US20120088093A1 - Method for coating a sliding element and sliding element, in particular a piston ring - Google Patents
Method for coating a sliding element and sliding element, in particular a piston ring Download PDFInfo
- Publication number
- US20120088093A1 US20120088093A1 US13/257,396 US200913257396A US2012088093A1 US 20120088093 A1 US20120088093 A1 US 20120088093A1 US 200913257396 A US200913257396 A US 200913257396A US 2012088093 A1 US2012088093 A1 US 2012088093A1
- Authority
- US
- United States
- Prior art keywords
- coating
- sliding element
- nanoparticles
- size
- piston ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/301—AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C23C16/303—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/308—Oxynitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J9/00—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
- F16J9/26—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
Definitions
- the invention relates to a method for coating a sliding element and a sliding element, in particular a piston ring.
- sliding elements such as piston rings
- sliding elements that they only ever bring about small friction losses.
- piston rings acting as sliding elements in internal combustion engines an increase in friction has a direct effect upon fuel consumption.
- oil consumption is affected by the condition of the piston rings.
- burn mark strength and outbreak strength which must be particularly high in order to permanently realise the required friction values, are to be observed.
- piston rings which are coated by means of PVD methods on a hard material base, in particular chromium nitride. Furthermore, the electrochemical deposition of chromium layers associated with the incorporation of A1203 or diamond particles, the size of which comes within the micrometre range, is known.
- a DLC (diamond-like carbon) coating system that can include tungsten carbide depositions in nanocrystalline form, which are produced during the separation process and are up to 10 nm in size, is revealed by WO 2007/079834 A1.
- DE 199 58 473 A1 relates to a method for producing composite layers with a plasma beam source, wherein nanocrystalline particles can be embedded, and that can be combined with known, separately controllable CVD or PVD methods.
- the object forming the basis of the invention is to make available a method for coating a sliding element and a corresponding sliding element with which the required friction and wear and tear properties can be realised over the required life span.
- the invention proposes a method for coating, comprising at least one layer and formed on at least one outer surface, a sliding element, in particular a piston ring, wherein nanoparticles are initially produced, and then infused into the coating during the coating process.
- the nanoparticles are not produced in situ, i.e. during the coating process, but they are produced separately, to a certain extent ex situ, and incorporated into the coating during the coating process.
- the mechanism which can be used in this way and which leads to improved mechanical properties, such as fatigue strength, burn mark strength, outbreak strength, breaking strength and elongation at rupture, functions as follows according to the current state of knowledge. It is also noted that the invention is not restricted to this.
- the incorporation of the described particles gives rise to local crystal lattice deformations which lead to the aforementioned, improved mechanical properties.
- an improvement of the wear and tear characteristics due to the exceptionally high grain limit density and increased elasticity and less friction are achieved.
- the advantages of the infused nanoparticles can also be made use of in the dispersion or precipitation hardening to be implemented. That is to say, the displacements produced when stressed or already existing cannot be worked or “cut” through by the particles or the depositions, but bulge out to a certain extent between the particles. In this way, displacement rings are formed which must be bypassed by the displacements. With this bypassing, higher energy is required than when the latter are “cut through” by the particles or depositions. The loading capacity is thus increased. Furthermore, the invention advantageously further makes use of the effect that the yield stress for the migration of the displacements increases as the particle spacing decreases and the particle size decreases. The material strength increases due to this. This effect can be obtained particularly well with nanoparticles.
- the latter upon the basis of their high defect density on the surface, the latter can be infused and incorporated practically independently of the material to be reinforced during the coating process.
- the desired depositions which can be incoherent, partially coherent or coherent, and have the effects described above with regard to the mechanical properties, can advantageously be formed.
- the production of the nanoparticles ex situ advantageously further guarantees that the chemical and crystallographic structure of the nanoparticles can be controlled. Furthermore, by means of this control, when producing the nanoparticles it can be guaranteed that the latter can be infused into the layer hereby growing during the coating process in the desired manner.
- the coating as such is advantageously implemented by means of tried and tested PVD (physical vapour deposition) and/or CVD (chemical vapour deposition) coating processes.
- nitrides in particular metal (oxy)nitrides, and in particular Cr(O)N, AlN or TiN, has proven to be particularly advantageous.
- nanoparticles which have a particle size (diameter) of 1 to 100 nm, preferably 5 to 75 and in particular 5 to 50 nm.
- carbides and/or silicides with the composition Me x O y , Me x C y or Me x Si y are preferred.
- the metal here can be chromium, titanium, tantalum, silicon, indium, tin, aluminium, tungsten, vanadium or molybdenum, and/or x can be 1 to 3 and/or y can be 1 to 3.
- the coating according to the invention can be used in many different ways, due to the proven properties it is currently preferred if the base material, i.e. the coating material of the sliding element to be coated according to the invention, is cast iron or steel.
- one or more faces i.e. the upper and/or the lower side and/or the contact surface, i.e. the outer cylinder surface of the piston ring, can be coated.
- the contact surface can be coated more thickly with the coating according to the invention with incorporated, separately produced nanoparticles than at least one of the faces.
- the cross-over between the contact surface and at least one face can be rounded on the coating, in the same way as this cross-over on the base material of the piston ring can be rounded.
- the coating of both faces can be of the same thickness. In particular applications also only the contact surface can be coated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009013855A DE102009013855A1 (de) | 2009-03-19 | 2009-03-19 | Verfahren zur Beschichtung eines Gleitelements und Gleitelement, insbesondere Kolbenring |
DE102009013855.2 | 2009-03-19 | ||
PCT/EP2009/066824 WO2010105710A1 (de) | 2009-03-19 | 2009-12-10 | Verfahren zur beschichtung eines gleitelements und gleitelement, insbesondere kolbenring |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/066824 A-371-Of-International WO2010105710A1 (de) | 2009-03-19 | 2009-12-10 | Verfahren zur beschichtung eines gleitelements und gleitelement, insbesondere kolbenring |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/813,481 Division US9938626B2 (en) | 2009-03-19 | 2015-07-30 | Method for coating a sliding element using a nanoparticles infused coating |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120088093A1 true US20120088093A1 (en) | 2012-04-12 |
Family
ID=41652074
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/257,396 Abandoned US20120088093A1 (en) | 2009-03-19 | 2009-12-10 | Method for coating a sliding element and sliding element, in particular a piston ring |
US14/813,481 Expired - Fee Related US9938626B2 (en) | 2009-03-19 | 2015-07-30 | Method for coating a sliding element using a nanoparticles infused coating |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/813,481 Expired - Fee Related US9938626B2 (en) | 2009-03-19 | 2015-07-30 | Method for coating a sliding element using a nanoparticles infused coating |
Country Status (9)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10030773B2 (en) | 2016-03-04 | 2018-07-24 | Mahle International Gmbh | Piston ring |
US11143302B2 (en) * | 2016-06-30 | 2021-10-12 | Mahle Metal Leve S/A | Sliding element for internal combustion engines |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012217918B4 (de) | 2012-10-01 | 2017-02-02 | Federal-Mogul Burscheid Gmbh | Gleitpartner mit einer Beschichtung, Verfahren zur Herstellung eines Gleitpartners und Verwendung von Nanopartikeln in einer Beschichtung |
CN104854258B (zh) * | 2012-10-11 | 2018-02-02 | 费德罗-莫格尔公司 | 在一个涂覆操作中在活塞环的工作面、侧面以及内径上进行耐磨涂层的化学气相沉积 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6639039B1 (en) * | 1998-02-13 | 2003-10-28 | Institut für Neue Materialien Gemeinnützige GmbH | Photochromic coating composition comprising nanoscales particles and process for providing substrate coated with the same |
US20060219054A1 (en) * | 2005-03-29 | 2006-10-05 | Hitachi Powdered Metals Co., Ltd. | Wear resistant sintered member and production method therefor |
US20060269790A1 (en) * | 2005-12-21 | 2006-11-30 | Sarabanda Jose Valentim L | Piston ring for internal combustion engines |
US20070129233A1 (en) * | 2003-10-29 | 2007-06-07 | Sumitomo Electric Industries, Ltd. | Ceramic composite material and method for producing same |
US20070227299A1 (en) * | 2005-12-22 | 2007-10-04 | Momentive Performance Materials Inc. | Wear Resistant Low Friction Coating Composition, Coated Components, and Method for Coating Thereof |
US20080220257A1 (en) * | 2005-08-18 | 2008-09-11 | Nv Bekaert Sa | Substrate Coated with a Layered Structure Comprising a Tetrahedral Carbon Layer and a Softer Outer Layer |
US20090041653A1 (en) * | 2007-08-08 | 2009-02-12 | Hyundai Motor Company | Method for the preparation of porous graphite carbon with high crystallinity using sucrose as a carbon precursor |
US20100261625A1 (en) * | 2007-09-27 | 2010-10-14 | Taiho Kogyo Co., Ltd. | Composition for sliding member and sliding member coated with the composition |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3221892B2 (ja) * | 1991-09-20 | 2001-10-22 | 帝国ピストンリング株式会社 | ピストンリング及びその製造法 |
JP3766445B2 (ja) * | 1994-12-27 | 2006-04-12 | 日本ピストンリング株式会社 | 内燃機関用ピストンリング |
DE19708402C1 (de) * | 1997-03-01 | 1998-08-27 | Daimler Benz Aerospace Ag | Verschleißfeste Schicht für Leichtmetall-Bauteile einer Verbrennungskraftmaschine sowie Verfahren zu deren Herstellung |
JP3439949B2 (ja) * | 1997-06-09 | 2003-08-25 | 帝国ピストンリング株式会社 | 硬質被覆材およびそれを被覆した摺動部材ならびにその製造方法 |
US6514621B1 (en) | 1997-12-24 | 2003-02-04 | Ppg Industries Ohio, Inc. | Patterned coated articles and methods for producing the same |
JP4382209B2 (ja) * | 1999-09-24 | 2009-12-09 | 帝国ピストンリング株式会社 | 硬質皮膜及びそれを被覆した摺動部材並びにその製造方法 |
DE19958473A1 (de) * | 1999-12-04 | 2001-06-07 | Bosch Gmbh Robert | Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle |
US6472060B1 (en) * | 2000-01-19 | 2002-10-29 | Seco Tools Ab | Coated body with nanocrystalline CVD coating for enhanced edge toughness and reduced friction |
DE60116407T2 (de) * | 2000-05-09 | 2006-07-06 | Kabushiki Kaisha Riken | Amorphe oxidhaltige Kohlenstoffschicht |
CN1886535A (zh) * | 2003-09-29 | 2006-12-27 | 通用电气公司 | 纳米结构涂层体系、部件和相关制造方法 |
DE102005063123B3 (de) | 2005-12-30 | 2007-05-31 | Federal-Mogul Burscheid Gmbh | Gleitelement, insbesondere Kolbenring, Verfahren zur Herstellung eines Gleitelements, Gleitsystem und Beschichtung für ein Gleitelement |
EP2162649B1 (en) * | 2007-06-16 | 2012-05-16 | MAHLE International GmbH | Piston ring with chromium nitride coating for internal combustion engines |
WO2009119388A1 (ja) * | 2008-03-27 | 2009-10-01 | 日立金属株式会社 | 内燃機関用ピストンリング材 |
-
2009
- 2009-03-19 DE DE102009013855A patent/DE102009013855A1/de not_active Ceased
- 2009-12-10 BR BRPI0924428-0A patent/BRPI0924428B1/pt not_active IP Right Cessation
- 2009-12-10 CN CN2009801581540A patent/CN102356183A/zh active Pending
- 2009-12-10 US US13/257,396 patent/US20120088093A1/en not_active Abandoned
- 2009-12-10 CN CN201510845809.9A patent/CN105386050A/zh active Pending
- 2009-12-10 JP JP2012500090A patent/JP5501437B2/ja not_active Expired - Fee Related
- 2009-12-10 KR KR1020117022983A patent/KR101670730B1/ko not_active Expired - Fee Related
- 2009-12-10 PT PT98014277T patent/PT2408949E/pt unknown
- 2009-12-10 EP EP09801427A patent/EP2408949B1/de not_active Not-in-force
- 2009-12-10 WO PCT/EP2009/066824 patent/WO2010105710A1/de active Application Filing
-
2015
- 2015-07-30 US US14/813,481 patent/US9938626B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6639039B1 (en) * | 1998-02-13 | 2003-10-28 | Institut für Neue Materialien Gemeinnützige GmbH | Photochromic coating composition comprising nanoscales particles and process for providing substrate coated with the same |
US20070129233A1 (en) * | 2003-10-29 | 2007-06-07 | Sumitomo Electric Industries, Ltd. | Ceramic composite material and method for producing same |
US20060219054A1 (en) * | 2005-03-29 | 2006-10-05 | Hitachi Powdered Metals Co., Ltd. | Wear resistant sintered member and production method therefor |
US20080220257A1 (en) * | 2005-08-18 | 2008-09-11 | Nv Bekaert Sa | Substrate Coated with a Layered Structure Comprising a Tetrahedral Carbon Layer and a Softer Outer Layer |
US20060269790A1 (en) * | 2005-12-21 | 2006-11-30 | Sarabanda Jose Valentim L | Piston ring for internal combustion engines |
US20070227299A1 (en) * | 2005-12-22 | 2007-10-04 | Momentive Performance Materials Inc. | Wear Resistant Low Friction Coating Composition, Coated Components, and Method for Coating Thereof |
US20090041653A1 (en) * | 2007-08-08 | 2009-02-12 | Hyundai Motor Company | Method for the preparation of porous graphite carbon with high crystallinity using sucrose as a carbon precursor |
US20100261625A1 (en) * | 2007-09-27 | 2010-10-14 | Taiho Kogyo Co., Ltd. | Composition for sliding member and sliding member coated with the composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10030773B2 (en) | 2016-03-04 | 2018-07-24 | Mahle International Gmbh | Piston ring |
US11143302B2 (en) * | 2016-06-30 | 2021-10-12 | Mahle Metal Leve S/A | Sliding element for internal combustion engines |
Also Published As
Publication number | Publication date |
---|---|
WO2010105710A1 (de) | 2010-09-23 |
DE102009013855A1 (de) | 2010-09-23 |
EP2408949B1 (de) | 2013-01-16 |
US20150330508A1 (en) | 2015-11-19 |
PT2408949E (pt) | 2013-03-11 |
EP2408949A1 (de) | 2012-01-25 |
KR20110134436A (ko) | 2011-12-14 |
CN102356183A (zh) | 2012-02-15 |
US9938626B2 (en) | 2018-04-10 |
CN105386050A (zh) | 2016-03-09 |
JP5501437B2 (ja) | 2014-05-21 |
BRPI0924428A2 (pt) | 2016-01-26 |
BRPI0924428B1 (pt) | 2019-11-05 |
JP2012520935A (ja) | 2012-09-10 |
KR101670730B1 (ko) | 2016-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105102680B (zh) | 滑动元件,特别是具有耐磨涂层的活塞环 | |
KR101898004B1 (ko) | 코팅을 포함하는 슬라이딩 소자 및 피스톤 링 | |
US9938626B2 (en) | Method for coating a sliding element using a nanoparticles infused coating | |
EP2946030B1 (de) | Gleitelement, insbesondere kolbenring, mit einer beschichtung | |
CN102770584A (zh) | 滑动元件,尤其是活塞环以及涂覆滑动元件的方法 | |
US10174841B2 (en) | Piston ring for internal combustion engine | |
US11739426B2 (en) | Component, in particular for a valve train system, and method for producing a component of this type | |
US9759324B2 (en) | Piston ring | |
CN109477575B (zh) | 用于内燃机的滑动元件 | |
CN106103788B (zh) | 滑动元件、内燃机及用于获得滑动元件的加工 | |
CN106574376A (zh) | 滑动元件、特别是活塞环和用于制造滑动元件的方法 | |
JP2016524042A (ja) | コーティングされた構成部材 | |
CN108603278A (zh) | 具有保护层的有涂层的活塞环 | |
KR101797186B1 (ko) | 슬라이딩 요소 | |
CN106523701A (zh) | 一种内燃机活塞环 | |
CN104812930A (zh) | 耐磨减摩涂层摩擦副 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FEDERAL-MOGUL BURSCHEID GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KENNEDY, MARCUS;REEL/FRAME:027327/0275 Effective date: 20110831 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL TRUSTEE, MINNESOTA Free format text: CONFIRMATORY GRANT OF SECURITY INTERESTS IN UNITED STATES PATENTS;ASSIGNORS:TENNECO INC.;TENNECO AUTOMOTIVE OPERATING COMPANY INC.;TENNECO INTERNATIONAL HOLDING CORP.;AND OTHERS;REEL/FRAME:047223/0001 Effective date: 20181001 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATE Free format text: CONFIRMATORY GRANT OF SECURITY INTERESTS IN UNITED STATES PATENTS;ASSIGNORS:TENNECO INC.;TENNECO AUTOMOTIVE OPERATING COMPANY INC.;TENNECO INTERNATIONAL HOLDING CORP.;AND OTHERS;REEL/FRAME:047223/0001 Effective date: 20181001 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: FEDERAL-MOGUL PRODUCTS US LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL FINANCING CORPORATION, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL FILTRATION LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: BECK ARNLEY HOLDINGS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL SEVIERVILLE, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL VALVE TRAIN INTERNATIONAL LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: F-M TSC REAL ESTATE HOLDINGS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: F-M MOTORPARTS TSC LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL CHASSIS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL MOTORPARTS LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL IGNITION LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL PISTON RINGS, LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL POWERTRAIN IP LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL POWERTRAIN LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: MUZZY-LYON AUTO PARTS LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FELT PRODUCTS MFG. CO. LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: FEDERAL-MOGUL WORLD WIDE LLC, MICHIGAN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: CARTER AUTOMOTIVE COMPANY LLC, ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: TMC TEXAS INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: CLEVITE INDUSTRIES INC., OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: TENNECO GLOBAL HOLDINGS INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: THE PULLMAN COMPANY, OHIO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: TENNECO INTERNATIONAL HOLDING CORP., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: TENNECO AUTOMOTIVE OPERATING COMPANY INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 Owner name: TENNECO INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WILMINGTON TRUST, NATIONAL ASSOCIATION;REEL/FRAME:061975/0218 Effective date: 20221117 |