object (or area at which a detected object is detected) in response to a detection of an object forward of the vehicle by the radar sensor device. The control may be operable to at least one of (a) control enhanced interrogation of a detected object by the radar sensor device in response to the forward facing image sensor detecting an object (such as by enhancing the interrogation via a beam aiming or beam selection technique, such as by digital beam forming in a phased array antenna system or such as by digital beam steering or the like), and (b) control enhanced interrogation of a detected object by the forward facing image sensor in response to the radar sensor device detecting an object (such as by enhancing the interrogation via enhanced or intensified algorithmic processing of a portion of the image plane of the image sensor that is spatially related to the location of the detected object in the forward field of view of the image sensor). The control thus may be responsive to the forward facing image sensor to guide or control the focused interrogation of the detected object by the radar sensor device, or the control may be responsive to the radar sensor device to guide or control the focused or enhanced interrogation of the detected object by the forward facing image sensor (such as via directing or controlling the image sensor and/or its field of view or zoom function or via image processing of the captured image data, such as by providing enhanced processing of the area at which the object is detected).
- Optionally, and desirably, the forward facing image sensor and the radar sensor device may be commonly established on a semiconductor substrate. Optionally, the semiconductor substrate may comprise one of (i) a germanium substrate, (ii) a gallium arsenide substrate, and (iii) a silicon germanium substrate.
- These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
-
FIG. 1 is a perspective view of a vehicle incorporating a forward facing radar sensing system in accordance with the present invention; and -
FIG. 2 is a perspective view of a windshield and radar sensing system of the present invention. - Referring now to the drawings and the illustrative embodiments depicted therein, a sensing system or forward facing sensing system or
radar sensing system 10 for avehicle 12 includes aradar sensor device 14 at an upper region of thevehicle windshield 12 a and with a forward transmitting and sensing direction forward of the vehicle and in the forward direction of travel of the vehicle (FIG. 1 ). Thewindshield glass 12 a may be formed with a cutout orpocket 12 b at the upper edge. The pocket may be cut from the glass (so as to provide a cut opening at the upper edge of the glass windshield) or the glass may be formed with an inward bulge or pocket that provides an opening for the sensing device. Theradar sensor device 14 thus may be disposed at thepocket 12 b and may have a clear or unobstructed view or sensing direction forward of the vehicle that does not pass through glass (and whereby the glass windshield will not attenuate the performance of the radar sensor device). Because the upper region of the vehicle windshield is typically not used, theradar sensor device 14 may be disposed thereat without being intrusive of other systems or elements and without adversely affecting the vehicle design and/or layout. Thesensing system 10 is operable to detect objects or vehicles or the like in front of the vehicle as the vehicle is traveling along a road, such as in conjunction with an adaptive cruise control system or the like. Although shown and described as being a forward facing sensing system, aspects of the present invention may be suitable for other sensing systems, such as a rearward facing sensing system or the like. -
Radar sensor device 14 thus may be disposed within awindshield electronics module 16 or accessory module or overhead console of the vehicle, and within the vehicle cabin, without experiencing the adverse performance caused by the attenuation of radio or radar frequency electromagnetic radiation wave transmission through the windshield glass. Optionally, the vehicle sheet metal may be adapted to receive and/or support the radar sensor device at the upper edge of the windshield, or to accommodate the radar sensor device as disposed in and/or supported by the windshield electronics module or the like. - In order to seal the upper edge of the windshield at the
pocket 12 b, a cover element or plate 18 may be provided that substantially or entirely spans the opening at the pocket and that is sealed at the glass windshield and vehicle around the perimeter of the pocket, so as to limit or substantially preclude water intrusion or the like into the vehicle at the radar sensor device. The cover element 18 preferably comprises a plastic or polymeric or polycarbonate material that is transmissive to radar waves so as to limit or substantially preclude an adverse effect on the performance of the radar sensor device and system. Optionally, and desirably, the cover element may be colored to match or substantially match the shade band along the upper region of the windshield or to match or substantially match the windshield electronics module or other interior or exterior component of the vehicle. Because the radar sensor device does not require a transparent cover, the cover element may be opaque or substantially opaque and/or may function to substantially camouflage or render covert the sensor device and/or the windshield electronics module or the like. - The radar sensor device may utilize known transmitting and receiving technology and may utilize a sweeping beam or a phased array or the like for scanning or sensing or interrogating the area in front of the vehicle. Optionally, the forward facing radar sensing system may include or may be associated with a forward facing camera or imaging sensor 20 (which may be disposed at or in the windshield electronics module or accessory module or overhead console or at another accessory module or windshield electronics module or at the interior
rearview mirror assembly 22 or the like), which has a forward field of view in the forward direction of travel of the vehicle. The sensing system may function to perform a “sweep” of the area in front of the vehicle and if an object or the like is detected (e.g., the radar sensing system detects a “blip”), the radar sensor device and system may hone in on or focus on or further interrogate the region where the object is detected and may perform a more focused or enhanced interrogation of the area at which the object was detected to determine if the object is an object of interest. Optionally, for example, the system may control enhanced interrogation of a detected object by the radar sensor device (such as a beam aiming or beam selection technique, such as by digital beam forming in a phased array antenna system or such as by digital beam steering). Such enhanced interrogation by the radar sensor device may be in response to the forward facing image sensor detecting an object in its forward field of view. - Optionally, and desirably, the forward facing camera may guide or initiate or control the more focused interrogation of the suspected object of interest (such as further or enhanced interrogation by the camera and imaging system) in response to the initial detection by the radar sensing system. For example, the radar sensing system may initially detect an object and the forward facing camera may be directed toward the detected object or otherwise controlled or processed to further interrogate the detected object (or area at which the object is detected) via the camera and image processing, or, alternately, the forward facing camera may initially detect an object and the system may select or aim a radar beam in a direction of a detected object. The enhanced interrogation of the object area by the forward facing camera may be accomplished via control of the camera's field of view or degree of zoom [for example, the camera may zoom into the area (via adjustment of a lens of the camera to enlarge an area of the field of view for enhanced processing) at which the object is detected] or via control of the image processing techniques. For example, the image processor may provide enhanced processing of the captured image data at the area or zone at which the object is detected, such as by enhanced or intensified algorithmic processing of a portion of the image plane of the image sensor that is spatially related to the location of the detected object in the forward field of view of the image sensor, such as by enhanced processing of pixel outputs of pixels within a zone or sub-array of a pixelated imaging array sensor, such as by utilizing aspects of the imaging systems described in U.S. Pat. Nos. 7,123,168; 7,038,577; 7,004,606; 6,690,268; 6,396,397; 5,550,677; 5,670,935; 5,796,094; 5,877,897; and 6,498,620, and/or U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496; and/or Ser. No. 11/315,675, filed Dec. 22, 2005, now U.S. Pat. No. 7,720,580, which are all hereby incorporated herein by reference in their entireties.
- Thus, the sensing system of the present invention provides for cooperation or collaboration between the radar sensor device and the forward facing camera or image sensor in a way that benefits or enhances the sensing capabilities of the forward facing sensing system. The sensing system may thus operate with reduced processing until an object is initially detected, and then may provide further processing to determine if the object is an object of interest to the forward facing sensing system.
- Optionally, and desirably, the radar sensor device and forward facing camera may be commonly established on a semiconductor substrate, such as a substrate comprising a germanium substrate, a gallium arsenide substrate or a silicon germanium substrate or the like. The substrate may include or may incorporate at least some of the control circuitry for the radar sensor device and camera and/or may include or incorporate common circuitry for the radar sensor device and camera.
- Because the radar sensor device and camera may be disposed on a common substrate and/or may be disposed within a windshield electronics module or the like, the forward facing sensing system may be removably installed at the vehicle and may be removed therefrom, such as for service or replacement. Thus, the sensing system (including the radar sensor device and camera) may comprise a self-contained unit or system that is disposed at the upper region of the windshield. Optionally, the radar sensor device and/or camera may be disposed within a windshield electronics module or the like, such as by utilizing aspects of the modules described in U.S. patent application Ser. No. 10/958,087, filed Oct. 4, 2004, now U.S. Pat. No. 7,188,963; and/or Ser. No. 11/201,661, filed Aug. 11, 2005, now U.S. Pat. No. 7,480,149, and/or U.S. Pat. Nos. 7,004,593; 6,824,281; 6,690,268; 6,250,148; 6,341,523; 6,593,565; 6,428,172; 6,501,387; 6,329,925; and 6,326,613, and/or in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, and/or Ireland pat. applications, Ser. No. S2004/0614, filed Sep. 15, 2004; Ser. No. S2004/0838, filed Dec. 14, 2004; and Ser. No. S2004/0840, filed Dec. 15, 2004, which are all hereby incorporated herein by reference in their entireties.
- Optionally, the mirror assembly and/or windshield electronics module may include or incorporate a display, such as a static display, such as a static video display screen (such as a display utilizing aspects of the displays described in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference in their entireties, or a display-on-demand or transflective type display or other display utilizing aspects of the displays described in U.S. Pat. Nos. 6,690,268; 5,668,663 and/or 5,724,187, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190; Ser. No. 10/538,724, filed Jun. 13, 2005 and published on Mar. 9, 2006 as U.S. Publication No. US 2006/0050018; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No, US 2006/0061008; Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177; and/or Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, and/or PCT Patent Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; and/or PCT Application No. PCT/US2006/042718, filed Oct. 31, 2006, published May 10, 2007 as International Publication No. WO 07/053,710; and U.S. provisional applications, Ser. No. 60/836,219, filed Aug. 8, 2006 by Weller et al. for INTERIOR REARVIEW MIRROR ASSEMBLY WITH DISPLAY; Ser. No. 60/759,992, filed Jan. 18, 2006; and Ser. No. 60/732,245, filed Nov. 1, 2005, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003, and published Jul. 15, 2004 as International Publication No. WO 2004/058540, which are all hereby incorporated herein by reference in their entireties). Alternately, the display screen may comprise a display (such as a backlit LCD video display) that is movable to extend from the mirror casing when activated, such as a slide-out display of the types described in U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published on Mar. 9, 2006 as U.S. Publication No. US 2006/0050018; and/or Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, and/or PCT Patent Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; and/or PCT Application No. PCT/US2006/042718, filed Oct. 31, 2006, and published May 10, 2007 as International Publication No. WO 07/053,710; and U.S. provisional application Ser. No. 60/836,219, filed Aug. 8, 2006 by Weller et al. for INTERIOR REARVIEW MIRROR ASSEMBLY WITH DISPLAY; Ser. No. 60/759,992, filed Jan. 18, 2006; and Ser. No. 60/732,245, filed Nov. 1, 2005, which are all hereby incorporated herein by reference in their entireties. Optionally, and preferably, the display is episodically extended and/or actuated, such as to display driving instructions to the driver as the vehicle approaches a waypoint or turn along the selected route, and then retracted after the vehicle has passed the waypoint and continues along the selected route.
- Optionally, the display on the video screen may be operable to display an alert to the driver of a potential hazardous condition detected ahead of or in the forward path of the vehicle. For example, an output of a forward-viewing active night vision system incorporating an imaging sensor or camera device and near-IR floodlighting (such as those described in U.S. Pat. No. 5,877,897 and U.S. patent application Ser. No. 11/651,726, filed Jan. 10, 2007, now U.S. Pat. No. 7,311,406, which are hereby incorporated herein by reference in their entireties), or an output of another suitable forward facing sensor or system such a passive far-IR thermal imaging night vision sensor/camera, may be processed by an image processor, such as, for example, an EyeQ™ image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel. Such image processors include object detection software (such as the types described in U.S. Pat. No. 7,038,577; and/or Ser. No. 11/315,675, filed Dec. 22, 2005, now U.S. Pat. No. 7,720,580, which are hereby incorporated herein by reference in their entireties), and they analyze image data to detect objects. The image processor or control may determine if a potentially hazardous condition (such as an object or vehicle or person or deer or the like) may exist in the vehicle path and may provide an alert signal (such as by actuation of a visual indicator or an audible indicator or by an enhancement/overlay on a video display screen that is showing a video image to the driver of what the night vision sensor/camera is seeing) to prompt/alert the driver of a potential hazard (such as a deer or a pedestrian or a fallen rock or the like) as needed or appropriate. The display thus may provide an episodal alert so that the driver's attention is drawn to the display alert only when there is a potential hazard detected. Such a system avoids the driver from having to look forward out the windshield while often looking to or watching a monitor running a video of the camera's output, which is not particularly consumer-friendly and simply loads the driver with yet another task.
- Optionally, the mirror reflective element of the mirror assembly may comprise a prismatic mirror reflector or an electrically variable reflectance mirror reflector, such as an electro-optic reflective element assembly or cell, such as an electrochromic reflective element assembly or cell. For example, the rearview mirror assembly may comprise an electro-optic or electrochromic reflective element or cell, such as an electrochromic mirror assembly and electrochromic reflective element utilizing principles disclosed in commonly assigned U.S. Pat. Nos. 6,690,268; 5,140,455; 5,151,816; 6,178,034; 6,154,306; 6,002,544; 5,567,360; 5,525,264; 5,610,756; 5,406,414; 5,253,109; 5,076,673; 5,073,012; 5,117,346; 5,724,187; 5,668,663; 5,910,854; 5,142,407; 4,824,221; 5,818,636; 6,166,847; 6,111,685; 6,392,783; 6,710,906; 6,798,556; 6,554,843; 6,420,036; 5,142,406; 5,442,478; and/or 4,712,879, and/or 4,712,879, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed. Mar. 17, 2005, now. U.S. Pat. No. 7,274,501; Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190; Ser. No. 10/538,724, filed Jun. 13, 2005, and published on Mar. 9, 2006 as U.S. Publication No. US 2006/0050018; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US 2006/0061008; Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177; and/or Ser, No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, and/or International Pat. Publication Nos. WO 2004/098953, published Nov. 18, 2004; WO 2004/042457, published May 21, 2004; WO 2003/084780, published Oct. 16, 2003; and/or WO 2004/026633, published Apr. 1, 2004, which are all hereby incorporated herein by reference in their entireties, and/or such as disclosed in the following publications: N. R. Lynam, “Electrochromic Automotive Day/Night Mirrors”, SAE Technical Paper Series 870636 (1987); N. R. Lynam, “Smart Windows for Automobiles”, SAE Technical Paper Series 900419 (1990); N. R. Lynam and A. Agrawal, “Automotive Applications of Chromogenic Materials”, Large Area Chromogenics: Materials and Devices for Transmittance Control, C. M. Lampert and C. G. Granquist, EDS., Optical Engineering Press, Wash. (1990), which are hereby incorporated herein by reference in their entireties.
- Optionally, and preferably, the mirror reflective element may comprise a frameless reflective element, such as by utilizing aspects of the reflective elements described in PCT Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published on Dec. 2, 2004, as International Publication No. WO 2004/103772; and/or U.S. patent application Ser. No. 11/140,396, filed May 27, 2005, now U.S. Pat. No. 7,360,932; Ser. No. 11/226,628, filed Sep. 14, 2005, and published Mar. 23, 2006 as U.S. Publication No. US 2006/0061008; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190; and/or Ser. No. 10/538,724, filed Jun. 13, 2005, and published on Mar. 9, 2006 as U.S. Publication No US 2006/0050018, which are hereby incorporated herein by reference in their entireties. Optionally, the reflective element may include a metallic perimeter band around the perimeter of the reflective element, such as by utilizing aspects of the reflective elements described in PCT Application No PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; PCT Application No. PCT/US03/29776, filed Sep. 19, 2003 and published Apr. 1; 2004 as International Publication No. WO 2004/026633; and/or PCT Application No. PCT/US03/35381, filed Nov. 5, 2003 and published May 21, 2004 as International Publication No. WO 2004/042457; and/or U.S. patent application Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; and/or Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. US 2006/0061008, which is hereby incorporated herein by reference in their entireties. The frameless reflective element thus is aesthetically pleasing to a person viewing the mirror assembly, since the reflective element (as recessed or partially recessed in the opening of the bezel portion of the mirror casing) does not include a separate frame or bezel portion around its perimeter edge. The metallic perimeter band may be selected to have a desired color or tint to match or contrast a color scheme or the like of the vehicle, such as described in PCT Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, which are hereby incorporated herein by reference in their entireties.
- Optionally, use of an elemental semiconductor mirror, such as a silicon metal mirror, such as disclosed in U.S. Pat. Nos. 6,286,965; 6,196,688; 5,535,056; 5,751,489; and 6,065,840, and/or in U.S. patent application Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177, which are all hereby incorporated herein by reference in their entireties, can be advantageous because such elemental semiconductor mirrors (such as can be formed by depositing a thin film of silicon) can be greater than 50 percent reflecting in the photopic (SAE J964a measured), while being also substantially transmitting of light (up to 20 percent or even more). Such silicon mirrors also have the advantage of being able to be deposited onto a flat glass substrate and to be bent into a curved (such as a convex or aspheric) curvature, which is also advantageous since many passenger-side exterior rearview mirrors are bent or curved.
- Optionally, the mirror assembly may comprise a prismatic mirror assembly, such as a prismatic mirror assembly utilizing aspects described in U.S. Pat. Nos. 6,318,870; 6,598,980; 5,327,288; 4,948,242; 4,826,289; 4,436,371; and 4,435,042; and PCT Application No. PCT/US04/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772; and U.S. patent application Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860, which are hereby incorporated herein by reference in their entireties. Optionally, the prismatic reflective element may comprise a conventional prismatic reflective element or prism, or may comprise a prismatic reflective element of the types described in PCT Application No PCT/US03/29776, filed Sep. 19, 2003 and published Apr. 1, 2004 as International Publication No WO 2004/026633; and/or U.S. patent application Ser. No. 10/709,434, filed May 5, 2004, now U.S. Pat. No. 7,420,756; Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; and/or Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177, and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, which are all hereby incorporated herein by reference in their entireties, without affecting the scope of the present invention.
- Optionally, the reflective element may comprise a bent, wide-angle mirror reflector rather than a flat mirror reflector. If a bent, wide-angle mirror reflector is used, it is preferable that the mirror reflector comprise a glass substrate coated with a bendable reflector coating (such as of silicon as described in U.S. Pat. Nos. 6,065,840; 5,959,792; 5,535,056 and 5,751,489, which are hereby incorporated by reference herein in their entireties.
- Optionally, the mirror casing and/or windshield electronics module may be suitable for supporting larger or heavier components or circuitry that otherwise may not have been suitable for mounting or locating at or in a mirror casing. For example, the mirror casing or module may house or support a battery or power pack for various electronic features or components, and/or may support a docking station for docking and/or holding a cellular telephone or hand-held personal data device or the like, such as by utilizing aspects of the systems described in U.S. Pat. No. 6,824,281, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, and/or U.S. patent application Ser. No. 10/510,813, filed Aug. 23, 2002, now U.S. Pat. No. 7,306,276, and/or U.S. patent application Ser. No. 11/842,328, filed Aug. 21, 2007, now U.S. Pat. No. 7,722,199, and Ser. No. 11/861,904, filed Sep. 26, 2007, now U.S. Pat. No. 7,937,667, and/or U.S. provisional application Ser. No. 60/839,446, filed Aug. 23, 2006 by DeWard for VEHICLE INTERIOR REARVIEW MIRROR ASSEMBLY WITH ACTUATOR; Ser. No. 60/879,619, filed Jan. 10, 2007; Ser. No. Ser. No. 60/850,700, filed Oct. 10, 2006; and/or Ser. No. 60/847,502, filed Sep. 27, 2006 by Kramer for MULTIMEDIA MIRROR ASSEMBLY FOR VEHICLE, which are hereby incorporated herein by reference in their entireties.
- Optionally, the mirror assembly and/or windshield electronics module may include or incorporate a navigation device that may include navigational circuitry and a GPS antenna to determine the geographical location of the vehicle and to provide routes to targeted or selected destinations, such as by utilizing aspects of known navigational devices and/or the devices of the types described in U.S. Pat. Nos. 4,862,594; 4,937,945; 5,131,154; 5,255,442; 5,632,092; 5,798,688; 5,971,552; 5,924,212; 6,243,003; 6,278,377; 6,420,975; 6,946,978; 6,477,464; 6,678,614; and/or 7,004,593, and/or U.S. patent application Ser. No. 10/645,762, filed Aug. 20, 2003, now U.S. Pat. No. 7,167,796; Ser. No. 10/529,715, filed Mar. 30, 2005, now U.S. Pat. No. 7,657,052; Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. 2006/0050018; Ser. No. 11/861,904, filed Sep. 26, 2007, now U.S. Pat. No. 7,937,667; and/or Ser. No. 10/964,512, filed Oct. 13, 2004, now U.S. Pat. No. 7,308,341, and/or U.S. provisional applications, Ser. No. 60/879,619, filed Jan. 10, 2007; Ser. No. Ser. No. 60/850,700, filed Oct. 10, 2006; and/or Ser. No. 60/847,502, filed Sep. 27, 2006 by Kramer for MULTIMEDIA MIRROR ASSEMBLY FOR VEHICLE, which are all hereby incorporated herein by reference in their entireties. Optionally, the mirror or navigation device may include a microphone, whereby the mirror or navigation device may provide voice activated control of the navigation device.
- Optionally, for example, the mounting structure and/or mirror casing and/or windshield electronics module may support compass sensors, such as compass sensors of the types described in may utilize aspects of the compass systems described in U.S. patent application Ser. No. 11/305,637, filed Dec. 16, 2005, now U.S. Pat. No. 7,329,013; Ser. No. 10/352,691, filed Jan. 28, 2003, now U.S. Pat. No. 6,922,902; Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983; Ser. No. 11/226,628, filed Sep. 14, 2005, and published on Mar. 23, 2006 as U.S. Publication No. 2006/0061008; and/or Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; and/or U.S. Pat. Nos. 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252; and 6,642,851, and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, which are all hereby incorporated herein by reference in their entireties. The compass circuitry may include the compass sensor, such as a magneto-responsive sensor, such as a magneto-resistive sensor, such as the types disclosed in U.S. Pat. Nos. 5,255,442; 5,632,092; 5,802,727; 6,173,501; 6,427,349; and 6,513,252 (which are hereby incorporated herein by reference in their entireties), a magneto-capacitive sensor, a Hall-effect sensor, such as the types described in U.S. Pat. Nos. 6,278,271; 5,942,895 and 6,184,679 (which are hereby incorporated herein by reference in their entireties), a magneto-inductive sensor, such as described in U.S. Pat. No. 5,878,370 (which is hereby incorporated herein by reference in its entirety), a magneto-impedance sensor, such as the types described in PCT Publication No. WO 2004/076971, published Sep. 10, 2004 (which is hereby incorporated herein by reference in its entirety), or a flux-gate sensor or the like, and/or may comprise a compass chip, such as described in U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005, and published on Mar. 23, 2006 as U.S. Publication No, 2006/0061008; and/or Ser. No. 11/284,543, filed Nov., 22, 2005, now U.S. Pat. No. 7,370,983, which are hereby incorporated herein by reference in their entireties. By positioning the compass sensors at a fixed location, further processing and calibration of the sensors to accommodate adjustment or movement of the sensors is not necessary.
- Optionally, the mounting structure and/or mirror casing and/or windshield electronics module may support one or more imaging sensors or cameras, and may fixedly support them with the cameras set with a desired or appropriate forward and/or rearward field of view. For example, the camera may be operable in conjunction with a forward facing imaging system, such as a rain sensing system, such as described in U.S. Pat. Nos. 6,968,736; 6,806,452; 6,516,664; 6,353,392; 6,313,454; 6,250,148; 6,341,523; and 6,824,281, and in U.S. patent application Ser. No. 10/958,087, filed Oct. 4, 2004, now U.S. Pat. No. 7,188,963; and/or Ser. No. 11/201,661, filed Aug. 11, 2005, now U.S. Pat. No. 7,480,149, which are all hereby incorporated herein by reference in their entireties. The mounting structure and/or mirror casing may be pressed or loaded against the interior surface of the windshield to position or locate the image sensor in close proximity to the windshield and/or to optically couple the image sensor at the windshield. The mounting structure and/or mirror casing may include an aperture or apertures at its forward facing or mounting surface and the windshield may include apertures through the opaque frit layer (typically disposed at a mirror mounting location of a windshield) or the windshield may not include such a frit layer, depending on the particular application.
- Optionally, the image sensor may be operable in conjunction with a forward or rearward vision system, such as an automatic headlamp control system and/or a lane departure warning system or object detection system and/or other forward vision or imaging systems, such as imaging or vision systems of the types described in U.S. Pat. Nos. 7,038,577; 7,005,974; 7,004,606; 6,690,268; 6,946,978; 6,757,109; 6,717,610; 6,396,397; 6,201,642; 6,353,392; 6,313,454; 5,550,677; 5,670,935; 5,796,094; 5,715,093; 5,877,897; 6,097,023; and 6,498,620, and/or U.S. patent application Ser. No. 09/441,341, filed Nov. 16, 1999, now U.S. Pat. No. 7,339,149; Ser. No. 10/422,512, filed Apr. 24, 2003, now U.S. Pat. No. 7,123,168; Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496; Ser. No. 11/672,070, filed Feb. 7, 2007 (Attorney Docket DON01 P-1320); and/or Ser. No. 11/315,675, filed Dec. 22, 2005, now U.S. Pat. No. 7,720,580, and/or U.S. provisional applications, Ser. No. 60/628,709, filed Nov. 17, 2004 by Camilleri et al. for IMAGING AND DISPLAY SYSTEM FOR VEHICLE; Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004 by Laubinger for VEHICLE IMAGING SYSTEM; Ser. No. 60/731,183, filed Oct. 28, 2005 by Gibson for CAMERA MODULE FOR VEHICLE VISION SYSTEM; and/or Ser. No. 60/765,797, filed Feb. 7, 2006 by Briggance for CAMERA MOUNTED AT REAR OF VEHICLE, and/or International PCT Application No. PCT/US2006/041709, filed Oct. 27, 2006, and published May 10, 2007 as International Publication No. WO 07/053,404, which are hereby incorporated herein by reference in their entireties. The mirror casing thus may support one or more rearward facing imaging sensors or cameras, such as for rearward vision or imaging systems, such as for a rear vision system or back up aid of the types described in U.S. Pat. Nos. 6,717,610 and/or 6,201,642 (which are hereby incorporated herein by reference in their entireties), and/or a cabin monitoring system or baby view system of the types described in U.S. Pat. No. 6,690,268 (which is hereby incorporated herein by reference in its entirety), and/or the like.
- Optionally, the fixed mounting structure and/or mirror casing and/or windshield electronics module may house or support a display device, such as a heads up display device (such as the types described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, which are hereby incorporated herein by reference in their entireties) that is operable to project a display at the area in front of the driver to enhance viewing of the display information without adversely affecting the driver's forward field of view. For example, the mirror casing may support a heads up display (HUD), such as a MicroHUD™ head-up display system available from MicroVision Inc. of Bothell, WA, and/or such as a HUD that utilizes aspects described in U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; and Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723, which are hereby incorporated herein by reference in their entireties. For example, MicroVision's MicroHUD™ combines a MEMS-based micro display with an optical package of lenses and mirrors to achieve a compact high-performance HUD module that reflects a virtual image off the windscreen that appears to the driver to be close to the front of the car. This laser-scanning display can outperform many miniature flat panel LCD display screens because it can be clearly viewed in the brightest conditions and also dimmed to the very low brightness levels required for safe night-time driving. For example, such a display device may be located at or in the mirror casing/mounting structure/windshield electronics module and may be non-movably mounted at the mirror casing or mounting structure or windshield electronics module, and may be operable to project the display information at the windshield of the vehicle so as to be readily viewed by the driver of the vehicle in the driver's forward field of view.
- The mounting structure and/or mirror casing and/or windshield electronics module may be fixedly attached to or supported at the vehicle windshield and may extend upward toward the headliner of the vehicle. Thus, the mirror assembly of the present invention may have enhanced wire management and may substantially conceal the wiring of the electronic components/accessories between the circuitry within the mirror casing and the headliner at the upper portion of the vehicle windshield. Optionally, the mirror assembly may include wire management elements, such as the types described in U.S. patent application Ser. No. 11/226,628, filed Sep. 14, 2005, and published Mar. 23, 2006 as U.S. Publication No. 2006/0061008; and/or Ser. No. 11/584,697, filed Oct. 20, 2006, now U.S. Pat. No. 7,510,287; and/or U.S. provisional application, Ser. No. 60/729,430, filed Oct. 21, 2005, which are hereby incorporated herein by reference in their entireties, to conceal the wires extending between an upper portion of the mirror casing and the vehicle headliner (or overhead console). Optionally, the mirror casing and/or mounting structure and/or windshield electronics module may abut the headliner and/or may be an extension of an overhead console of the vehicle (such as by utilizing aspects described in U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. 2006/0050018, and/or U.S. patent application Ser. No. 10/510,813, filed Aug. 23, 2002, now U.S. Pat. No. 7,306,276, which are hereby incorporated herein by reference in their entireties). The mirror assembly of the present invention thus may allow for utilization of the area above the mirror reflective element for additional mirror content, such as additional electronic accessories or circuitry, and thus may provide for or accommodate additional mirror content/circuitry and/or vehicle content/circuitry.
- Optionally, the mirror assembly and/or reflective element assembly may include one or more displays, such as for the accessories or circuitry described herein. The displays may comprise any suitable display, such as displays of the types described in U.S. Pat. Nos. 5,530,240 and/or 6,329,925, which are hereby incorporated herein by reference in their entireties, or may be display-on-demand or transflective type displays or other displays, such as the types described in U.S. Pat. Nos. 6,690,268; 5,668,663 and/or 5,724,187, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; Ser. No. 10/528,269, filed Mar. 17, 2005, now U.S. Pat. No. 7,274,501; Ser. No. 10/533,762, filed May 4, 2005, now U.S. Pat. No. 7,184,190; Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. 2006/0050018; Ser. No. 11/226,628, filed Sep. 14, 2005 and published Mar. 23, 2006 as U.S. Publication No. 2006/0061008; Ser. No. 10/993,302, filed Nov. 19, 2004, now U.S. Pat. No. 7,338,177; and/or Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, and/or PCT Patent Application No. PCT/US2006/018567, filed May 15, 2006 and published Nov. 23, 2006 as International Publication No. WO 2006/124682; and/or PCT Application No. PCT/US2006/042718, filed Oct. 31, 2006, and published May 10, 2007 as International Publication No. WO 07/053,710; and/or U.S. provisional applications, Ser. No. 60/836,219, filed Aug. 8, 2006 by Weller et al. for INTERIOR REARVIEW MIRROR ASSEMBLY WITH DISPLAY; Ser. No. 60/759,992, filed Jan. 18, 2006; and Ser. No. 60/732,245, filed Nov. 1, 2005, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 by Donnelly Corp. et al. for ACCESSORY SYSTEM FOR VEHICLE, and published Jul. 15, 2004 as International Publication No. WO 2004/058540, which are all hereby incorporated herein by reference in their entireties, or may include or incorporate video displays or the like, such as the types described in U.S. Pat. No. 6,690,268 and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, U.S. patent application Ser. No. 10/538,724, filed Jun. 13, 2005, and published Mar. 9, 2006 as U.S. Publication No. 2006/0050018; and/or Ser. No. 11/284,543, filed Nov. 22, 2005, now U.S. Pat. No. 7,370,983, which are hereby incorporated herein by reference in their entireties. Optionally, the mirror assembly may include a video display that is selectively positionable, such as extendable/retractable or pivotable or foldable so as to be selectively positioned at a side or below the mirror casing when in use and storable within or at least partially within the mirror casing when not in use. The display may automatically extend/pivot to the in-use position in response to an actuating event, such as when the vehicle is shifted into its reverse gear for a rear vision system or back up aid.
- Such a video mirror display (or other display) may be associated with a rearward facing camera at a rear of the vehicle and having a rearward field of view, such as at the license plate holder of the vehicle or at a rear trim portion (such as described in U.S. patent application Ser. No. 11/672,070, filed Feb. 7, 2007 (Attorney Docket DON01 P-1320), and U.S. provisional application Ser. No. 60/765,797, filed Feb. 7, 2006, which is hereby incorporated herein by reference in its entirety). The image data captured by the rearward facing camera may be communicated to the control or video display at the rearview mirror assembly (or elsewhere in the vehicle, such as at an overhead console or accessory module or the like) via any suitable communication means or protocol. For example, the image data may be communicated via a fiber optic cable or a twisted pair of wires, or may be communicated wirelessly, such as via a BLUETOOTH® communication link or protocol or the like, or may be superimposed on a power line, such as a 12 volt power line of the vehicle, such as by utilizing aspects of the systems described in U.S. patent application Ser. No. 11/239,980, filed Sep. 30, 2005, now U.S. Pat. No. 7,881,496, which is hereby incorporated herein by reference in its entirety.
- Optionally, the mirror assembly may include one or more user inputs for controlling or activating/deactivating one or more electrical accessories or devices of or associated with the mirror assembly. For example, the mirror assembly may comprise any type of switches or buttons, such as touch or proximity sensing switches, such as touch or proximity switches of the types described in PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540; and/or PCT Application No. PCT/US2004/015424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, and/or U.S. Pat. Nos. 6,001,486; 6,310,611; 6,320,282; and 6,627,918; and/or U.S. patent application Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; and/or U.S. patent application Ser. No. 09/817,874, filed Mar. 26, 2001, now U.S. Pat. No. 7,224,324; Ser. No. 10/956,749, filed Oct. 1, 2004, now U.S. Pat. No. 7,446,924; Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860; Ser. No. 11/021,065, filed Dec. 23, 2004, now U.S. Pat. No. 7,255,451; and/or Ser. No. 11/140,396, filed May 27, 2005, now U.S. Pat. No. 7,360,932, which are hereby incorporated herein by reference in their entireties, or the inputs may comprise other types of buttons or switches, such as those described in U.S. Pat. No. 6,501,387, and/or U.S. patent application Ser. No. 11/029,695, filed Jan. 5, 2005, now U.S. Pat. No. 7,253,723; and/or Ser. No. 11/451,639, filed Jun. 13, 2006, now U.S. Pat. No. 7,527,403, which are hereby incorporated herein by reference in their entireties, or such as fabric-made position detectors, such as those described in U.S. Pat. Nos. 6,504,531; 6,501,465; 6,492,980; 6,452,479; 6,437,258; and 6,369,804, which are hereby incorporated herein by reference in their entireties. Other types of switches or buttons or inputs or sensors may be incorporated to provide the desired function, without affecting the scope of the present invention. The manual inputs or user actuatable inputs or actuators may control or adjust or activate/deactivate one or more accessories or elements or features. For touch sensitive inputs or applications or switches, the mirror assembly or accessory module or input may, when activated, provide a positive feedback (such as activation of an illumination source or the like, or such as via an audible signal, such as a chime or the like, or a tactile or haptic signal, or a rumble device or signal or the like) to the user so that the user is made aware that the input was successfully activated.
- Optionally, the user inputs or buttons may comprise user inputs for a garage door opening system, such as a vehicle based garage door opening system of the types described in U.S. Pat. Nos. 7,023,322; 6,396,408; 6,362,771; and 5,798,688, which are hereby incorporated herein by reference in their entireties. The user inputs may also or otherwise function to activate and deactivate a display or function or accessory, and/or may activate/deactivate and/or commence a calibration of a compass system of the mirror assembly and/or vehicle. Optionally, the user inputs may also or otherwise comprise user inputs for a telematics system of the vehicle, such as, for example, an ONSTAR® system as found in General Motors vehicles and/or such as described in U.S. Pat. Nos. 4,862,594; 4,937,945; 5,131,154; 5,255,442; 5,632,092; 5,798,688; 5,971,552; 5,924,212; 6,243,003; 6,278,377; 6,420,975; 6,946,978; 6,477,464; 6,678,614; and/or 7,004,593, and/or U.S. patent application Ser. No. 10/645,762, filed Aug. 20, 2003, now U.S. Pat. No. 7,167,796; Ser. No. 10/529,715, filed Mar. 30, 2005, now U.S. Pat. No. 7,657,052; Ser. No. 10/538,724, filed Jun. 13, 2005 and published Mar. 9, 2006 as U.S. Publication No. 2006/0050018; and/or Ser. No. 10/964,512, filed Oct. 13, 2004, now U.S. Pat. No. 7,308,341, which are all hereby incorporated herein by reference in their entireties.
- Optionally, the display and inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 6,877,888; 6,690,268; 6,824,281; 6,672,744; 6,386,742; and 6,124,886, and/or PCT Application No. PCT/US03/40611, filed Dec. 19, 2003 and published Jul. 15, 2004 as International Publication No. WO 2004/058540, and/or PCT Application No. PCT/US04/15424, filed May 18, 2004 and published Dec. 2, 2004 as International Publication No. WO 2004/103772, and/or U.S. patent application Ser. No. 10/510,813, filed Aug. 23, 2002, now U.S. Pat. No. 7,306,276, which are hereby incorporated herein by reference in their entireties.
- Optionally, the mirror assembly or accessory module may fixedly or non-movably support one or more other accessories or features, such as one or more electrical or electronic devices or accessories. For example, illumination sources or lights, such as map reading lights or one or more other lights or illumination sources, such as illumination sources of the types disclosed in U.S. Pat. Nos. 6,690,268; 5,938,321; 5,813,745; 5,820,245; 5,673,994; 5,649,756; 5,178,448; 5,671,996; 4,646,210; 4,733,336; 4,807,096; 6,042,253; 6,971,775; and/or 5,669,698, and/or U.S. patent application Ser. No. 10/054,633, filed Jan. 22, 2002, now U.S. Pat. No. 7,195,381; and/or Ser. No. 10/933,842, filed Sep. 3, 2004, now U.S. Pat. No. 7,249,860, which are hereby incorporated herein by reference in their entireties, may be included in the mirror assembly. The illumination sources and/or the circuit board may be connected to one or more buttons or inputs for activating and deactivating the illumination sources.
- Optionally, the mirror assembly may also or otherwise include other accessories, such as microphones, such as analog microphones or digital microphones or the like, such as microphones of the types disclosed in U.S. Pat. Nos. 6,243,003; 6,278,377; and/or 6,420,975, and/or in U.S. patent application Ser. No. 10/529,715, filed Mar. 30, 2005, now U.S. Pat. No. 7,657,052. Optionally, the mirror assembly may also or otherwise include other accessories, such as a telematics system, speakers, antennas, including global positioning system (GPS) or cellular phone antennas, such as disclosed in U.S. Pat. No. 5,971,552, a communication module, such as disclosed in U.S. Pat. No. 5,798,688, a voice recorder, a blind spot detection and/or indication system, such as disclosed in U.S. Pat. Nos. 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or U.S. patent application Ser. No. 11/315,675, filed Dec. 22, 2005, now U.S. Pat. No. 7,720,580; and/or PCT Application No. PCT/US2006/026148, filed Jul. 5, 2006 and published Jan. 11, 2007 as International Publication No. WO 2007/005942, transmitters and/or receivers, such as for a garage door opener or a vehicle door unlocking system or the like (such as a remote keyless entry system), a digital network, such as described in U.S. Pat. No. 5,798,575, a hands-free phone attachment, an imaging system or components or circuitry or display thereof, such as an imaging and/or display system of the types described in U.S. Pat. Nos. 6,690,268 and 6,847,487; and/or U.S. provisional applications, Ser. No. 60/614,644, filed Sep. 30, 2004; Ser. No. 60/618,686, filed Oct. 14, 2004; and/or Ser. No. 60/628,709, filed Nov. 17, 2004; and/or U.S. patent application Ser. No. 11/105,757, filed Apr. 14, 2005, now U.S. Pat. No. 7,526,103; Ser. No. 11/334,139, filed Jan. 18, 2006, now U.S. Pat. No. 7,400,435; and/or Ser. No. 11/239,980, filed Sep. 30, 2005, now. U.S. Pat. No. 7,881,496, a video device for internal cabin surveillance (such as for sleep detection or driver drowsiness detection or the like) and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962 and/or 5,877,897, an occupant detection system and/or interior cabin monitoring system (such as the types described in U.S. Pat. Nos. 6,019,411 and/or 6,690,268, and/or PCT Application No PCT/US2005/042504, filed Nov. 22, 2005 and published Jun. 1, 2006 as International Publication No. WO 2006/058098 A2; and/or PCT Application No. PCT/US94/01954, filed Feb. 25, 1994, a heating element, particularly for an exterior mirror application, such as the types described in U.S. patent application Ser. No. 11/334,139, filed Jan. 18, 2006, now U.S. Pat. No. 7,400,435, a remote keyless entry receiver, a seat occupancy detector, a remote starter control, a yaw sensor, a clock, a carbon monoxide detector, status displays, such as displays that display a status of a door of the vehicle, a transmission selection (4wd/2wd or traction control (TCS) or the like), an antilock braking system, a road condition (that may warn the driver of icy road conditions) and/or the like, a trip computer, a tire pressure monitoring system (TPMS) receiver (such as described in U.S. Pat. Nos. 6,124,647; 6,294,989; 6,445,287; 6,472,979; and/or 6,731,205; and/or U.S. patent application Ser. No. 11/232,324, filed Sep. 21, 2005, now U.S. Pat. No. 7,423,522, and/or an ONSTAR® system and/or any other accessory or circuitry or the like (with all of the above-referenced U.S. patents and PCT applications and U.S. patent applications and U.S. provisional applications being commonly assigned to Donnelly Corporation, and with the disclosures of the referenced U.S. patents and PCT applications and U.S. patent applications and U.S. provisional applications being hereby incorporated herein by reference in their entireties).
- Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law.
Claims (97)
1. A forward facing sensing system for a vehicle, the vehicle having a windshield, said forward facing sensing system comprising:
a windshield electronics module, said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield;
a radar sensor device disposed within said windshield electronics module and wherein said radar sensor device has a sensing direction forward of the vehicle;
an image sensor disposed within said windshield electronics module and wherein said image sensor has a viewing direction forward of the vehicle;
a control comprising an image processor, said image processor operable to analyze images captured by said image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel;
wherein at least one of (a) said radar sensor device utilizes at least one of beam aiming and beam selection, (b) said radar sensor device utilizes digital beam forming, (c) said radar sensor device utilizes digital beam steering, (d) said radar sensor device comprises an array antenna, (e) said radar sensor device comprises a phased array antenna and (f) said image sensor comprises a pixelated imaging array sensor;
wherein said radar sensor device transmits at a frequency of at least about 20 GHz;
wherein at least a part of said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield may be removed therefrom for at least one of (i) service and (ii) replacement;
wherein said control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle, and wherein said potentially hazardous condition comprises at least one of (i) another vehicle, (ii) a person and (iii) an animal; and
wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for the potentially hazardous condition in the path of forward travel of the vehicle.
2. The sensing system of claim 1 , wherein said radar sensor device is disposed at a pocket established at an upper region of the vehicle windshield.
3. The sensing system of claim 2 , comprising a cover panel, wherein said cover panel is substantially sealed at the vehicle windshield at or near the pocket at the upper region of the vehicle windshield, said cover panel comprising a non-glass material that is substantially transmissive to radar frequency electromagnetic radiation waves, and wherein said radar sensor device transmits and receives radar frequency electromagnetic radiation waves through said cover panel.
4. The sensing system of claim 3 , wherein transmission of and receipt of radar frequency electromagnetic radiation by said radar sensor device is not through a glass portion of the vehicle windshield.
5. The sensing system of claim 1 , wherein transmission of and receipt of radar frequency electromagnetic radiation by said radar sensor device is not through a glass portion of the vehicle windshield.
6. The sensing system of claim 1 , wherein said windshield electronics module is disposed at a location generally adjacent to an interior rearview mirror assembly of the vehicle.
7. The sensing system of claim 1 , wherein an interior rearview mirror attaches to said windshield electronics module.
8. The sensing system of claim 1 , wherein said radar sensor device utilizes digital beam forming.
9. The sensing system of claim 1 , wherein said radar sensor device utilizes digital beam steering.
10. The sensing system of claim 1 , wherein said image sensor and said radar sensor device are commonly established, at least in part, on a semiconductor substrate.
11. The sensing system of claim 1 , wherein said radar sensor device comprises an array antenna.
12. The sensing system of claim 1 , wherein said radar sensor device comprises a phased array antenna.
13. The sensing system of claim 1 , wherein said control at least in part controls a system of the vehicle.
14. The sensing system of claim 13 , wherein said system of the vehicle comprises an adaptive cruise control system.
15. The sensing system of claim 1 , wherein said image sensor comprises part of an automatic headlamp control system of the vehicle.
16. The sensing system of claim 1 , wherein said image sensor comprises part of a lane departure warning system of the vehicle.
17. The sensing system of claim 1 , wherein said image sensor comprises part of an object detection system of the vehicle.
18. The sensing system of claim 1 , wherein said image processor processes image data captured by said image sensor utilizing object detection software.
19. The sensing system of claim 1 , wherein said potentially hazardous condition comprises another vehicle and wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for said another vehicle in the path of forward travel of the vehicle.
20. The sensing system of claim 1 , wherein said potentially hazardous condition comprises a person and wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for said person in the path of forward travel of the vehicle.
21. The sensing system of claim 1 , wherein said potentially hazardous condition comprises an animal and wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for said animal in the path of forward travel of the vehicle.
22. The sensing system of claim 1 , wherein said image processor is disposed within said windshield electronics module.
23. The sensing system of claim 1 , wherein said windshield electronics module comprises a self-contained unit.
24. The sensing system of claim 23 , wherein said image processor is disposed within said windshield electronics module.
25. The sensing system of claim 24 , wherein said windshield electronics module is attached at the vehicle windshield.
26. The sensing system of claim 25 , wherein the vehicle windshield comprises an opaque layer generally where said windshield electronics module is disposed behind the vehicle windshield, and wherein said opaque layer comprises a first aperture, and wherein, with said windshield electronics module attached at the vehicle windshield, said first aperture generally coincides with a second aperture of said windshield electronics module in order to facilitate viewing through the vehicle windshield by said image sensor.
27. The sensing system of claim 23 , wherein said windshield electronics module accommodates at least one other accessory.
28. The sensing system of claim 27 , wherein said at least one other accessory is selected from the group comprising (i) a sensor, (ii) a display, (iii) a light, (iv) an element of a wireless communication system and (v) an antenna.
29. The sensing system of claim 1 , wherein said radar sensor device transmits at a frequency around 24 GHz.
30. The sensing system of claim 1 , wherein said radar sensor device transmits at a frequency of least about 60 GHz.
31. The sensing system of claim 30 , wherein said radar sensor device transmits at a frequency around 77 GHz.
32. The sensing system of claim 30 , wherein said radar sensor device transmits at a frequency around 79 GHz.
33. The sensing system of claim 1 , wherein said control enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor.
34. The sensing system of claim 1 , wherein said control enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
35. The sensing system of claim 1 , wherein said image sensor views through the windshield of the vehicle at a location that is at or near where an interior rearview mirror assembly of the vehicle is located.
36. The sensing system of claim 35 , wherein said control enhances detection of the object ahead of the vehicle by said radar sensor via at least one of (a) beam aiming and (b) beam selection.
37. The sensing system of claim 36 , wherein said control enhances detection of the object ahead of the vehicle by said image sensor via algorithmic processing of image data captured by said image sensor.
38. The sensing system of claim 37 , wherein a portion of an image captured by said image sensor is spatially related to a location of a detected object in the forward field of view of said image sensor.
39. The sensing system of claim 36 , wherein said control enhances detection of the object ahead of the vehicle by said image sensor via at least one of (a) directing the viewing direction of said image sensor, (b) a zoom function and (c) image processing of captured image data.
40. A forward facing sensing system for a vehicle, the vehicle having a windshield, said forward facing sensing system comprising:
a windshield electronics module, said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield;
a radar sensor device disposed within said windshield electronics module and wherein said radar sensor device has a sensing direction forward of the vehicle;
an image sensor disposed within said windshield electronics module and wherein said image sensor has a viewing direction forward of the vehicle;
a control comprising an image processor, said image processor operable to analyze images captured by said image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel;
wherein at least one of (a) said radar sensor device utilizes at least one of beam aiming and beam selection, (b) said radar sensor device utilizes digital beam forming, (c) said radar sensor device utilizes digital beam steering, (d) said radar sensor device comprises an array antenna, (e) said radar sensor device comprises a phased array antenna and (f) said image sensor comprises a pixelated imaging array sensor;
wherein at least a part of said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield may be removed therefrom for at least one of (i) service and (ii) replacement;
wherein said control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle, and wherein said potentially hazardous condition comprises a person; and
wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for the person in the path of forward travel of the vehicle.
41. The sensing system of claim 40 , wherein said radar sensor device utilizes at least one of (i) digital beam forming (ii) digital beam steering.
42. The sensing system of claim 40 , wherein at least one of (i) said image sensor and said radar sensor device are commonly established, at least in part, on a semiconductor substrate, (ii) said radar sensor device comprises an array antenna, and (iii) said radar sensor device comprises a phased array antenna.
43. The sensing system of claim 40 , wherein at least one of (i) said control at least in part controls a system of the vehicle, and (ii) said control at least in part controls an adaptive cruise control system of the vehicle.
44. The sensing system of claim 40 , wherein at least one of (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (iii) said image sensor comprises part of an object detection system of the vehicle.
45. The sensing system of claim 40 , wherein said image processor is disposed within said windshield electronics module.
46. The sensing system of claim 40 , wherein said windshield electronics module comprises a self-contained unit.
47. The sensing system of claim 46 , wherein said image processor is disposed within said windshield electronics module.
48. The sensing system of claim 47 , wherein said windshield electronics module is attached at the vehicle windshield.
49. The sensing system of claim 48 , wherein the vehicle windshield comprises an opaque layer generally where said windshield electronics module is disposed behind the vehicle windshield, and wherein said opaque layer comprises a first aperture, and wherein, with said windshield electronics module attached at the vehicle windshield, said first aperture generally coincides with a second aperture of said windshield electronics module in order to facilitate viewing through the vehicle windshield by said image sensor.
50. The sensing system of claim 47 , wherein said windshield electronics module accommodates at least one other accessory, and wherein said at least one other accessory is selected from the group comprising (i) a sensor, (ii) a display, (iii) a light, (iv) an element of a wireless communication system and (v) an antenna.
51. The sensing system of claim 40 , wherein at least one of (i) said radar sensor device transmits at a frequency of at least about 20 GHz, (ii) said radar sensor device transmits at a frequency around 24 GHz, (iii) said radar sensor device transmits at a frequency of least about 60 GHz, (iv) said radar sensor device transmits at a frequency around 77 GHz, and (v) said radar sensor device transmits at a frequency around 79 GHz.
52. The sensing system of claim 40 , wherein said image processor processes image data captured by said image sensor utilizing object detection software.
53. The sensing system of claim 40 , wherein said control at least one of (a) enhances detection of a person ahead of the vehicle by said radar sensor responsive to said image sensor and (b) enhances detection of a person ahead of the vehicle by said image sensor responsive to said radar sensor.
54. The sensing system of claim 40 , wherein said image sensor views through the windshield of the vehicle at a location that is at or near where an interior rearview mirror assembly of the vehicle is located.
55. The sensing system of claim 54 , wherein said control enhances detection of a person ahead of the vehicle by said radar sensor responsive to said image sensor, and wherein said control enhances detection of the object ahead of the vehicle by said radar sensor via at least one of (a) beam aiming and (b) beam selection.
56. The sensing system of claim 40 , wherein said control enhances detection of the object ahead of the vehicle by said image sensor via algorithmic processing of image data captured by said image sensor.
57. The sensing system of claim 56 , wherein a portion of an image captured by said image sensor is spatially related to a location of a detected object in the forward field of view of said image sensor.
58. A forward facing sensing system for a vehicle, the vehicle having a windshield, said forward facing sensing system comprising:
a windshield electronics module, said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield;
a radar sensor device disposed within said windshield electronics module and wherein said radar sensor device has a sensing direction forward of the vehicle;
an image sensor disposed within said windshield electronics module and wherein said image sensor has a viewing direction forward of the vehicle;
a control comprising an image processor, said image processor operable to analyze images captured by said image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel;
wherein said control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle, and wherein said potentially hazardous condition comprises at least one of (i) another vehicle, (ii) a person and (iii) an animal;
wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for the potentially hazardous condition in the path of forward travel of the vehicle; and
wherein at least one of (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (iii) said image sensor comprises part of an object detection system of the vehicle.
59. The sensing system of claim 58 , wherein at least one of (a) said radar sensor device utilizes at least one of beam aiming and beam selection, (b) said radar sensor device utilizes digital beam forming, (c) said radar sensor device utilizes digital beam steering, (d) said radar sensor device comprises an array antenna, (e) said radar sensor device comprises a phased array antenna and (f) said image sensor comprises a pixelated imaging array sensor.
60. The sensing system of claim 58 , wherein at least two of (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (iii) said image sensor comprises part of an object detection system of the vehicle.
61. The sensing system of claim 58 , wherein (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (iii) said image sensor comprises part of an object detection system of the vehicle.
62. The sensing system of claim 58 , wherein said radar sensor device utilizes at least one of (i) digital beam forming (ii) digital beam steering.
63. The sensing system of claim 58 , wherein at least one of (i) said image sensor and said radar sensor device are commonly established, at least in part, on a semiconductor substrate, (ii) said radar sensor device comprises an array antenna, and said radar sensor device comprises a phased array antenna.
64. The sensing system of claim 58 , wherein at least one of (i) said control at least in part controls a system of the vehicle, and (ii) said control at least in part controls an adaptive cruise control system of the vehicle.
65. The sensing system of claim 58 , wherein said image processor is disposed within said windshield electronics module.
66. The sensing system of claim 58 , wherein said windshield electronics module comprises a self-contained unit, and wherein said image processor is disposed within said windshield electronics module, and wherein said windshield electronics module is attached at, the vehicle windshield and wherein the vehicle windshield comprise an opaque layer generally where said windshield electronics module is disposed behind the vehicle windshield, and wherein said opaque layer comprises a first aperture, and wherein, with said windshield electronics module attached at the vehicle windshield, said first aperture generally coincides with a second aperture of said windshield electronics module in order to facilitate viewing through the vehicle windshield by said image sensor.
67. The sensing system of claim 58 , wherein said image processor processes image data captured by said image sensor utilizing object detection software.
68. The sensing system of claim 58 , wherein said control at least one of (a) enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor and (b) enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
69. The sensing system of claim 58 , wherein said control enhances detection of the object ahead of the vehicle by said image sensor via algorithmic processing of image data captured by said image sensor.
70. The sensing system of claim 69 , wherein a portion of an image captured by said image sensor is spatially related to a location of a detected object in the forward field of view of said image sensor.
71. A forward facing sensing system for a vehicle, the vehicle having a windshield, said forward facing sensing system comprising:
a windshield electronics module, said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield;
a radar sensor device disposed within said windshield electronics module and wherein said radar sensor device has a sensing direction forward of the vehicle;
an image sensor disposed within said windshield electronics module and wherein said image sensor has a viewing direction forward of the vehicle;
a control comprising an image processor, said image processor operable to analyze images captured by said image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel;
wherein said control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle, and wherein said potentially hazardous condition comprises at least one of (i) another vehicle, (ii) a person and (iii) an animal;
wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for the potentially hazardous condition in the path of forward travel of the vehicle;
wherein said windshield electronics module comprises a self-contained unit; and
wherein said control at least one of (a) at least in part controls a system of the vehicle, (b) enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor and (c) enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
72. The sensing system of claim 71 , wherein at least one of (a) said radar sensor device utilizes at least one of beam aiming and beam selection, (b) said radar sensor device utilizes digital beam forming, (c) said radar sensor device utilizes digital beam steering, (d) said radar sensor device comprises an array antenna, (e) said radar sensor device comprises a phased array antenna and (f) said image sensor comprises a pixelated imaging array sensor.
73. The sensing system of claim 71 , wherein said windshield electronics module accommodates at least one other accessory.
74. The sensing system of claim 71 , wherein at least one of (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (iii) said image sensor comprises part of an object detection system of the vehicle.
75. The sensing system of claim 71 , wherein said radar sensor device utilizes at least one of (i) digital beam forming (ii) digital beam steering.
76. The sensing system of claim 71 , wherein at least one of (i) said image sensor and said radar sensor device are commonly established, at least in part, on a semiconductor substrate, (ii) said radar sensor device comprises an array antenna, and (iii) said radar sensor device comprises a phased array antenna.
77. The sensing system of claim 71 , wherein at least one of (i) said control at least in part controls a system of the vehicle, and (ii) said control at least in part controls an adaptive cruise control system of the vehicle.
78. The sensing system of claim 71 , wherein said image processor processes image data captured by said image sensor utilizing object detection software.
79. The sensing system of claim 71 , wherein said control at least one of (a) enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor and (b) enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
80. The sensing system of claim 71 , wherein said control enhances detection of the object ahead of the vehicle by said image sensor via algorithmic processing of image data captured by said image sensor.
81. The sensing system of claim 80 , wherein a portion of an image captured by said image sensor is spatially related to a location of a detected object in the forward field of view of said image sensor.
82. The sensing system of claim 71 , wherein said image processor is disposed within said windshield electronics module.
83. A forward facing sensing system for a vehicle, the vehicle having a windshield, said forward facing sensing system comprising:
a windshield electronics module, said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield;
a radar sensor device disposed within said windshield electronics module and wherein said radar sensor device has a sensing direction forward of the vehicle;
an image sensor disposed within said windshield electronics module and wherein said image sensor has a viewing direction forward of the vehicle;
a control comprising an image processor, said image processor operable to analyze images captured by said image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel;
wherein said control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle, and wherein said potentially hazardous condition comprises at least one of (i) another vehicle, (ii) a person and (iii) an animal;
wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for the potentially hazardous condition in the path of forward travel of the vehicle;
wherein said control enhances detection of the object ahead of the vehicle by said image sensor via algorithmic processing of image data captured by said image sensor; and
wherein at least one of (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (iii) said image sensor comprises part of an object detection system of the vehicle.
84. The sensing system of claim 83 , wherein at least one of (a) said radar sensor device utilizes at least one of beam aiming and beam selection, (b) said radar sensor device utilizes digital beam forming, (c) said radar sensor device utilizes digital beam steering, (d) said radar sensor device comprises an array antenna, (e) said radar sensor device comprises a phased array antenna and (f) said image sensor comprises a pixelated imaging array sensor.
85. The sensing system of claim 83 , wherein a portion of an image captured by said image sensor is spatially related to a location of a detected object in the forward field of view of said image sensor.
86. The sensing system of claim 83 , wherein said windshield electronics module comprises a self-contained unit.
87. The sensing system of claim 86 , wherein said image processor is disposed within said windshield electronics module, and wherein said windshield electronics module is attached at the vehicle windshield, and wherein the vehicle windshield comprises an opaque layer generally where said windshield electronics module is disposed behind the vehicle windshield, and wherein said opaque layer comprises a first aperture, and wherein, with said windshield electronics module attached at the vehicle windshield, said first aperture generally coincides with a second aperture of said windshield electronics module in order to facilitate viewing through the vehicle windshield by said image sensor.
88. The sensing system of claim 83 , wherein said control at least one of (a) at least in part controls a system of the vehicle, (b) enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor and (c) enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
89. The sensing system of claim 83 , wherein said control at least one of (a) enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor and (b) enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
90. The sensing system of claim 83 , wherein said windshield electronics module accommodates at least one other accessory.
91. The sensing system of claim 83 , wherein said radar sensor device utilizes at least one of (i) digital beam forming (ii) digital beam steering.
92. The sensing system of claim 83 , wherein at least one of (i) said image sensor and said radar sensor device are commonly established, at least in part, on a semiconductor substrate, (ii) said radar sensor device comprises an array antenna, and (iii) said radar sensor device comprises a phased array antenna.
93. The sensing system of claim 83 , wherein at least one of (i) said control at least in part controls a system of the vehicle, and (ii) said control at least in part controls an adaptive cruise control system of the vehicle.
94. The sensing system of claim 83 , wherein said image processor processes image data captured by said image sensor utilizing object detection software.
95. A forward facing sensing system for a vehicle, the vehicle having a windshield, said forward facing sensing system comprising:
a windshield electronics module, said windshield electronics module disposed in the interior cabin of the vehicle behind the vehicle windshield;
a radar sensor device disposed within said windshield electronics module and wherein said radar sensor device has a sensing direction forward of the vehicle;
an image sensor disposed within said windshield electronics module and wherein said image sensor has a viewing direction forward of the vehicle;
a control comprising an image processor, said image processor operable to analyze images captured by said image sensor in order to, at least in part, detect an object present forward of the vehicle in its direction of forward travel;
wherein said control, at least in part, determines that a potentially hazardous condition may exist in the path of forward travel of the vehicle, and wherein said potentially hazardous condition comprises at least one of (i) another vehicle, (ii) a person and (iii) an animal;
wherein said radar sensor device and said image sensor collaborate in a way that enhances the sensing capability of said sensing system for the potentially hazardous condition in the path of forward travel of the vehicle;
wherein said control enhances detection of the object ahead of the vehicle by said image sensor via algorithmic processing of image data captured by said image sensor;
wherein at least one of (i) said image sensor comprises part of an automatic headlamp control system of the vehicle, (ii) said image sensor comprises part of a lane departure warning system of the vehicle, and (in) said image sensor comprises part of an object detection system of the vehicle;
wherein at least one of (a) said radar sensor device utilizes at least one of beam aiming and beam selection, (b) said radar sensor device utilizes digital beam forming, (c) said radar sensor device utilizes digital beam steering, (d) said radar sensor device comprises an array antenna, (e) said radar sensor device comprises a phased array antenna and (f) said image sensor comprises a pixelated imaging array sensor;
wherein said windshield electronics module comprises a self-contained unit and wherein said image processor is disposed within said windshield electronics module, and wherein said windshield electronics module is attached at the vehicle windshield, and wherein the vehicle windshield comprises an opaque layer generally where said windshield electronics module is disposed behind the vehicle windshield, and wherein said opaque layer comprises a first aperture, and wherein, with said windshield electronics module attached at the vehicle windshield, said first aperture generally coincides with a second aperture of said windshield electronics module in order to facilitate viewing through the vehicle windshield by said image sensor; and
wherein said control at least one of (a) at least in part controls a system of the vehicle, (b) at least in part controls an adaptive cruise control system of the vehicle (c) enhances detection of an object ahead of the vehicle by said radar sensor responsive to said image sensor and (d) enhances detection of an object ahead of the vehicle by said image sensor responsive to said radar sensor.
96. The sensing system of claim 95 , wherein a portion of an image captured by said image sensor is spatially related to a location of a detected object in the forward field of view of said image sensor.
97. The sensing system of claim 95 , wherein said image processor processes image data captured by said image sensor utilizing object detection software.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/540,856 US8294608B1 (en) | 2007-01-25 | 2012-07-03 | Forward facing sensing system for vehicle |
US13/656,975 US8614640B2 (en) | 2007-01-25 | 2012-10-22 | Forward facing sensing system for vehicle |
US14/107,624 US9140789B2 (en) | 2007-01-25 | 2013-12-16 | Forward facing sensing system for vehicle |
US14/859,683 US9244165B1 (en) | 2007-01-25 | 2015-09-21 | Forward facing sensing system for vehicle |
US15/005,092 US9335411B1 (en) | 2007-01-25 | 2016-01-25 | Forward facing sensing system for vehicle |
US15/149,338 US9507021B2 (en) | 2007-01-25 | 2016-05-09 | Forward facing sensing system for vehicle |
US15/361,746 US10107905B2 (en) | 2007-01-25 | 2016-11-28 | Forward facing sensing system for vehicle |
US16/166,333 US10670713B2 (en) | 2007-01-25 | 2018-10-22 | Forward sensing system for vehicle |
US15/929,969 US10877147B2 (en) | 2007-01-25 | 2020-06-01 | Forward sensing system for vehicle |
US17/247,711 US11506782B2 (en) | 2007-01-25 | 2020-12-21 | Vehicular forward-sensing system |
US18/056,886 US11815594B2 (en) | 2007-01-25 | 2022-11-18 | Vehicular forward-sensing system |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88656807P | 2007-01-25 | 2007-01-25 | |
US12/524,446 US8013780B2 (en) | 2007-01-25 | 2008-01-24 | Radar sensing system for vehicle |
PCT/US2008/051833 WO2008127752A2 (en) | 2007-01-25 | 2008-01-24 | Radar sensing system for vehicle |
US13/192,525 US8217830B2 (en) | 2007-01-25 | 2011-07-28 | Forward facing sensing system for a vehicle |
US13/540,856 US8294608B1 (en) | 2007-01-25 | 2012-07-03 | Forward facing sensing system for vehicle |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/192,525 Continuation US8217830B2 (en) | 2007-01-25 | 2011-07-28 | Forward facing sensing system for a vehicle |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/656,975 Continuation US8614640B2 (en) | 2007-01-25 | 2012-10-22 | Forward facing sensing system for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
US8294608B1 US8294608B1 (en) | 2012-10-23 |
US20120268311A1 true US20120268311A1 (en) | 2012-10-25 |
Family
ID=39864604
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/524,446 Active 2028-09-24 US8013780B2 (en) | 2007-01-25 | 2008-01-24 | Radar sensing system for vehicle |
US13/192,525 Active US8217830B2 (en) | 2007-01-25 | 2011-07-28 | Forward facing sensing system for a vehicle |
US13/540,856 Active US8294608B1 (en) | 2007-01-25 | 2012-07-03 | Forward facing sensing system for vehicle |
US13/656,975 Active US8614640B2 (en) | 2007-01-25 | 2012-10-22 | Forward facing sensing system for vehicle |
US14/107,624 Active US9140789B2 (en) | 2007-01-25 | 2013-12-16 | Forward facing sensing system for vehicle |
US14/859,683 Active US9244165B1 (en) | 2007-01-25 | 2015-09-21 | Forward facing sensing system for vehicle |
US15/005,092 Active US9335411B1 (en) | 2007-01-25 | 2016-01-25 | Forward facing sensing system for vehicle |
US15/149,338 Active US9507021B2 (en) | 2007-01-25 | 2016-05-09 | Forward facing sensing system for vehicle |
US15/361,746 Active 2028-06-30 US10107905B2 (en) | 2007-01-25 | 2016-11-28 | Forward facing sensing system for vehicle |
US16/166,333 Active US10670713B2 (en) | 2007-01-25 | 2018-10-22 | Forward sensing system for vehicle |
US15/929,969 Active US10877147B2 (en) | 2007-01-25 | 2020-06-01 | Forward sensing system for vehicle |
US17/247,711 Active 2028-08-25 US11506782B2 (en) | 2007-01-25 | 2020-12-21 | Vehicular forward-sensing system |
US18/056,886 Active 2028-03-17 US11815594B2 (en) | 2007-01-25 | 2022-11-18 | Vehicular forward-sensing system |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/524,446 Active 2028-09-24 US8013780B2 (en) | 2007-01-25 | 2008-01-24 | Radar sensing system for vehicle |
US13/192,525 Active US8217830B2 (en) | 2007-01-25 | 2011-07-28 | Forward facing sensing system for a vehicle |
Family Applications After (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/656,975 Active US8614640B2 (en) | 2007-01-25 | 2012-10-22 | Forward facing sensing system for vehicle |
US14/107,624 Active US9140789B2 (en) | 2007-01-25 | 2013-12-16 | Forward facing sensing system for vehicle |
US14/859,683 Active US9244165B1 (en) | 2007-01-25 | 2015-09-21 | Forward facing sensing system for vehicle |
US15/005,092 Active US9335411B1 (en) | 2007-01-25 | 2016-01-25 | Forward facing sensing system for vehicle |
US15/149,338 Active US9507021B2 (en) | 2007-01-25 | 2016-05-09 | Forward facing sensing system for vehicle |
US15/361,746 Active 2028-06-30 US10107905B2 (en) | 2007-01-25 | 2016-11-28 | Forward facing sensing system for vehicle |
US16/166,333 Active US10670713B2 (en) | 2007-01-25 | 2018-10-22 | Forward sensing system for vehicle |
US15/929,969 Active US10877147B2 (en) | 2007-01-25 | 2020-06-01 | Forward sensing system for vehicle |
US17/247,711 Active 2028-08-25 US11506782B2 (en) | 2007-01-25 | 2020-12-21 | Vehicular forward-sensing system |
US18/056,886 Active 2028-03-17 US11815594B2 (en) | 2007-01-25 | 2022-11-18 | Vehicular forward-sensing system |
Country Status (3)
Country | Link |
---|---|
US (13) | US8013780B2 (en) |
EP (2) | EP3624086A1 (en) |
WO (1) | WO2008127752A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014085018A1 (en) * | 2012-11-29 | 2014-06-05 | Bendix Commercial Vehicle Systems Llc | Driver view adapter for forward looking camera |
US20150185314A1 (en) * | 2013-12-26 | 2015-07-02 | International Business Machines Corporation | Radar integration with handheld electronic devices |
US9322908B2 (en) | 2013-12-23 | 2016-04-26 | Elwha Llc | Systems and methods for concealed radar imaging |
US20180067204A1 (en) * | 2016-09-07 | 2018-03-08 | OmniPreSense Corporation | Radar enabled weapon detection system |
US10564261B2 (en) * | 2017-05-11 | 2020-02-18 | Ford Global Technologies, Llc | Autonomous vehicle LIDAR mirror |
Families Citing this family (260)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6513252B1 (en) * | 1999-04-08 | 2003-02-04 | Donnelly Corporation | Vehicle compass compensation |
EP3624086A1 (en) | 2007-01-25 | 2020-03-18 | Magna Electronics Inc. | Radar sensing system for vehicle |
US20100245066A1 (en) * | 2007-10-23 | 2010-09-30 | Sarioglu Guner R | Automotive Ultrasonic Sensor System with Independent Wire Harness |
US9063230B2 (en) * | 2008-10-08 | 2015-06-23 | Delphi Technologies, Inc. | Radar sensor module |
EP2340185B1 (en) * | 2008-10-08 | 2018-07-04 | Delphi Technologies, Inc. | Integrated radar-camera sensor |
EP2401176B1 (en) | 2009-02-27 | 2019-05-08 | Magna Electronics | Alert system for vehicle |
US8376595B2 (en) | 2009-05-15 | 2013-02-19 | Magna Electronics, Inc. | Automatic headlamp control |
JP4877364B2 (en) * | 2009-07-10 | 2012-02-15 | トヨタ自動車株式会社 | Object detection device |
DE102009048493A1 (en) * | 2009-09-25 | 2011-04-07 | Valeo Schalter Und Sensoren Gmbh | A driver assistance system for a vehicle, vehicle with a driver assistance system, and method for assisting a driver in driving a vehicle |
US9194943B2 (en) | 2011-04-12 | 2015-11-24 | Magna Electronics Inc. | Step filter for estimating distance in a time-of-flight ranging system |
WO2012145501A1 (en) | 2011-04-20 | 2012-10-26 | Magna Electronics Inc. | Angular filter for vehicle mounted camera |
US9547795B2 (en) | 2011-04-25 | 2017-01-17 | Magna Electronics Inc. | Image processing method for detecting objects using relative motion |
WO2012169052A1 (en) | 2011-06-09 | 2012-12-13 | トヨタ自動車株式会社 | Other-vehicle detection device and other-vehicle detection method |
US9596387B2 (en) | 2011-08-02 | 2017-03-14 | Magna Electronics Inc. | Vehicular camera system |
US9487159B2 (en) | 2011-08-02 | 2016-11-08 | Magna Electronics Inc. | Vehicle vision system with camera module mounting bracket |
US9871971B2 (en) | 2011-08-02 | 2018-01-16 | Magma Electronics Inc. | Vehicle vision system with light baffling system |
US20140218535A1 (en) | 2011-09-21 | 2014-08-07 | Magna Electronics Inc. | Vehicle vision system using image data transmission and power supply via a coaxial cable |
WO2013048994A1 (en) | 2011-09-26 | 2013-04-04 | Magna Electronics, Inc. | Vehicle camera image quality improvement in poor visibility conditions by contrast amplification |
WO2013081985A1 (en) | 2011-11-28 | 2013-06-06 | Magna Electronics, Inc. | Vision system for vehicle |
JP5863481B2 (en) * | 2012-01-30 | 2016-02-16 | 日立マクセル株式会社 | Vehicle collision risk prediction device |
US9269263B2 (en) | 2012-02-24 | 2016-02-23 | Magna Electronics Inc. | Vehicle top clearance alert system |
US10609335B2 (en) | 2012-03-23 | 2020-03-31 | Magna Electronics Inc. | Vehicle vision system with accelerated object confirmation |
JP2013217886A (en) * | 2012-04-12 | 2013-10-24 | Honda Elesys Co Ltd | On-vehicle radar device, detection method, and detection program |
WO2013158592A2 (en) | 2012-04-16 | 2013-10-24 | Magna Electronics, Inc. | Vehicle vision system with reduced image color data processing by use of dithering |
US8879139B2 (en) | 2012-04-24 | 2014-11-04 | Gentex Corporation | Display mirror assembly |
US10089537B2 (en) | 2012-05-18 | 2018-10-02 | Magna Electronics Inc. | Vehicle vision system with front and rear camera integration |
US8983135B2 (en) | 2012-06-01 | 2015-03-17 | Gentex Corporation | System and method for controlling vehicle equipment responsive to a multi-stage village detection |
EP2859436B1 (en) | 2012-06-12 | 2020-06-03 | Gentex Corporation | Vehicle imaging system providing multi-stage aiming stability indication |
EP2879912B1 (en) | 2012-08-02 | 2021-11-10 | Gentex Corporation | System and method for controlling exterior vehicle lights responsive to detection of a semi-truck |
JP5862785B2 (en) * | 2012-09-03 | 2016-02-16 | トヨタ自動車株式会社 | Collision determination device and collision determination method |
DE102013217430A1 (en) | 2012-09-04 | 2014-03-06 | Magna Electronics, Inc. | Driver assistance system for a motor vehicle |
US9024804B2 (en) * | 2012-09-14 | 2015-05-05 | Delphi Technologies, Inc. | Partial covering radome for a radar unit |
US9743002B2 (en) | 2012-11-19 | 2017-08-22 | Magna Electronics Inc. | Vehicle vision system with enhanced display functions |
US9090234B2 (en) | 2012-11-19 | 2015-07-28 | Magna Electronics Inc. | Braking control system for vehicle |
US10025994B2 (en) | 2012-12-04 | 2018-07-17 | Magna Electronics Inc. | Vehicle vision system utilizing corner detection |
US9481301B2 (en) | 2012-12-05 | 2016-11-01 | Magna Electronics Inc. | Vehicle vision system utilizing camera synchronization |
US9092986B2 (en) | 2013-02-04 | 2015-07-28 | Magna Electronics Inc. | Vehicular vision system |
US20140218529A1 (en) | 2013-02-04 | 2014-08-07 | Magna Electronics Inc. | Vehicle data recording system |
US10027930B2 (en) | 2013-03-29 | 2018-07-17 | Magna Electronics Inc. | Spectral filtering for vehicular driver assistance systems |
US9327693B2 (en) | 2013-04-10 | 2016-05-03 | Magna Electronics Inc. | Rear collision avoidance system for vehicle |
US9164511B1 (en) | 2013-04-17 | 2015-10-20 | Google Inc. | Use of detected objects for image processing |
US10232797B2 (en) | 2013-04-29 | 2019-03-19 | Magna Electronics Inc. | Rear vision system for vehicle with dual purpose signal lines |
US9069080B2 (en) * | 2013-05-24 | 2015-06-30 | Advanced Scientific Concepts, Inc. | Automotive auxiliary ladar sensor |
US10567705B2 (en) | 2013-06-10 | 2020-02-18 | Magna Electronics Inc. | Coaxial cable with bidirectional data transmission |
US9260095B2 (en) | 2013-06-19 | 2016-02-16 | Magna Electronics Inc. | Vehicle vision system with collision mitigation |
US20140375476A1 (en) | 2013-06-24 | 2014-12-25 | Magna Electronics Inc. | Vehicle alert system |
US10326969B2 (en) | 2013-08-12 | 2019-06-18 | Magna Electronics Inc. | Vehicle vision system with reduction of temporal noise in images |
US20150042807A1 (en) * | 2013-08-12 | 2015-02-12 | Magna Electronics Inc. | Head unit with uniform vision processing unit interface |
WO2015026810A1 (en) | 2013-08-19 | 2015-02-26 | Gentex Corporation | Vehicle imaging system and method for distinguishing reflective objects from lights of another vehicle |
KR101848451B1 (en) | 2013-08-19 | 2018-04-12 | 젠텍스 코포레이션 | Vehicle imaging system and method for distinguishing between vehicle tail lights and flashing red stop lights |
CN105555612B (en) | 2013-09-24 | 2018-06-01 | 金泰克斯公司 | Show mirror assembly |
CN105593061B (en) | 2013-10-01 | 2018-03-27 | 金泰克斯公司 | System and method for controlling exterior vehicle lights on fast traffic lane |
US9293812B2 (en) | 2013-11-06 | 2016-03-22 | Delphi Technologies, Inc. | Radar antenna assembly |
KR101794821B1 (en) | 2013-11-15 | 2017-11-07 | 젠텍스 코포레이션 | Imaging system including dynamic compensation for color attenuation for vehicle windscreens |
US9499139B2 (en) | 2013-12-05 | 2016-11-22 | Magna Electronics Inc. | Vehicle monitoring system |
US9988047B2 (en) | 2013-12-12 | 2018-06-05 | Magna Electronics Inc. | Vehicle control system with traffic driving control |
US9511715B2 (en) | 2014-01-31 | 2016-12-06 | Gentex Corporation | Backlighting assembly for display for reducing cross-hatching |
KR101727162B1 (en) * | 2014-02-27 | 2017-04-14 | 한국전자통신연구원 | Apparatus and method for providing vessel traffic service |
CN106061794B (en) | 2014-03-21 | 2019-06-07 | 金泰克斯公司 | Tri-state shows mirror assembly |
EP3126195B1 (en) | 2014-04-01 | 2019-06-05 | Gentex Corporation | Automatic display mirror assembly |
US9623878B2 (en) | 2014-04-02 | 2017-04-18 | Magna Electronics Inc. | Personalized driver assistance system for vehicle |
US9896039B2 (en) | 2014-05-09 | 2018-02-20 | Magna Electronics Inc. | Vehicle vision system with forward viewing camera |
CN105093210A (en) | 2014-05-14 | 2015-11-25 | 光宝科技股份有限公司 | Ultrasonic detection device and detection method thereof |
CN106458107A (en) * | 2014-06-11 | 2017-02-22 | Trw汽车美国有限责任公司 | Moderation of a driver assist camera environment by headliner air duct |
WO2016044746A1 (en) | 2014-09-19 | 2016-03-24 | Gentex Corporation | Rearview assembly |
US9799949B2 (en) | 2014-09-30 | 2017-10-24 | Nidec Corporation | On-vehicle radar device and vehicle |
KR101628503B1 (en) * | 2014-10-27 | 2016-06-08 | 현대자동차주식회사 | Driver assistance apparatus and method for operating thereof |
CN107000642B (en) | 2014-11-07 | 2020-03-27 | 金泰克斯公司 | Full display mirror actuator |
KR101977685B1 (en) | 2014-11-13 | 2019-05-13 | 젠텍스 코포레이션 | Rearview mirror system with a display |
US9784839B2 (en) | 2014-11-26 | 2017-10-10 | Magna Electronics Solutions Gmbh | Automotive lighting device and a vehicle having the same |
KR101997815B1 (en) | 2014-12-03 | 2019-07-08 | 젠텍스 코포레이션 | Display mirror assembly |
USD746744S1 (en) | 2014-12-05 | 2016-01-05 | Gentex Corporation | Rearview device |
US9744907B2 (en) | 2014-12-29 | 2017-08-29 | Gentex Corporation | Vehicle vision system having adjustable displayed field of view |
FR3031193B1 (en) * | 2014-12-30 | 2018-08-17 | Thales | MULTI-SENSOR IMAGING DEVICE |
US9720278B2 (en) | 2015-01-22 | 2017-08-01 | Gentex Corporation | Low cost optical film stack |
KR102256676B1 (en) * | 2015-02-06 | 2021-05-26 | 삼성전자주식회사 | Multi-purpose device including mobile terminal and sensing device using radio-wave based sensor |
WO2016141905A1 (en) * | 2015-03-06 | 2016-09-15 | Balluff Gmbh | Proximity sensor and method for measuring the distance of a target |
US9540151B2 (en) | 2015-03-06 | 2017-01-10 | Berlin Packaging, Llc | Twist closure for opening and closing containers |
US10023118B2 (en) | 2015-03-23 | 2018-07-17 | Magna Electronics Inc. | Vehicle vision system with thermal sensor |
US9718405B1 (en) | 2015-03-23 | 2017-08-01 | Rosco, Inc. | Collision avoidance and/or pedestrian detection system |
US9555736B2 (en) | 2015-04-03 | 2017-01-31 | Magna Electronics Inc. | Vehicle headlamp control using sensing and communication systems |
WO2016172096A1 (en) | 2015-04-20 | 2016-10-27 | Gentex Corporation | Rearview assembly with applique |
US10819943B2 (en) | 2015-05-07 | 2020-10-27 | Magna Electronics Inc. | Vehicle vision system with incident recording function |
US10112540B2 (en) | 2015-05-18 | 2018-10-30 | Gentex Corporation | Full display rearview device |
JP7060958B2 (en) | 2015-06-22 | 2022-04-27 | ジェンテックス コーポレイション | Video Stream Image Processing System and Method for Amplitude Modulated Light Flicker Correction |
US10419723B2 (en) | 2015-06-25 | 2019-09-17 | Magna Electronics Inc. | Vehicle communication system with forward viewing camera and integrated antenna |
JP2017034453A (en) * | 2015-07-31 | 2017-02-09 | 富士通テン株式会社 | Image processing apparatus, image display system, and image processing method |
US10331956B2 (en) | 2015-09-23 | 2019-06-25 | Magna Electronics Inc. | Vehicle vision system with detection enhancement using light control |
US10137904B2 (en) | 2015-10-14 | 2018-11-27 | Magna Electronics Inc. | Driver assistance system with sensor offset correction |
CN108349436B (en) | 2015-10-30 | 2019-12-20 | 金泰克斯公司 | Rear-view device |
USD797627S1 (en) | 2015-10-30 | 2017-09-19 | Gentex Corporation | Rearview mirror device |
EP3368374B1 (en) | 2015-10-30 | 2023-12-27 | Gentex Corporation | Toggle paddle |
USD798207S1 (en) | 2015-10-30 | 2017-09-26 | Gentex Corporation | Rearview mirror assembly |
USD800618S1 (en) | 2015-11-02 | 2017-10-24 | Gentex Corporation | Toggle paddle for a rear view device |
CN108417946B (en) | 2015-11-05 | 2020-10-27 | 日本电产株式会社 | Slot array antenna and radar device |
CN107039723A (en) | 2015-11-05 | 2017-08-11 | 日本电产艾莱希斯株式会社 | Slot antenna |
US9828036B2 (en) | 2015-11-24 | 2017-11-28 | Srg Global Inc. | Active grille shutter system with integrated radar |
US11027654B2 (en) | 2015-12-04 | 2021-06-08 | Magna Electronics Inc. | Vehicle vision system with compressed video transfer via DSRC link |
US11285878B2 (en) | 2015-12-17 | 2022-03-29 | Magna Electronics Inc. | Vehicle vision system with camera line power filter |
JP2017188867A (en) | 2015-12-24 | 2017-10-12 | 日本電産エレシス株式会社 | Waveguide device, slot antenna, and radar with the slot antenna, radar system, and wireless communications system |
JP6879729B2 (en) | 2015-12-24 | 2021-06-02 | 日本電産株式会社 | Slot array antennas, and radars, radar systems, and wireless communication systems equipped with the slot array antennas. |
CN110749866B (en) | 2016-01-15 | 2024-06-18 | 日本电产株式会社 | Waveguide device, antenna device, radar system, and communication system |
WO2017131099A1 (en) | 2016-01-29 | 2017-08-03 | Nidec Elesys Corporation | Waveguide device, and antenna device including the waveguide device |
DE102017102284A1 (en) | 2016-02-08 | 2017-08-10 | Nidec Elesys Corporation | Waveguide device and antenna device with the waveguide device |
DE102017102559A1 (en) | 2016-02-12 | 2017-08-17 | Nidec Elesys Corporation | Waveguide device and antenna device with the waveguide device |
JP2017161431A (en) * | 2016-03-11 | 2017-09-14 | 日本電産エレシス株式会社 | vehicle |
US10359779B2 (en) | 2016-03-22 | 2019-07-23 | Aurora Flight Sciences Corporation | Aircrew automation system and method |
US10703204B2 (en) | 2016-03-23 | 2020-07-07 | Magna Electronics Inc. | Vehicle driver monitoring system |
US20170274832A1 (en) * | 2016-03-24 | 2017-09-28 | Nidec Elesys Corporation | Windshield including vehicle-mounted radar |
JP2017181480A (en) * | 2016-03-24 | 2017-10-05 | 日本電産エレシス株式会社 | Window shield equipped with on-vehicle radar |
US10571562B2 (en) | 2016-03-25 | 2020-02-25 | Magna Electronics Inc. | Vehicle short range sensing system using RF sensors |
JP2019047141A (en) | 2016-03-29 | 2019-03-22 | 日本電産エレシス株式会社 | Microwave IC waveguide device module, radar device and radar system |
USD845851S1 (en) | 2016-03-31 | 2019-04-16 | Gentex Corporation | Rearview device |
CN208093769U (en) | 2016-04-05 | 2018-11-13 | 日本电产株式会社 | radar |
WO2017175190A1 (en) | 2016-04-07 | 2017-10-12 | Uhnder, Inc. | Adaptive transmission and interference cancellation for mimo radar |
US10261179B2 (en) | 2016-04-07 | 2019-04-16 | Uhnder, Inc. | Software defined automotive radar |
US9846228B2 (en) | 2016-04-07 | 2017-12-19 | Uhnder, Inc. | Software defined automotive radar systems |
JP6318189B2 (en) * | 2016-04-20 | 2018-04-25 | 本田技研工業株式会社 | Protective structure for fuel piping |
WO2017187306A1 (en) * | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Adaptive filtering for fmcw interference mitigation in pmcw radar systems |
US9791551B1 (en) | 2016-04-25 | 2017-10-17 | Uhnder, Inc. | Vehicular radar system with self-interference cancellation |
US9806914B1 (en) | 2016-04-25 | 2017-10-31 | Uhnder, Inc. | Successive signal interference mitigation |
US10573959B2 (en) | 2016-04-25 | 2020-02-25 | Uhnder, Inc. | Vehicle radar system using shaped antenna patterns |
WO2017187331A1 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Vehicle radar system with a shared radar and communication system |
WO2017187278A1 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Pmcw – pmcw interference mitigation |
US9599702B1 (en) | 2016-04-25 | 2017-03-21 | Uhnder, Inc. | On-demand multi-scan micro doppler for vehicle |
WO2017187304A2 (en) | 2016-04-25 | 2017-11-02 | Uhnder, Inc. | Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation |
JP6904338B2 (en) * | 2016-04-27 | 2021-07-14 | Agc株式会社 | Window members and vehicle window glass |
JP2019054315A (en) | 2016-04-28 | 2019-04-04 | 日本電産エレシス株式会社 | Mounting board, waveguide module, integrated circuit mounting board, microwave module, radar device and radar system |
USD817238S1 (en) | 2016-04-29 | 2018-05-08 | Gentex Corporation | Rearview device |
US10534081B2 (en) | 2016-05-02 | 2020-01-14 | Magna Electronics Inc. | Mounting system for vehicle short range sensors |
US10040481B2 (en) | 2016-05-17 | 2018-08-07 | Magna Electronics Inc. | Vehicle trailer angle detection system using ultrasonic sensors |
US10025138B2 (en) | 2016-06-06 | 2018-07-17 | Gentex Corporation | Illuminating display with light gathering structure |
US10768298B2 (en) | 2016-06-14 | 2020-09-08 | Magna Electronics Inc. | Vehicle sensing system with 360 degree near range sensing |
US9753121B1 (en) | 2016-06-20 | 2017-09-05 | Uhnder, Inc. | Power control for improved near-far performance of radar systems |
US9963018B2 (en) | 2016-06-27 | 2018-05-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicles and vehicle roof structures for concealing one or more sensors |
CN109565304B (en) | 2016-07-08 | 2023-04-07 | 马格纳电子系统公司 | 2D MIMO radar system for vehicle |
US10239446B2 (en) | 2016-07-13 | 2019-03-26 | Magna Electronics Inc. | Vehicle sensing system using daisy chain of sensors |
US10708227B2 (en) | 2016-07-19 | 2020-07-07 | Magna Electronics Inc. | Scalable secure gateway for vehicle |
US10641867B2 (en) | 2016-08-15 | 2020-05-05 | Magna Electronics Inc. | Vehicle radar system with shaped radar antennas |
US10852418B2 (en) | 2016-08-24 | 2020-12-01 | Magna Electronics Inc. | Vehicle sensor with integrated radar and image sensors |
US10836376B2 (en) | 2016-09-06 | 2020-11-17 | Magna Electronics Inc. | Vehicle sensing system with enhanced detection of vehicle angle |
US10380439B2 (en) | 2016-09-06 | 2019-08-13 | Magna Electronics Inc. | Vehicle sensing system for detecting turn signal indicators |
US10677894B2 (en) | 2016-09-06 | 2020-06-09 | Magna Electronics Inc. | Vehicle sensing system for classification of vehicle model |
WO2018051288A1 (en) | 2016-09-16 | 2018-03-22 | Uhnder, Inc. | Virtual radar configuration for 2d array |
US10877137B2 (en) | 2016-12-02 | 2020-12-29 | Magna Electronics Inc. | Vehicle sensing system with ultrasonic transducer |
US10347129B2 (en) | 2016-12-07 | 2019-07-09 | Magna Electronics Inc. | Vehicle system with truck turn alert |
USD809984S1 (en) | 2016-12-07 | 2018-02-13 | Gentex Corporation | Rearview assembly |
US10462354B2 (en) | 2016-12-09 | 2019-10-29 | Magna Electronics Inc. | Vehicle control system utilizing multi-camera module |
USD854473S1 (en) | 2016-12-16 | 2019-07-23 | Gentex Corporation | Rearview assembly |
US20180191966A1 (en) | 2016-12-30 | 2018-07-05 | Gentex Corporation | Full display mirror with on-demand spotter view |
US10440249B2 (en) | 2017-01-13 | 2019-10-08 | Magna Electronics Inc. | Vehicle vision system camera with semi-reflective and semi-transmissive element |
US10703341B2 (en) | 2017-02-03 | 2020-07-07 | Magna Electronics Inc. | Vehicle sensor housing with theft protection |
US10607094B2 (en) | 2017-02-06 | 2020-03-31 | Magna Electronics Inc. | Vehicle vision system with traffic sign recognition |
US9971020B1 (en) | 2017-02-10 | 2018-05-15 | Uhnder, Inc. | Radar data buffering |
US10908272B2 (en) | 2017-02-10 | 2021-02-02 | Uhnder, Inc. | Reduced complexity FFT-based correlation for automotive radar |
US11454697B2 (en) | 2017-02-10 | 2022-09-27 | Uhnder, Inc. | Increasing performance of a receive pipeline of a radar with memory optimization |
US10782388B2 (en) | 2017-02-16 | 2020-09-22 | Magna Electronics Inc. | Vehicle radar system with copper PCB |
US11536829B2 (en) | 2017-02-16 | 2022-12-27 | Magna Electronics Inc. | Vehicle radar system with radar embedded into radome |
US11142200B2 (en) | 2017-02-23 | 2021-10-12 | Magna Electronics Inc. | Vehicular adaptive cruise control with enhanced vehicle control |
WO2018170353A1 (en) | 2017-03-17 | 2018-09-20 | Gentex Corporation | Dual display reverse camera system |
JP2018164252A (en) | 2017-03-24 | 2018-10-18 | 日本電産株式会社 | Slot array antenna, and radar having the same |
CN108695585B (en) | 2017-04-12 | 2021-03-16 | 日本电产株式会社 | Method for manufacturing high-frequency component |
JP7020677B2 (en) | 2017-04-13 | 2022-02-16 | 日本電産エレシス株式会社 | Slot antenna device |
JP2018182740A (en) | 2017-04-13 | 2018-11-15 | 日本電産株式会社 | Slot array antenna |
CN108736166B (en) | 2017-04-14 | 2020-11-13 | 日本电产株式会社 | Slot antenna device and radar device |
US10884103B2 (en) | 2017-04-17 | 2021-01-05 | Magna Electronics Inc. | Calibration system for vehicle radar system |
EP3395875B2 (en) | 2017-04-24 | 2023-01-25 | Covestro Deutschland AG | Laser beam-permeable substrate material for sensor applications |
DE112018001974T5 (en) | 2017-05-11 | 2020-01-09 | Nidec Corporation | WAVE GUIDE DEVICE AND ANTENNA DEVICE WITH THE WAVE GUIDE DEVICE |
JP7129999B2 (en) | 2017-05-11 | 2022-09-02 | 日本電産株式会社 | Waveguide device and antenna device comprising the waveguide device |
US10816970B2 (en) | 2017-06-15 | 2020-10-27 | Aurora Flight Sciences Corporation | System and method for performing an emergency descent and landing |
US10870426B2 (en) | 2017-06-22 | 2020-12-22 | Magna Electronics Inc. | Driving assistance system with rear collision mitigation |
JP2019009779A (en) | 2017-06-26 | 2019-01-17 | 株式会社Wgr | Transmission line device |
US10547122B2 (en) | 2017-06-26 | 2020-01-28 | Nidec Corporation | Method of producing a horn antenna array and antenna array |
JP7103860B2 (en) | 2017-06-26 | 2022-07-20 | 日本電産エレシス株式会社 | Horn antenna array |
JP2019012999A (en) | 2017-06-30 | 2019-01-24 | 日本電産株式会社 | Waveguide device module, microwave module, radar device, and radar system |
CN208376630U (en) | 2017-06-30 | 2019-01-15 | 麦格纳电子(张家港)有限公司 | The vehicle vision system communicated with trailer sensor |
US10453351B2 (en) | 2017-07-17 | 2019-10-22 | Aurora Flight Sciences Corporation | System and method for detecting obstacles in aerial systems |
US10509415B2 (en) | 2017-07-27 | 2019-12-17 | Aurora Flight Sciences Corporation | Aircrew automation system and method with integrated imaging and force sensing modalities |
JP7294608B2 (en) | 2017-08-18 | 2023-06-20 | ニデックエレシス株式会社 | antenna array |
US10962641B2 (en) | 2017-09-07 | 2021-03-30 | Magna Electronics Inc. | Vehicle radar sensing system with enhanced accuracy using interferometry techniques |
US10962638B2 (en) | 2017-09-07 | 2021-03-30 | Magna Electronics Inc. | Vehicle radar sensing system with surface modeling |
US10877148B2 (en) | 2017-09-07 | 2020-12-29 | Magna Electronics Inc. | Vehicle radar sensing system with enhanced angle resolution using synthesized aperture |
JP2019050568A (en) | 2017-09-07 | 2019-03-28 | 日本電産株式会社 | Directional coupler |
US11150342B2 (en) | 2017-09-07 | 2021-10-19 | Magna Electronics Inc. | Vehicle radar sensing system with surface segmentation using interferometric statistical analysis |
US20200120311A1 (en) * | 2017-09-18 | 2020-04-16 | Chris Pritchard | Integrated multi-view surveillance camera system for vehicles |
US10933798B2 (en) | 2017-09-22 | 2021-03-02 | Magna Electronics Inc. | Vehicle lighting control system with fog detection |
US11391826B2 (en) | 2017-09-27 | 2022-07-19 | Magna Electronics Inc. | Vehicle LIDAR sensor calibration system |
US11453393B2 (en) | 2017-10-09 | 2022-09-27 | Magna Electronics Inc. | Autonomous vehicle with path planning system |
US10538203B2 (en) | 2017-10-10 | 2020-01-21 | Magna Mirrors Of America, Inc. | Interior rearview mirror assembly with indicator |
DE102018124924A1 (en) | 2017-10-10 | 2019-04-11 | Nidec Corporation | Waveguiding device |
US11486968B2 (en) | 2017-11-15 | 2022-11-01 | Magna Electronics Inc. | Vehicle Lidar sensing system with sensor module |
US10816666B2 (en) | 2017-11-21 | 2020-10-27 | Magna Electronics Inc. | Vehicle sensing system with calibration/fusion of point cloud partitions |
US11105890B2 (en) | 2017-12-14 | 2021-08-31 | Uhnder, Inc. | Frequency modulated signal cancellation in variable power mode for radar applications |
US10303045B1 (en) * | 2017-12-20 | 2019-05-28 | Micron Technology, Inc. | Control of display device for autonomous vehicle |
US20190204599A1 (en) * | 2017-12-28 | 2019-07-04 | Microsoft Technology Licensing, Llc | Head-mounted display device with electromagnetic sensor |
US11167771B2 (en) | 2018-01-05 | 2021-11-09 | Magna Mirrors Of America, Inc. | Vehicular gesture monitoring system |
US11112498B2 (en) | 2018-02-12 | 2021-09-07 | Magna Electronics Inc. | Advanced driver-assistance and autonomous vehicle radar and marking system |
US11199611B2 (en) | 2018-02-20 | 2021-12-14 | Magna Electronics Inc. | Vehicle radar system with T-shaped slot antennas |
US11047977B2 (en) | 2018-02-20 | 2021-06-29 | Magna Electronics Inc. | Vehicle radar system with solution for ADC saturation |
US10894545B2 (en) | 2018-03-14 | 2021-01-19 | Micron Technology, Inc. | Configuration of a vehicle based on collected user data |
JP2019166964A (en) * | 2018-03-23 | 2019-10-03 | ソニーセミコンダクタソリューションズ株式会社 | Imaging system and vehicle window for use therein |
US10850397B2 (en) | 2018-04-19 | 2020-12-01 | Aurora Flight Sciences Corporation | System and method for providing in-cockpit actuation of aircraft controls |
US10875662B2 (en) | 2018-04-19 | 2020-12-29 | Aurora Flight Sciences Corporation | Method of robot manipulation in a vibration environment |
JP7298808B2 (en) | 2018-06-14 | 2023-06-27 | ニデックエレシス株式会社 | slot array antenna |
CN108638967B (en) * | 2018-06-15 | 2021-12-17 | 轩辕智驾科技(深圳)有限公司 | Early warning method of automobile early warning system based on millimeter wave radar |
WO2020008720A1 (en) * | 2018-07-06 | 2020-01-09 | ソニー株式会社 | Ranging device and windshield |
US11124130B2 (en) | 2018-08-01 | 2021-09-21 | Magna Electronics Inc. | Vehicular forward viewing camera |
US11399137B2 (en) | 2018-08-10 | 2022-07-26 | Aurora Flight Sciences Corporation | Object-tracking system |
DE102019124507A1 (en) | 2018-09-13 | 2020-03-19 | Magna Closures Inc. | CIRCULAR POLARIZED MOTOR VEHICLE RADAR FOR IMPROVED SIGNAL-NOISE RATIO |
JP6943329B2 (en) * | 2018-09-14 | 2021-09-29 | スズキ株式会社 | Automobile |
TWI734932B (en) * | 2018-09-17 | 2021-08-01 | 為昇科科技股份有限公司 | Radar detection angle caliberation system and method thereof |
DE102018122868A1 (en) * | 2018-09-18 | 2020-03-19 | Wabco Gmbh | Sensor module with a sensor carrier that can be rotated around an axis |
US11988748B2 (en) * | 2018-09-24 | 2024-05-21 | Lawrence Livermore National Security, Llc | System and method for adaptable lidar imaging |
US11151810B2 (en) | 2018-10-12 | 2021-10-19 | Aurora Flight Sciences Corporation | Adaptable vehicle monitoring system |
US11037453B2 (en) | 2018-10-12 | 2021-06-15 | Aurora Flight Sciences Corporation | Adaptive sense and avoid system |
US11808876B2 (en) | 2018-10-25 | 2023-11-07 | Magna Electronics Inc. | Vehicular radar system with vehicle to infrastructure communication |
US11683911B2 (en) | 2018-10-26 | 2023-06-20 | Magna Electronics Inc. | Vehicular sensing device with cooling feature |
US11638362B2 (en) | 2018-10-29 | 2023-04-25 | Magna Electronics Inc. | Vehicular radar sensor with enhanced housing and PCB construction |
US11507087B2 (en) * | 2018-11-07 | 2022-11-22 | Gm Cruise Holdings Llc | Distributed integrated sensing and communication module |
US11474225B2 (en) | 2018-11-09 | 2022-10-18 | Uhnder, Inc. | Pulse digital mimo radar system |
US11454720B2 (en) | 2018-11-28 | 2022-09-27 | Magna Electronics Inc. | Vehicle radar system with enhanced wave guide antenna system |
US11169240B1 (en) | 2018-11-30 | 2021-11-09 | Ball Aerospace & Technologies Corp. | Systems and methods for determining an angle of arrival of a signal at a planar array antenna |
US11096301B2 (en) | 2019-01-03 | 2021-08-17 | Magna Electronics Inc. | Vehicular radar sensor with mechanical coupling of sensor housing |
US11332124B2 (en) | 2019-01-10 | 2022-05-17 | Magna Electronics Inc. | Vehicular control system |
BR112021003738A2 (en) * | 2019-01-15 | 2021-05-18 | Saint-Gobain Glass France | vehicle window with integrated sensor module |
CN111446530A (en) | 2019-01-16 | 2020-07-24 | 日本电产株式会社 | Waveguide device, electromagnetic wave locking device, antenna device, and radar device |
US11294028B2 (en) | 2019-01-29 | 2022-04-05 | Magna Electronics Inc. | Sensing system with enhanced electrical contact at PCB-waveguide interface |
JP2022519562A (en) * | 2019-02-06 | 2022-03-24 | メタウェーブ コーポレーション | Methods and equipment for electromagnetic transmission attenuation control |
US11609304B2 (en) | 2019-02-07 | 2023-03-21 | Magna Electronics Inc. | Vehicular front camera testing system |
US12044794B2 (en) | 2019-02-26 | 2024-07-23 | Magna Electronics Inc. | Vehicular radar system with automatic sensor alignment |
US11333739B2 (en) | 2019-02-26 | 2022-05-17 | Magna Electronics Inc. | Vehicular radar system with automatic sensor alignment |
US11681017B2 (en) | 2019-03-12 | 2023-06-20 | Uhnder, Inc. | Method and apparatus for mitigation of low frequency noise in radar systems |
US12020558B2 (en) * | 2019-03-18 | 2024-06-25 | Georgia Tech Research Corporation | Work zone alert system and method |
US11327142B2 (en) | 2019-03-29 | 2022-05-10 | Ball Aerospace & Technologies Corp. | Systems and methods for locating and tracking radio frequency transmitters |
CN111275661B (en) * | 2019-04-09 | 2020-11-17 | 杨丽 | Automatic data correction method |
US11135883B2 (en) | 2019-05-13 | 2021-10-05 | Magna Electronics Inc. | Vehicular sensing system with ultrasonic sensor at trailer hitch |
US11267393B2 (en) | 2019-05-16 | 2022-03-08 | Magna Electronics Inc. | Vehicular alert system for alerting drivers of other vehicles responsive to a change in driving conditions |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
WO2021041839A1 (en) * | 2019-08-30 | 2021-03-04 | Pittsburgh Glass Works Llc | Automotive glazing for adas camera systems |
US12036990B2 (en) | 2019-11-22 | 2024-07-16 | Magna Electronics Inc. | Vehicular control system with controlled vehicle stopping and starting at intersection |
US11548505B2 (en) * | 2019-12-09 | 2023-01-10 | Magna Electronics Inc. | Vehicular speed control system with automatic setting parameters |
DE112021000497T5 (en) | 2020-01-10 | 2022-11-24 | Magna Electronics, Inc. | Communication System and Procedures |
WO2021144711A2 (en) | 2020-01-13 | 2021-07-22 | Uhnder, Inc. | Method and system for intefrence management for digital radars |
US12071084B2 (en) | 2020-02-14 | 2024-08-27 | Magna Electronics Inc. | Vehicular sensing system with variable power mode for thermal management |
US12013480B2 (en) | 2020-06-05 | 2024-06-18 | Magna Electronics Inc. | Vehicular radar sensor with waveguide connection embedded in PCB |
US11823395B2 (en) | 2020-07-02 | 2023-11-21 | Magna Electronics Inc. | Vehicular vision system with road contour detection feature |
WO2022021237A1 (en) * | 2020-07-30 | 2022-02-03 | 华为技术有限公司 | Laser radar and smart vehicle |
US11749105B2 (en) | 2020-10-01 | 2023-09-05 | Magna Electronics Inc. | Vehicular communication system with turn signal identification |
US12106583B2 (en) | 2020-10-02 | 2024-10-01 | Magna Electronics Inc. | Vehicular lane marker determination system with lane marker estimation based in part on a LIDAR sensing system |
US12030501B2 (en) | 2020-10-02 | 2024-07-09 | Magna Electronics Inc. | Vehicular control system with enhanced vehicle passing maneuvering |
DE102020214120A1 (en) * | 2020-11-10 | 2022-05-12 | Robert Bosch Gesellschaft mit beschränkter Haftung | Method for detecting an environment of a mobile platform with a first sensor system and a second sensor system |
US11968639B2 (en) | 2020-11-11 | 2024-04-23 | Magna Electronics Inc. | Vehicular control system with synchronized communication between control units |
US12117555B2 (en) | 2020-12-11 | 2024-10-15 | Magna Mirrors Of America, Inc. | Vehicular exterior door handle assembly with radar module and enhanced thermal management |
US12115916B2 (en) | 2021-02-01 | 2024-10-15 | Rosco, Inc. | Downlighting signal and illumination mirror head for vehicle |
WO2022231925A1 (en) * | 2021-04-28 | 2022-11-03 | Teledyne Flir Commercial Systems, Inc. | Multimodal imager systems and methods with steerable fields of view |
CN117859029A (en) | 2021-08-20 | 2024-04-09 | 金泰克斯公司 | Light assembly and lighting system having the same |
EP4141472A1 (en) * | 2021-08-30 | 2023-03-01 | GM Cruise Holdings LLC | Computing architecture of an autonomous vehicle |
US12007476B2 (en) | 2021-09-13 | 2024-06-11 | Magna Electronics Inc. | Method for detecting objects via a vehicular sensing system |
US20230162463A1 (en) * | 2021-11-19 | 2023-05-25 | Magna Electronics Inc. | Vehicular occupant monitoring system using centralized camera with expanded view |
US12115918B2 (en) | 2022-01-31 | 2024-10-15 | Magna Mirrors Of America, Inc. | Vehicular trailering assist system with auxiliary side trailer cameras |
Family Cites Families (557)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2106504A (en) | 1932-11-26 | 1938-01-25 | Frank D Lindquist | Loom |
US2969505A (en) | 1946-10-25 | 1961-01-24 | Bendix Corp | Automatic control of mobile craft |
US2632040A (en) | 1952-05-01 | 1953-03-17 | Rabinow Jacob | Automatic headlight dimmer |
US2827594A (en) | 1954-09-02 | 1958-03-18 | Rabinow Jacob | Color discriminating headlight dimmer |
US3349394A (en) | 1965-12-23 | 1967-10-24 | Motorola Inc | Radar sensing system |
US3708231A (en) | 1969-11-10 | 1973-01-02 | G Walters | Precision angle measuring device |
US3986022A (en) | 1973-06-04 | 1976-10-12 | Gilbert Peter Hyatt | Illumination control system |
US3680951A (en) | 1970-04-01 | 1972-08-01 | Baldwin Co D H | Photoelectrically-controlled rear-view mirrow |
US3689695A (en) | 1970-04-10 | 1972-09-05 | Harry C Rosenfield | Vehicle viewing system |
US3601614A (en) | 1970-05-25 | 1971-08-24 | Chrysler Corp | Automatic anti-glare rearview mirror system |
US3612666A (en) | 1970-07-13 | 1971-10-12 | Libman Max L | Electrically controlled rearview mirror employing self-contained power supply and motion-actuated power switch |
US3665224A (en) | 1970-09-08 | 1972-05-23 | Ruth Arthur P | Ambient light level detector including transient suppression circuitry |
US4672457A (en) | 1970-12-28 | 1987-06-09 | Hyatt Gilbert P | Scanner system |
US3746430A (en) | 1971-09-15 | 1973-07-17 | Baldwin Co D H | Impulse-operated, day-night, rear view mirror |
US3807832A (en) | 1972-11-09 | 1974-04-30 | American Cyanamid Co | Electrochromic (ec) mirror which rapidly changes reflectivity |
US3811046A (en) | 1973-01-22 | 1974-05-14 | Le Van Electronics Inc | Light sensitive security system |
US3813540A (en) | 1973-03-26 | 1974-05-28 | Ncr | Circuit for measuring and evaluating optical radiation |
US4614415A (en) | 1973-06-04 | 1986-09-30 | Hyatt Gilbert P | Illumination signal processing system |
US3862798A (en) | 1973-11-19 | 1975-01-28 | Charles L Hopkins | Automatic rear view mirror adjuster |
US3947095A (en) | 1974-03-18 | 1976-03-30 | Marie Saratore | Rear view vision device |
DE2460426A1 (en) | 1974-12-20 | 1976-06-24 | Daimler Benz Ag | DEVICE FOR THE INDEPENDENT REGULATION OF THE LAMP RANGE OF VEHICLE HEADLIGHTS |
US3962600A (en) | 1975-02-14 | 1976-06-08 | Arvin Hong Kong Ltd. | Ambient light responsive illumination brightness control circuit |
US4052712A (en) | 1975-05-13 | 1977-10-04 | Pacific Kogyo Kabushiki Kaisha | Apparatus for photographing road ruts |
US3985424A (en) | 1975-06-18 | 1976-10-12 | Lawrence Peska Associates, Inc. | Panoramic rear viewing system |
US4249160A (en) | 1975-11-21 | 1981-02-03 | Chilvers Graham R | Vehicle mounted light activated control system |
IT1082518B (en) | 1977-01-25 | 1985-05-21 | Fiat Spa | LIQUID CRYSTAL MIRROR TO BE USED PARTICULARLY AS A REAR-VIEW MIRROR FOR VEHICLES |
US4093364A (en) | 1977-02-04 | 1978-06-06 | Miller Keith G | Dual path photographic camera for use in motor vehicles |
IT1117275B (en) | 1977-02-25 | 1986-02-17 | Remo Bedini | AUTOMATIC METHOD AND DEVICE FOR THE ATTENTION OF THE DRIVING PHENOMENA IN REFLECTED LIGHT |
US4111720A (en) | 1977-03-31 | 1978-09-05 | International Business Machines Corporation | Method for forming a non-epitaxial bipolar integrated circuit |
CA1079106A (en) | 1977-05-30 | 1980-06-10 | Thomas G. Kirk | Highway premarking guidance system |
US4218698A (en) | 1978-03-13 | 1980-08-19 | Rca Corporation | TV Graphics and mixing control |
US4214266A (en) | 1978-06-19 | 1980-07-22 | Myers Charles H | Rear viewing system for vehicles |
US4266856A (en) | 1978-07-20 | 1981-05-12 | Wainwright Basil E | Rear view mirror |
EP0009414B1 (en) | 1978-09-25 | 1984-04-25 | Raymond James Noack | Apparatus and method for controlling windscreen wiper and windscreen washer apparatus of a vehicle |
US4277804A (en) | 1978-11-01 | 1981-07-07 | Elburn Robison | System for viewing the area rearwardly of a vehicle |
US4281898A (en) | 1979-02-07 | 1981-08-04 | Murakami Kaimeido Co., Ltd. | Automatic antiglare rearview mirror |
US4236099A (en) | 1979-03-05 | 1980-11-25 | Irving Rosenblum | Automatic headlight system |
CH639308A5 (en) | 1979-04-26 | 1983-11-15 | Agie Ag Ind Elektronik | METHOD AND DEVICE FOR ORIENTING THE WIRE GUIDE HEADS ON SPARKLESS EDM CUTTING MACHINES FOR EDMING WITH A LARGE SLOPE OF THE WIRE. |
FR2492748A2 (en) | 1979-11-07 | 1982-04-30 | Massoni Francois | DEVICE FOR AUTOMATICALLY CONTROLLING IGNITION AND EXTINGUISHING LIGHTS IN A VEHICLE |
US4288814A (en) | 1980-02-04 | 1981-09-08 | Talley & Sons, Inc. | Closed circuit video guidance system for farming vehicles and method |
JPS575021A (en) | 1980-06-11 | 1982-01-11 | Canon Inc | Reverse telephoto type large-diameter wide angle lens |
US5170374A (en) | 1981-05-13 | 1992-12-08 | Hitachi, Ltd. | Semiconductor memory |
US4647161A (en) | 1981-05-20 | 1987-03-03 | Mueller Rolf | Fish eye lens system |
US4443057A (en) | 1981-06-01 | 1984-04-17 | Gentex Corporation | Automatic rearview mirror for automotive vehicles |
US4436371A (en) | 1981-06-24 | 1984-03-13 | Donnelly Mirrors, Inc. | Vehicle mirror assembly |
US4435042A (en) | 1981-06-24 | 1984-03-06 | Donnelly Mirrors, Inc. | Vehicle mirror and support assembly |
DE3142909A1 (en) | 1981-10-29 | 1983-05-11 | Fa. Carl Zeiss, 7920 Heidenheim | CONTINUOUS CHARGE CONTROL FOR ELECTROCHROME LAYERS |
DE3142907A1 (en) | 1981-10-29 | 1983-05-11 | Fa. Carl Zeiss, 7920 Heidenheim | OPTICAL CONTROL CIRCUIT FOR ELECTROCHROME LAYERS |
DE3142906A1 (en) | 1981-10-29 | 1983-05-11 | Fa. Carl Zeiss, 7920 Heidenheim | STAGE CHARGE CONTROL FOR ELECTROCHROME LAYERS |
US4460831A (en) | 1981-11-30 | 1984-07-17 | Thermo Electron Corporation | Laser stimulated high current density photoelectron generator and method of manufacture |
JPS58173274A (en) | 1982-04-02 | 1983-10-12 | 株式会社デンソー | Control apparatus for vehicle |
US4420238A (en) | 1982-04-19 | 1983-12-13 | Felix Larry L | Apparatus for enabling concealing surveillance by use of a camera in a vehicle |
US4491390A (en) | 1982-05-06 | 1985-01-01 | Tong Shen Hsieh | Automatic liquid-crystal light shutter |
JPS58210548A (en) | 1982-05-18 | 1983-12-07 | ブリティッシュ・テクノロジー・グループ・リミテッド | Interference refractometer |
US6772057B2 (en) | 1995-06-07 | 2004-08-03 | Automotive Technologies International, Inc. | Vehicular monitoring systems using image processing |
US6856873B2 (en) | 1995-06-07 | 2005-02-15 | Automotive Technologies International, Inc. | Vehicular monitoring systems using image processing |
US6442465B2 (en) | 1992-05-05 | 2002-08-27 | Automotive Technologies International, Inc. | Vehicular component control systems and methods |
US6735506B2 (en) | 1992-05-05 | 2004-05-11 | Automotive Technologies International, Inc. | Telematics system |
US5845000A (en) | 1992-05-05 | 1998-12-01 | Automotive Technologies International, Inc. | Optical identification and monitoring system using pattern recognition for use with vehicles |
US4603946A (en) | 1982-09-29 | 1986-08-05 | Kabushiki Kaisha Tokai Rika Denki Seisakusho | Reflection controllable view mirror device for motor vehicle or the like |
US4690508A (en) | 1982-12-15 | 1987-09-01 | C-D Marketing, Ltd. | Liquid crystal closed-loop controlled mirror systems |
JPS59115677A (en) | 1982-12-22 | 1984-07-04 | Hitachi Ltd | Picture processor |
DE3302630C2 (en) | 1983-01-27 | 1987-02-26 | Daimler-Benz Ag, 7000 Stuttgart | Electrically dimmable rear-view mirror for motor vehicles |
US4638287A (en) | 1983-03-01 | 1987-01-20 | Aisin Seiki Kabushikikaisha | Vehicle-loaded display device |
US4546551A (en) | 1983-03-24 | 1985-10-15 | Prince Corporation | Electrical control system |
US4626850A (en) | 1983-05-16 | 1986-12-02 | David Chey | Vehicle detection and collision avoidance apparatus |
US4817948A (en) | 1983-09-06 | 1989-04-04 | Louise Simonelli | Reduced-scale racing system |
US4623222A (en) | 1983-11-14 | 1986-11-18 | Nippondenso Co., Ltd. | Liquid crystal type dazzle-free transmissive-reflective mirror |
EP0146672B1 (en) | 1983-11-14 | 1988-10-19 | Nippondenso Co., Ltd. | Drive apparatus for a liquid crystal dazzle free mirror arrangement |
JPS60117218A (en) | 1983-11-29 | 1985-06-24 | Nippon Denso Co Ltd | Liquid crystal antidazzling type reflecting mirror |
JPS60139545A (en) | 1983-12-27 | 1985-07-24 | Nippon Denso Co Ltd | Driving device for dazzle-proof type reflection mirror of vehicle |
US4692798A (en) | 1984-01-09 | 1987-09-08 | Nissan Motor Company, Limited | Apparatus and process for improving visibility of object within visual field |
JPS60148733A (en) | 1984-01-12 | 1985-08-06 | Nippon Denso Co Ltd | Dazzle-proofing type reflection mirror driving device for vehicle |
JPS60174342A (en) | 1984-02-16 | 1985-09-07 | Nippon Denso Co Ltd | Dazzlement preventing reflection mirror driving unit for vehicle |
US4580875A (en) | 1984-03-30 | 1986-04-08 | Gentex Corporation | Electronic control system for automatic rearview mirrors for automotive vehicles |
US4646210A (en) | 1984-06-20 | 1987-02-24 | Donnelly Corporation | Vehicular mirror and light assembly |
JPS6159301A (en) | 1984-08-30 | 1986-03-26 | Nippon Denso Co Ltd | Nonglaring type reflecting mirror controller |
US4713685A (en) | 1984-10-05 | 1987-12-15 | Matsushita Electric Industrial Co., Ltd. | Video monitoring apparatus |
US4701022A (en) | 1984-11-28 | 1987-10-20 | C-D Marketing, Ltd. | Day/night mirror |
US4600913A (en) | 1984-12-24 | 1986-07-15 | Caine Harold A | Collision avoidance device |
US4629941A (en) | 1985-01-07 | 1986-12-16 | Ellis Edward H | Differential illumination sensitive switching circuit |
US4630109A (en) | 1985-02-28 | 1986-12-16 | Standard Telephones & Cables Public Limited Company | Vehicle tracking system |
JPS6237247A (en) | 1985-05-08 | 1987-02-18 | Nissan Motor Co Ltd | Nonglaring mirror |
US5001558A (en) | 1985-06-11 | 1991-03-19 | General Motors Corporation | Night vision system with color video camera |
US4891559A (en) | 1985-06-13 | 1990-01-02 | Nippondenso Soken, Inc. | Apparatus for controlling a headlight of a vehicle |
US4731669A (en) | 1985-06-18 | 1988-03-15 | Matsushita Electric Industrial Co., Ltd. | Camera apparatus with movably supported lens barrel |
DE3522204A1 (en) | 1985-06-21 | 1987-01-02 | Anthony Stewart | REARVIEW MIRROR |
US4620141A (en) | 1985-07-03 | 1986-10-28 | Vericom Corp. | Rain-controlled windshield wipers |
DE3601388A1 (en) | 1986-01-18 | 1987-07-23 | Bosch Gmbh Robert | HEADLIGHT SYSTEM FOR VEHICLES, ESPECIALLY FOR MOTOR VEHICLES |
US4712879A (en) | 1986-04-02 | 1987-12-15 | Donnelly Corporation | Electrochromic mirror |
US5835255A (en) | 1986-04-23 | 1998-11-10 | Etalon, Inc. | Visible spectrum modulator arrays |
JPS62255262A (en) | 1986-04-30 | 1987-11-07 | Nissan Motor Co Ltd | Wiper controller |
US4807096A (en) | 1986-06-26 | 1989-02-21 | Donnelly Corporation | Interior light/carrier module for vehicles |
US4733336A (en) | 1986-06-26 | 1988-03-22 | Donnelly Corporation | Lighted/information case assembly for rearview mirrors |
US4793690A (en) | 1986-07-18 | 1988-12-27 | Donnelly Corporation | Rearview mirror control circuit |
US4717830A (en) | 1986-07-18 | 1988-01-05 | Santa Barbara Research Center | Correlated sampling amplifier |
US4867561A (en) | 1986-08-22 | 1989-09-19 | Nippondenso Co., Ltd. | Apparatus for optically detecting an extraneous matter on a translucent shield |
US4684164A (en) | 1986-10-27 | 1987-08-04 | Durham Timothy N | Apparatus for housing and deploying a radar detector in an automotive vehicle |
KR880007296A (en) | 1986-12-31 | 1988-08-26 | 한형수 | LCD rearview driving circuit |
US4789904A (en) | 1987-02-13 | 1988-12-06 | Peterson Roger D | Vehicle mounted surveillance and videotaping system |
US4847772A (en) | 1987-02-17 | 1989-07-11 | Regents Of The University Of Minnesota | Vehicle detection through image processing for traffic surveillance and control |
EP0280278B1 (en) | 1987-02-27 | 1994-01-05 | Ichikoh Industries Limited | Light-reflectivity controller for use with automotive rearview mirror using electrochromic element |
JP2512880B2 (en) | 1987-04-03 | 1996-07-03 | 株式会社ニコン | EC element with electrodes taken out from the third electrode layer |
US4917477A (en) | 1987-04-06 | 1990-04-17 | Gentex Corporation | Automatic rearview mirror system for automotive vehicles |
IE59698B1 (en) | 1987-04-08 | 1994-03-23 | Donnelly Mirrors Ltd | Rearview mirror control circuit |
US4907870A (en) | 1987-04-10 | 1990-03-13 | Milton Brucker | Device to manipulate side view mirrors for motor vehicles |
US4953305A (en) | 1987-05-27 | 1990-09-04 | Prince Corporation | Vehicle compass with automatic continuous calibration |
US4727290A (en) | 1987-05-29 | 1988-02-23 | General Motors Corporation | Automatic vehicle headlamp dimming control |
US5064274A (en) | 1987-08-26 | 1991-11-12 | Siegel-Robert, Inc. | Automatic automobile rear view mirror assembly |
US4826289A (en) | 1987-09-03 | 1989-05-02 | Donnelly Corporation | Day/night rearview mirror assembly |
US4961625A (en) | 1987-09-18 | 1990-10-09 | Flight Dynamics, Inc. | Automobile head-up display system with reflective aspheric surface |
US4895790A (en) | 1987-09-21 | 1990-01-23 | Massachusetts Institute Of Technology | High-efficiency, multilevel, diffractive optical elements |
US4872051A (en) | 1987-10-01 | 1989-10-03 | Environmental Research Institute Of Michigan | Collision avoidance alarm system |
US4862594A (en) | 1987-11-04 | 1989-09-05 | Donnelly Corporation | Magnetic compass system for a vehicle |
US4937945A (en) | 1987-11-04 | 1990-07-03 | Donnelly Corporation | Magnetic compass with optical encoder |
US4862037A (en) | 1987-12-24 | 1989-08-29 | Ford Motor Company | Automatic headlamp dimming system |
JPH01173825A (en) | 1987-12-28 | 1989-07-10 | Aisin Aw Co Ltd | Navigation device for vehicle |
US5073012A (en) | 1988-02-12 | 1991-12-17 | Donnelly Corporation | Anti-scatter, ultraviolet protected, anti-misting, electro-optical assemblies |
US4882565A (en) | 1988-03-02 | 1989-11-21 | Donnelly Corporation | Information display for rearview mirrors |
US4948242A (en) | 1988-03-22 | 1990-08-14 | Donnelly Mirrors Limited | Vehicle rearview mirror assembly |
US4825232A (en) | 1988-03-25 | 1989-04-25 | Enserch Corporation | Apparatus for mounting aerial survey camera under aircraft wings |
US4871917A (en) | 1988-04-19 | 1989-10-03 | Donnelly Corporation | Vehicular moisture sensor and mounting apparatus therefor |
JPH01278848A (en) | 1988-05-02 | 1989-11-09 | Nissan Motor Co Ltd | Headlight device for vehicle |
US4991054A (en) | 1988-05-13 | 1991-02-05 | Pacific Scientific Company | Time-delay outdoor lighting control systems |
US4910591A (en) | 1988-08-08 | 1990-03-20 | Edward Petrossian | Side and rear viewing apparatus for motor vehicles |
US4892345A (en) | 1988-09-23 | 1990-01-09 | Rachael Iii Stephen | Armored vehicle |
US5003288A (en) | 1988-10-25 | 1991-03-26 | Nartron Corporation | Ambient light sensing method and apparatus |
US5614885A (en) | 1988-12-05 | 1997-03-25 | Prince Corporation | Electrical control system for vehicle options |
US5151816A (en) | 1989-12-29 | 1992-09-29 | Donnelly Corporation | Method for reducing current leakage and enhancing uv stability in electrochemichromic solutions and devices |
US4937796A (en) | 1989-01-10 | 1990-06-26 | Tendler Robert K | Vehicle backing aid |
FR2642855B1 (en) | 1989-02-06 | 1991-05-17 | Essilor Int | OPTICAL LENS FOR THE CORRECTION OF ASTIGMATISM |
US4956591A (en) | 1989-02-28 | 1990-09-11 | Donnelly Corporation | Control for a moisture sensor |
US4916374A (en) | 1989-02-28 | 1990-04-10 | Donnelly Corporation | Continuously adaptive moisture sensor system for wiper control |
JPH0749925B2 (en) | 1989-03-01 | 1995-05-31 | 浜松ホトニクス株式会社 | Two-dimensional incident position detector |
US4970653A (en) | 1989-04-06 | 1990-11-13 | General Motors Corporation | Vision method of detecting lane boundaries and obstacles |
JPH02308575A (en) | 1989-05-24 | 1990-12-21 | Nissan Motor Co Ltd | Photodetector cell |
US4943796A (en) * | 1989-06-09 | 1990-07-24 | Lee Y C | Rear view mirror mounted reversing distance sensor |
US5097362A (en) | 1989-07-19 | 1992-03-17 | Lynas Robert M | Rearview mirror targeting and repositioning system |
US4971430A (en) | 1989-07-19 | 1990-11-20 | Lynas Robert M | Rearview mirror targeting and repositioning system |
US5027001A (en) | 1989-08-29 | 1991-06-25 | Torbert William F | Moisture sensitive automatic windshield wiper and headlight control device |
US4974078A (en) | 1989-11-13 | 1990-11-27 | Eastman Kodak Company | Digital compression method and system with improved coding efficiency |
US5140455A (en) | 1989-11-29 | 1992-08-18 | Donnelly Corporation | High performance electrochemichromic solutions and devices thereof |
US4987357A (en) | 1989-12-18 | 1991-01-22 | General Motors Corporation | Adaptive motor vehicle cruise control |
JP2843079B2 (en) | 1989-12-22 | 1999-01-06 | 本田技研工業株式会社 | Driving path determination method |
US5142407A (en) | 1989-12-22 | 1992-08-25 | Donnelly Corporation | Method of reducing leakage current in electrochemichromic solutions and solutions based thereon |
US5059877A (en) | 1989-12-22 | 1991-10-22 | Libbey-Owens-Ford Co. | Rain responsive windshield wiper control |
US5044706A (en) | 1990-02-06 | 1991-09-03 | Hughes Aircraft Company | Optical element employing aspherical and binary grating optical surfaces |
FR2658642B1 (en) | 1990-02-20 | 1994-06-10 | Rousseau Codes | METHOD AND DEVICE FOR DRIVING DRIVING LAND VEHICLES. |
US5303205A (en) | 1990-02-26 | 1994-04-12 | Trend Tec Inc. | Vehicular distance measuring system with integral mirror display |
US5818636A (en) | 1990-02-26 | 1998-10-06 | Molecular Displays, Inc. | Complementary surface confined polmer electrochromic materials, systems, and methods of fabrication therefor |
US5072154A (en) | 1990-03-13 | 1991-12-10 | Chen Min Hsiung | Automatic luminosity control device for car and motor bicycle headlamps |
JP2920653B2 (en) | 1990-03-15 | 1999-07-19 | アイシン精機株式会社 | In-vehicle imaging device |
SE9001436L (en) | 1990-04-23 | 1991-10-24 | Asea Brown Boveri | STROEMRIKTARANLAEGGNING |
DE4111993B4 (en) | 1990-04-23 | 2005-05-25 | Volkswagen Ag | Camera for an image processing system |
US5121200A (en) | 1990-07-06 | 1992-06-09 | Choi Seung Lyul | Travelling monitoring system for motor vehicles |
US5027200A (en) | 1990-07-10 | 1991-06-25 | Edward Petrossian | Enhanced viewing at side and rear of motor vehicles |
US5177685A (en) | 1990-08-09 | 1993-01-05 | Massachusetts Institute Of Technology | Automobile navigation system using real time spoken driving instructions |
US5076673A (en) | 1990-08-10 | 1991-12-31 | Donnelly Corporation | Prolonged coloration electrochromic assembly |
US5148014A (en) | 1990-08-10 | 1992-09-15 | Donnelly Corporation | Mirror system with remotely actuated continuously variable reflectant mirrors |
US5131154A (en) | 1990-10-15 | 1992-07-21 | Donnelly Corporation | Method and apparatus for compensating a magnetic compass |
US5124549A (en) | 1990-10-15 | 1992-06-23 | Lectron Products, Inc. | Automatic headlamp dimmer with optical baffle |
US5086253A (en) | 1990-10-15 | 1992-02-04 | Lawler Louis N | Automatic headlight dimmer apparatus |
US5442478A (en) | 1990-10-30 | 1995-08-15 | The Regents, University Of California | Electrochromic device using mercaptans and organothiolate compounds |
US5142406A (en) | 1990-10-30 | 1992-08-25 | The Regents Of The University Of California | Electrochromic optical switching device |
US5446576A (en) | 1990-11-26 | 1995-08-29 | Donnelly Corporation | Electrochromic mirror for vehicles with illumination and heating control |
US5309137A (en) | 1991-02-26 | 1994-05-03 | Mitsubishi Denki Kabushiki Kaisha | Motor car traveling control device |
US5451822A (en) | 1991-03-15 | 1995-09-19 | Gentex Corporation | Electronic control system |
KR930001987Y1 (en) | 1991-03-28 | 1993-04-19 | 홍선택 | Rear-view mirror adjusting device |
US5414257A (en) | 1991-04-23 | 1995-05-09 | Introlab Pty Limited | Moisture sensor for detecting moisture on a windshield |
US5182502A (en) | 1991-05-06 | 1993-01-26 | Lectron Products, Inc. | Automatic headlamp dimmer |
US6065840A (en) | 1991-05-15 | 2000-05-23 | Donnelly Corporation | Elemental semiconductor mirror |
US5535056A (en) | 1991-05-15 | 1996-07-09 | Donnelly Corporation | Method for making elemental semiconductor mirror for vehicles |
US5245422A (en) | 1991-06-28 | 1993-09-14 | Zexel Corporation | System and method for automatically steering a vehicle within a lane in a road |
US6823244B2 (en) | 1995-06-07 | 2004-11-23 | Automotive Technologies International, Inc. | Vehicle part control system including electronic sensors |
JP2782990B2 (en) | 1991-07-11 | 1998-08-06 | 日産自動車株式会社 | Vehicle approach determination device |
US5469298A (en) | 1991-08-14 | 1995-11-21 | Prince Corporation | Reflective display at infinity |
JPH0554276A (en) | 1991-08-23 | 1993-03-05 | Matsushita Electric Ind Co Ltd | Obstacle detection device |
US5193000A (en) | 1991-08-28 | 1993-03-09 | Stereographics Corporation | Multiplexing technique for stereoscopic video system |
US5309163A (en) | 1991-09-12 | 1994-05-03 | Trw Inc. | Active patch antenna transmitter |
US5178448A (en) | 1991-09-13 | 1993-01-12 | Donnelly Corporation | Rearview mirror with lighting assembly |
US5327288A (en) | 1991-09-13 | 1994-07-05 | Donnelly Corporation | Reduced vibration day/night rearview mirror assembly |
US5649756A (en) | 1991-09-13 | 1997-07-22 | Donnelly Corporation | Rearview mirror with lighting assembly |
US5416318A (en) | 1991-10-03 | 1995-05-16 | Hegyi; Dennis J. | Combined headlamp and climate control sensor having a light diffuser and a light modulator |
FR2682792B1 (en) | 1991-10-16 | 1995-10-20 | Ii Bc Sys | DEVICE FOR AVOIDING CARAMBOLAGES IN CHAIN. |
JP3167752B2 (en) | 1991-10-22 | 2001-05-21 | 富士重工業株式会社 | Vehicle distance detection device |
US5535314A (en) | 1991-11-04 | 1996-07-09 | Hughes Aircraft Company | Video image processor and method for detecting vehicles |
JP3031013B2 (en) | 1991-11-15 | 2000-04-10 | 日産自動車株式会社 | Visual information providing device |
US5193029A (en) | 1991-11-19 | 1993-03-09 | Donnelly Corporation | Single sensor adaptive drive circuit for rearview mirror system |
US5276388A (en) | 1991-12-14 | 1994-01-04 | Leopold Kostal Gmbh & Co. Kg | Apparatus and method for controlling a windshield wiping system |
US5336980A (en) | 1992-12-10 | 1994-08-09 | Leopold Kostal Gmbh & Co. | Apparatus and method for controlling a windshield wiping system |
US5255442A (en) | 1991-12-20 | 1993-10-26 | Donnelly Corporation | Vehicle compass with electronic sensor |
US5576687A (en) | 1991-12-20 | 1996-11-19 | Donnelly Corporation | Vehicle information display |
US5644851A (en) | 1991-12-20 | 1997-07-08 | Blank; Rodney K. | Compensation system for electronic compass |
US5394333A (en) | 1991-12-23 | 1995-02-28 | Zexel Usa Corp. | Correcting GPS position in a hybrid naviation system |
US5208701A (en) | 1991-12-24 | 1993-05-04 | Xerox Corporation | Wobble correction lens with binary diffractive optic surface and refractive cylindrical surface |
US5461357A (en) | 1992-01-29 | 1995-10-24 | Mazda Motor Corporation | Obstacle detection device for vehicle |
US5168378A (en) | 1992-02-10 | 1992-12-01 | Reliant Laser Corporation | Mirror with dazzle light attenuation zone |
JP2800531B2 (en) | 1992-02-28 | 1998-09-21 | 三菱電機株式会社 | Obstacle detection device for vehicles |
JP2973695B2 (en) | 1992-03-12 | 1999-11-08 | 船井電機株式会社 | In-vehicle navigation system |
JPH05265547A (en) | 1992-03-23 | 1993-10-15 | Fuji Heavy Ind Ltd | On-vehicle outside monitoring device |
US5204778A (en) | 1992-04-06 | 1993-04-20 | Gentex Corporation | Control system for automatic rearview mirrors |
US5305012A (en) | 1992-04-15 | 1994-04-19 | Reveo, Inc. | Intelligent electro-optical system and method for automatic glare reduction |
US5325386A (en) | 1992-04-21 | 1994-06-28 | Bandgap Technology Corporation | Vertical-cavity surface emitting laser assay display system |
DE59205359D1 (en) | 1992-04-21 | 1996-03-28 | Pietzsch Ibp Gmbh | Device for driving vehicles |
US5253109A (en) | 1992-04-27 | 1993-10-12 | Donnelly Corporation | Electro-optic device with constant light transmitting area |
JPH05301541A (en) | 1992-04-28 | 1993-11-16 | Fujitsu Ltd | Method for confirming advancing direction of automobile by door mirror or side mirror with built-in camera and sensor |
GB2267341B (en) | 1992-05-27 | 1996-02-21 | Koito Mfg Co Ltd | Glare sensor for a vehicle |
US5847676A (en) * | 1992-05-28 | 1998-12-08 | Cole; Carroll Richard | Velocity detecting system |
US5277986A (en) | 1992-07-15 | 1994-01-11 | Donnelly Corporation | Method for depositing high performing electrochromic layers |
US5515448A (en) | 1992-07-28 | 1996-05-07 | Yazaki Corporation | Distance measuring apparatus of a target tracking type |
JPH0785280B2 (en) | 1992-08-04 | 1995-09-13 | タカタ株式会社 | Collision prediction judgment system by neural network |
US5351044A (en) | 1992-08-12 | 1994-09-27 | Rockwell International Corporation | Vehicle lane position detection system |
AU667399B2 (en) | 1992-08-14 | 1996-03-21 | Vorad Safety Systems, Inc. | Recording of operational events in an automotive vehicle |
ATE181602T1 (en) | 1992-08-14 | 1999-07-15 | Vorad Safety Systems Inc | INTELLIGENT BLIND SPOT DETECTION SENSOR |
JP2783079B2 (en) | 1992-08-28 | 1998-08-06 | トヨタ自動車株式会社 | Light distribution control device for headlamp |
US5448319A (en) | 1992-09-22 | 1995-09-05 | Olympus Optical Co., Ltd. | Optical system for monitor cameras to be mounted on vehicles |
DE4332612C2 (en) | 1992-09-25 | 1996-02-22 | Yazaki Corp | Exterior view monitoring method for motor vehicles |
JP3462227B2 (en) | 1992-11-13 | 2003-11-05 | 矢崎総業株式会社 | Display device for vehicles |
US5760931A (en) | 1992-12-14 | 1998-06-02 | Nippondenso Co., Ltd. | Image display unit |
US5285060A (en) | 1992-12-15 | 1994-02-08 | Donnelly Corporation | Display for automatic rearview mirror |
JP3263699B2 (en) | 1992-12-22 | 2002-03-04 | 三菱電機株式会社 | Driving environment monitoring device |
KR940017747A (en) | 1992-12-29 | 1994-07-27 | 에프. 제이. 스미트 | Image processing device |
US5529138A (en) | 1993-01-22 | 1996-06-25 | Shaw; David C. H. | Vehicle collision avoidance system |
US5289321A (en) | 1993-02-12 | 1994-02-22 | Secor James O | Consolidated rear view camera and display system for motor vehicle |
US5313072A (en) | 1993-02-16 | 1994-05-17 | Rockwell International Corporation | Optical detector for windshield wiper control |
US6396397B1 (en) | 1993-02-26 | 2002-05-28 | Donnelly Corporation | Vehicle imaging system with stereo imaging |
US7339149B1 (en) | 1993-02-26 | 2008-03-04 | Donnelly Corporation | Vehicle headlight control using imaging sensor |
US6498620B2 (en) | 1993-02-26 | 2002-12-24 | Donnelly Corporation | Vision system for a vehicle including an image capture device and a display system having a long focal length |
US6822563B2 (en) | 1997-09-22 | 2004-11-23 | Donnelly Corporation | Vehicle imaging system with accessory control |
US5796094A (en) | 1993-02-26 | 1998-08-18 | Donnelly Corporation | Vehicle headlight control using imaging sensor |
US5877897A (en) | 1993-02-26 | 1999-03-02 | Donnelly Corporation | Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array |
US5910854A (en) | 1993-02-26 | 1999-06-08 | Donnelly Corporation | Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices |
US5550677A (en) | 1993-02-26 | 1996-08-27 | Donnelly Corporation | Automatic rearview mirror system using a photosensor array |
US5670935A (en) | 1993-02-26 | 1997-09-23 | Donnelly Corporation | Rearview vision system for vehicle including panoramic view |
EP0612826B1 (en) | 1993-02-26 | 2000-10-04 | Donnelly Corporation | Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processing for making such solid films and devices |
US6674562B1 (en) | 1994-05-05 | 2004-01-06 | Iridigm Display Corporation | Interferometric modulation of radiation |
JP3468428B2 (en) | 1993-03-24 | 2003-11-17 | 富士重工業株式会社 | Vehicle distance detection device |
JP2887039B2 (en) | 1993-03-26 | 1999-04-26 | 三菱電機株式会社 | Vehicle periphery monitoring device |
DE4408745C2 (en) | 1993-03-26 | 1997-02-27 | Honda Motor Co Ltd | Driving control device for vehicles |
JPH09501120A (en) | 1993-03-31 | 1997-02-04 | オートモーティブ・テクノロジーズ・インターナショナル・インク | Position / speed sensor for passengers in the vehicle |
US6430303B1 (en) | 1993-03-31 | 2002-08-06 | Fujitsu Limited | Image processing apparatus |
US6084519A (en) | 1993-05-07 | 2000-07-04 | Control Devices, Inc. | Multi-function light sensor for vehicle |
DE4318114C2 (en) | 1993-06-01 | 1998-07-16 | Kostal Leopold Gmbh & Co Kg | Sensor device |
JPH0717347A (en) * | 1993-07-07 | 1995-01-20 | Mazda Motor Corp | Obstacle detecting device for automobile |
US6553130B1 (en) | 1993-08-11 | 2003-04-22 | Jerome H. Lemelson | Motor vehicle warning and control system and method |
US5515042A (en) * | 1993-08-23 | 1996-05-07 | Nelson; Lorry | Traffic enforcement device |
US5434407A (en) | 1993-08-23 | 1995-07-18 | Gentex Corporation | Automatic rearview mirror incorporating light pipe |
GB9317983D0 (en) | 1993-08-28 | 1993-10-13 | Lucas Ind Plc | A driver assistance system for a vehicle |
US5586063A (en) | 1993-09-01 | 1996-12-17 | Hardin; Larry C. | Optical range and speed detection system |
US5638116A (en) | 1993-09-08 | 1997-06-10 | Sumitomo Electric Industries, Ltd. | Object recognition apparatus and method |
US5457493A (en) | 1993-09-15 | 1995-10-10 | Texas Instruments Incorporated | Digital micro-mirror based image simulation system |
US5374852A (en) | 1993-09-17 | 1994-12-20 | Parkes; Walter B. | Motor vehicle headlight activation apparatus for inclement weather conditions |
FI94200C (en) | 1993-09-24 | 1995-07-25 | Abb Industry Oy | Procedure for compensating the lag in a short-circuited asynchronous motor |
US5440428A (en) | 1993-09-30 | 1995-08-08 | Hughes Aircraft Company | Automotive instrument 3-D virtual image display |
US5883739A (en) | 1993-10-04 | 1999-03-16 | Honda Giken Kogyo Kabushiki Kaisha | Information display device for vehicle |
US5406395A (en) | 1993-11-01 | 1995-04-11 | Hughes Aircraft Company | Holographic parking assistance device |
US5381155A (en) * | 1993-12-08 | 1995-01-10 | Gerber; Eliot S. | Vehicle speeding detection and identification |
JP3522317B2 (en) | 1993-12-27 | 2004-04-26 | 富士重工業株式会社 | Travel guide device for vehicles |
US5430431A (en) | 1994-01-19 | 1995-07-04 | Nelson; Louis J. | Vehicle protection system and method |
US5471515A (en) | 1994-01-28 | 1995-11-28 | California Institute Of Technology | Active pixel sensor with intra-pixel charge transfer |
US5461361A (en) | 1994-03-11 | 1995-10-24 | Chrysler Corporation | Automotive instrument panel apparatus |
JP3358099B2 (en) | 1994-03-25 | 2002-12-16 | オムロン株式会社 | Optical sensor device |
US5619370A (en) | 1994-03-28 | 1997-04-08 | Guinosso; Patrick J. | Optical system for viewing a remote location |
US5666028A (en) | 1994-04-06 | 1997-09-09 | Gentex Corporation | Automobile headlamp and running light control system |
US5537003A (en) | 1994-04-08 | 1996-07-16 | Gentex Corporation | Control system for automotive vehicle headlamps and other vehicle equipment |
FR2718874B1 (en) | 1994-04-15 | 1996-05-15 | Thomson Csf | Traffic monitoring method for automatic detection of vehicle incidents. |
US6680792B2 (en) | 1994-05-05 | 2004-01-20 | Iridigm Display Corporation | Interferometric modulation of radiation |
US6710908B2 (en) | 1994-05-05 | 2004-03-23 | Iridigm Display Corporation | Controlling micro-electro-mechanical cavities |
US5668663A (en) | 1994-05-05 | 1997-09-16 | Donnelly Corporation | Electrochromic mirrors and devices |
US7123216B1 (en) | 1994-05-05 | 2006-10-17 | Idc, Llc | Photonic MEMS and structures |
US5963247A (en) | 1994-05-31 | 1999-10-05 | Banitt; Shmuel | Visual display systems and a system for producing recordings for visualization thereon and methods therefor |
ES1028357Y (en) | 1994-06-03 | 1995-06-16 | Cortes Luis Leon Lamata | RECEIVING DEVICE FOR REAR VIEW SCREEN. |
US5574443A (en) | 1994-06-22 | 1996-11-12 | Hsieh; Chi-Sheng | Vehicle monitoring apparatus with broadly and reliably rearward viewing |
US5657021A (en) * | 1994-06-30 | 1997-08-12 | Ehsani Engineering Enterprises, Inc. | System and method for radar-vision for vehicles in traffic |
JP3287117B2 (en) | 1994-07-05 | 2002-05-27 | 株式会社日立製作所 | Environment recognition device for vehicles using imaging device |
JP3357749B2 (en) | 1994-07-12 | 2002-12-16 | 本田技研工業株式会社 | Vehicle road image processing device |
EP0693397B1 (en) | 1994-07-19 | 2002-09-11 | Donnelly Corporation | Automatic rearview mirror system with automatic headlight activation |
US6001486A (en) | 1994-07-29 | 1999-12-14 | Donnelly Corporation | Transparent substrate with diffuser surface |
US5594222A (en) | 1994-10-25 | 1997-01-14 | Integrated Controls | Touch sensor and control circuit therefor |
US5793420A (en) | 1994-10-28 | 1998-08-11 | Schmidt; William P. | Video recording system for vehicle |
US5677851A (en) | 1994-12-15 | 1997-10-14 | Novell, Inc. | Method and apparatus to secure digital directory object changes |
JPH08175263A (en) | 1994-12-27 | 1996-07-09 | Murakami Kaimeidou:Kk | Interior mirror with built-in display device |
US5671996A (en) | 1994-12-30 | 1997-09-30 | Donnelly Corporation | Vehicle instrumentation/console lighting |
US5614788A (en) | 1995-01-31 | 1997-03-25 | Autosmart Light Switches, Inc. | Automated ambient condition responsive daytime running light system |
US5528698A (en) | 1995-03-27 | 1996-06-18 | Rockwell International Corporation | Automotive occupant sensing device |
JP3653783B2 (en) | 1995-04-03 | 2005-06-02 | スズキ株式会社 | In-vehicle image processing apparatus and image display system |
US5667896A (en) | 1995-04-11 | 1997-09-16 | Donnelly Corporation | Vehicle window assembly for mounting interior vehicle accessories |
JP3539788B2 (en) | 1995-04-21 | 2004-07-07 | パナソニック モバイルコミュニケーションズ株式会社 | Image matching method |
US5500766A (en) | 1995-05-04 | 1996-03-19 | Stonecypher; Bob | Blind spot side mirror |
US5568027A (en) | 1995-05-19 | 1996-10-22 | Libbey-Owens-Ford Co. | Smooth rain-responsive wiper control |
US6891563B2 (en) | 1996-05-22 | 2005-05-10 | Donnelly Corporation | Vehicular vision system |
US5669698A (en) | 1995-05-24 | 1997-09-23 | Veldman; Roger L. | Modular rearview mirror assembly and method for making same |
US5737226A (en) | 1995-06-05 | 1998-04-07 | Prince Corporation | Vehicle compass system with automatic calibration |
US6216540B1 (en) * | 1995-06-06 | 2001-04-17 | Robert S. Nelson | High resolution device and method for imaging concealed objects within an obscuring medium |
US7202776B2 (en) | 1997-10-22 | 2007-04-10 | Intelligent Technologies International, Inc. | Method and system for detecting objects external to a vehicle |
US7085637B2 (en) | 1997-10-22 | 2006-08-01 | Intelligent Technologies International, Inc. | Method and system for controlling a vehicle |
US6067110A (en) * | 1995-07-10 | 2000-05-23 | Honda Giken Kogyo Kabushiki Kaisha | Object recognizing device |
JP3546600B2 (en) | 1995-09-07 | 2004-07-28 | トヨタ自動車株式会社 | Light distribution control device for headlamp |
US5724316A (en) | 1995-09-26 | 1998-03-03 | Delco Electronics Corporation | GPS based time determining system and method |
US5940120A (en) | 1995-10-20 | 1999-08-17 | Prince Corporation | Vanity console |
DE59609089D1 (en) | 1995-10-30 | 2002-05-23 | Sentron Ag Zug | Magnetic field sensor and current or energy sensor |
EP0772046B1 (en) | 1995-10-30 | 2002-04-17 | Sentron Ag | Magnetic field probe and current or energy probe |
US5878370A (en) | 1995-12-01 | 1999-03-02 | Prince Corporation | Vehicle compass system with variable resolution |
AU1084397A (en) | 1995-12-01 | 1997-06-19 | Southwest Research Institute | Methods and apparatus for traffic incident detection |
US5971552A (en) | 1995-12-08 | 1999-10-26 | Donnelly Corporation | Vehicle global positioning system |
US5820245A (en) | 1995-12-11 | 1998-10-13 | Donnelly Corporation | Rearview mirror assembly |
US5790973A (en) | 1995-12-19 | 1998-08-04 | Prince Corporation | Last exit warning system |
US6266082B1 (en) | 1995-12-19 | 2001-07-24 | Canon Kabushiki Kaisha | Communication apparatus image processing apparatus communication method and image processing method |
US5761094A (en) | 1996-01-18 | 1998-06-02 | Prince Corporation | Vehicle compass system |
US5938717A (en) * | 1996-03-04 | 1999-08-17 | Laser Technology, Inc. | Speed detection and image capture system for moving vehicles |
US5786772A (en) | 1996-03-22 | 1998-07-28 | Donnelly Corporation | Vehicle blind spot detection display system |
WO1997038350A1 (en) | 1996-04-10 | 1997-10-16 | Donnelly Corporation | Electrochromic devices |
DE19780489T1 (en) * | 1996-04-22 | 1998-12-24 | Furukawa Electric Co Ltd | Radar |
US5933109A (en) * | 1996-05-02 | 1999-08-03 | Honda Giken Kabushiki Kaisha | Multibeam radar system |
US5760826A (en) | 1996-05-10 | 1998-06-02 | The Trustees Of Columbia University | Omnidirectional imaging apparatus |
US5661303A (en) | 1996-05-24 | 1997-08-26 | Libbey-Owens-Ford Co. | Compact moisture sensor with collimator lenses and prismatic coupler |
US6118401A (en) * | 1996-07-01 | 2000-09-12 | Sun Microsystems, Inc. | Aircraft ground collision avoidance system and method |
JP3805832B2 (en) | 1996-07-10 | 2006-08-09 | 富士重工業株式会社 | Vehicle driving support device |
US5798575A (en) | 1996-07-11 | 1998-08-25 | Donnelly Corporation | Vehicle mirror digital network and dynamically interactive mirror system |
JPH1059068A (en) | 1996-08-23 | 1998-03-03 | Yoshihisa Furuta | Dead angle confirmation device for vehicle |
US5924212A (en) | 1996-10-09 | 1999-07-20 | Donnelly Corporation | Electronic compass |
JPH10142331A (en) * | 1996-11-14 | 1998-05-29 | Komatsu Ltd | Millimetric wave radar-loaded vehicle |
JPH10147178A (en) | 1996-11-18 | 1998-06-02 | Dx Antenna Co Ltd | Rear monitoring device for vehicle |
JPH10161013A (en) | 1996-12-05 | 1998-06-19 | Canon Inc | Environment recognition device and camera provided therewith |
JP4162717B2 (en) | 1996-12-10 | 2008-10-08 | タッチ センサー テクノロジーズ,エルエルシー | Differential touch sensor and control circuit thereof |
JPH10199171A (en) | 1996-12-27 | 1998-07-31 | Toshiba Corp | Head positioning control system applied to magnetic disk device |
US5877707A (en) | 1997-01-17 | 1999-03-02 | Kowalick; Thomas M. | GPS based seat belt monitoring system & method for using same |
US6085151A (en) * | 1998-01-20 | 2000-07-04 | Automotive Systems Laboratory, Inc. | Predictive collision sensing system |
JP2000508874A (en) | 1997-02-06 | 2000-07-11 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Microwave antenna device for automotive radar system |
US5798688A (en) | 1997-02-07 | 1998-08-25 | Donnelly Corporation | Interior vehicle mirror assembly having communication module |
US5872536A (en) * | 1997-02-19 | 1999-02-16 | Hittite Microwave Corporation | Multi-sensor anticipatory object detection system |
US5844505A (en) | 1997-04-01 | 1998-12-01 | Sony Corporation | Automobile navigation system |
US5837994C1 (en) | 1997-04-02 | 2001-10-16 | Gentex Corp | Control system to automatically dim vehicle head lamps |
US6049171A (en) | 1998-09-18 | 2000-04-11 | Gentex Corporation | Continuously variable headlamp control |
US6631316B2 (en) | 2001-03-05 | 2003-10-07 | Gentex Corporation | Image processing system to control vehicle headlamps or other vehicle equipment |
US5990469A (en) | 1997-04-02 | 1999-11-23 | Gentex Corporation | Control circuit for image array sensors |
US6611610B1 (en) | 1997-04-02 | 2003-08-26 | Gentex Corporation | Vehicle lamp control |
US6587573B1 (en) | 2000-03-20 | 2003-07-01 | Gentex Corporation | System for controlling exterior vehicle lights |
US6700692B2 (en) | 1997-04-02 | 2004-03-02 | Gentex Corporation | Electrochromic rearview mirror assembly incorporating a display/signal light |
US5923027A (en) | 1997-09-16 | 1999-07-13 | Gentex Corporation | Moisture sensor and windshield fog detector using an image sensor |
JP3508909B2 (en) | 1997-07-01 | 2004-03-22 | 株式会社村上開明堂 | Rearview mirror quick deflection controller |
US5956181A (en) | 1997-07-18 | 1999-09-21 | Lin; William | Two way mirror with dual functions of rear view mirror and video displayer |
JP3358709B2 (en) * | 1997-08-11 | 2002-12-24 | 富士重工業株式会社 | Driving support device for vehicles |
US6250148B1 (en) | 1998-01-07 | 2001-06-26 | Donnelly Corporation | Rain sensor mount for use in a vehicle |
US6172613B1 (en) | 1998-02-18 | 2001-01-09 | Donnelly Corporation | Rearview mirror assembly incorporating vehicle information display |
US6326613B1 (en) | 1998-01-07 | 2001-12-04 | Donnelly Corporation | Vehicle interior mirror assembly adapted for containing a rain sensor |
US6124886A (en) | 1997-08-25 | 2000-09-26 | Donnelly Corporation | Modular rearview mirror assembly |
US6087953A (en) | 1998-02-18 | 2000-07-11 | Donnelly Corporation | Rearview mirror support incorporating vehicle information display |
US5914815A (en) | 1997-08-29 | 1999-06-22 | Donnelly Corporation | Optical rearview system for vehicle |
JP3349412B2 (en) | 1997-09-13 | 2002-11-25 | 本田技研工業株式会社 | Vehicle mounted camera |
US6313454B1 (en) | 1999-07-02 | 2001-11-06 | Donnelly Corporation | Rain sensor |
DE19742093A1 (en) | 1997-09-24 | 1999-03-25 | Kostal Leopold Gmbh & Co Kg | Photoelectric sensor array |
EP1025702B9 (en) | 1997-10-30 | 2007-10-03 | Donnelly Corporation | Rain sensor with fog discrimination |
DE19749331A1 (en) | 1997-11-07 | 1999-05-20 | Kostal Leopold Gmbh & Co Kg | Method of detecting objects on motor vehicle windscreen |
US5959792A (en) | 1997-11-10 | 1999-09-28 | Ibrahim; Abdalla M. | Powered mirror apparatus |
US6020704A (en) | 1997-12-02 | 2000-02-01 | Valeo Electrical Systems, Inc. | Windscreen sensing and wiper control system |
US6111685A (en) | 1997-12-19 | 2000-08-29 | Rockwell Science Center, Llc | Reversible electrochemical mirror (REM) with improved electrolytic solution |
US5923456A (en) | 1997-12-19 | 1999-07-13 | Rockwell International Corporation | Reversible electrochemical mirror |
US6243003B1 (en) | 1999-08-25 | 2001-06-05 | Donnelly Corporation | Accessory module for vehicle |
US6278377B1 (en) | 1999-08-25 | 2001-08-21 | Donnelly Corporation | Indicator for vehicle accessory |
US6124647A (en) | 1998-12-16 | 2000-09-26 | Donnelly Corporation | Information display in a rearview mirror |
US6294989B1 (en) | 1998-12-16 | 2001-09-25 | Donnelly Corporation | Tire inflation assistance monitoring system |
US6445287B1 (en) | 2000-02-28 | 2002-09-03 | Donnelly Corporation | Tire inflation assistance monitoring system |
DE19803694C1 (en) | 1998-01-30 | 1999-04-22 | Kostal Leopold Gmbh & Co Kg | Method of detecting objects on a transparent plate, e.g. a motor vehicle windscreen |
DE59912726D1 (en) | 1998-03-30 | 2005-12-08 | Sentron Ag Zug | magnetic field sensor |
US5899956A (en) | 1998-03-31 | 1999-05-04 | Advanced Future Technologies, Inc. | Vehicle mounted navigation device |
US6329925B1 (en) | 1999-11-24 | 2001-12-11 | Donnelly Corporation | Rearview mirror assembly with added feature modular display |
US6428172B1 (en) | 1999-11-24 | 2002-08-06 | Donnelly Corporation | Rearview mirror assembly with utility functions |
US6158655A (en) | 1998-04-08 | 2000-12-12 | Donnelly Corporation | Vehicle mounted remote transaction interface system |
US6420975B1 (en) | 1999-08-25 | 2002-07-16 | Donnelly Corporation | Interior rearview mirror sound processing system |
US6477464B2 (en) | 2000-03-09 | 2002-11-05 | Donnelly Corporation | Complete mirror-based global-positioning system (GPS) navigation solution |
US6362771B1 (en) | 1998-04-30 | 2002-03-26 | Donnelly Corporation | Garage door opener system for vehicles using manufacturer-supplied equipment |
JPH11331822A (en) | 1998-05-15 | 1999-11-30 | Matsushita Electric Ind Co Ltd | Monitor camera system |
US6173508B1 (en) | 1998-06-08 | 2001-01-16 | Charles Strohmeyer, Jr. | Sewage organic waste compaction and incineration system integrated optionally with a gas turbine power driver exhaust and/or other separate heat source |
US6175300B1 (en) | 1998-09-03 | 2001-01-16 | Byron K. Kendrick | Blind spot viewing system |
GB9820622D0 (en) | 1998-09-23 | 1998-11-18 | Britax Geco Sa | Vehicle exterior mirror with antenna |
US6369804B1 (en) | 1998-09-26 | 2002-04-09 | Eleksen Limited | Detector constructed from fabric having non-uniform conductivity |
US6066933A (en) | 1998-10-02 | 2000-05-23 | Ponziana; Richard L. | Rain sensing system and method having automatically registered and oriented rain sensor |
US6266442B1 (en) | 1998-10-23 | 2001-07-24 | Facet Technology Corp. | Method and apparatus for identifying objects depicted in a videostream |
US6201642B1 (en) * | 1999-07-27 | 2001-03-13 | Donnelly Corporation | Vehicular vision system with a wide angle lens including a diffractive element |
US6717610B1 (en) | 1998-11-25 | 2004-04-06 | Donnelly Corporation | Wide angle image capture system for vehicle |
US6320282B1 (en) | 1999-01-19 | 2001-11-20 | Touchsensor Technologies, Llc | Touch switch with integral control circuit |
DE19902081A1 (en) | 1999-01-20 | 2000-07-27 | Zeiss Carl Fa | Stabilized camera |
US6166698A (en) | 1999-02-16 | 2000-12-26 | Gentex Corporation | Rearview mirror with integrated microwave receiver |
JP2000241529A (en) * | 1999-02-22 | 2000-09-08 | Honda Motor Co Ltd | Radar apparatus and abnormality detecting method for radar apparatus |
DE19909987C2 (en) | 1999-03-06 | 2003-04-10 | Kostal Leopold Gmbh & Co Kg | Arrangement for detecting objects located on a windshield of a motor vehicle |
DE19909986C2 (en) | 1999-03-06 | 2002-08-29 | Kostal Leopold Gmbh & Co Kg | Optoelectronic monitoring device for a motor vehicle |
US6144022A (en) | 1999-03-15 | 2000-11-07 | Valeo Electrical Systems, Inc. | Rain sensor using statistical analysis |
US6333759B1 (en) | 1999-03-16 | 2001-12-25 | Joseph J. Mazzilli | 360 ° automobile video camera system |
US6513252B1 (en) | 1999-04-08 | 2003-02-04 | Donnelly Corporation | Vehicle compass compensation |
JP2003500758A (en) | 1999-05-20 | 2003-01-07 | エレクセン リミテッド | Detection device composed of cloth |
JP2003501635A (en) * | 1999-05-26 | 2003-01-14 | ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Object detection system |
US6757109B2 (en) | 1999-07-27 | 2004-06-29 | Donnelly Corporation | Plastic lens system for vehicle imaging system |
US6118410A (en) * | 1999-07-29 | 2000-09-12 | General Motors Corporation | Automobile roof antenna shelf |
US6433907B1 (en) | 1999-08-05 | 2002-08-13 | Microvision, Inc. | Scanned display with plurality of scanning assemblies |
US6795221B1 (en) | 1999-08-05 | 2004-09-21 | Microvision, Inc. | Scanned display with switched feeds and distortion correction |
US6515781B2 (en) | 1999-08-05 | 2003-02-04 | Microvision, Inc. | Scanned imaging apparatus with switched feeds |
US6116743A (en) | 1999-09-20 | 2000-09-12 | Donnelly Corporation | Extendable exterior rearview mirror assembly for vehicles |
JP4308381B2 (en) * | 1999-09-29 | 2009-08-05 | 富士通テン株式会社 | Perimeter monitoring sensor |
DE19948025A1 (en) | 1999-10-06 | 2001-04-12 | Bosch Gmbh Robert | Asymmetric, multi-beam radar sensor |
US6411204B1 (en) | 1999-11-15 | 2002-06-25 | Donnelly Corporation | Deceleration based anti-collision safety light control for vehicle |
US6704621B1 (en) | 1999-11-26 | 2004-03-09 | Gideon P. Stein | System and method for estimating ego-motion of a moving vehicle using successive images recorded along the vehicle's path of motion |
JP2001158284A (en) | 1999-11-30 | 2001-06-12 | Honda Access Corp | Mounting structure for built-in device to be built in vehicle external part, such as lighting system, camera device, sensor device or the like |
US6710906B2 (en) | 1999-12-03 | 2004-03-23 | Gentex Corporation | Controlled diffusion coefficient electrochromic materials for use in electrochromic mediums and associated electrochromic devices |
SE520360C2 (en) | 1999-12-15 | 2003-07-01 | Goeran Sjoenell | Warning device for vehicles |
US6853327B2 (en) * | 1999-12-22 | 2005-02-08 | Hot/Shot Radar Inspections, Llc | Method and system for analyzing overhead line geometries |
US6526335B1 (en) | 2000-01-24 | 2003-02-25 | G. Victor Treyz | Automobile personal computer systems |
DE10003643A1 (en) | 2000-01-28 | 2001-08-02 | Reitter & Schefenacker Gmbh | Surveillance device for automobile uses camera behind mirror glass which reflects light in visible wavelength spectrum |
JP2001213254A (en) | 2000-01-31 | 2001-08-07 | Yazaki Corp | Side monitoring device for vehicle |
DE10007501A1 (en) * | 2000-02-18 | 2001-09-13 | Daimler Chrysler Ag | Road traffic monitoring method for automobile detects road lane, velocity and/or relative spacing of each preceding vehicle |
US6392783B1 (en) | 2000-02-24 | 2002-05-21 | Gentex Corporation | Substituted metallocenes for use as anodic electrochromic materials, and electrochromic media and devices comprising the same |
JP4393659B2 (en) | 2000-02-25 | 2010-01-06 | 富士重工業株式会社 | In-vehicle preview sensor position adjustment device |
WO2001064481A2 (en) | 2000-03-02 | 2001-09-07 | Donnelly Corporation | Video mirror systems incorporating an accessory module |
US7480149B2 (en) * | 2004-08-18 | 2009-01-20 | Donnelly Corporation | Accessory module for vehicle |
US7167796B2 (en) | 2000-03-09 | 2007-01-23 | Donnelly Corporation | Vehicle navigation system for use with a telematics system |
US7370983B2 (en) | 2000-03-02 | 2008-05-13 | Donnelly Corporation | Interior mirror assembly with display |
US7004593B2 (en) | 2002-06-06 | 2006-02-28 | Donnelly Corporation | Interior rearview mirror system with compass |
US6318870B1 (en) | 2000-03-23 | 2001-11-20 | Donnelly Corporation | Toggle assembly for rearview mirror |
US7224324B2 (en) | 2000-03-27 | 2007-05-29 | Donnelly Corporation | Interactive automotive rearvision system |
US6396408B2 (en) | 2000-03-31 | 2002-05-28 | Donnelly Corporation | Digital electrochromic circuit with a vehicle network |
KR100373002B1 (en) | 2000-04-03 | 2003-02-25 | 현대자동차주식회사 | Method for judgment out of lane of vehicle |
DE10025678B4 (en) * | 2000-05-24 | 2006-10-19 | Daimlerchrysler Ag | Camera-based precrash detection system |
US6648477B2 (en) | 2000-07-06 | 2003-11-18 | Donnelly Corporation | Rearview mirror assembly with information display |
GB2369452B (en) | 2000-07-27 | 2002-07-17 | Michael John Downs | Beam splitting blocks |
WO2002015152A1 (en) * | 2000-08-17 | 2002-02-21 | Hitachi, Ltd. | Measurement controller for vehicle |
US6636148B2 (en) * | 2000-09-04 | 2003-10-21 | Fujitsu Ten Limited | Periphery monitoring system |
US6627918B2 (en) | 2000-09-22 | 2003-09-30 | Donnelly Corporation | Spacer elements for interactive information devices and method for making same |
JP3521860B2 (en) | 2000-10-02 | 2004-04-26 | 日産自動車株式会社 | Vehicle travel path recognition device |
JP3750512B2 (en) * | 2000-10-12 | 2006-03-01 | 日産自動車株式会社 | Vehicle obstacle detection device |
US7062300B1 (en) | 2000-11-09 | 2006-06-13 | Ki Il Kim | Cellular phone holder with charger mounted to vehicle dashboard |
US6672731B2 (en) | 2000-11-20 | 2004-01-06 | Donnelly Corporation | Vehicular rearview mirror with blind spot viewing system |
US7255451B2 (en) | 2002-09-20 | 2007-08-14 | Donnelly Corporation | Electro-optic mirror cell |
WO2002062623A2 (en) | 2001-01-23 | 2002-08-15 | Donnelly Corporation | Improved vehicular lighting system for a mirror assembly |
US20020113873A1 (en) | 2001-02-20 | 2002-08-22 | Williams Michael R. | Rear vision system for large vehicles |
JP4698048B2 (en) * | 2001-03-19 | 2011-06-08 | 富士通テン株式会社 | FM-CW radar on-road stationary object detection method |
US6424273B1 (en) | 2001-03-30 | 2002-07-23 | Koninklijke Philips Electronics N.V. | System to aid a driver to determine whether to change lanes |
DE10118265A1 (en) | 2001-04-12 | 2002-10-17 | Bosch Gmbh Robert | Detecting vehicle lane change, involves forming track change indicating signal by comparing measured angular rate of preceding vehicle(s) with vehicle's own yaw rate |
JP3608527B2 (en) * | 2001-05-15 | 2005-01-12 | 株式会社豊田中央研究所 | Peripheral status display device |
US6696978B2 (en) * | 2001-06-12 | 2004-02-24 | Koninklijke Philips Electronics N.V. | Combined laser/radar-video speed violation detector for law enforcement |
US6539306B2 (en) | 2001-06-15 | 2003-03-25 | Gentex Corporation | Automotive mirror with integrated Loran components |
US6497503B1 (en) | 2001-06-21 | 2002-12-24 | Ford Global Technologies, Inc. | Headlamp system with selectable beam pattern |
DE10131198A1 (en) * | 2001-06-28 | 2003-01-16 | Bosch Gmbh Robert | Method and device for influencing at least one parameter of a vehicle |
US6485155B1 (en) | 2001-07-06 | 2002-11-26 | Bernard Duroux | Multiplexing mirror |
JP4601214B2 (en) | 2001-07-13 | 2010-12-22 | 株式会社村上開明堂 | Inner mirror |
JP3649166B2 (en) | 2001-07-26 | 2005-05-18 | 日産自動車株式会社 | Object type discrimination device and object type discrimination method |
US6882287B2 (en) | 2001-07-31 | 2005-04-19 | Donnelly Corporation | Automotive lane change aid |
US6589625B1 (en) | 2001-08-01 | 2003-07-08 | Iridigm Display Corporation | Hermetic seal and method to create the same |
US6731205B2 (en) | 2001-08-06 | 2004-05-04 | Donnelly Corporation | Self training tire pressure monitoring system |
US6847487B2 (en) | 2001-08-23 | 2005-01-25 | Donnelly Corporation | Vehicle information display |
DE10144147A1 (en) | 2001-09-07 | 2003-03-27 | Kostal Leopold Gmbh & Co Kg | Optoelectronic sensor, use of such a sensor and optoelectronic steering angle sensor |
US6859705B2 (en) * | 2001-09-21 | 2005-02-22 | Ford Global Technologies, Llc | Method for operating a pre-crash sensing system with object classifier in a vehicle having a countermeasure system |
WO2003029046A1 (en) | 2001-10-03 | 2003-04-10 | Maryann Winter | Apparatus and method for sensing the occupancy status of parking spaces in a parking lot |
DE10149115A1 (en) * | 2001-10-05 | 2003-04-17 | Bosch Gmbh Robert | Object detection device for motor vehicle driver assistance systems checks data measured by sensor systems for freedom from conflict and outputs fault signal on detecting a conflict |
US6554843B1 (en) | 2001-10-15 | 2003-04-29 | Universal Optical Co., Ltd. | Cataract instrument |
US6636258B2 (en) | 2001-10-19 | 2003-10-21 | Ford Global Technologies, Llc | 360° vision system for a vehicle |
US20030080878A1 (en) * | 2001-10-30 | 2003-05-01 | Kirmuss Charles Bruno | Event-based vehicle image capture |
JP2003169233A (en) | 2001-12-03 | 2003-06-13 | Toyoda Gosei Co Ltd | Camera mounted on automobile |
US6909753B2 (en) | 2001-12-05 | 2005-06-21 | Koninklijke Philips Electronics, N.V. | Combined MPEG-4 FGS and modulation algorithm for wireless video transmission |
US6727807B2 (en) * | 2001-12-14 | 2004-04-27 | Koninklijke Philips Electronics N.V. | Driver's aid using image processing |
DE10162652A1 (en) | 2001-12-20 | 2003-07-03 | Bosch Gmbh Robert | Stereo camera arrangement in a motor vehicle |
US20030137586A1 (en) | 2002-01-22 | 2003-07-24 | Infinite Innovations, Inc. | Vehicle video switching system and method |
WO2003065084A1 (en) | 2002-01-31 | 2003-08-07 | Donnelly Corporation | Vehicle accessory module |
US7436038B2 (en) * | 2002-02-05 | 2008-10-14 | E-Phocus, Inc | Visible/near infrared image sensor array |
US6794119B2 (en) | 2002-02-12 | 2004-09-21 | Iridigm Display Corporation | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
US6574033B1 (en) | 2002-02-27 | 2003-06-03 | Iridigm Display Corporation | Microelectromechanical systems device and method for fabricating same |
US7149627B2 (en) | 2002-03-01 | 2006-12-12 | Gentex Corporation | Electronic compass system |
US6975775B2 (en) | 2002-03-06 | 2005-12-13 | Radiant Imaging, Inc. | Stray light correction method for imaging light and color measurement system |
US6587072B1 (en) | 2002-03-22 | 2003-07-01 | M/A-Com, Inc. | Pulse radar detection system |
US20030222982A1 (en) | 2002-03-28 | 2003-12-04 | Hamdan Majil M. | Integrated video/data information system and method for application to commercial vehicles to enhance driver awareness |
US7005974B2 (en) | 2002-04-19 | 2006-02-28 | Donnelly Corporation | Vehicle imaging system |
US7004606B2 (en) | 2002-04-23 | 2006-02-28 | Donnelly Corporation | Automatic headlamp control |
US6771208B2 (en) * | 2002-04-24 | 2004-08-03 | Medius, Inc. | Multi-sensor system |
US6946978B2 (en) | 2002-04-25 | 2005-09-20 | Donnelly Corporation | Imaging system for vehicle |
US7123168B2 (en) | 2002-04-25 | 2006-10-17 | Donnelly Corporation | Driving separation distance indicator |
EP1501703B1 (en) | 2002-04-29 | 2016-05-11 | Magna Mirrors Holding GmbH | Cover module |
EP1504276B1 (en) | 2002-05-03 | 2012-08-08 | Donnelly Corporation | Object detection system for vehicle |
US6741377B2 (en) | 2002-07-02 | 2004-05-25 | Iridigm Display Corporation | Device having a light-absorbing mask and a method for fabricating same |
US6864784B1 (en) * | 2002-07-19 | 2005-03-08 | Barry Loeb | Vehicle speed and safety warning system |
JP2004082829A (en) | 2002-08-26 | 2004-03-18 | Denso Corp | On-vehicle camera |
JP3861781B2 (en) * | 2002-09-17 | 2006-12-20 | 日産自動車株式会社 | Forward vehicle tracking system and forward vehicle tracking method |
WO2004042457A2 (en) | 2002-11-05 | 2004-05-21 | Donnelly Corporation | Electro-optic reflective element assembly |
US7184190B2 (en) | 2002-09-20 | 2007-02-27 | Donnelly Corporation | Electro-optic reflective element assembly |
US7360932B2 (en) | 2004-06-01 | 2008-04-22 | Donnelly Corporation | Mirror assembly for vehicle |
EP1543358A2 (en) | 2002-09-20 | 2005-06-22 | Donnelly Corporation | Mirror reflective element assembly |
US7253723B2 (en) | 2003-05-19 | 2007-08-07 | Donnelly Corporation | Mirror assembly |
US7619562B2 (en) | 2002-09-30 | 2009-11-17 | Nanosys, Inc. | Phased array systems |
US7094768B2 (en) | 2002-09-30 | 2006-08-22 | Genelabs Technologies, Inc. | Nucleoside derivatives for treating hepatitis C virus infection |
JP3862015B2 (en) * | 2002-10-25 | 2006-12-27 | オムロン株式会社 | Automotive radar equipment |
KR100471268B1 (en) * | 2002-10-28 | 2005-03-10 | 현대자동차주식회사 | Method for detecting vehicle distance |
JP2004170371A (en) * | 2002-11-22 | 2004-06-17 | Denso Corp | Azimuth detecting device |
JP4016826B2 (en) * | 2002-12-10 | 2007-12-05 | 株式会社デンソー | Object labeling method and apparatus, program |
US7541743B2 (en) | 2002-12-13 | 2009-06-02 | Ford Global Technologies, Llc | Adaptive vehicle communication controlled lighting system |
AU2003297394A1 (en) | 2002-12-20 | 2004-07-22 | Donnelly Corporation | Accessory system for vehicle |
US6971775B2 (en) | 2002-12-23 | 2005-12-06 | Donnelly Corporation | Light module for interior rearview mirror assembly |
US6798556B2 (en) | 2003-01-31 | 2004-09-28 | Rockwell Scientific Licensing, Llc. | Locally-switched reversible electrodeposition optical modulator |
US7023322B2 (en) | 2003-02-04 | 2006-04-04 | Donnelly Corporation | Garage door opening system for vehicle |
JP2004312696A (en) * | 2003-03-24 | 2004-11-04 | Hitachi Ltd | Millimeter wave-radar and method for manufacturing the same |
JP3779280B2 (en) * | 2003-03-28 | 2006-05-24 | 富士通株式会社 | Collision prediction device |
JP4979376B2 (en) | 2003-05-06 | 2012-07-18 | ジェンテックス コーポレイション | Vehicle rearview mirror elements and assemblies incorporating these elements |
US7289037B2 (en) | 2003-05-19 | 2007-10-30 | Donnelly Corporation | Mirror assembly for vehicle |
US6987419B2 (en) | 2003-07-07 | 2006-01-17 | M/A-Com, Inc. | Absorptive microwave single pole single throw switch |
EP1648746B1 (en) * | 2003-07-11 | 2008-09-10 | Toyota Jidosha Kabushiki Kaisha | Crash-safe vehicle control system |
DE10336681B4 (en) | 2003-08-09 | 2005-07-07 | Audi Ag | motor vehicle |
US7587072B2 (en) | 2003-08-22 | 2009-09-08 | Authentec, Inc. | System for and method of generating rotational inputs |
US7249860B2 (en) | 2003-09-05 | 2007-07-31 | Donnelly Corporation | Interior rearview mirror assembly |
DE10343479A1 (en) * | 2003-09-19 | 2005-04-28 | Bosch Gmbh Robert | Method for improving the visibility in a motor vehicle |
DE10346508B4 (en) | 2003-10-02 | 2007-10-11 | Daimlerchrysler Ag | Device for improving the visibility in a motor vehicle |
US7308341B2 (en) | 2003-10-14 | 2007-12-11 | Donnelly Corporation | Vehicle communication system |
JP3925488B2 (en) * | 2003-11-11 | 2007-06-06 | 日産自動車株式会社 | Image processing apparatus for vehicle |
US7338177B2 (en) | 2003-11-26 | 2008-03-04 | Donnelly Corporation | Mirror reflective element for a vehicle |
US6958729B1 (en) * | 2004-03-05 | 2005-10-25 | Lucent Technologies Inc. | Phased array metamaterial antenna system |
JP4763250B2 (en) * | 2004-04-09 | 2011-08-31 | 株式会社デンソー | Object detection device |
US7526103B2 (en) | 2004-04-15 | 2009-04-28 | Donnelly Corporation | Imaging system for vehicle |
DE102004024735A1 (en) | 2004-05-19 | 2005-12-15 | Leopold Kostal Gmbh & Co Kg | Camera arrangement for a motor vehicle |
JP4396400B2 (en) * | 2004-06-02 | 2010-01-13 | トヨタ自動車株式会社 | Obstacle recognition device |
US7227611B2 (en) | 2004-08-23 | 2007-06-05 | The Boeing Company | Adaptive and interactive scene illumination |
US6944544B1 (en) | 2004-09-10 | 2005-09-13 | Ford Global Technologies, Llc | Adaptive vehicle safety system for collision compatibility |
US7828478B2 (en) * | 2004-09-29 | 2010-11-09 | Delphi Technologies, Inc. | Apparatus and method for thermal detection |
JPWO2006035510A1 (en) * | 2004-09-29 | 2008-05-15 | 株式会社日立製作所 | Vehicle external recognition device |
US7881496B2 (en) * | 2004-09-30 | 2011-02-01 | Donnelly Corporation | Vision system for vehicle |
US20060091654A1 (en) * | 2004-11-04 | 2006-05-04 | Autoliv Asp, Inc. | Sensor system with radar sensor and vision sensor |
US20060103727A1 (en) | 2004-11-17 | 2006-05-18 | Huan-Chin Tseng | Vehicle back up camera |
US8258932B2 (en) | 2004-11-22 | 2012-09-04 | Donnelly Corporation | Occupant detection system for vehicle |
JP2006151125A (en) * | 2004-11-26 | 2006-06-15 | Omron Corp | On-vehicle image processing device |
DE102004059332A1 (en) | 2004-12-09 | 2006-06-14 | Robert Bosch Gmbh | Radar transceiver |
US7250853B2 (en) * | 2004-12-10 | 2007-07-31 | Honeywell International Inc. | Surveillance system |
US7720580B2 (en) | 2004-12-23 | 2010-05-18 | Donnelly Corporation | Object detection system for vehicle |
DE102004063541A1 (en) | 2004-12-30 | 2006-07-13 | Robert Bosch Gmbh | Antenna arrangement for a radar transceiver |
US7196305B2 (en) * | 2005-01-18 | 2007-03-27 | Ford Global Technologies, Llc | Vehicle imaging processing system and method having obstructed image detection |
US7199747B2 (en) | 2005-05-03 | 2007-04-03 | M/A-Com, Inc. | Generating a fine time offset using a SiGe pulse generator |
US20060250501A1 (en) | 2005-05-06 | 2006-11-09 | Widmann Glenn R | Vehicle security monitor system and method |
ATE517368T1 (en) | 2005-05-16 | 2011-08-15 | Donnelly Corp | VEHICLE MIRROR ARRANGEMENT WITH CHARACTER ON THE REFLECTIVE PART |
ES2401523T3 (en) | 2005-07-06 | 2013-04-22 | Donnelly Corporation | Exterior mirror assembly for vehicle equipped with a blind spot indicator |
JP4823781B2 (en) * | 2005-08-31 | 2011-11-24 | 本田技研工業株式会社 | Vehicle travel safety device |
US7706978B2 (en) * | 2005-09-02 | 2010-04-27 | Delphi Technologies, Inc. | Method for estimating unknown parameters for a vehicle object detection system |
US7460951B2 (en) * | 2005-09-26 | 2008-12-02 | Gm Global Technology Operations, Inc. | System and method of target tracking using sensor fusion |
US20070088488A1 (en) * | 2005-10-14 | 2007-04-19 | Reeves Michael J | Vehicle safety system |
CN101816008A (en) | 2005-10-28 | 2010-08-25 | 马格纳电子系统公司 | Camera module for vehicle vision system |
EP1949666B1 (en) | 2005-11-01 | 2013-07-17 | Magna Mirrors of America, Inc. | Interior rearview mirror with display |
JP2007129525A (en) | 2005-11-04 | 2007-05-24 | Konica Minolta Photo Imaging Inc | Camera system and controller |
JP4304517B2 (en) | 2005-11-09 | 2009-07-29 | トヨタ自動車株式会社 | Object detection device |
JP2007155469A (en) * | 2005-12-05 | 2007-06-21 | Alpine Electronics Inc | Inter-vehicle distance detection system and inter-vehicle distance detection method |
US7439507B2 (en) * | 2005-12-29 | 2008-10-21 | Delphi Technologies, Inc. | Apparatus and method for thermal side detection in a vehicle |
DE102006005168A1 (en) | 2006-02-06 | 2007-08-09 | Leopold Kostal Gmbh & Co. Kg | camera assembly |
DE102006010671A1 (en) | 2006-03-08 | 2007-09-13 | Leopold Kostal Gmbh & Co. Kg | Camera arrangement for a motor vehicle |
JP4462231B2 (en) | 2006-05-09 | 2010-05-12 | 株式会社デンソー | Auto light device for vehicle |
JP4702200B2 (en) | 2006-06-27 | 2011-06-15 | 株式会社デンソー | RECEIVER AND RADAR DEVICE PROVIDED WITH THE RECEIVER |
US7633383B2 (en) * | 2006-08-16 | 2009-12-15 | International Business Machines Corporation | Systems and arrangements for providing situational awareness to an operator of a vehicle |
DE102006052059A1 (en) | 2006-11-04 | 2008-05-08 | Leopold Kostal Gmbh & Co. Kg | Method for operating a photoelectric sensor array |
EP3624086A1 (en) | 2007-01-25 | 2020-03-18 | Magna Electronics Inc. | Radar sensing system for vehicle |
US7914187B2 (en) | 2007-07-12 | 2011-03-29 | Magna Electronics Inc. | Automatic lighting system with adaptive alignment function |
US7920251B2 (en) * | 2007-09-24 | 2011-04-05 | Laser Technology, Inc. | Integrated still image, motion video and speed measurement system |
TWI372564B (en) | 2007-10-30 | 2012-09-11 | Av Tech Corp | Video system, image emission apparatus, video receiver apparatus and control method |
DE102008044839A1 (en) | 2008-08-28 | 2010-03-04 | Leopold Kostal Gmbh & Co. Kg | Sensor arrangement for a motor vehicle |
US7978122B2 (en) * | 2009-08-13 | 2011-07-12 | Tk Holdings Inc. | Object sensing system |
US9401954B2 (en) | 2013-11-06 | 2016-07-26 | International Business Machines Corporation | Scaling a trusted computing model in a globally distributed cloud environment |
US10575705B2 (en) | 2015-12-18 | 2020-03-03 | Micro Matic Usa, Llc | Glass rinser spin stop |
-
2008
- 2008-01-24 EP EP19206724.7A patent/EP3624086A1/en active Pending
- 2008-01-24 EP EP08780377.1A patent/EP2122599B1/en active Active
- 2008-01-24 WO PCT/US2008/051833 patent/WO2008127752A2/en active Application Filing
- 2008-01-24 US US12/524,446 patent/US8013780B2/en active Active
-
2011
- 2011-07-28 US US13/192,525 patent/US8217830B2/en active Active
-
2012
- 2012-07-03 US US13/540,856 patent/US8294608B1/en active Active
- 2012-10-22 US US13/656,975 patent/US8614640B2/en active Active
-
2013
- 2013-12-16 US US14/107,624 patent/US9140789B2/en active Active
-
2015
- 2015-09-21 US US14/859,683 patent/US9244165B1/en active Active
-
2016
- 2016-01-25 US US15/005,092 patent/US9335411B1/en active Active
- 2016-05-09 US US15/149,338 patent/US9507021B2/en active Active
- 2016-11-28 US US15/361,746 patent/US10107905B2/en active Active
-
2018
- 2018-10-22 US US16/166,333 patent/US10670713B2/en active Active
-
2020
- 2020-06-01 US US15/929,969 patent/US10877147B2/en active Active
- 2020-12-21 US US17/247,711 patent/US11506782B2/en active Active
-
2022
- 2022-11-18 US US18/056,886 patent/US11815594B2/en active Active
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014085018A1 (en) * | 2012-11-29 | 2014-06-05 | Bendix Commercial Vehicle Systems Llc | Driver view adapter for forward looking camera |
US9128354B2 (en) | 2012-11-29 | 2015-09-08 | Bendix Commercial Vehicle Systems Llc | Driver view adapter for forward looking camera |
CN105142981A (en) * | 2012-11-29 | 2015-12-09 | 奔德士商用车系统有限责任公司 | Driver view adapter for forward looking camera |
US9322908B2 (en) | 2013-12-23 | 2016-04-26 | Elwha Llc | Systems and methods for concealed radar imaging |
US9733354B2 (en) | 2013-12-23 | 2017-08-15 | Elwha Llc | Systems and methods for concealed radar imaging |
US20150185314A1 (en) * | 2013-12-26 | 2015-07-02 | International Business Machines Corporation | Radar integration with handheld electronic devices |
CN105874348A (en) * | 2013-12-26 | 2016-08-17 | 国际商业机器公司 | Radar integration with handheld electronic devices |
US9547070B2 (en) * | 2013-12-26 | 2017-01-17 | International Business Machines Corporation | Radar integration with handheld electronic devices |
US20180067204A1 (en) * | 2016-09-07 | 2018-03-08 | OmniPreSense Corporation | Radar enabled weapon detection system |
US10816658B2 (en) * | 2016-09-07 | 2020-10-27 | OmniPreSense Corporation | Radar enabled weapon detection system |
US10564261B2 (en) * | 2017-05-11 | 2020-02-18 | Ford Global Technologies, Llc | Autonomous vehicle LIDAR mirror |
Also Published As
Publication number | Publication date |
---|---|
WO2008127752A3 (en) | 2009-01-08 |
US11815594B2 (en) | 2023-11-14 |
EP2122599A2 (en) | 2009-11-25 |
US20140104095A1 (en) | 2014-04-17 |
US20110285576A1 (en) | 2011-11-24 |
US9244165B1 (en) | 2016-01-26 |
US8294608B1 (en) | 2012-10-23 |
WO2008127752A2 (en) | 2008-10-23 |
US9140789B2 (en) | 2015-09-22 |
US8614640B2 (en) | 2013-12-24 |
US20130044021A1 (en) | 2013-02-21 |
US11506782B2 (en) | 2022-11-22 |
US8217830B2 (en) | 2012-07-10 |
US20170074981A1 (en) | 2017-03-16 |
US20230110888A1 (en) | 2023-04-13 |
US9507021B2 (en) | 2016-11-29 |
US20100001897A1 (en) | 2010-01-07 |
US10670713B2 (en) | 2020-06-02 |
EP2122599A4 (en) | 2010-07-07 |
US20210109212A1 (en) | 2021-04-15 |
US9335411B1 (en) | 2016-05-10 |
US20200292696A1 (en) | 2020-09-17 |
US20160252612A1 (en) | 2016-09-01 |
US20160139263A1 (en) | 2016-05-19 |
US10107905B2 (en) | 2018-10-23 |
US20160011309A1 (en) | 2016-01-14 |
US8013780B2 (en) | 2011-09-06 |
US10877147B2 (en) | 2020-12-29 |
US20190056493A1 (en) | 2019-02-21 |
EP2122599B1 (en) | 2019-11-13 |
EP3624086A1 (en) | 2020-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11815594B2 (en) | Vehicular forward-sensing system | |
US8427288B2 (en) | Rear vision system for a vehicle | |
US6648477B2 (en) | Rearview mirror assembly with information display | |
US20170355312A1 (en) | Interior rearview mirror assembly with full screen video display | |
US20230078512A1 (en) | Overhead console accessory system with shared controls, cameras, and lighting | |
US20020041442A1 (en) | Vehicle rearview mirror system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |