US20120141315A1 - External Gear Pump - Google Patents

External Gear Pump Download PDF

Info

Publication number
US20120141315A1
US20120141315A1 US13/307,822 US201113307822A US2012141315A1 US 20120141315 A1 US20120141315 A1 US 20120141315A1 US 201113307822 A US201113307822 A US 201113307822A US 2012141315 A1 US2012141315 A1 US 2012141315A1
Authority
US
United States
Prior art keywords
seal block
pair
external gear
casing
gears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/307,822
Other languages
English (en)
Inventor
Shinji Seto
Takahiro Ito
Isao Hayase
Toshihiro Koizumi
Norihiro Saita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of US20120141315A1 publication Critical patent/US20120141315A1/en
Assigned to HITACHI AUTOMOTIVE SYSTEMS, LTD. reassignment HITACHI AUTOMOTIVE SYSTEMS, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOIZUMI, TOSHIHIRO, SAITA, NORIHIRO, HAYASE, ISAO, ITO, TAKAHIRO, SETO, SHINJI
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/20Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the form of the inner or outer contour of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0019Radial sealing elements specially adapted for intermeshing-engagement type machines or pumps, e.g. gear machines or pumps

Definitions

  • the present invention relates to an external gear pump that is used for a hydraulic pressure source for a hydraulic system and other devices and is also preferably used to increase the pressure of a low-viscosity fluid such as gasoline and a brake fluid.
  • Examples of the background art of the present invention include JP Patent Application Publication No. 2010-31771 A and JP Patent Application Publication No. 2010-121447 A.
  • JP Patent Application Publication No. 2010-31771 A discloses an external gear pump including: a pump assembly including: a pair of gears that respectively have rotating shafts pivotally supported and are externally meshed with each other; a side plate that is provided in sliding contact with side surfaces of the pair of gears; and a seal block that is located close to the gears in a given direction and seals the gears in contact with the side plate, the pump assembly driving one of the rotating shafts; a casing that houses the pump assembly; and bearings that are fixed to the casing and respectively pivotally support the rotating shafts, in which the seal block is restricted from moving with respect to a component formed integrally with the casing on a plane orthogonal to the rotating shafts.
  • JP Patent Application Publication No. 2010-121447 A discloses a gear pump including a pump assembly including: gears driven by a drive shaft; a pair of side plates that suppress leakage of an operating fluid from gear side surfaces; and a tooth tip sealing member that seals tooth tips, in which at least one of the side plates and the tooth tip sealing member are integrally formed.
  • one side surfaces of the gears slide on a plurality of members such as the casing as a pressure vessel and the bearings, and a used material is not suitable for sliding in some cases, so that the sliding resistance may be increased.
  • the present invention has been made by focusing attention on the above-mentioned problems, and therefore has an object to provide an external gear pump that is capable of achieving both the sealing property and the sliding property and is advantageous for the production cost.
  • an external gear pump includes: a casing; a pair of rotating shafts that are respectively pivotally supported by bearings provided in the casing; at least a pair of gears that are respectively fixed to the pair of rotating shafts and are externally meshed with each other; a side plate that is provided in sliding contact with one side surfaces of the pair of gears; and a seal block integrally including: a side surface sliding part that slidingly contacts another side surfaces of the pair of gears; and a tooth tip sliding part that seals tooth tips of the gears.
  • the external gear pump further includes movement restrictors on both sides of a straight line connecting axes of the pair of gears, and the movement restrictors restrict the seal block from moving with respect to the casing on a plane orthogonal to the rotating shafts.
  • the gear side surface sliding part and the tooth tip sealing part are integrally formed in the seal block. Accordingly, a material suitable for each sliding surface can be selected, and the deformation of the seal block can be small. As a result, the present invention provides the external gear pump capable of achieving both the sealing property and the sliding property.
  • the present invention provides the external gear pump capable of reducing the number of components to thereby cut the production cost, in addition to the above-mentioned effect.
  • FIG. 1 is a view illustrating an external gear pump according to Embodiment 1 of the present invention, which is a cross-sectional view taken along the line C-C′ in FIG. 2 .
  • FIG. 2 is a view illustrating the external gear pump according to Embodiment 1 of the present invention, which is a cross-sectional view taken along the line A-A′ in FIG. 1 .
  • FIG. 3 is a view illustrating the external gear pump according to Embodiment 1 of the present invention, which is a cross-sectional view taken along the line B-B′ in FIG. 1 .
  • FIG. 4 is a plan view illustrating a first seal block constituting the external gear pump according to Embodiment 1 of the present invention.
  • FIG. 5 is a plan view illustrating a lower surface of a middle casing constituting the external gear pump according to Embodiment 1 of the present invention.
  • FIG. 6 is a plan view when the first seal block is attached using a jig 60 in the external gear pump according to Embodiment 1 of the present invention.
  • FIG. 7 is a front view when the first seal block is attached using the jig 60 in the external gear pump according to Embodiment 1 of the present invention, which is a cross-sectional view taken along the line E-E′ in FIG. 6 .
  • FIG. 8 is a perspective view illustrating a convex insertion pin used for the external gear pump according to the present invention.
  • FIG. 9 is a plan view illustrating a state where a middle casing 6 is removed from an external gear pump according to Embodiment 2 of the present invention.
  • FIG. 10 is a view illustrating an external gear pump according to Embodiment 3 of the present invention, which is a cross-sectional view taken along the line H-H′ in FIG. 11 .
  • FIG. 11 is a view illustrating the external gear pump according to Embodiment 3 of the present invention, which is a cross-sectional view taken along the line G-G′ in FIG. 10 .
  • FIG. 12 is a view illustrating the external gear pump according to Embodiment 3 of the present invention, which is a cross-sectional view taken along the line F-F′ in FIG. 10 .
  • FIG. 13 is a cross-sectional view illustrating a configuration of an external gear pump according to Embodiment 4 of the present invention.
  • An external gear pump according to Embodiment 1 of the present invention is described.
  • An external gear pump 1 according to Embodiment 1 is illustrated in FIG. 1 to FIG. 3 , and includes: a front casing 2 provided on a side on which a drive source for a motor (not illustrated) and other members is set; a rear casing 3 provided on the opposite side to the motor; a middle casing 6 provided between the front casing 2 and the rear casing 3 ; a drive shaft 4 that is set rotatably with respect to these casings and is driven by the drive source; a driven shaft 5 ; a first pump unit 20 that is provided inside of the middle casing 6 on the front casing 2 side; and a second pump unit 10 provided on the rear casing 3 side.
  • the front casing 2 is provided with: a through-hole 2 a into which the drive shaft 4 can be inserted, the through-hole 2 a having a stepped shape that allows a sealing member 36 and a front bearing 30 for the drive shaft to be inserted into the through-hole 2 a on the drive source side and on the middle casing 6 side, respectively; and an insertion hole 2 b having a stepped shape that allows the driven shaft 5 and a front bearing 32 for the driven shaft to be inserted into the insertion hole 2 b.
  • the rear casing 3 is provided with: an insertion hole 3 a into which the drive shaft 4 can be inserted, the insertion hole 3 a having a stepped shape that allows a rear bearing 31 for the drive shaft 4 to be inserted into the insertion hole 3 a on the middle casing 6 side; and an insertion hole 3 b having a stepped shape that allows the driven shaft 5 and a rear bearing 33 for the driven shaft to be inserted into the insertion hole 3 b.
  • the middle casing 6 is provided with: a cylindrical concave part 6 c on the front casing 2 side and a cylindrical concave part 6 d on the rear casing 3 side, for inserting the first pump unit 20 and the second pump unit 10 , respectively; an insertion hole 6 f formed in at least one of the cylindrical concave parts 6 c and 6 d, for inserting a sealing member 35 ; further, a through-hole 6 a into which the drive shaft 4 is inserted; and a through-hole 6 b into which the driven shaft 5 is inserted.
  • the drive shaft 4 is pivotally supported by: the rear casing 3 via the rear bearing 31 for the drive shaft, the rear bearing 31 being provided in the rear casing 3 ; and the front casing 2 via the front bearing 30 for the drive shaft, the front bearing 30 being provided in the front casing 2 .
  • the driven shaft 5 is pivotally supported by: the rear casing 3 via the rear bearing 33 for the driven shaft, the rear bearing 33 being provided in the rear casing 3 ; and the front casing 2 via the front bearing 32 for the driven shaft, the front bearing 32 being provided in the front casing 2 .
  • the first pump unit 20 is inserted into the cylindrical concave part 6 c, and the second pump unit 10 is inserted into the cylindrical concave part 6 d. In this state, a pump operation can be obtained.
  • Configurations and behaviors of the first pump unit 20 and the second pump unit 10 are basically the same as each other, except that the first pump unit 20 is attached to the front casing 2 and the second pump unit 10 is attached to the rear casing 3 . Accordingly, with the first pump unit 20 being taken as an example, the configurations and behaviors of these pump units are described below in detail.
  • the first pump unit 20 includes a first drive gear 23 , a first driven gear 24 , a first seal block 22 , a first side plate 21 , a first seal block sealing member 26 , and a first side plate sealing member 25 .
  • the first drive gear 23 is meshed with the first driven gear 24 , and these two gears 23 and 24 integrally rotate.
  • a keyway is formed in the first drive gear 23 , and a drive pin 4 a that is fitted into the drive shaft 4 to move integrally therewith is fitted to the keyway.
  • the first drive gear 23 and the drive shaft 4 integrally rotate.
  • a keyway is formed in the first driven gear 24 , and a drive pin 5 a that moves integrally with the driven shaft 5 is fitted to the keyway.
  • the first driven gear 24 and the driven shaft 5 integrally rotate. Accordingly, the first drive gear 23 , the first driven gear 24 , and the driven shaft 5 integrally rotate along with the rotation of the drive shaft 4 .
  • the first side plate 21 is a member for sealing gear side surfaces in sliding contact with the side surfaces of the first drive gear 23 and the first driven gear 24 , and is sandwiched between the middle casing 6 and these two gears 23 and 24 .
  • the sealing member 25 is provided on the middle casing 6 side of the first side plate 21 .
  • the first seal block 22 has an L shape as illustrated in FIG. 1 , and seals gear side surfaces opposite to the gear side surfaces sealed by the first side plate 21 and also seals tooth tips.
  • the first seal block 22 is provided with a groove 22 d such that a sliding surface is formed inside of gear tooth bottoms, and slidingly contacts the gear side surfaces via a convex sliding-contact part 22 g.
  • the sliding friction can be reduced by using, for example, a resin for the first seal block 22 .
  • a first pin insertion hole 22 a of the first seal block 22 and a second pin insertion hole 22 b of the first seal block 22 are provided respectively on the right side and the left side in FIG. 1 and FIG. 2 .
  • the first seal block 22 also includes tooth tip sliding surfaces 22 e and 22 f for sealing when the tooth tips slide.
  • a method of attaching the first seal block 22 is described.
  • the tooth tip sliding surfaces 22 e and 22 f of the first seal block 22 keep the seal with the tooth tips of the gears. Accordingly, the tooth tip sliding surfaces 22 e and 22 f are each required to have a diameter slightly smaller than those of passages of the tooth tips during pump driving and have small individual variations in cutting amount (to be described later) by the tooth tips. If these are not appropriate, a gap generated at the time of pressure application may increase leakage of the tooth tip parts, and variations in cutting amount (to be described later) of the first seal block 22 by the tooth tips may lead to occurrence of variations in volumetric efficiency.
  • a method of positioning the seal block is described with reference to FIG. 6 and FIG. 7 .
  • a jig 60 including a shaft part 60 a and a gear alternative part 60 b is used.
  • the shaft part 60 a has the largest diameter that allows the shaft part 60 a to be inserted into the through-hole 2 a of the front casing 2
  • the gear alternative part 60 b has a diameter corresponding to a desired tooth tip position.
  • the diameter corresponding to a desired tooth tip position means, for example, a diameter that falls within the following range.
  • the jig 60 having such a configuration as described above is inserted into the front casing 2 , whereby a fixing position of the first seal block 22 is determined.
  • holes extending from the first seal block 22 into the front casing 2 are formed together using, for example, a drill on the right side (inlet side, a hole from the first pin insertion hole 22 a of the first seal block 22 to the first pin insertion hole 2 d of the front casing 2 ) and the left side (outlet side, a hole from the second pin insertion hole 22 b of the first seal block 22 to the second pin insertion hole 2 c of the front casing 2 ) of a line connecting the drive shaft and the driven shaft.
  • a first pin 50 is inserted into the first pin insertion hole 22 a of the first seal block 22 and the first pin insertion hole 2 d of the front casing 2
  • a second pin 51 is inserted into the second pin insertion hole 22 b of the first seal block 22 and the second pin insertion hole 2 c of the front casing 2 .
  • the first seal block 22 is fixed to the front casing 2
  • the second seal block 12 is fixed to the rear casing 3 .
  • the first pin 50 is formed into a columnar shape, and the first pin insertion hole 22 a of the first seal block 22 and the first pin insertion hole 2 d of the front casing 2 are each formed into a cylindrical shape having the same diameter as that of the first pin 50 .
  • the first seal block 22 is fixed by the first pin 50 rotatably with respect to the front casing 2 .
  • the second pin 51 is formed into a columnar shape, and the second pin insertion hole 22 b of the first seal block 22 and the second pin insertion hole 2 c of the front casing 2 are each formed into a cylindrical shape having the same diameter as that of the second pin 51 .
  • the first seal block 22 which is rotatably supported by the first pin 50 , is restricted from moving in a rotation direction thereof, and thus is restricted from moving with respect to the front casing 2 on a plane orthogonal to the drive shaft 4 and the driven shaft 5 .
  • the second pin 51 may be formed into, for example, a convex shape illustrated in FIG. 8 instead of the columnar shape. It is preferable to set the second pin 51 in a direction in which a convex part thereof restricts movement in an upper-lower direction in FIG. 9 (the rotation direction about the first pin 50 ). In this way, the position of the first seal block 22 with respect to the front casing 2 is fixed.
  • the first seal block sealing member 26 is provided in a circular ring-like pattern in an outer periphery of a side surface of the first seal block 22 on the front casing 2 side.
  • a low suction pressure is applied inside of the first seal block sealing member 26 .
  • a high discharge pressure generated during pump driving is applied to a gear-side side surface of the first seal block 22 in a zone outside from the sliding-contact part 22 g and to a side surface of the middle casing 6 in a zone outside from a seal line 22 h. Accordingly, this discharge pressure causes a force pushing the first seal block 22 against the front casing 2 from the upper side to the lower side in FIG. 1 (from the near side to the far side of the sheet of FIG.
  • the first seal block sealing member 26 may be set at an inner position instead of the outer periphery of the first seal block 22 , under the condition that a pressure-applied area outside from the sealing member 26 set at the inner position is smaller than a higher pressure-applied area on the opposite side.
  • the forming method is not limited to the above as long as hole positions and shapes of the first pin insertion hole 22 a of the first seal block 22 , the first pin insertion hole 2 d of the front casing 2 , the second pin insertion hole 22 b of the first seal block 22 , and the second pin insertion hole 2 c of the front casing 2 can be processed with a precision high enough to achieve the desired distance.
  • the first seal block 22 is fixed both orthogonally and parallel to the drive shaft 4 and the driven shaft 5 .
  • Embodiment 1 When the drive shaft 4 is driven by the drive source (not illustrated), the first drive gear 23 follows the drive shaft 4 to rotate in a direction indicated by an arrow 55 in FIG. 2 , and the first driven gear 24 meshed with the first drive gear 23 rotates in a direction indicated by an arrow 55 ′.
  • a liquid enters the middle casing 6 from an inlet port 41 via a route (not illustrated), fills an inlet part 56 , and is housed in tooth grooves to be transported in the rotation direction along with the rotations of the first drive gear 23 and the first driven gear 24 .
  • the first drive gear 23 and the first driven gear 24 start to be meshed with each other on an outlet part 57 side, whereby the liquid is pushed out of the tooth grooves. Accordingly, the liquid is continuously transported by the rotations of the first drive gear 23 and the first driven gear 24 , and the pressure on the outlet part 57 side thus increases, so that the liquid is discharged from an outlet port (not illustrated).
  • the seal is kept between the respective tooth tips of the first drive gear 23 and the first driven gear 24 and the seal block 22 , and hence only the pressure on the inlet part 56 side of this seal decreases, whereas the pressure in other portions increase.
  • the tooth tips of the first drive gear 23 and the first driven gear 24 are pushed out from the high-pressure side to the low-pressure side, that is, to the right in FIG. 2 , by an amount of gap between the drive shaft 4 and the driven shaft 5 and an amount of gap between each of the drive shaft 4 and the driven shaft 5 and the bearings.
  • the tooth tip sliding surfaces 22 e and 22 f of the first seal block 22 are cut off by an amount of movement of the tooth tips.
  • the external gear pump 1 In the external gear pump 1 , a break-in operation is performed by such cutting off
  • the break-in operation absorbs production variations between the tooth tip sliding surface 22 f or 22 e and the first drive gear 23 or the first driven gear 24 , and thus minimizes a gap between the tooth tips and the first seal block 22 during pump driving. Accordingly, the external gear pump 1 produces an effect of suppressing, to the minimum, a return of the liquid from the high-pressure side to the low-pressure side and thus increasing volumetric efficiency.
  • the position of the first seal block 22 with respect to the gears can be determined with a high precision, and hence a difference in component dimensions due to production variations can be absorbed at the time of assemblage.
  • the break-in operation time can be adjusted by adjusting the fixing position of the first seal block 22 .
  • the first seal block 22 is positioned against the jig 60 to be fixed, whereby the first seal block 22 can be easily fixed at a middle position. This can provide a configuration with a high volumetric efficiency while the break-in operation time is the shortest.
  • the gear side surface sliding part and the tooth tip sliding part are integrally formed in the first seal block 22 , and hence a material that makes a sliding resistance of each sliding part small can be selected for the first seal block 22 .
  • the load is supported by the first pin 50 , and hence the material can be selected for the first seal block 22 with a focus on the sliding property. This can provide a gear pump with an excellent mechanical efficiency.
  • the first seal block 22 is fixed at two points, and hence the used pins can have a large cross-sectional area, resulting in an increase in flexural rigidity. Accordingly, the deformation of the first seal block 22 due to the load is small, a gap in the tooth tip sliding surfaces 22 e and 22 f can be reduced, and a high sealing property of the external gear pump 1 can be achieved.
  • the two pump units are provided, and hence, for example, in the case of the use as a pump for a brake, it is possible to provide an external gear pump with such a high reliability that two separated high pressures can be made by a single drive source.
  • An external gear pump according to Embodiment 2 is described as an example in which the first pin insertion hole 22 a of the first seal block 22 is formed into not a circular shape but a shape in which movement only in one direction is restricted.
  • FIG. 9 is a plan view (a view corresponding to FIG. 5 of Embodiment 1) illustrating a state where the middle casing 6 is removed from the external gear pump according to Embodiment 2.
  • a right half thereof in FIG. 9 is processed so as to have the same diameter as that of the first pin 50 , and a left side thereof is processed such that a gap is formed between a hole inner surface and the first pin 50 .
  • the second pin insertion hole 22 b of the first seal block 22 is formed into a cylindrical shape, and the second pin 51 is formed into a columnar shape or may be formed into the convex shape illustrated in FIG. 8 .
  • a high pressure is applied to the first seal block 22 from the right side in FIG. 9 , and a low pressure is applied thereto from the left side in FIG. 9 only in a portion in which the gear tooth tip sliding part is sealed, so that a leftward force is applied as a whole.
  • the first seal block 22 does not move to the right, and hence the first seal block 22 is fixed rotatably with respect to the front casing 2 by restricting only half the circumference thereof similarly to the time of restricting the entire circumference thereof Further, the first seal block 22 is restricted by the second pin 51 from moving in the rotation direction of the first seal block 22 , so that the first seal block 22 is restricted from moving with respect to the front casing 2 on the plane orthogonal to the drive shaft 4 and the driven shaft 5 .
  • Other configurations and behaviors than the above are the same as those of Embodiment 1.
  • Embodiment 2 produces an effect that the restriction of only half the circumference facilitates assemblage and a component precision tolerance of the respective parts can be increased, in addition to effects similar to those of Embodiment 1.
  • An external gear pump according to Embodiment 3 is described as an example in which one pump unit is provided.
  • the external gear pump 1 according to Embodiment 3 includes: the front casing 2 provided on the side on which the drive source for the motor (not illustrated) and other members is set; a cover casing 70 provided on the opposite side to the motor; a pair of the shafts 4 and 5 that are set rotatably with respect to the front casing 2 and the cover casing 70 , the drive shaft 4 being driven by the drive source, the driven shaft 5 following rotation of the drive shaft 4 ; and a pump unit 90 that is provided inside of the cover casing 70 on the front casing 2 side.
  • the cover casing 70 is provided with a cylindrical concave part 70 a into which the pump unit 90 can be inserted.
  • the pump unit 90 has the same configuration as that of the first pump unit 20 in Embodiment 1, and a method of attaching the pump unit 90 is similar to the method of attaching the first pump unit 20 to the front casing 2 in Embodiment 1 or Embodiment 2. Other configurations and behaviors are similar to those of Embodiment 1.
  • Embodiment 3 can produce an effect similar to those of Embodiment 1 or Embodiment 2. Further, in Embodiment 3, because only one pump unit is provided, the external gear pump according to Embodiment 3 is suitably used for hydraulic equipment with only one system provided for pressure rising, and the configuration of the external gear pump can be simplified.
  • An external gear pump according to Embodiment 4 is described as an example in which one pump unit is provided and one rotating shaft is pivotally supported at two points.
  • a configuration of the external gear pump 1 according to Embodiment 4 is described with reference to FIG. 13 .
  • the cover casing 70 is provided with the cylindrical concave part 70 a into which the pump unit 90 can be inserted, on the front casing 2 side thereof.
  • the cover casing 70 is provided with an insertion hole 70 b having a stepped shape, and the drive shaft 4 and a (cover casing side) bearing 80 are inserted into the insertion hole 70 b.
  • the cover casing 70 is further provided with an insertion hole 70 c having a stepped shape, and the driven shaft 5 and a (cover casing side) bearing 81 are inserted into the insertion hole 70 c.
  • the drive shaft 4 is pivotally supported by: the front casing 2 via the front bearing 30 for the drive shaft; and the cover casing 70 via the cover casing side bearing 80 .
  • the driven shaft 5 is pivotally supported by: the front casing 2 via the front bearing 32 for the driven shaft; and the cover casing 70 via the cover casing side bearing 81 .
  • Other configurations and behaviors are the same as those of Embodiment 3, and Embodiment 4 can produce an effect similar to that of Embodiment 3.
  • Embodiment 4 because both ends of each of the drive shaft 4 and the driven shaft 5 are supported, the load is distributed, and tilts of the shafts can be suppressed. As a result, an increase in sliding resistance on the gear sliding surface and the tooth tip sliding surface can be suppressed, and hence the external gear pump 1 capable of enhancing the sliding property can be provided.
  • the pins are used, but movement restrictors such as keys and bolts may be used instead.
  • various metals, synthetic resins, and other substances are used for the materials of the seal blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
US13/307,822 2010-12-01 2011-11-30 External Gear Pump Abandoned US20120141315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010268074A JP5441873B2 (ja) 2010-12-01 2010-12-01 外接歯車ポンプ
JP2010-268074 2010-12-01

Publications (1)

Publication Number Publication Date
US20120141315A1 true US20120141315A1 (en) 2012-06-07

Family

ID=46083113

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/307,822 Abandoned US20120141315A1 (en) 2010-12-01 2011-11-30 External Gear Pump

Country Status (4)

Country Link
US (1) US20120141315A1 (zh)
JP (1) JP5441873B2 (zh)
CN (1) CN102562575B (zh)
DE (1) DE102011087424B4 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160265526A1 (en) * 2015-03-12 2016-09-15 Showa Corporation Pump apparatus and marine vessel propelling machine
US10539134B2 (en) 2014-10-06 2020-01-21 Project Phoenix, LLC Linear actuator assembly and system
US10544810B2 (en) 2014-06-02 2020-01-28 Project Phoenix, LLC Linear actuator assembly and system
US10544861B2 (en) 2014-06-02 2020-01-28 Project Phoenix, LLC Hydrostatic transmission assembly and system
US10598176B2 (en) * 2014-07-22 2020-03-24 Project Phoenix, LLC External gear pump integrated with two independently driven prime movers
US10677352B2 (en) 2014-10-20 2020-06-09 Project Phoenix, LLC Hydrostatic transmission assembly and system
CN112709692A (zh) * 2020-12-29 2021-04-27 西安精密机械研究所 一种提高海水泵容积效率的轴向补偿机构以及海水泵
US11085440B2 (en) 2015-09-02 2021-08-10 Project Phoenix, LLC System to pump fluid and control thereof
US11118581B2 (en) 2014-02-28 2021-09-14 Project Phoenix, LLC Pump integrated with two independently driven prime movers
US11280334B2 (en) 2014-04-22 2022-03-22 Project Phoenix, LLC Fluid delivery system with a shaft having a through-passage
US11408442B2 (en) 2014-09-23 2022-08-09 Project Phoenix, LLC System to pump fluid and control thereof
US11846283B2 (en) 2015-09-02 2023-12-19 Project Phoenix, LLC System to pump fluid and control thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181908A1 (ja) * 2014-05-28 2015-12-03 株式会社 島津製作所 歯車ポンプ又はモータ
JP6473336B2 (ja) * 2015-01-30 2019-02-20 日立オートモティブシステムズ株式会社 ギヤポンプおよびブレーキ装置
DE102016220334B4 (de) * 2016-10-18 2024-02-01 BSH Hausgeräte GmbH Zahnradpumpe für Dosiersystem
DE102017106827A1 (de) 2017-03-30 2018-10-04 Schaeffler Technologies AG & Co. KG Zahnradpumpe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966860A (en) * 1957-04-03 1961-01-03 Lobee Pump & Machinery Co Pump for corrosive fluids
US3213800A (en) * 1965-05-04 1965-10-26 Webster Electric Co Inc Unitary wear plate and seal
US3306225A (en) * 1964-07-08 1967-02-28 Sylvester W Smith Self-lubricating pump
US3816042A (en) * 1971-03-17 1974-06-11 Lamborghini Oleodinamica Gear pump with balanced side sealing bushes
US5178528A (en) * 1990-10-24 1993-01-12 Jean Malfit Hydraulic generator-receiver for power transmission
US5232356A (en) * 1990-02-16 1993-08-03 Kabushiki Kaisha Komatsu Seisakusho Seal device for gear pump
US8579616B2 (en) * 2008-11-17 2013-11-12 Hitachi Automotive Systems, Ltd. Gear pump

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1728050A1 (de) * 1968-08-19 1975-08-28 Otto Eckerle Spiel- und verschleissausgleichende hochdruck-zahnradpumpe bzw. -motor
JPS5192404A (zh) * 1975-02-12 1976-08-13
CN2751161Y (zh) * 2004-12-31 2006-01-11 徐州科源液压有限公司 一种液压齿轮泵
JP5164720B2 (ja) * 2008-07-30 2013-03-21 日立オートモティブシステムズ株式会社 外接歯車ポンプ
JP5022323B2 (ja) * 2008-09-08 2012-09-12 日立オートモティブシステムズ株式会社 ギヤポンプ
CN201650725U (zh) * 2010-05-24 2010-11-24 青州市金星工程机械液压件厂 一种齿轮泵

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2966860A (en) * 1957-04-03 1961-01-03 Lobee Pump & Machinery Co Pump for corrosive fluids
US3306225A (en) * 1964-07-08 1967-02-28 Sylvester W Smith Self-lubricating pump
US3213800A (en) * 1965-05-04 1965-10-26 Webster Electric Co Inc Unitary wear plate and seal
US3816042A (en) * 1971-03-17 1974-06-11 Lamborghini Oleodinamica Gear pump with balanced side sealing bushes
US5232356A (en) * 1990-02-16 1993-08-03 Kabushiki Kaisha Komatsu Seisakusho Seal device for gear pump
US5178528A (en) * 1990-10-24 1993-01-12 Jean Malfit Hydraulic generator-receiver for power transmission
US8579616B2 (en) * 2008-11-17 2013-11-12 Hitachi Automotive Systems, Ltd. Gear pump

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713757B2 (en) 2014-02-28 2023-08-01 Project Phoenix, LLC Pump integrated with two independently driven prime movers
US11118581B2 (en) 2014-02-28 2021-09-14 Project Phoenix, LLC Pump integrated with two independently driven prime movers
US11280334B2 (en) 2014-04-22 2022-03-22 Project Phoenix, LLC Fluid delivery system with a shaft having a through-passage
US11060534B2 (en) 2014-06-02 2021-07-13 Project Phoenix, LLC Linear actuator assembly and system
US11867203B2 (en) 2014-06-02 2024-01-09 Project Phoenix, LLC Linear actuator assembly and system
US10544810B2 (en) 2014-06-02 2020-01-28 Project Phoenix, LLC Linear actuator assembly and system
US10544861B2 (en) 2014-06-02 2020-01-28 Project Phoenix, LLC Hydrostatic transmission assembly and system
US11067170B2 (en) 2014-06-02 2021-07-20 Project Phoenix, LLC Hydrostatic transmission assembly and system
US10598176B2 (en) * 2014-07-22 2020-03-24 Project Phoenix, LLC External gear pump integrated with two independently driven prime movers
US20210317828A1 (en) * 2014-07-22 2021-10-14 Project Phoenix, LLC External Gear Pump Integrated with Two Independently Driven Prime Movers
US10995750B2 (en) * 2014-07-22 2021-05-04 Project Phoenix, LLC External gear pump integrated with two independently driven prime movers
US11512695B2 (en) * 2014-07-22 2022-11-29 Project Phoenix, LLC External gear pump integrated with two independently driven prime movers
US11408442B2 (en) 2014-09-23 2022-08-09 Project Phoenix, LLC System to pump fluid and control thereof
US11242851B2 (en) 2014-10-06 2022-02-08 Project Phoenix, LLC Linear actuator assembly and system
US10539134B2 (en) 2014-10-06 2020-01-21 Project Phoenix, LLC Linear actuator assembly and system
US10677352B2 (en) 2014-10-20 2020-06-09 Project Phoenix, LLC Hydrostatic transmission assembly and system
US11054026B2 (en) 2014-10-20 2021-07-06 Project Phoenix, LLC Hydrostatic transmission assembly and system
US20160265526A1 (en) * 2015-03-12 2016-09-15 Showa Corporation Pump apparatus and marine vessel propelling machine
US9885355B2 (en) * 2015-03-12 2018-02-06 Showa Corporation Pump apparatus and marine vessel propelling machine
US11085440B2 (en) 2015-09-02 2021-08-10 Project Phoenix, LLC System to pump fluid and control thereof
US11846283B2 (en) 2015-09-02 2023-12-19 Project Phoenix, LLC System to pump fluid and control thereof
CN112709692A (zh) * 2020-12-29 2021-04-27 西安精密机械研究所 一种提高海水泵容积效率的轴向补偿机构以及海水泵

Also Published As

Publication number Publication date
CN102562575B (zh) 2015-05-13
JP5441873B2 (ja) 2014-03-12
JP2012117457A (ja) 2012-06-21
DE102011087424B4 (de) 2014-11-27
CN102562575A (zh) 2012-07-11
DE102011087424A1 (de) 2012-06-06

Similar Documents

Publication Publication Date Title
US20120141315A1 (en) External Gear Pump
US11512695B2 (en) External gear pump integrated with two independently driven prime movers
KR101698914B1 (ko) 이중 배출 펌프
JP2010223033A (ja) ギヤポンプ及びブレーキ装置用ギヤポンプ
JP5798250B2 (ja) ギヤポンプ
CN2900865Y (zh) 内啮合齿轮泵
JP5164720B2 (ja) 外接歯車ポンプ
JP2007218128A (ja) ギヤポンプ
JP6631106B2 (ja) 歯車ポンプ又は歯車モータ
KR101948228B1 (ko) 하우징 일체형 분리판을 갖는 지로터 펌프
JP2016023581A (ja) 歯車ポンプ又はモータ
JP4105124B2 (ja) ねじ型機械
WO2021176510A1 (ja) 歯車ポンプ又は歯車モータおよび歯車ポンプ又は歯車モータの製造方法
WO2024070140A1 (ja) 歯車ポンプまたは歯車モータ
JP2006138285A (ja) ポンプ装置
JP6402862B2 (ja) 歯車ポンプ又は歯車モータ
JP2002106476A (ja) ギヤポンプ
CN105179229A (zh) 外啮合齿轮泵及液力变速器液压系统
GB2510459A (en) Hydrodynamic gearing having flat sided bearings and pressurised fluid
JP2006170089A (ja) ポンプ装置
JP2008014292A (ja) ギヤポンプ
JP5222758B2 (ja) ギヤポンプ
JP2008038769A (ja) ギヤポンプ
JP2012192477A (ja) 剛平行弾性体及び剛平行弾性体の駆動方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI AUTOMOTIVE SYSTEMS, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SETO, SHINJI;ITO, TAKAHIRO;HAYASE, ISAO;AND OTHERS;SIGNING DATES FROM 20111103 TO 20111108;REEL/FRAME:029386/0385

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION