US20120117990A1 - Heat transfer process - Google Patents
Heat transfer process Download PDFInfo
- Publication number
- US20120117990A1 US20120117990A1 US13/386,701 US201013386701A US2012117990A1 US 20120117990 A1 US20120117990 A1 US 20120117990A1 US 201013386701 A US201013386701 A US 201013386701A US 2012117990 A1 US2012117990 A1 US 2012117990A1
- Authority
- US
- United States
- Prior art keywords
- refrigerant
- ene
- heat transfer
- trans
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/106—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/11—Ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/11—Ethers
- C09K2205/112—Halogenated ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/122—Halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/10—Components
- C09K2205/12—Hydrocarbons
- C09K2205/126—Unsaturated fluorinated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/06—Metal compounds
- C10M2201/062—Oxides; Hydroxides; Carbonates or bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2201/00—Inorganic compounds or elements as ingredients in lubricant compositions
- C10M2201/10—Compounds containing silicon
- C10M2201/102—Silicates
- C10M2201/103—Clays; Mica; Zeolites
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/02—Well-defined aliphatic compounds
- C10M2203/022—Well-defined aliphatic compounds saturated
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/06—Well-defined aromatic compounds
- C10M2203/065—Well-defined aromatic compounds used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
- C10M2205/0285—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical
- C10M2209/043—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an alcohol or ester thereof; bound to an aldehyde, ketonic, ether, ketal or acetal radical used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/102—Polyesters
- C10M2209/1023—Polyesters used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/10—Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/103—Polyethers, i.e. containing di- or higher polyoxyalkylene groups
- C10M2209/1033—Polyethers, i.e. containing di- or higher polyoxyalkylene groups used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2211/00—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions
- C10M2211/02—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only
- C10M2211/022—Organic non-macromolecular compounds containing halogen as ingredients in lubricant compositions containing carbon, hydrogen and halogen only aliphatic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/055—Particles related characteristics
- C10N2020/06—Particles of special shape or size
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/30—Refrigerators lubricants or compressors lubricants
Definitions
- the present invention relates to a heat transfer process using a composition containing hydrofluoroolefins. It relates more particularly to the use of a composition containing hydrofluoroolefins in heat pumps.
- HFC-134a a chlorofluorocarbon refrigerant
- HFC-134a hydrofluorocarbon refrigerant (1,1,1,2-tetrafluoroethane: HFC-134a)
- GWP global warming potential
- carbon dioxide is nontoxic, nonflammable and has a very low GWP
- it has been suggested as a refrigerant in air conditioning systems as a replacement for HFC-134a.
- the use of carbon dioxide presents several drawbacks, notably connected with the very high pressure when it is employed as refrigerant in existing equipment and technologies.
- compositions comprising at least one fluoroalkene having three or four carbon atoms, notably pentafluoropropene and tetrafluoropropene, preferably having a GWP of at most 150, as heat transfer fluids.
- fluorohaloalkenes having from 3 to 6 carbon atoms notably tetrafluoropropenes, pentafluoropropenes and chlorotrifluoropropenes are described as being usable as heat transfer fluid.
- compositions containing hydrofluoroolefins are quite particularly suitable as heat transfer fluid in heat pumps, especially heat pumps operating at high condensation temperature. Moreover, these compositions have a negligible ODP and a GWP less than that of the existing heat transfer fluids.
- a heat pump is a thermodynamic device enabling heat to be transferred from the coldest medium to the hottest medium.
- the heat pumps employed for heating are said to be of the compression type and operation is based on the principle of a cycle with compression of fluids, called refrigerants. These heat pumps function with compression systems having a single stage or several stages. At a given stage, when the refrigerant is compressed and passes from the gaseous state to the liquid state, an exothermic reaction (condensation) takes place, which produces heat. Conversely, if the fluid is expanded, causing it to pass from the liquid state to the gaseous state, an endothermic reaction (evaporation) takes place, which produces a sensation of cold. Thus, everything is based on the change of state of a fluid used in a closed circuit.
- Each stage of a compression system comprises (i) an evaporation step during which, on contact with calories drawn from the environment, the refrigerant, on account of its low boiling point, passes from the two-phase state (liquid/gas) to the gaseous state, (ii) a compression step during which the gas from the preceding step is raised to high pressure, (iii) a condensation step during which the gas will transfer its heat to the heating circuit (hot environment); the refrigerant, still compressed, becomes liquid again and (iv) an expansion step during which the pressure of the fluid is reduced.
- the fluid is ready for absorbing calories again from the cold environment.
- the present invention relates to a heat transfer process using a compression system having at least one stage comprising successively a step of evaporation of a refrigerant, a compression step, a condensation step of said fluid at a temperature greater than or equal to 70° C. and an expansion step of said fluid, characterized in that the refrigerant comprises at least one hydrofluoroolefin having at least 4 carbon atoms represented by formula (I) R 1 CH ⁇ CHR 2 in which R 1 and R 2 represent, independently, alkyl groups having from 1 to 6 carbon atoms, substituted with at least one fluorine atom, optionally with at least one chlorine atom.
- At least one alkyl group of the hydrofluoroolefin is completely substituted with fluorine atoms.
- the condensation temperature of the refrigerant is between 70 and 150° C., and advantageously between 95 and 140° C.
- hydrofluoroolefins of formula (I) that are particularly advantageous, mention may notably be made of 1,1,1,4,4,4-hexafluorobut-2-ene, 1,1,1,4,4,5,5,5-octafluoro-pent-2-ene, 1,1,1,4-tetrafluorobut-2-ene, 1,1,1,4,4-pentafluorobut-2-ene, 1,1,4-trifluorobut-2-ene, 1,1,1-trifluorobut-2-ene, 4-chloro-1,1,1-trifluorobut-2-ene, 4-chloro-4,4-difluorobut-2-ene.
- the preferred hydrofluoroolefins of formula (I) can be in the cis or trans form or mixture of the two.
- the refrigerant can comprise at least one compound selected from hydrofluorocarbons, hydrocarbons, (hydro)fluoroethers, hydrochlorofluoropropenes, hydrofluoropropenes, ethers, methyl formate, carbon dioxide and trans-1,2-dichloroethylene.
- hydrofluorocarbons mention may notably be made of 1,1,1,3,3-pentafluorobutane, 1,1,1,2-tetrafluoroethane, pentafluoroethane, 1,1,1,3,3-pentafluoropropane, 1,1,1,2,3-pentafluoropropane, 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1,1,2,2,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, 1,1,1,2,2,3,4,5,5,5-decafluoropentane and 1,1,1,2,3,3,3-heptafluoropropane.
- Hydrocarbons having at least three carbon atoms are preferred. Hydrocarbons with five carbon atoms such as pentane, isopentane, cyclopentane are particularly preferred.
- the preferred hydrochlorofluoropropenes are 2-chloro-3,3,3-trifluoroprop-1-ene, 1-chloro-3,3,3-trifluoroprop-1-ene, in particular trans-1-chloro-3,3,3-trifluoroprop-1-ene.
- hydrofluoroethers are those having from three to six carbon atoms.
- hydrofluoroethers mention may notably be made of heptafluoromethoxypropane, nonafluoromethoxybutane and nonafluoroethoxybutane.
- hydrofluoroether is available in several isomeric forms such as 1,1,1,2,2,3,3,4,4-nonafluoro-ethoxybutane, 1,1,1,2,3,3 -hexafluoro-2-(trifluoromethyl)-3-ethoxybutane, 1,1,1,2,2,3,3,4,4-nonafluoro-methoxybutane, 1,1,1,2,3,3-hexafluoro-2-(trifluoromethyl)-3-methoxybutane, and 1,1,1,2,2,3,3-heptafluoromethoxypropane.
- the preferred hydrofluoropropenes are trifluoropropenes such as 1,1,1-trifluoropropene, tetrafluoropropenes such as 2,3,3,3-tetrafluoropropene (HFO-1234yf), and 1,3,3,3-tetrafluoropropene (cis and/or trans).
- the ethers can be selected from dimethyl ether, diethyl ether, dimethoxymethane or dipropoxymethane.
- the refrigerant comprises at least one hydrofluoroolefin of formula (I) and at least one hydrofluorocarbon.
- the hydrofluorocarbon selected is advantageously 1,1,1,3,3-pentafluorobutane and 1,1,1,3,3-pentafluoropropane.
- Azeotropic compositions of 1,1,1,4,4,4-hexafluorobut-2-ene or of 1,1,1,4,4,5,5,5-octafluoro-pent-2-ene with methyl formate, pentane, isopentane, cyclopentane or trans-1,2-dichloroethylene may also be suitable.
- the refrigerant comprises at least 10 wt. % of hydrofluoroolefins of formula (I).
- the refrigerant comprises from 40 to 100 wt. % of 1,1,1,4,4,4-hexafluorobut-2-ene and from 0 to 60 wt. % of at least one compound selected from pentane, isopentane, cyclopentane and trans-1,2-dichloroethylene.
- refrigerants that are particularly preferred, mention may be made of those comprising from 60 to 100 wt. % of 1,1,1,4,4,4-hexafluorobut-2-ene and from 0 to 40 wt. % of cyclopentane, pentane, isopentane or trans-1,2-dichloroethylene.
- the refrigerant used in the present invention can comprise a stabilizer of the hydrofluoroolefin.
- the stabilizer represents at most 5 wt. % relative to the total composition of the fluid.
- nitromethane ascorbic acid, terephthalic acid, azoles such as tolutriazole or benzotriazole, phenolic compounds such as tocopherol, hydroquinone, t-butyl hydroquinone, 2,6-di-ter-butyl-4-methylphenol, epoxides (alkyl optionally fluorinated or perfluorinated or alkenyl or aromatic) such as n-butyl glycidyl ether, hexanediol diglycidyl ether, allyl glycidyl ether, butylphenylglycidyl ether, phosphites, phosphates, phosphonates, thiols and lactones.
- nitromethane ascorbic acid, terephthalic acid, azoles such as tolutriazole or benzotriazole, phenolic compounds such as tocopherol, hydroquinone, t-butyl hydro
- the refrigerant used in the process according to the present invention can comprise lubricants such as mineral oil, alkylbenzene, polyalfaolefin, polyalkylene glycol, polyol ester and polyvinyl ether.
- lubricants such as mineral oil, alkylbenzene, polyalfaolefin, polyalkylene glycol, polyol ester and polyvinyl ether.
- the lubricants used with the refrigerant can comprise nanoparticles for improving the thermal conductivity of the fluid as well as its compatibility with the lubricants. As nanoparticles, mention may notably be made of particles of Al 2 O 3 or of TiO 2 .
- the lubricants used with the refrigerant can comprise dehumidifying agents of the zeolite type.
- the zeolites absorb water and thus limit corrosion and deterioration of performance.
- COP coefficient of performance, which is defined, for a heat pump, as the ratio of the useful high-temperature power supplied by the system to the power supplied to or consumed by the system
- CAP volumetric capacity, it is the calorific capacity of heating per unit volume (kJ/m3)
- % CAP or COP is the ratio of the value of CAP or COP of the fluid relative to that obtained with HCFC-114.
- the COP of the various products is calculated as % of the COP of HCFC114 or R114.
- the binary mixtures (H, J) and (C, J) have a COP, a condenser inlet temperature and a compression ratio equivalent to the value of R114 and these products are quasi-azeotropes with values of temperature lapse below 2.2° C.
- Product J and the mixtures (E, J) have a COP 5% higher than the COP of the reference product (R114).
- the COP and CAP of the various products are calculated as % of COP and CAP of R114 respectively.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0955261A FR2948678B1 (fr) | 2009-07-28 | 2009-07-28 | Procede de transfert de chaleur |
FR0955261 | 2009-07-28 | ||
PCT/FR2010/051279 WO2011015737A1 (fr) | 2009-07-28 | 2010-06-23 | Procede de transfert de chaleur |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2010/051279 A-371-Of-International WO2011015737A1 (fr) | 2009-07-28 | 2010-06-23 | Procede de transfert de chaleur |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/027,602 Continuation US20190040292A1 (en) | 2009-07-28 | 2018-07-05 | Heat transfer process |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120117990A1 true US20120117990A1 (en) | 2012-05-17 |
Family
ID=41718600
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/386,701 Abandoned US20120117990A1 (en) | 2009-07-28 | 2010-06-23 | Heat transfer process |
US16/027,602 Abandoned US20190040292A1 (en) | 2009-07-28 | 2018-07-05 | Heat transfer process |
US17/332,261 Abandoned US20220119694A1 (en) | 2009-07-28 | 2021-05-27 | Heat transfer process |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/027,602 Abandoned US20190040292A1 (en) | 2009-07-28 | 2018-07-05 | Heat transfer process |
US17/332,261 Abandoned US20220119694A1 (en) | 2009-07-28 | 2021-05-27 | Heat transfer process |
Country Status (8)
Country | Link |
---|---|
US (3) | US20120117990A1 (fr) |
EP (2) | EP2459667B1 (fr) |
JP (3) | JP6021642B2 (fr) |
CN (1) | CN102471670B (fr) |
ES (1) | ES2619933T3 (fr) |
FR (1) | FR2948678B1 (fr) |
PL (1) | PL2459667T3 (fr) |
WO (1) | WO2011015737A1 (fr) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120256119A1 (en) * | 2011-04-08 | 2012-10-11 | Ludivine Bouvier | Use of Zeolites for Stabilizing Oils |
US20120256120A1 (en) * | 2011-04-08 | 2012-10-11 | Ludivine Bouvier | Process for Reducing the Total Acidity of Refrigerating Compositions |
US20130255284A1 (en) * | 2010-11-25 | 2013-10-03 | Arkema France | Refrigerants containing (e)-1,1,1,4,4,4-hexafluorobut-2-ene |
US20140083119A1 (en) * | 2011-07-01 | 2014-03-27 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
US20140284516A1 (en) * | 2013-03-21 | 2014-09-25 | Montfort A. Johnsen | Compositions For Totally Non-Flammable Aerosol Dusters |
US9157018B2 (en) | 2010-11-25 | 2015-10-13 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9279074B2 (en) | 2009-07-28 | 2016-03-08 | Arkema France | Heat transfer process |
US20160138815A1 (en) * | 2014-11-17 | 2016-05-19 | Appollo Wind Technologies Llc | Isothermal-turbo-compressor-expander-condenser-evaporator device |
US9745496B2 (en) | 2011-01-31 | 2017-08-29 | The Chemours Company Fc, Llc | Producing heating using working fluids comprising Z-1,1,1,4,4,4-hexafluoro-2-butene |
US9828536B2 (en) | 2010-12-14 | 2017-11-28 | The Chemours Company Fc, Llc | Combinations of E-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane and their use for heating |
US9909045B2 (en) | 2012-04-04 | 2018-03-06 | Arkema France | Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene |
WO2018175367A1 (fr) * | 2017-03-20 | 2018-09-27 | The Chemours Company Fc, Llc | Compositions et utilisations de trans-1,1,1,4,4,4-hexafluoro-2-butène |
US10150901B2 (en) | 2010-12-03 | 2018-12-11 | Arkema France | Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene |
US20190002376A1 (en) * | 2015-12-23 | 2019-01-03 | Arkema France | Method for producing and purifying 2,3,3,3-tetrafluoro-1-propene |
US10618861B2 (en) | 2015-03-18 | 2020-04-14 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US10669465B2 (en) | 2016-09-19 | 2020-06-02 | Arkema France | Composition comprising 1-chloro-3,3,3-trifluoropropene |
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2948678B1 (fr) * | 2009-07-28 | 2011-10-14 | Arkema France | Procede de transfert de chaleur |
FR2979419B1 (fr) | 2011-08-30 | 2018-03-30 | Arkema France | Fluides de transfert de chaleur supercritiques a base de tetrafluoropropene |
EP2794805A1 (fr) * | 2011-12-21 | 2014-10-29 | E. I. Du Pont de Nemours and Company | Utilisation de compositions comprenant du e-1,1,1,4,4,5,5,5-octafluoro-2-pentène et éventuellement du 1,1,1,2,3-pentafluoropropane dans des cycles d'alimentation |
WO2013096513A1 (fr) * | 2011-12-21 | 2013-06-27 | E. I. Du Pont De Nemours And Company | Utilisation de e-1,1,1,4,4,5,5,5-octafluoro-2-pentène et éventuellement de 1,1,1,2,3-pentafluoropropane dans des pompes à chaleur à haute température |
JP7444719B2 (ja) | 2020-07-10 | 2024-03-06 | ダイキン工業株式会社 | 2-クロロ-1,1-ジフルオロエタン(hcfc-142)、1,1,2-トリフルオロエタン(hfc-143)、及び(e)-1,2-ジフルオロエチレン(hfo-1132(e))及び/又は(z)-1,2-ジフルオロエチレン(hfo-1132(z))の製造方法 |
KR102620257B1 (ko) * | 2021-07-20 | 2024-01-03 | 주식회사 씨지아이 | 베이퍼 챔버 및 그에 사용되는 작동 유체 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465609A (en) * | 1981-08-11 | 1984-08-14 | Institut Francais Du Petrole | Method of operating a heat pump or a thermal engine with a chloro-fluorinated hydrocarbon having an increased thermal stability |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2394762A2 (fr) * | 1977-06-17 | 1979-01-12 | Inst Tech Porc | Appareil de regulation de climat des locaux |
US4948526A (en) * | 1989-09-26 | 1990-08-14 | Allied-Signal Inc. | Azeotrope-like compositions of pentafluorodimethyl ether and monochlorodifluoromethane |
DE10056606A1 (de) | 2000-11-15 | 2002-05-23 | Solvay Fluor & Derivate | Verwendung von Gemischen,die 1,1,1,3,3-Pentafluorbutan enthalten, als Kältemittel oder Wärmerträger |
US6913076B1 (en) * | 2002-07-17 | 2005-07-05 | Energent Corporation | High temperature heat pump |
US9005467B2 (en) * | 2003-10-27 | 2015-04-14 | Honeywell International Inc. | Methods of replacing heat transfer fluids |
DK3170880T3 (da) | 2002-10-25 | 2020-07-06 | Honeywell Int Inc | Anvendelse af sammensætninger, der omfatter hfo-1234ze eller hfo-1234yf som kølemiddelsammensætning |
JP4110388B2 (ja) | 2003-01-10 | 2008-07-02 | 荒川化学工業株式会社 | 金めっき部品用洗浄剤およびすすぎ剤並びに洗浄方法およびすすぎ方法 |
US7428816B2 (en) * | 2004-07-16 | 2008-09-30 | Honeywell International Inc. | Working fluids for thermal energy conversion of waste heat from fuel cells using Rankine cycle systems |
TWI645031B (zh) | 2005-06-24 | 2018-12-21 | 哈尼威爾國際公司 | 含有經氟取代之烯烴之組合物及其用途 |
EP1951838B1 (fr) * | 2005-11-01 | 2013-07-17 | E.I. Du Pont De Nemours And Company | Compositions comprenant des olefines fluorees et leurs utilisations |
MY170123A (en) * | 2007-04-27 | 2019-07-05 | Du Pont | Azeotropic and azeotrope-like compositions of z-1,1,1,4,4,4-hexafluoro-2-butene |
WO2008154612A1 (fr) * | 2007-06-12 | 2008-12-18 | E.I. Du Pont De Nemours And Company | Compositions azéotropiques et ressemblant à des azéotropes de e-1,1,1,4,4,4-hexafluoro-2-butène |
JP2010530952A (ja) * | 2007-06-21 | 2010-09-16 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 伝熱システムにおける漏洩検出方法 |
US20090049856A1 (en) | 2007-08-20 | 2009-02-26 | Honeywell International Inc. | Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using |
WO2009032983A1 (fr) * | 2007-09-06 | 2009-03-12 | E. I. Du Pont De Nemours And Company | Compositions azéotropes et de type azéotrope de e-1,1,1,4,4,5,5,5-octafluoro-2-pentène |
US20090095014A1 (en) * | 2007-10-12 | 2009-04-16 | Andrew Sun | Working fluid of a blend of 1,1,1,2-tetrafluoroethane, 1,1,1,2,3,3,3-heptafluoropropane, and 1,1,1,3,3,3-hexafluoropropane and method and apparatus for using |
EP2567991B1 (fr) * | 2007-12-19 | 2015-08-05 | E. I. du Pont de Nemours and Company | Compositions moussantes contenant des mélanges de type azéotropique contenant du z-1,1,1,4,4,4-hexafluoro-2-butène et soit 1,1,1,3,3-pentaflurobutane ou 1,1,1,3,3-pentafluroropropane et leurs applications dans la préparation de mousses à base de polyisocyanate |
FR2948678B1 (fr) * | 2009-07-28 | 2011-10-14 | Arkema France | Procede de transfert de chaleur |
-
2009
- 2009-07-28 FR FR0955261A patent/FR2948678B1/fr active Active
-
2010
- 2010-06-23 EP EP10745303.7A patent/EP2459667B1/fr active Active
- 2010-06-23 PL PL10745303T patent/PL2459667T3/pl unknown
- 2010-06-23 JP JP2012522206A patent/JP6021642B2/ja active Active
- 2010-06-23 CN CN201080032948.5A patent/CN102471670B/zh active Active
- 2010-06-23 EP EP17150137.2A patent/EP3176239A1/fr not_active Withdrawn
- 2010-06-23 WO PCT/FR2010/051279 patent/WO2011015737A1/fr active Application Filing
- 2010-06-23 ES ES10745303.7T patent/ES2619933T3/es active Active
- 2010-06-23 US US13/386,701 patent/US20120117990A1/en not_active Abandoned
-
2016
- 2016-07-06 JP JP2016133921A patent/JP2016197007A/ja active Pending
-
2018
- 2018-07-05 US US16/027,602 patent/US20190040292A1/en not_active Abandoned
- 2018-10-04 JP JP2018189123A patent/JP2019032155A/ja active Pending
-
2021
- 2021-05-27 US US17/332,261 patent/US20220119694A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465609A (en) * | 1981-08-11 | 1984-08-14 | Institut Francais Du Petrole | Method of operating a heat pump or a thermal engine with a chloro-fluorinated hydrocarbon having an increased thermal stability |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10858561B2 (en) | 2008-10-16 | 2020-12-08 | Arkema France | Heat transfer method |
US10036285B2 (en) | 2009-07-28 | 2018-07-31 | Arkema France | Heat transfer process |
US9279074B2 (en) | 2009-07-28 | 2016-03-08 | Arkema France | Heat transfer process |
US10704428B2 (en) | 2009-07-28 | 2020-07-07 | Arkema France | Heat transfer process |
US9982178B2 (en) | 2010-11-25 | 2018-05-29 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9157018B2 (en) | 2010-11-25 | 2015-10-13 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9267066B2 (en) * | 2010-11-25 | 2016-02-23 | Arkema France | Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene |
US20130255284A1 (en) * | 2010-11-25 | 2013-10-03 | Arkema France | Refrigerants containing (e)-1,1,1,4,4,4-hexafluorobut-2-ene |
US10407603B2 (en) | 2010-11-25 | 2019-09-10 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9528038B2 (en) | 2010-11-25 | 2016-12-27 | Arkema France | Compositions of chloro-trifluoropropene and hexafluorobutene |
US9528039B2 (en) | 2010-11-25 | 2016-12-27 | Arkema France | Refrigerants containing (E)-1,1,1,4,4,4-hexafluorobut-2-ene |
US10150901B2 (en) | 2010-12-03 | 2018-12-11 | Arkema France | Compositions containing 1,1,1,4,4,4-hexafluorobut-2-ene and 3,3,4,4,4-petrafluorobut-1-ene |
US9828536B2 (en) | 2010-12-14 | 2017-11-28 | The Chemours Company Fc, Llc | Combinations of E-1,3,3,3-tetrafluoropropene and at least one tetrafluoroethane and their use for heating |
US9745496B2 (en) | 2011-01-31 | 2017-08-29 | The Chemours Company Fc, Llc | Producing heating using working fluids comprising Z-1,1,1,4,4,4-hexafluoro-2-butene |
US9605230B2 (en) * | 2011-04-08 | 2017-03-28 | Ceca S.A. | Use of zeolites for stabilizing oils |
US9587202B2 (en) * | 2011-04-08 | 2017-03-07 | Ceca S.A. | Process for reducing the total acidity of refrigerating compositions |
US20120256119A1 (en) * | 2011-04-08 | 2012-10-11 | Ludivine Bouvier | Use of Zeolites for Stabilizing Oils |
US20120256120A1 (en) * | 2011-04-08 | 2012-10-11 | Ludivine Bouvier | Process for Reducing the Total Acidity of Refrigerating Compositions |
US9359541B2 (en) | 2011-07-01 | 2016-06-07 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
US9145507B2 (en) * | 2011-07-01 | 2015-09-29 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
US20140083119A1 (en) * | 2011-07-01 | 2014-03-27 | Arkema France | Compositions of 2,4,4,4-tetrafluorobut-1-ene and cis-1,1,1,4,4,4-hexafluorobut-2-ene |
US9909045B2 (en) | 2012-04-04 | 2018-03-06 | Arkema France | Compositions based on 2,3,3,4,4,4-hexafluorobut-1-ene |
US9234123B2 (en) * | 2013-03-21 | 2016-01-12 | Hsi Fire & Safety Group, Llc | Compositions for totally non-flammable aerosol dusters |
US20140284516A1 (en) * | 2013-03-21 | 2014-09-25 | Montfort A. Johnsen | Compositions For Totally Non-Flammable Aerosol Dusters |
US11698198B2 (en) * | 2014-11-17 | 2023-07-11 | Appollo Wind Technologies Llc | Isothermal-turbo-compressor-expander-condenser-evaporator device |
US20160138815A1 (en) * | 2014-11-17 | 2016-05-19 | Appollo Wind Technologies Llc | Isothermal-turbo-compressor-expander-condenser-evaporator device |
US20200080731A1 (en) * | 2014-11-17 | 2020-03-12 | Appollo Wind Technologies Llc | Isothermal-turbo-compressor-expander-condenser-evaporator device |
US20240044527A1 (en) * | 2014-11-17 | 2024-02-08 | Appollo Wind Technologies Llc | Isothermal-turbo-compressor-expander-condenser-evaporator device |
US10618861B2 (en) | 2015-03-18 | 2020-04-14 | Arkema France | Stabilization of 1-chloro-3,3,3-trifluoropropene |
US20190002376A1 (en) * | 2015-12-23 | 2019-01-03 | Arkema France | Method for producing and purifying 2,3,3,3-tetrafluoro-1-propene |
US10479746B2 (en) * | 2015-12-23 | 2019-11-19 | Arkema France | Method for producing and purifying 2,3,3,3-tetrafluoro-1-propene |
US10669465B2 (en) | 2016-09-19 | 2020-06-02 | Arkema France | Composition comprising 1-chloro-3,3,3-trifluoropropene |
US11311761B2 (en) | 2017-03-20 | 2022-04-26 | The Chemours Company Fc, Llc | Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene |
WO2018175367A1 (fr) * | 2017-03-20 | 2018-09-27 | The Chemours Company Fc, Llc | Compositions et utilisations de trans-1,1,1,4,4,4-hexafluoro-2-butène |
US11986692B2 (en) | 2017-03-20 | 2024-05-21 | The Chemours Company Fc, Llc | Compositions and uses of trans-1,1,1,4,4,4-hexafluoro-2-butene |
US11053420B2 (en) | 2017-09-12 | 2021-07-06 | Arkema France | Composition on the basis of hydrochlorofluoroolefin and mineral oil |
Also Published As
Publication number | Publication date |
---|---|
EP2459667B1 (fr) | 2017-02-22 |
JP2013500373A (ja) | 2013-01-07 |
JP2016197007A (ja) | 2016-11-24 |
EP2459667A1 (fr) | 2012-06-06 |
FR2948678B1 (fr) | 2011-10-14 |
US20220119694A1 (en) | 2022-04-21 |
WO2011015737A1 (fr) | 2011-02-10 |
JP2019032155A (ja) | 2019-02-28 |
US20190040292A1 (en) | 2019-02-07 |
ES2619933T3 (es) | 2017-06-27 |
PL2459667T3 (pl) | 2017-06-30 |
CN102471670A (zh) | 2012-05-23 |
FR2948678A1 (fr) | 2011-02-04 |
EP3176239A1 (fr) | 2017-06-07 |
CN102471670B (zh) | 2015-07-01 |
JP6021642B2 (ja) | 2016-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220119694A1 (en) | Heat transfer process | |
US10858561B2 (en) | Heat transfer method | |
US11130893B2 (en) | Heat transfer fluid | |
US10035938B2 (en) | Heat transfer fluid replacing R-134a | |
US8246850B2 (en) | Hydrofluoroolefin compositions | |
US8486294B2 (en) | Hydrofluoroolefin compositions | |
US8252198B2 (en) | Hydrofluoroolefin compositions | |
KR20230002020A (ko) | Hfo-1234ze, hfo-1225zc 및 hfo-1234yf 함유 조성물, 및 조성물의 제조 및 사용 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARKEMA FRANCE, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RACHED, WISSAM;ABBAS, LAURENT;BOUTIER, JEAN-CHRISTOPHE;SIGNING DATES FROM 20120110 TO 20120116;REEL/FRAME:027588/0598 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |