US20120077842A1 - Quinoline derivative-containing pharmaceutical composition - Google Patents
Quinoline derivative-containing pharmaceutical composition Download PDFInfo
- Publication number
- US20120077842A1 US20120077842A1 US13/322,961 US201013322961A US2012077842A1 US 20120077842 A1 US20120077842 A1 US 20120077842A1 US 201013322961 A US201013322961 A US 201013322961A US 2012077842 A1 US2012077842 A1 US 2012077842A1
- Authority
- US
- United States
- Prior art keywords
- composition according
- group
- examples
- hydrogen atom
- methoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 [1*]CC(=O)CC1=CC=C(OC2=CC=NC3=CC(CO)=C(C(=O)N[2*])C=C32)C=C1Cl Chemical compound [1*]CC(=O)CC1=CC=C(OC2=CC=NC3=CC(CO)=C(C(=O)N[2*])C=C32)C=C1Cl 0.000 description 4
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1611—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/02—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
- A61K47/36—Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/485—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/4841—Filling excipients; Inactive ingredients
- A61K9/4866—Organic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/16—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D215/48—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
Definitions
- the present invention relates to a pharmaceutical composition comprising a quinoline derivative, useful as a medicament. More specifically, the present invention relates to a pharmaceutical composition improved in dissolution of a quinoline derivative or a pharmaceutically acceptable salt thereof or a solvate thereof.
- a quinoline derivative represented by the formula (I) or a pharmaceutically acceptable salt thereof or a solvate thereof has been known to have a potent angiogenesis inhibitory effect (Patent Literature 1) and a c-Kit kinase inhibitory effect (Patent Literature 2) and to be useful as a preventive or therapeutic agent against various tumors such as thyroid cancer, lung cancer, melanoma and pancreatic cancer, and as an metastatic inhibitor against these tumors:
- R 1 is a hydrogen atom, a C 1-6 alkyl group or a C 3-8 cycloalkyl group
- R 2 is a hydrogen atom or a methoxy group
- the quinoline derivative (I) has been found to degrade under humidifying and warming storage conditions when formulated into a pharmaceutical composition.
- the pharmaceutical composition absorbs moisture, dissolution of the quinoline derivative (I) from the pharmaceutical composition that is an active ingredient may delay because of gelation on the surface of the composition.
- a pharmaceutical composition which includes the quinoline derivative (I), (1) a compound, a 5% (w/w) aqueous solution or suspension of which has a pH of 8 or more, and/or (2) silicic acid, salt thereof or solvate thereof has been developed (Patent Literature 3).
- the present invention is aimed at providing a pharmaceutical composition that is excellent in dissolution of the quinoline derivative (I) that is maintained even after long term storage.
- the present invention provides the following ⁇ 1> to ⁇ 12>.
- a pharmaceutical composition comprising:
- R 1 is a hydrogen atom, a C 1-6 alkyl group or a C 3-8 cycloalkyl group
- R 2 represents a hydrogen atom or a methoxy group
- composition according to [1], wherein the basic substance is a carbonate [3] The composition according to [2], wherein the salt is an alkaline earth metal salt [4] The composition according to [3], wherein the alkaline earth metal salt is a magnesium salt or a calcium salt. [5] The composition according to any one of [1] to [4], further comprising a disintegrating agent. [6] The composition according to [5], wherein the disintegrating agent is carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose or crospovidone.
- composition according to any one of [1] to [10], wherein the pharmaceutically acceptable salt is hydrochloride, hydrobromide, p-toluenesulfonate, sulfate, methanesulfonate or ethanesulfonate.
- the compound represented by the formula (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide methanesulfonate.
- the pharmaceutical composition of the present invention is excellent in dissolution of the quinoline derivative (I), which is a principal agent, and is also excellent in absorption into a living body.
- the pharmaceutical composition is also a pharmaceutical composition that is maintained even after long term storage.
- FIG. 1 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 4 to 6 and Comparative Example 1.
- FIG. 2 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 7 to 9 and Comparative Example 2.
- FIG. 3 shows the dissolution patterns of the compound A from the pharmaceutical compositions obtained in Examples 10 to 12 and Comparative Example 3.
- FIG. 4 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 13 to 15 and Comparative Example 4.
- FIG. 5 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 16 to 17 and Comparative Example 5.
- FIG. 6 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Example 18 and Comparative Examples 7 to 8.
- FIG. 7 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Example 19 and Comparative Examples 9 to 10.
- the pharmaceutical composition of the present invention means a composition comprising the quinoline derivative (I) and a basic substance as essential ingredients.
- a mixing ratio of the quinoline derivative (I) and the basic substance is, but is not limited to, normally 1:0.5 to 50, preferably 1:1 to 25, further preferably 1:2 to 12.5.
- a mixing rate of the quinoline derivative (I) with respect to the total weight of the pharmaceutical composition (excluding a capsule shell) is normally 0.25 to 50 weight %, preferably 0.5 to 25 weight %, further preferably 1 to 12.5 weight %.
- a mixing rate of the basic substance with respect to the total weight of the pharmaceutical composition is normally 1 to 60 weight %, preferably 5 to 50 weight %, further preferably 10 to 40 weight %. At least one basic substance of the present invention may be included in the pharmaceutical composition, or two or more basic substances may also be included.
- a dosage form of the pharmaceutical composition specifically means a solid preparation such as granules, fine granules, tablets or capsules and so on. It is preferably fine granules, granules or capsules filled with fine granules or granules.
- the quinoline derivative (I) is a compound disclosed in WO 2002/32872.
- a preferable quinoline derivative (I) is a quinoline derivative or pharmacologically acceptable salt thereof or solvate thereof selected from the group consisting of 4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylamino
- a more preferable quinoline derivative (I) is a quinoline derivative or pharmacologically acceptable salt thereof or solvate thereof selected from the group consisting of 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide and N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarbox
- a particularly preferable quinoline derivative (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide or pharmacologically acceptable salt thereof or solvate thereof.
- the pharmaceutically acceptable salt of the present invention means hydrochloride, hydrobromide, p-toluenesulfonate, sulfate, methanesulfonate or ethanesulfonate. It is preferably the methanesulfonate.
- the solvate of the present invention means hydrate, dimethyl sulfoxide solvate or acetic acid solvate.
- the quinoline derivative (I) is preferably a crystal of a salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, or a solvate thereof disclosed in WO 2005/063713.
- a particularly preferred quinoline derivative (I) is the C Form crystal of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide methanesulfonate.
- the quinoline derivative (I) is useful as a preventive or therapeutic agent against various tumors and as a metastasis inhibitor against tumors.
- the tumors against which the quinoline derivative (I) is effective include thyroid cancer, non-small-cell lung cancer, melanoma, laryngopharyngeal cancer, esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, renal cell carcinoma, pancreatic cancer, bladder cancer, breast cancer, uterine cancer, ovarian cancer, prostate cancer, testicular cancer, gastrointestinal stromal tumor, sarcoma, osteogenic sarcoma, angioma, malignant lymphoma, myeloid leukemia, neuroma and neuroglioma.
- the basic substance of the present invention means a basic inorganic salt.
- Such basic inorganic salts include beryllium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, potassium carbonate, calcium hydrogenphosphate and titanium oxide. It is preferably an alkaline earth metal salt of carbonic acid, further preferably magnesium carbonate or calcium carbonate.
- a disintegrating agent in the pharmaceutical composition of the present invention.
- a disintegrating agent include corn starch, partially pregelatinized starch, hydroxypropyl starch, carmellose, carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose and crospovidone. It is preferably the croscarmellose sodium, the low-substituted hydroxypropylcellulose or the crospovidone.
- the pharmaceutical composition of the present invention may be prepared by a known method such as a method described in the General Rules for Preparations in the Japanese Pharmacopoeia Fifteenth Edition.
- the granule it is possible to add an excipient, a binder, a disintegrating agent, a solvent, or the like to the quinoline derivative (I) as needed, to perform agitation granulation, extruding granulation, tumbling granulation, fluidized-bed granulation, spray granulation, or the like, and to prepare it.
- an atomizing agent containing the quinoline derivative (I) and an additive such as corn starch, microcrystalline cellulose, hydroxypropylcellulose, methylcellulose or polyvinylpyrrolidone while spraying water or a solution of a binder such as saccharose, hydroxypropylcellulose or hydroxypropylmethylcellulose on a core material such as a purified sucrose spherical granule, a lactose/crystalline cellulose spherical granule, a saccharose/starch spherical granule or a granular crystalline cellulose. It is also acceptable to perform sizing and milling as needed.
- an excipient e.g., a binder, a disintegrating agent, a lubricant, an anti-oxidizing agent, a corrigent, a coloring agent, a flavoring agent, or the like
- a required excipient may be added to the quinoline derivative (I) to directly compress the mixture into a tablet.
- quinoline derivative (I) added/mixed with an excipient such as lactose, saccharose, glucose, starch, microcrystalline cellulose, powdered glycyrrhiza, mannitol, calcium phosphate or calcium sulfate, or with the granule.
- an excipient such as lactose, saccharose, glucose, starch, microcrystalline cellulose, powdered glycyrrhiza, mannitol, calcium phosphate or calcium sulfate, or with the granule.
- excipient examples include lactose, saccharose, glucose, fructose, starch, potato starch, corn starch, wheat starch, rice starch, crystalline cellulose, microcrystalline cellulose, powdered glycyrrhiza, mannitol, erythritol, maltitol, sorbitol, trehalose, silicic anhydride, calcium silicate, sodium hydrogencarbonate, calcium phosphate, anhydrous calcium phosphate and calcium sulfate.
- binder examples include gelatin, starch, gum arabic, tragacanth, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, methylcellulose, partially pregelatinized starch, pregelatinized starch, polyvinyl alcohol, sodium arginine, pullulan and glycerin.
- disintegrating agent examples include corn starch, partially pregelatinized starch, hydroxypropyl starch, carmellose, carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose and crospovidone.
- lubricant examples include magnesium stearate, stearic acid, calcium stearate, sodium stearyl fumarate, talc and macrogol.
- anti-oxidizing agent examples include sodium ascorbate, L-cysteine, sodium sulfite, tocopherol and soybean lecithin.
- corrigent examples include citric acid, ascorbic acid, tartaric acid, malic acid, aspartame, acesulfame potassium, thaumatin, saccharin sodium, dipotassium glycyrrhizinate, sodium glutamate, sodium 5′-inosinate and sodium 5′-guanylate.
- coloring agent examples include titanium oxide, iron sesquioxide, iron sesquioxide yellow, cochineal, carmine, riboflavin, food yellow No. 5 and food blue No. 2.
- flavoring agent examples include lemon oil, orange oil, menthol, peppermint oil, borneol and vanilla flavor.
- the granules of which a moisture content was reduced to be less than 2% by further drying were sized using a screen mill (apparatus name: Power Mill P-04S, manufactured by Showa Giken KK) so that their granule diameters were less than 1 mm. Then, microcrystalline cellulose (trade name: Ceolus PH-102, Asahi Kasei Chemicals) and talc (trade name: Hi-Filler 17, Iwai Chemicals Company) were added to the sized granules according to the formulation proportions in Table 1, and the mixture was thoroughly mixed using a diffusion (tumbler-type) mixer (trade name: 10L/20L Exchange-type Tumbler Mixer, manufactured by Toyo Packing Corporation). Hard capsules size #4 were filled with 100 mg of the resultant granules to prepare capsules containing the compound A.
- a diffusion (tumbler-type) mixer trade name: 10L/20L Exchange-type Tumbler Mixer, manufactured by Toyo Packing Corporation.
- the compound A, precipitated calcium carbonate, low-substituted hydroxypropylcellulose, D-mannitol and talc were thoroughly mixed using a mortar and a pestle according to the formulation proportions in Table 2 and Table 3. Hard capsules size #3 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 4 to 9. Capsules in Comparative Examples 1 to 2, which contained no precipitated calcium carbonate, were also prepared by the same method.
- the compound A magnesium carbonate (Kyowa Chemical Industry), low-substituted hydroxypropylcellulose, D-mannitol and talc were thoroughly mixed using a mortar and a pestle according to the formulation proportions in Table 4 and Table 5. Hard capsules size #3 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 10 to 15. Capsules in Comparative Examples 3 to 4, which contained no magnesium carbonate, were also prepared by the same method.
- Purified water was added to the compound A, precipitated calcium carbonate or magnesium carbonate, hydroxypropylcellulose and croscarmellose sodium (trade name: Ac-Di-Sol, Asahi Kasei Chemicals) to perform granulation using a mortar and a pestle, followed by sizing of the dried granules so that their granule diameters were less than 1 mm. Then, microcrystalline cellulose (trade name: Ceolus PH-102, Asahi Kasei Chemicals), low-substituted hydroxypropylcellulose and talc (trade name: Hi-Filler 17, Iwai Chemicals Company) were added to the sized granules according to the formulation proportions in Table 6, and the mixture was mixed thoroughly.
- microcrystalline cellulose trade name: Ceolus PH-102, Asahi Kasei Chemicals
- talc trade name: Hi-Filler 17, Iwai Chemicals Company
- Hard capsules size #4 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 16 to 17.
- the capsules in Examples 16 to 17 and Comparative Example 6 were stored for 1 week in an open system under an environment at a temperature of 60° C. and a relative humidity of 75%, followed by determining the production of the degradants with high-performance liquid chromatography.
- the capsule formulation in Comparative Example 6 in which neither calcium carbonate nor magnesium carbonate was mixed, an amount of the degradants was increased.
- the capsules in Examples 16 to 17, in which calcium carbonate or magnesium carbonate was mixed no increase in amount of the degradants was observed (Table 8).
- the pharmaceutical composition of the present invention is excellent in dissolution of the quinoline derivative and also in stability, and is therefore useful as a medicament for prevention or treatment of a tumor.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Quinoline Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
A pharmaceutical composition comprising a compound represented by the formula (I) or pharmaceutically acceptable salt thereof or solvate thereof; and a basic substance is excellent in dissolution, is stable even after a long term storage, and is useful as a preventive or therapeutic agent against a tumor:
wherein, R1 is a hydrogen atom, a C1-6 alkyl group or a C3-8 cycloalkyl group; and R2 is a hydrogen atom or a methoxy group.
Description
- The present invention relates to a pharmaceutical composition comprising a quinoline derivative, useful as a medicament. More specifically, the present invention relates to a pharmaceutical composition improved in dissolution of a quinoline derivative or a pharmaceutically acceptable salt thereof or a solvate thereof.
- A quinoline derivative represented by the formula (I) or a pharmaceutically acceptable salt thereof or a solvate thereof (hereinafter referred to as quinoline derivative (I)) has been known to have a potent angiogenesis inhibitory effect (Patent Literature 1) and a c-Kit kinase inhibitory effect (Patent Literature 2) and to be useful as a preventive or therapeutic agent against various tumors such as thyroid cancer, lung cancer, melanoma and pancreatic cancer, and as an metastatic inhibitor against these tumors:
- wherein, R1 is a hydrogen atom, a C1-6 alkyl group or a C3-8 cycloalkyl group; and R2 is a hydrogen atom or a methoxy group.
- However, the quinoline derivative (I) has been found to degrade under humidifying and warming storage conditions when formulated into a pharmaceutical composition. In addition, when the pharmaceutical composition absorbs moisture, dissolution of the quinoline derivative (I) from the pharmaceutical composition that is an active ingredient may delay because of gelation on the surface of the composition. In order to overcome these problems, a pharmaceutical composition which includes the quinoline derivative (I), (1) a compound, a 5% (w/w) aqueous solution or suspension of which has a pH of 8 or more, and/or (2) silicic acid, salt thereof or solvate thereof has been developed (Patent Literature 3).
-
- Patent Literature 1: WO 2002/32872
- Patent Literature 2: WO 2004/080462
- Patent Literature 3: WO 2006/030826
- However, development of a pharmaceutical composition further excellent in the dissolution of the quinoline derivative (I) has been desired. Thus, the present invention is aimed at providing a pharmaceutical composition that is excellent in dissolution of the quinoline derivative (I) that is maintained even after long term storage.
- The present inventors have intensively studied in order to solve the problems above and surprisingly have discovered the configuration below could solve the problems and have completed the present invention.
- Specifically, the present invention provides the following <1> to <12>.
- [1] A pharmaceutical composition comprising:
- (1) a compound represented by the formula (I) or pharmaceutically acceptable salt thereof or solvate thereof:
- wherein R1 is a hydrogen atom, a C1-6 alkyl group or a C3-8 cycloalkyl group; and R2 represents a hydrogen atom or a methoxy group; and
- (2) a basic substance.
- [2] The composition according to [1], wherein the basic substance is a carbonate.
[3] The composition according to [2], wherein the salt is an alkaline earth metal salt
[4] The composition according to [3], wherein the alkaline earth metal salt is a magnesium salt or a calcium salt.
[5] The composition according to any one of [1] to [4], further comprising a disintegrating agent.
[6] The composition according to [5], wherein the disintegrating agent is carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose or crospovidone.
[7] The composition according to any one of [1] to [6], wherein R1 is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or a cyclopropyl group.
[8] The composition according to any one of [1] to [7], wherein R1 is a cyclopropyl group.
[9] The composition according to any one of [1] to [8], wherein R2 is a hydrogen atom, a methoxy group or an ethoxy group.
[10] The composition according to any one of [1] to [9], wherein R2 is a hydrogen atom.
[11] The composition according to any one of [1] to [10], wherein the pharmaceutically acceptable salt is hydrochloride, hydrobromide, p-toluenesulfonate, sulfate, methanesulfonate or ethanesulfonate.
[12] The composition according to any one of [1] to [11], wherein the compound represented by the formula (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide methanesulfonate. - The pharmaceutical composition of the present invention is excellent in dissolution of the quinoline derivative (I), which is a principal agent, and is also excellent in absorption into a living body. The pharmaceutical composition is also a pharmaceutical composition that is maintained even after long term storage.
-
FIG. 1 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 4 to 6 and Comparative Example 1. -
FIG. 2 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 7 to 9 and Comparative Example 2. -
FIG. 3 shows the dissolution patterns of the compound A from the pharmaceutical compositions obtained in Examples 10 to 12 and Comparative Example 3. -
FIG. 4 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 13 to 15 and Comparative Example 4. -
FIG. 5 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Examples 16 to 17 and Comparative Example 5. -
FIG. 6 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Example 18 and Comparative Examples 7 to 8. -
FIG. 7 shows the dissolution profiles of the compound A from the pharmaceutical compositions obtained in Example 19 and Comparative Examples 9 to 10. - The pharmaceutical composition of the present invention means a composition comprising the quinoline derivative (I) and a basic substance as essential ingredients. A mixing ratio of the quinoline derivative (I) and the basic substance is, but is not limited to, normally 1:0.5 to 50, preferably 1:1 to 25, further preferably 1:2 to 12.5.
- In addition, a mixing rate of the quinoline derivative (I) with respect to the total weight of the pharmaceutical composition (excluding a capsule shell) is normally 0.25 to 50 weight %, preferably 0.5 to 25 weight %, further preferably 1 to 12.5 weight %.
- A mixing rate of the basic substance with respect to the total weight of the pharmaceutical composition is normally 1 to 60 weight %, preferably 5 to 50 weight %, further preferably 10 to 40 weight %. At least one basic substance of the present invention may be included in the pharmaceutical composition, or two or more basic substances may also be included.
- A dosage form of the pharmaceutical composition specifically means a solid preparation such as granules, fine granules, tablets or capsules and so on. It is preferably fine granules, granules or capsules filled with fine granules or granules.
- The quinoline derivative (I) is a compound disclosed in WO 2002/32872. A preferable quinoline derivative (I) is a quinoline derivative or pharmacologically acceptable salt thereof or solvate thereof selected from the group consisting of 4-(3-fluoro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-hydroxyethoxy)-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-((2S)-2,3-dihydroxypropyl)oxy-6-quinolinecarboxamide, 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-(2-ethoxyethoxy)-6-quinolinecarboxamide, 4-(4-((cyclopropylamino)carbonyl)aminophenoxy)-7-(2-methoxyethoxy)-6-quinolinecarboxamide, N-(2-fluoro-4-[(6-carbamoyl-7-methoxy-4-quinolyl)oxy]phenyl)-N′-cyclopropylurea, N6-(2-hydroxyethyl)-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(1-propylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(cis-2-fluoro-cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, N6-methyl-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-(2-methoxyethoxy)-6-quinolinecarboxamide and N6-methyl-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide.
- A more preferable quinoline derivative (I) is a quinoline derivative or pharmacologically acceptable salt thereof or solvate thereof selected from the group consisting of 4-(3-chloro-4-(methylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(ethylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, N6-methoxy-4-(3-chloro-4-(((cyclopropylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide and N6-methoxy-4-(3-chloro-4-(((ethylamino)carbonyl)amino)phenoxy)-7-methoxy-6-quinolinecarboxamide.
- A particularly preferable quinoline derivative (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide or pharmacologically acceptable salt thereof or solvate thereof.
- The pharmaceutically acceptable salt of the present invention means hydrochloride, hydrobromide, p-toluenesulfonate, sulfate, methanesulfonate or ethanesulfonate. It is preferably the methanesulfonate.
- The solvate of the present invention means hydrate, dimethyl sulfoxide solvate or acetic acid solvate.
- The quinoline derivative (I) is preferably a crystal of a salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide, or a solvate thereof disclosed in WO 2005/063713. A particularly preferred quinoline derivative (I) is the C Form crystal of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide methanesulfonate.
- The quinoline derivative (I) is useful as a preventive or therapeutic agent against various tumors and as a metastasis inhibitor against tumors. Examples of the tumors against which the quinoline derivative (I) is effective include thyroid cancer, non-small-cell lung cancer, melanoma, laryngopharyngeal cancer, esophageal cancer, gastric cancer, colorectal cancer, hepatocellular carcinoma, renal cell carcinoma, pancreatic cancer, bladder cancer, breast cancer, uterine cancer, ovarian cancer, prostate cancer, testicular cancer, gastrointestinal stromal tumor, sarcoma, osteogenic sarcoma, angioma, malignant lymphoma, myeloid leukemia, neuroma and neuroglioma.
- The basic substance of the present invention means a basic inorganic salt. Such basic inorganic salts include beryllium carbonate, magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, potassium carbonate, calcium hydrogenphosphate and titanium oxide. It is preferably an alkaline earth metal salt of carbonic acid, further preferably magnesium carbonate or calcium carbonate.
- It is also acceptable to further include a disintegrating agent in the pharmaceutical composition of the present invention. Such a disintegrating agent include corn starch, partially pregelatinized starch, hydroxypropyl starch, carmellose, carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose and crospovidone. It is preferably the croscarmellose sodium, the low-substituted hydroxypropylcellulose or the crospovidone.
- The pharmaceutical composition of the present invention may be prepared by a known method such as a method described in the General Rules for Preparations in the Japanese Pharmacopoeia Fifteenth Edition.
- For example, in the case of the granule, it is possible to add an excipient, a binder, a disintegrating agent, a solvent, or the like to the quinoline derivative (I) as needed, to perform agitation granulation, extruding granulation, tumbling granulation, fluidized-bed granulation, spray granulation, or the like, and to prepare it. It is also acceptable to be coated with an atomizing agent containing the quinoline derivative (I) and an additive such as corn starch, microcrystalline cellulose, hydroxypropylcellulose, methylcellulose or polyvinylpyrrolidone while spraying water or a solution of a binder such as saccharose, hydroxypropylcellulose or hydroxypropylmethylcellulose on a core material such as a purified sucrose spherical granule, a lactose/crystalline cellulose spherical granule, a saccharose/starch spherical granule or a granular crystalline cellulose. It is also acceptable to perform sizing and milling as needed.
- It is also possible to further, as needed, add an excipient, a binder, a disintegrating agent, a lubricant, an anti-oxidizing agent, a corrigent, a coloring agent, a flavoring agent, or the like to the granule prepared in this way and to compress it to be a tablet. A required excipient may be added to the quinoline derivative (I) to directly compress the mixture into a tablet. It is also possible to fill a capsule with the quinoline derivative (I) added/mixed with an excipient such as lactose, saccharose, glucose, starch, microcrystalline cellulose, powdered glycyrrhiza, mannitol, calcium phosphate or calcium sulfate, or with the granule.
- Examples of the excipient include lactose, saccharose, glucose, fructose, starch, potato starch, corn starch, wheat starch, rice starch, crystalline cellulose, microcrystalline cellulose, powdered glycyrrhiza, mannitol, erythritol, maltitol, sorbitol, trehalose, silicic anhydride, calcium silicate, sodium hydrogencarbonate, calcium phosphate, anhydrous calcium phosphate and calcium sulfate.
- Examples of the binder include gelatin, starch, gum arabic, tragacanth, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, methylcellulose, partially pregelatinized starch, pregelatinized starch, polyvinyl alcohol, sodium arginine, pullulan and glycerin.
- Examples of the disintegrating agent include corn starch, partially pregelatinized starch, hydroxypropyl starch, carmellose, carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose and crospovidone.
- Examples of the lubricant include magnesium stearate, stearic acid, calcium stearate, sodium stearyl fumarate, talc and macrogol.
- Examples of the anti-oxidizing agent include sodium ascorbate, L-cysteine, sodium sulfite, tocopherol and soybean lecithin.
- Examples of the corrigent include citric acid, ascorbic acid, tartaric acid, malic acid, aspartame, acesulfame potassium, thaumatin, saccharin sodium, dipotassium glycyrrhizinate, sodium glutamate, sodium 5′-inosinate and sodium 5′-guanylate.
- Examples of the coloring agent include titanium oxide, iron sesquioxide, iron sesquioxide yellow, cochineal, carmine, riboflavin, food yellow No. 5 and food blue No. 2.
- Examples of the flavoring agent include lemon oil, orange oil, menthol, peppermint oil, borneol and vanilla flavor.
- The present invention will be described in more detail below with reference to Examples, but is not limited to the Examples.
- Wet granulation was performed with purified water as a solvent using a high-shear granulator (apparatus name: FM-VG-10, manufactured by Powrex Corporation) with the C form crystal of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide methanesulfonate (hereinafter referred to as compound A), D-mannitol (trade name: Mannitol, Merck), precipitated calcium carbonate (trade name: Whiton F, Shiraishi Calcium), hydroxypropylcellulose (HPC-L, Nippon Soda), low-substituted hydroxypropylcellulose (trade name: L-HPC (LH-21), Shin-Etsu Chemical) and microcrystalline cellulose (trade name: Ceolus PH-101, Asahi Kasei Chemicals) according to the formulation proportions in Table 1. The granules of which a moisture content was reduced to be less than 2% by further drying were sized using a screen mill (apparatus name: Power Mill P-04S, manufactured by Showa Giken KK) so that their granule diameters were less than 1 mm. Then, microcrystalline cellulose (trade name: Ceolus PH-102, Asahi Kasei Chemicals) and talc (trade name: Hi-Filler 17, Iwai Chemicals Company) were added to the sized granules according to the formulation proportions in Table 1, and the mixture was thoroughly mixed using a diffusion (tumbler-type) mixer (trade name: 10L/20L Exchange-type Tumbler Mixer, manufactured by Toyo Packing Corporation). Hard capsules size #4 were filled with 100 mg of the resultant granules to prepare capsules containing the compound A.
-
TABLE 1 Ex. 1 Ex. 2 Ex. 3 Compound A 1.25 5 12.5 Precipitated calcium carbonate 33 33 33 D-Mannitol 19.75 16 8.5 Hydroxypropylcellulose 3 3 3 Low-substituted 25 25 25 hydroxypropylcellulose Microcrystalline cellulose (PH-101) 10 10 10 Microcrystalline cellulose (PH-102) 5 5 5 Talc 3 3 3 Total 100 100 100 Unit: weight % - The compound A, precipitated calcium carbonate, low-substituted hydroxypropylcellulose, D-mannitol and talc were thoroughly mixed using a mortar and a pestle according to the formulation proportions in Table 2 and Table 3. Hard capsules size #3 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 4 to 9. Capsules in Comparative Examples 1 to 2, which contained no precipitated calcium carbonate, were also prepared by the same method.
-
TABLE 2 Com. Ex. 1 Ex. 4 Ex. 5 Ex. 6 Compound A 5 5 5 5 Precipitated calcium carbonate 0 5 10 20 Low-substituted 30 25 20 10 hydroxypropylcellulose D-Mannitol 62 62 62 62 Talc 3 3 3 3 Total 100 100 100 100 Unit: weight % -
TABLE 3 Com. Ex. 2 Ex. 7 Ex. 8 Ex. 9 Compound A 20 20 20 20 Precipitated calcium carbonate 0 5 10 20 Low-substituted 30 25 20 10 hydroxypropylcellulose D-Mannitol 47 47 47 47 Talc 3 3 3 3 Total 100 100 100 100 Unit: weight % - The dissolutions of the compound A in the capsules in Examples 4 to 9 and Comparative Examples 1 to 2 were examined according to the Dissolution Test (the Paddle method, test medium: JP1 solution) described in the Japanese Pharmacopoeia Fifteenth Edition. As a result, the dissolutions of the compound A in the capsules in Comparative Examples 1 to 2, in which no calcium carbonate was mixed, were insufficient. In contrast, the dissolutions of the compound A in the capsules in Examples 4 to 9, in which calcium carbonate was mixed, were good (
FIG. 1 andFIG. 2 ). - The compound A, magnesium carbonate (Kyowa Chemical Industry), low-substituted hydroxypropylcellulose, D-mannitol and talc were thoroughly mixed using a mortar and a pestle according to the formulation proportions in Table 4 and Table 5. Hard capsules size #3 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 10 to 15. Capsules in Comparative Examples 3 to 4, which contained no magnesium carbonate, were also prepared by the same method.
-
TABLE 4 Com. Ex. 3 Ex. 10 Ex. 11 Ex. 12 Compound A 5 5 5 5 Magnesium carbonate 0 5 10 20 Low-substituted 30 25 20 10 hydroxypropylcellulose D-Mannitol 62 62 62 62 Talc 3 3 3 3 Total 100 100 100 100 Unit: weight % -
TABLE 5 Com. Ex. 4 Ex. 13 Ex. 14 Ex. 15 Compound A 20 20 20 20 Magnesium carbonate 0 5 10 20 Low-substituted 30 25 20 10 hydroxypropylcellulose D-Mannitol 47 47 47 47 Talc 3 3 3 3 Total 100 100 100 100 Unit: weight % - The dissolutions of the compound A in the capsules in Examples 10 to 15 and Comparative Examples 3 to 4 were examined by the same method as in Test Example 1. The dissolutions of the compound A in the capsules in Comparative Examples 3 to 4, in which no magnesium carbonate was mixed, were insufficient. In contrast, the dissolutions of the compound A in the capsules in Examples 10 to 15, in which the magnesium carbonate was mixed, were good (
FIG. 3 andFIG. 4 ). - Purified water was added to the compound A, precipitated calcium carbonate or magnesium carbonate, hydroxypropylcellulose and croscarmellose sodium (trade name: Ac-Di-Sol, Asahi Kasei Chemicals) to perform granulation using a mortar and a pestle, followed by sizing of the dried granules so that their granule diameters were less than 1 mm. Then, microcrystalline cellulose (trade name: Ceolus PH-102, Asahi Kasei Chemicals), low-substituted hydroxypropylcellulose and talc (trade name: Hi-Filler 17, Iwai Chemicals Company) were added to the sized granules according to the formulation proportions in Table 6, and the mixture was mixed thoroughly. Hard capsules size #4 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 16 to 17. Capsules in Comparative Examples 5 to 6, which contained neither precipitated calcium carbonate nor magnesium carbonate but contained mannitol or talc as a substitute, were also similarly prepared according to the formulation proportions in Table 7.
-
TABLE 6 Ex. 16 Ex. 17 Compound A 10 10 Precipitated calcium carbonate 15 0 Magnesium carbonate 0 15 Hydroxypropylcellulose 2 2 Croscarmellose sodium 10 10 Low-substituted 20 20 hydroxypropylcellulose Microcrystalline cellulose (PH-102) 41 41 Talc 2 2 Total 100 100 Unit: weight % -
TABLE 7 Com. Com. Ex. 5 Ex. 6 Compound A 10 10 Mannitol 15 0 Talc 0 15 Hydroxypropylcellulose 2 2 Croscarmellose sodium 10 10 Low-substituted 20 20 hydroxypropylcellulose Microcrystalline cellulose (PH-102) 41 41 Talc 2 2 Total 100 100 Unit: weight % - The dissolutions of the compound A in the capsules in Examples 16 to 17 and Comparative Example 5 were examined by the same method as in Test Example 1. The dissolution of the compound A in the capsule in Comparative Example 5, in which neither calcium carbonate nor magnesium carbonate was mixed, was insufficient. In contrast, the dissolutions of the compound A in the capsules in Examples 16 to 17, in which calcium carbonate or magnesium carbonate was mixed, were good (
FIG. 5 ). - The capsules in Examples 16 to 17 and Comparative Example 6 were stored for 1 week in an open system under an environment at a temperature of 60° C. and a relative humidity of 75%, followed by determining the production of the degradants with high-performance liquid chromatography. In the capsule formulation in Comparative Example 6, in which neither calcium carbonate nor magnesium carbonate was mixed, an amount of the degradants was increased. In contrast, in the capsules in Examples 16 to 17, in which calcium carbonate or magnesium carbonate was mixed, no increase in amount of the degradants was observed (Table 8).
-
TABLE 8 Quantitated Degradants (%) compound A(%) Compound A (Initial) 1.61% 98.38% Com. Ex. 6 1.92% 98.08% Ex. 16 1.50% 98.50% Ex. 17 1.57% 98.44% - The respective ingredients were mixed according to the formulations of Tables 9 and 10 by the same method as in Examples 4 to 9 and Comparative Examples 1 to 2. Hard capsules size #3 were filled with 100 mg of the resultant mixtures to prepare capsules in Examples 18 to 19 and Comparative Examples 7 to 10.
-
TABLE 9 Com. Com. Ex. 18 Ex. 7 Ex. 8 Compound A 20 20 20 Precipitated calcium carbonate 10 0 0 Calcium oxide 0 10 0 Calcium hydroxide 0 0 10 Low-substituted 20 20 20 hydroxypropylcellulose D-Mannitol 47 47 47 Talc 3 3 3 Total 100 100 100 Unit: weight % -
TABLE 10 Com. Com. Ex. 19 Ex. 9 Ex. 10 Compound A 20 20 20 Magnesium carbonate 10 0 0 Magnesium oxide 0 10 0 Magnesium hydroxide 0 0 10 Low-substituted 20 20 20 hydroxypropylcellulose D-Mannitol 47 47 47 Talc 3 3 3 Total 100 100 100 Unit: weight % - The dissolutions of the compound A in the capsules in Examples 18 to 19 and Comparative Examples 7 to 10 were examined by the same method as in Test Example 1. As a result, the dissolutions of the compound A in the capsules in Comparative Examples 7 to 10, in which calcium oxide, calcium hydroxide, magnesium oxide or magnesium hydroxide was mixed, were insufficient. In contrast, the dissolutions of the compound A in the capsules in Examples 18 to 19, in which calcium carbonate or magnesium carbonate was mixed, were good (
FIG. 6 andFIG. 7 ). - The pharmaceutical composition of the present invention is excellent in dissolution of the quinoline derivative and also in stability, and is therefore useful as a medicament for prevention or treatment of a tumor.
Claims (12)
1. A pharmaceutical composition comprising
(1) a compound represented by the formula (I) or pharmaceutically acceptable salt thereof or solvate thereof:
2. The composition according to claim 1 , wherein the basic substance is a carbonate.
3. The composition according to claim 2 , wherein the salt is an alkaline earth metal salt.
4. The composition according to claim 3 , wherein the alkaline earth metal salt is a magnesium salt or a calcium salt.
5. The composition according to claim 1 , further comprising a disintegrating agent.
6. The composition according to claim 5 , wherein the disintegrating agent is carmellose sodium, carmellose calcium, carboxymethyl starch sodium, croscarmellose sodium, low-substituted hydroxypropylcellulose or crospovidone.
7. The composition according to claim 1 , wherein R1 is a hydrogen atom, a methyl group, an ethyl group, an n-propyl group or a cyclopropyl group.
8. The composition according to claim 1 , wherein R1 is a cyclopropyl group.
9. The composition according to claim 1 , wherein R2 is a hydrogen atom, a methoxy group or an ethoxy group.
10. The composition according to claim 1 , wherein R2 is a hydrogen atom.
11. The composition according to claim 1 , wherein the pharmaceutically acceptable salt is hydrochloride, hydrobromide, p-toluenesulfonate, sulfate, methanesulfonate or ethanesulfonate.
12. The composition according to claim 1 , wherein the compound represented by the formula (I) is 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide methanesulfonate.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009-190145 | 2009-08-19 | ||
| JP2009190145 | 2009-08-19 | ||
| PCT/JP2010/063804 WO2011021597A1 (en) | 2009-08-19 | 2010-08-16 | Quinoline derivative-containing pharmaceutical composition |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2010/063804 A-371-Of-International WO2011021597A1 (en) | 2009-08-19 | 2010-08-16 | Quinoline derivative-containing pharmaceutical composition |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/923,858 Continuation US20130296365A1 (en) | 2009-08-19 | 2013-06-21 | Quinoline derivative-containing pharmaceutical composition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120077842A1 true US20120077842A1 (en) | 2012-03-29 |
Family
ID=43607048
Family Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/322,961 Abandoned US20120077842A1 (en) | 2009-08-19 | 2010-08-16 | Quinoline derivative-containing pharmaceutical composition |
| US13/923,858 Abandoned US20130296365A1 (en) | 2009-08-19 | 2013-06-21 | Quinoline derivative-containing pharmaceutical composition |
| US17/228,025 Active 2030-10-04 US12508313B2 (en) | 2009-08-19 | 2021-04-12 | Quinoline derivative-containing pharmaceutical composition |
Family Applications After (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/923,858 Abandoned US20130296365A1 (en) | 2009-08-19 | 2013-06-21 | Quinoline derivative-containing pharmaceutical composition |
| US17/228,025 Active 2030-10-04 US12508313B2 (en) | 2009-08-19 | 2021-04-12 | Quinoline derivative-containing pharmaceutical composition |
Country Status (32)
| Country | Link |
|---|---|
| US (3) | US20120077842A1 (en) |
| EP (1) | EP2468281B1 (en) |
| JP (1) | JP5048871B2 (en) |
| KR (1) | KR101496395B1 (en) |
| CN (1) | CN102470133B (en) |
| AU (1) | AU2010285740C1 (en) |
| BR (1) | BR112012003592B8 (en) |
| CA (1) | CA2771403C (en) |
| CL (1) | CL2012000412A1 (en) |
| CO (1) | CO6440512A2 (en) |
| CY (1) | CY1117481T1 (en) |
| DK (1) | DK2468281T3 (en) |
| ES (1) | ES2564797T3 (en) |
| HR (1) | HRP20160283T1 (en) |
| HU (1) | HUE026957T2 (en) |
| IL (1) | IL217197A (en) |
| MA (1) | MA33581B1 (en) |
| ME (1) | ME02359B (en) |
| MX (2) | MX344927B (en) |
| MY (1) | MY162940A (en) |
| NZ (1) | NZ598291A (en) |
| PE (1) | PE20121030A1 (en) |
| PL (1) | PL2468281T3 (en) |
| RS (1) | RS54686B1 (en) |
| RU (1) | RU2548673C3 (en) |
| SG (1) | SG178009A1 (en) |
| SI (1) | SI2468281T1 (en) |
| SM (1) | SMT201600077B (en) |
| TH (1) | TH121482A (en) |
| UA (1) | UA105671C2 (en) |
| WO (1) | WO2011021597A1 (en) |
| ZA (1) | ZA201108697B (en) |
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080214557A1 (en) * | 2005-09-01 | 2008-09-04 | Eisai R&D Management Co., Ltd. | Method for preparation of pharmaceutical composition having improved disintegratability and pharmaceutical composition manufactured by same method |
| US20080214604A1 (en) * | 2004-09-17 | 2008-09-04 | Hisao Furitsu | Medicinal Composition |
| US20090264464A1 (en) * | 2006-08-28 | 2009-10-22 | Eisai R & D Management Co., Ltd. | Antitumor agent for undifferentiated gastric cancer |
| US20100048620A1 (en) * | 2007-01-29 | 2010-02-25 | Yuji Yamamoto | Composition for treatment of undifferentiated gastric cancer |
| US20100092490A1 (en) * | 2005-08-02 | 2010-04-15 | Eisai R&D Management Co., Ltd. | Method for assay on the effect of vascularization inhibitor |
| US20100239688A1 (en) * | 2007-11-09 | 2010-09-23 | Yuji Yamamoto | Combination of anti-angiogenic substance and anti-tumor platinum complex |
| US20110207756A1 (en) * | 2006-05-18 | 2011-08-25 | Eisai R&D Management Co., Ltd. | Antitumor agent for thyroid cancer |
| US8815241B2 (en) | 2005-11-07 | 2014-08-26 | Eisai R&D Management Co., Ltd. | Use of combination of anti-angiogenic substance and c-kit kinase inhibitor |
| US8962650B2 (en) | 2011-04-18 | 2015-02-24 | Eisai R&D Management Co., Ltd. | Therapeutic agent for tumor |
| US9012458B2 (en) | 2010-06-25 | 2015-04-21 | Eisai R&D Management Co., Ltd. | Antitumor agent using compounds having kinase inhibitory effect in combination |
| US9334239B2 (en) | 2012-12-21 | 2016-05-10 | Eisai R&D Management Co., Ltd. | Amorphous form of quinoline derivative, and method for producing same |
| WO2016136745A1 (en) | 2015-02-25 | 2016-09-01 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Method for suppressing bitterness of quinoline derivative |
| US9945862B2 (en) | 2011-06-03 | 2018-04-17 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds |
| EP3384901A1 (en) * | 2017-04-04 | 2018-10-10 | Synthon B.V. | Pharmaceutical composition comprising lenvatinib mesylate |
| US10259791B2 (en) | 2014-08-28 | 2019-04-16 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
| CN110404079A (en) * | 2018-04-27 | 2019-11-05 | 北京睿创康泰医药研究院有限公司 | A kind of not carbonate containing, the quinoline of low genotoxicity impurity content or the pharmaceutical composition of its salt |
| US10517861B2 (en) | 2013-05-14 | 2019-12-31 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds |
| US11369623B2 (en) | 2015-06-16 | 2022-06-28 | Prism Pharma Co., Ltd. | Anticancer combination of a CBP/catenin inhibitor and an immune checkpoint inhibitor |
| US11547705B2 (en) | 2015-03-04 | 2023-01-10 | Merck Sharp & Dohme Llc | Combination of a PD-1 antagonist and a VEGF-R/FGFR/RET tyrosine kinase inhibitor for treating cancer |
| US12220398B2 (en) | 2015-08-20 | 2025-02-11 | Eisai R&D Management Co., Ltd. | Tumor therapeutic agent |
| US12226409B2 (en) | 2017-05-16 | 2025-02-18 | Eisai R&D Management Co., Ltd. | Treatment of hepatocellular carcinoma |
| US12303505B2 (en) | 2017-02-08 | 2025-05-20 | Eisai R&D Management Co., Ltd. | Tumor-treating pharmaceutical composition |
| US12508313B2 (en) | 2009-08-19 | 2025-12-30 | Eisai R&D Management Co., Ltd. | Quinoline derivative-containing pharmaceutical composition |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106139156B (en) * | 2014-11-14 | 2019-01-29 | 江苏恒瑞医药股份有限公司 | A kind of pharmaceutical composition containing quinoline or its salt |
| CN106075456A (en) * | 2015-04-27 | 2016-11-09 | 南京圣和药业股份有限公司 | A kind of pleasure that contains cuts down the pharmaceutical composition for Buddhist nun and application thereof |
| EP3287444A4 (en) * | 2015-05-21 | 2018-09-12 | Crystal Pharmatech Co., Ltd. | New crystal form of lenvatinib methanesulfonate salt and preparation method thereof |
| WO2017028660A1 (en) * | 2015-08-17 | 2017-02-23 | 江苏恒瑞医药股份有限公司 | Pharmaceutical composition containing quinoline derivative or salt thereof |
| RU2606592C1 (en) * | 2015-10-07 | 2017-01-10 | Открытое Акционерное Общество "Татхимфармпрепараты" | Pharmaceutical composition containing rosuvastatin calcium salt (versions) |
| CZ2016240A3 (en) | 2016-04-27 | 2017-11-08 | Zentiva, K.S. | Salts of lenvatinib |
| US10583133B2 (en) | 2018-03-12 | 2020-03-10 | Shilpa Medicare Limited | Pharmaceutical compositions of lenvatinib |
| AU2019352722A1 (en) | 2018-10-04 | 2021-04-01 | Synthon B.V. | Crystalline forms and processes of lenvatinib besylate |
| EP3632436B1 (en) | 2018-10-04 | 2022-04-20 | Synthon B.V. | Pharmaceutical composition comprising lenvatinib salts |
| CN113087666B (en) * | 2020-01-09 | 2021-12-14 | 南京正大天晴制药有限公司 | Process for the preparation of amorphous quinoline carboxamide derivatives |
| WO2021185006A1 (en) * | 2020-03-18 | 2021-09-23 | 上海博志研新药物技术有限公司 | Lenvatinib pharmaceutical composition, preparation method therefor and application thereof |
| EP4147689A1 (en) | 2021-09-13 | 2023-03-15 | Lotus Pharmaceutical Co., Ltd. | Lenvatinib formulation |
| CN114306271B (en) * | 2021-11-24 | 2023-04-07 | 石药集团中奇制药技术(石家庄)有限公司 | Lunvatinib composition |
| CN115671074B (en) * | 2022-11-15 | 2024-06-04 | 郑州德迈药业有限公司 | Lenvatinib mesylate preparation and preparation method thereof |
| EP4424303A1 (en) | 2023-02-28 | 2024-09-04 | Stada Arzneimittel Ag | Lenvatinib composition with improved bioavailability |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7550483B2 (en) * | 2005-06-23 | 2009-06-23 | Eisai R&D Management Co., Ltd. | Amorphous salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide and process for preparing the same |
| US20090304694A1 (en) * | 2006-01-27 | 2009-12-10 | Amgen Inc. | Ang2 and Vegf Inhibitor Combinations |
| US20110158983A1 (en) * | 2008-03-05 | 2011-06-30 | Newell Bascomb | Compositions and methods for mucositis and oncology therapies |
Family Cites Families (326)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CU22545A1 (en) | 1994-11-18 | 1999-03-31 | Centro Inmunologia Molecular | OBTAINING A CHEMICAL AND HUMANIZED ANTIBODY AGAINST THE RECEPTOR OF THE EPIDERMAL GROWTH FACTOR FOR DIAGNOSTIC AND THERAPEUTIC USE |
| GB1458148A (en) * | 1974-04-19 | 1976-12-08 | Wyeth John & Brother Ltd | Carbocyclic-fused ring quinoline derivatives |
| JPS57123267A (en) | 1981-01-23 | 1982-07-31 | Kansai Paint Co Ltd | Thermosetting paint composition |
| SE8103843L (en) | 1981-06-18 | 1982-12-19 | Astra Laekemedel Ab | PHARMACEUTICAL MIXTURE |
| JPS59101423A (en) | 1982-12-02 | 1984-06-12 | Takada Seiyaku Kk | Novel solid pharmaceutical preparation of nifedipine |
| US4526988A (en) | 1983-03-10 | 1985-07-02 | Eli Lilly And Company | Difluoro antivirals and intermediate therefor |
| ATE85080T1 (en) | 1984-02-17 | 1993-02-15 | Genentech Inc | HUMAN TRANSFORMATIONAL GROWTH FACTOR AND PRECURSORS OR FRAGMENTS THEREOF, CELLS, DNA, VECTORS AND METHODS FOR THEIR PRODUCTION, COMPOSITIONS AND PRODUCTS CONTAINING THEM, AND ANTIBODIES AND DIAGNOSTIC METHODS DERIVED THEREOF. |
| US4582789A (en) | 1984-03-21 | 1986-04-15 | Cetus Corporation | Process for labeling nucleic acids using psoralen derivatives |
| DE8411409U1 (en) | 1984-04-11 | 1984-08-30 | Dr.-Ing. Walter Frohn-Betriebe, 8000 München | DEGASSING VALVE FOR STORAGE AND / OR TRANSPORT CONTAINERS |
| US4563417A (en) | 1984-08-31 | 1986-01-07 | Miles Laboratories, Inc. | Nucleic acid hybridization assay employing antibodies to intercalation complexes |
| EP0183858B1 (en) | 1984-11-22 | 1988-09-14 | Holsten-Brauerei AG | Beer and process for its preparation |
| DE3587500T2 (en) | 1984-12-04 | 1993-12-16 | Lilly Co Eli | Tumor treatment in mammals. |
| JPS62168137A (en) | 1985-12-20 | 1987-07-24 | Fuji Photo Film Co Ltd | Silver halide color photographic sensitive material and its processing method |
| JPH07106295B2 (en) | 1986-07-22 | 1995-11-15 | エーザイ株式会社 | Humidifier |
| US4743450A (en) | 1987-02-24 | 1988-05-10 | Warner-Lambert Company | Stabilized compositions |
| CA1339136C (en) | 1987-07-01 | 1997-07-29 | Sailesh Amilal Varia | Amorphous form of aztreonam |
| US5009894A (en) * | 1988-03-07 | 1991-04-23 | Baker Cummins Pharmaceuticals, Inc. | Arrangement for and method of administering a pharmaceutical preparation |
| AU4128089A (en) | 1988-09-15 | 1990-03-22 | Rorer International (Overseas) Inc. | Monoclonal antibodies specific to human epidermal growth factor receptor and therapeutic methods employing same |
| US5143854A (en) | 1989-06-07 | 1992-09-01 | Affymax Technologies N.V. | Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof |
| US4983615A (en) | 1989-06-28 | 1991-01-08 | Hoechst-Roussel Pharmaceuticals Inc. | Heteroarylamino- and heteroaryloxypyridinamine compounds which are useful in treating skin disorders |
| US5180818A (en) | 1990-03-21 | 1993-01-19 | The University Of Colorado Foundation, Inc. | Site specific cleavage of single-stranded dna |
| US5210015A (en) | 1990-08-06 | 1993-05-11 | Hoffman-La Roche Inc. | Homogeneous assay system using the nuclease activity of a nucleic acid polymerase |
| DE69132843T2 (en) | 1990-12-06 | 2002-09-12 | Affymetrix, Inc. (N.D.Ges.D.Staates Delaware) | Identification of nucleic acids in samples |
| GB9105677D0 (en) | 1991-03-19 | 1991-05-01 | Ici Plc | Heterocyclic compounds |
| US5367057A (en) | 1991-04-02 | 1994-11-22 | The Trustees Of Princeton University | Tyrosine kinase receptor flk-2 and fragments thereof |
| US5721237A (en) | 1991-05-10 | 1998-02-24 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties |
| US5710158A (en) | 1991-05-10 | 1998-01-20 | Rhone-Poulenc Rorer Pharmaceuticals Inc. | Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase |
| CA2102780C (en) | 1991-05-10 | 2007-01-09 | Alfred P. Spada | Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase |
| JPH04341454A (en) | 1991-05-16 | 1992-11-27 | Canon Inc | seat storage device |
| US5750376A (en) | 1991-07-08 | 1998-05-12 | Neurospheres Holdings Ltd. | In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny |
| JPH05194259A (en) | 1991-08-30 | 1993-08-03 | Mitsubishi Kasei Corp | Anti-peptic ulcer agent |
| CA2137275A1 (en) | 1992-06-03 | 1993-12-09 | Richard L. Eckert | Bandage for continuous application of biologicals |
| TW271400B (en) | 1992-07-30 | 1996-03-01 | Pfizer | |
| GB9221220D0 (en) | 1992-10-09 | 1992-11-25 | Sandoz Ag | Organic componds |
| JPH06153952A (en) | 1992-11-26 | 1994-06-03 | Nobuaki Tamamaki | Method for pretreatment for carrying out amplifying and labeling of unknown double-stranded dna molecule in trace amount |
| GB9323290D0 (en) | 1992-12-10 | 1994-01-05 | Zeneca Ltd | Quinazoline derivatives |
| SG45369A1 (en) | 1993-01-19 | 1998-10-16 | Warner Lambert Co | Stable oral ci-981 formulation and process of preparing same |
| US6027880A (en) | 1995-08-02 | 2000-02-22 | Affymetrix, Inc. | Arrays of nucleic acid probes and methods of using the same for detecting cystic fibrosis |
| JPH07176103A (en) | 1993-12-20 | 1995-07-14 | Canon Inc | Magneto-optical recording / reproducing system, magnetic head and magneto-optical recording medium used therefor |
| GB9326136D0 (en) | 1993-12-22 | 1994-02-23 | Erba Carlo Spa | Biologically active 3-substituted oxindole derivatives useful as anti-angiogenic agents |
| IL112249A (en) | 1994-01-25 | 2001-11-25 | Warner Lambert Co | Pharmaceutical compositions containing di and tricyclic pyrimidine derivatives for inhibiting tyrosine kinases of the epidermal growth factor receptor family and some new such compounds |
| US6811779B2 (en) | 1994-02-10 | 2004-11-02 | Imclone Systems Incorporated | Methods for reducing tumor growth with VEGF receptor antibody combined with radiation and chemotherapy |
| JP3660391B2 (en) | 1994-05-27 | 2005-06-15 | 株式会社東芝 | Manufacturing method of semiconductor device |
| JPH0848078A (en) | 1994-08-05 | 1996-02-20 | Nippon Paper Ind Co Ltd | Heat-sensitive recorder |
| GB9510757D0 (en) | 1994-09-19 | 1995-07-19 | Wellcome Found | Therapeuticaly active compounds |
| US5656454A (en) | 1994-10-04 | 1997-08-12 | President And Fellows Of Harvard College | Endothelial cell-specific enhancer |
| IL115256A0 (en) | 1994-11-14 | 1995-12-31 | Warner Lambert Co | 6-Aryl pyrido (2,3-d) pyrimidines and naphthyridines and their use |
| JPH08176138A (en) | 1994-12-19 | 1996-07-09 | Mercian Corp | Isocoumarin derivative |
| US5948438A (en) | 1995-01-09 | 1999-09-07 | Edward Mendell Co., Inc. | Pharmaceutical formulations having improved disintegration and/or absorptivity |
| US5658374A (en) | 1995-02-28 | 1997-08-19 | Buckman Laboratories International, Inc. | Aqueous lecithin-based release aids and methods of using the same |
| US5624937A (en) | 1995-03-02 | 1997-04-29 | Eli Lilly And Company | Chemical compounds as inhibitors of amyloid beta protein production |
| EP0817775B1 (en) | 1995-03-30 | 2001-09-12 | Pfizer Inc. | Quinazoline derivatives |
| GB9508538D0 (en) | 1995-04-27 | 1995-06-14 | Zeneca Ltd | Quinazoline derivatives |
| US5880141A (en) | 1995-06-07 | 1999-03-09 | Sugen, Inc. | Benzylidene-Z-indoline compounds for the treatment of disease |
| EP0831829B1 (en) | 1995-06-07 | 2003-08-20 | Pfizer Inc. | Heterocyclic ring-fused pyrimidine derivatives |
| JPH0923885A (en) | 1995-07-12 | 1997-01-28 | Dai Ichi Seiyaku Co Ltd | Gene expression library and its production |
| GB9514265D0 (en) | 1995-07-13 | 1995-09-13 | Wellcome Found | Hetrocyclic compounds |
| GB9520822D0 (en) | 1995-10-11 | 1995-12-13 | Wellcome Found | Therapeutically active compounds |
| AR004010A1 (en) | 1995-10-11 | 1998-09-30 | Glaxo Group Ltd | HETERO CYCLIC COMPOUNDS |
| US6346398B1 (en) | 1995-10-26 | 2002-02-12 | Ribozyme Pharmaceuticals, Inc. | Method and reagent for the treatment of diseases or conditions related to levels of vascular endothelial growth factor receptor |
| JP4009681B2 (en) | 1995-11-07 | 2007-11-21 | キリンファーマ株式会社 | Quinoline derivatives and quinazoline derivatives that inhibit platelet-derived growth factor receptor autophosphorylation and pharmaceutical compositions containing them |
| US5849759A (en) | 1995-12-08 | 1998-12-15 | Berlex Laboratories, Inc. | Naphthyl-substituted benzimidazole derivatives as anti-coagulants |
| GB9604361D0 (en) | 1996-02-29 | 1996-05-01 | Pharmacia Spa | 4-Substituted pyrrolopyrimidine compounds as tyrosine kinase inhibitors |
| JPH09234074A (en) | 1996-03-04 | 1997-09-09 | Sumitomo Electric Ind Ltd | Adapter double-stranded DNA and DNA amplification method using the same |
| DE69729583T2 (en) | 1996-04-17 | 2005-06-09 | Bristol-Myers Squibb Pharma Co. | N- (AMIDINOPHENYL) -N '- (SUBST.) - 3H-2,4-BENZODIAZEPINE-3-ON DERIVATIVES AS FACTOR XA INHIBITORS |
| US6057100A (en) | 1996-06-07 | 2000-05-02 | Eos Biotechnology, Inc. | Oligonucleotide arrays |
| CA2258093A1 (en) | 1996-06-28 | 1998-01-08 | Mark E. Duggan | Fibrinogen receptor antagonists |
| HRP970371A2 (en) | 1996-07-13 | 1998-08-31 | Kathryn Jane Smith | Heterocyclic compounds |
| ES2186908T3 (en) | 1996-07-13 | 2003-05-16 | Glaxo Group Ltd | HETEROCICICLES CONDENSED COMPOUNDS AS INHIBITORS OF PPROTEINA-TIROSINA-QUINASAS. |
| US6207669B1 (en) | 1996-07-13 | 2001-03-27 | Glaxo Wellcome Inc. | Bicyclic heteroaromatic compounds as protein tyrosine kinase inhibitors |
| CA2263479A1 (en) | 1996-09-25 | 1998-04-02 | Zeneca Limited | Quinoline derivatives inhibiting the effect of growth factors such as vegf |
| WO1998014437A1 (en) | 1996-09-30 | 1998-04-09 | Nihon Nohyaku Co., Ltd. | 1,2,3-thiadiazole derivatives and salts thereof, disease controlling agents for agricultural and horticultural use, and method for the use thereof |
| EP0837063A1 (en) | 1996-10-17 | 1998-04-22 | Pfizer Inc. | 4-Aminoquinazoline derivatives |
| IL129825A0 (en) | 1996-11-27 | 2000-02-29 | Pfizer | Fused bicyclic pyrimidine derivatives |
| WO1998032436A1 (en) | 1997-01-29 | 1998-07-30 | Eli Lilly And Company | Treatment for premenstrual dysphoric disorder |
| CO4950519A1 (en) | 1997-02-13 | 2000-09-01 | Novartis Ag | PHTHALAZINES, PHARMACEUTICAL PREPARATIONS THAT UNDERSTAND THEM AND THE PROCESS FOR THEIR PREPARATION |
| ATE345339T1 (en) | 1997-02-19 | 2006-12-15 | Berlex Lab | N-HETEROCYCLIC DERIVATIVES AS NOS INHIBITORS |
| US6090556A (en) | 1997-04-07 | 2000-07-18 | Japan Science & Technology Corporation | Method for quantitatively determining the expression of a gene |
| WO1998050346A2 (en) | 1997-04-18 | 1998-11-12 | Smithkline Beecham Plc | Acetamide and urea derivatives, process for their preparation and their use in the treatment of cns disorders |
| CA2290520C (en) | 1997-05-23 | 2009-01-27 | Bayer Corporation | Inhibition of p38 kinase activity by aryl ureas |
| JP2002503248A (en) | 1997-06-10 | 2002-01-29 | シントン・ベスローテン・フェンノートシャップ | 4-phenylpiperidine compound |
| US6093742A (en) | 1997-06-27 | 2000-07-25 | Vertex Pharmaceuticals, Inc. | Inhibitors of p38 |
| WO1999001738A2 (en) | 1997-06-30 | 1999-01-14 | University Of Maryland, Baltimore | Heparin binding-epidermal growth factor in the diagnosis of interstitial cystitis |
| CN1261794A (en) | 1997-07-01 | 2000-08-02 | 辉瑞产品公司 | Solubilized sertraline compositions |
| BE1011251A3 (en) | 1997-07-03 | 1999-06-01 | Ucb Sa | Pharmaceutical administrable oral, including an active substance and cyclodextrin. |
| CO4940418A1 (en) | 1997-07-18 | 2000-07-24 | Novartis Ag | MODIFICATION OF A CRYSTAL OF A DERIVATIVE OF N-PHENYL-2-PIRIMIDINAMINE, PROCESSES FOR ITS MANUFACTURE AND USE |
| JP3765918B2 (en) | 1997-11-10 | 2006-04-12 | パイオニア株式会社 | Light emitting display and driving method thereof |
| JP4194678B2 (en) | 1997-11-28 | 2008-12-10 | キリンファーマ株式会社 | Quinoline derivative and pharmaceutical composition containing the same |
| CA2315646C (en) | 1997-12-22 | 2010-02-09 | Bayer Corporation | Inhibition of raf kinase using symmetrical and unsymmetrical substituted diphenyl ureas |
| TR200002618T2 (en) | 1997-12-22 | 2001-04-20 | Bayer Corporation | Inhibition of raf kinase using substituted heterocyclic ureas |
| CA2315720A1 (en) | 1997-12-22 | 1999-07-01 | Bayer Corporation | Inhibition of p38 kinase activity using substituted heterocyclic ureas |
| ATE346600T1 (en) | 1997-12-22 | 2006-12-15 | Bayer Pharmaceuticals Corp | INHIBITION OF P38 KINASE ACTIVITY BY THE USE OF ARYL AND HETEROARYL SUBSTITUTED UREAS |
| GB9800575D0 (en) | 1998-01-12 | 1998-03-11 | Glaxo Group Ltd | Heterocyclic compounds |
| RS49779B (en) | 1998-01-12 | 2008-06-05 | Glaxo Group Limited, | BICYCLIC HETEROAROMATIC COMPOUNDS AS PROTEIN TYROSINE KINASE INHIBITORS |
| TR200002447T2 (en) | 1998-02-25 | 2000-11-21 | Genetics Institute, Inc. | Inhibitors of phospholinase enzymes |
| JPH11322596A (en) | 1998-05-12 | 1999-11-24 | Shionogi & Co Ltd | Anticancer agent containing platinum complex and cyclic phosphoric ester amide |
| UA60365C2 (en) | 1998-06-04 | 2003-10-15 | Пфайзер Продактс Інк. | Isothiazole derivatives, a method for preparing thereof, a pharmaceutical composition and a method for treatment of hyperproliferative disease of mammal |
| EP2272840B1 (en) | 1998-06-17 | 2012-08-22 | Eisai R&D Management Co., Ltd. | Intermediate compound for the preparation of halichondrin analogs |
| US6653341B1 (en) | 1998-06-17 | 2003-11-25 | Eisai Co., Ltd. | Methods and compositions for use in treating cancer |
| US8097648B2 (en) | 1998-06-17 | 2012-01-17 | Eisai R&D Management Co., Ltd. | Methods and compositions for use in treating cancer |
| NZ512189A (en) | 1998-11-19 | 2003-10-31 | Warner Lambert Co | N-[4-(3-chloro-4-fluoro-phenylamino)-7-(3-morpholin-4- yl-propoxy)-quinazolin-6-yl]-acrylamide useful as an irreversible inhibitor of tyrosine kinases |
| TWI230618B (en) | 1998-12-15 | 2005-04-11 | Gilead Sciences Inc | Pharmaceutical compositions of 9-[2-[[bis[(pivaloyloxy)methyl]phosphono]methoxy]ethyl]adenine and tablets or capsules containing the same |
| EP1140840B1 (en) | 1999-01-13 | 2006-03-22 | Bayer Pharmaceuticals Corp. | -g(v)-carboxyaryl substituted diphenyl ureas as raf kinase inhibitors |
| UA73492C2 (en) | 1999-01-19 | 2005-08-15 | Aromatic heterocyclic compounds as antiinflammatory agents | |
| NZ513006A (en) | 1999-01-22 | 2003-10-31 | Kirin Brewery | Quinoline derivatives and quinazoline derivatives |
| UA71945C2 (en) | 1999-01-27 | 2005-01-17 | Pfizer Prod Inc | Substituted bicyclic derivatives being used as anticancer agents |
| JP3270834B2 (en) | 1999-01-27 | 2002-04-02 | ファイザー・プロダクツ・インク | Heteroaromatic bicyclic derivatives useful as anticancer agents |
| SK288138B6 (en) | 1999-02-10 | 2013-11-04 | Astrazeneca Ab | Quinazoline derivatives as angiogenesis inhibitors |
| GB9904103D0 (en) | 1999-02-24 | 1999-04-14 | Zeneca Ltd | Quinoline derivatives |
| JP2000328080A (en) | 1999-03-12 | 2000-11-28 | Shin Etsu Chem Co Ltd | Low friction treatment for seat belts |
| RS49836B (en) | 1999-03-31 | 2008-08-07 | Pfizer Products Inc., | PROCEDURES AND INTERMEDIATES FOR OBTAINING ANTI-CANCIN UNITS |
| BR0010017A (en) | 1999-04-28 | 2002-06-11 | Univ Texas | Compositions and processes for the treatment of cancer by selective vegf inhibition |
| WO2000071097A1 (en) | 1999-05-20 | 2000-11-30 | Takeda Chemical Industries, Ltd. | Composition containing ascorbic acid salt |
| JP4304357B2 (en) | 1999-05-24 | 2009-07-29 | 独立行政法人理化学研究所 | How to create a full-length cDNA library |
| PE20010306A1 (en) | 1999-07-02 | 2001-03-29 | Agouron Pharma | INDAZOLE COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM USEFUL FOR THE INHIBITION OF PROTEIN KINASE |
| AU6762400A (en) | 1999-08-12 | 2001-03-13 | Cor Therapeutics, Inc. | Inhibitors of factor xa |
| GT200000158A (en) | 1999-09-28 | 2002-03-16 | PIRIDINES AND REPLACED PYRIDACINES WITH ANGIOGENESIS INHIBITION ACTIVITY. | |
| UA75054C2 (en) | 1999-10-13 | 2006-03-15 | Бьорінгер Інгельхайм Фарма Гмбх & Ко. Кг | Substituted in position 6 indolinones, producing and use thereof as medicament |
| JP2001131071A (en) | 1999-10-29 | 2001-05-15 | Meiji Seika Kaisha Ltd | Amorphous substance and medical composition containing amorphous substance |
| WO2001032926A2 (en) | 1999-11-01 | 2001-05-10 | Curagen Corporation | Differentially expressed genes involved in angiogenesis, the polypeptides encoded thereby, and methods of using the same |
| CA2389360C (en) | 1999-11-16 | 2008-06-03 | Steffen Breitfelder | Urea derivatives as anti-inflammatory agents |
| UA75055C2 (en) | 1999-11-30 | 2006-03-15 | Пфайзер Продактс Інк. | Benzoimidazole derivatives being used as antiproliferative agent, pharmaceutical composition based thereon |
| MXPA02006263A (en) | 1999-12-22 | 2004-02-26 | Sugen Inc | METHODS OF MODULATING cKIT. |
| ATE289311T1 (en) | 1999-12-24 | 2005-03-15 | Kyowa Hakko Kogyo Kk | CONDENSED PURINE DERIVATIVES |
| HK1049839A1 (en) | 1999-12-24 | 2003-05-30 | Kirin Pharma Kabushiki Kaisha | Quinoline and quinazoline derivatives and drugs containing the same |
| ATE369359T1 (en) | 2000-02-15 | 2007-08-15 | Sugen Inc | PYRROLE SUBSTITUTED INDOLIN-2-ONE PROTEIN KINASE INHIBITORS |
| JP3657203B2 (en) | 2000-04-21 | 2005-06-08 | エーザイ株式会社 | Copper chlorophyllin salt-containing liquid composition |
| EP1287029A2 (en) | 2000-06-09 | 2003-03-05 | Corixa Corporation | Compositions and methods for the therapy and diagnosis of colon cancer |
| AU2001277621A1 (en) | 2000-08-09 | 2002-03-04 | Astrazeneca Ab | Antiangiogenic bicyclic derivatives |
| DE60126997T2 (en) * | 2000-10-20 | 2007-10-25 | Eisai R&D Management Co., Ltd. | NITROGEN-CONTAINING AROMATIC RING COMPOUNDS FOR THE TREATMENT OF TUMORARY DISEASES |
| TWI283575B (en) | 2000-10-31 | 2007-07-11 | Eisai Co Ltd | Medicinal compositions for concomitant use as anticancer agent |
| WO2002041882A2 (en) | 2000-11-22 | 2002-05-30 | Novartis Ag | Combination comprising an agent decreasing vegf activity and an agent decreasing egf activity |
| JP2004517080A (en) | 2000-11-29 | 2004-06-10 | グラクソ グループ リミテッド | Benzimidazole derivatives useful as inhibitors of TIE-2 and / or VEGFR-2 |
| EP1373569A4 (en) | 2001-03-02 | 2006-02-08 | Univ Pittsburgh | CHAIN REACTION PROCESS FOR POLYMERASE |
| EP1490362A2 (en) | 2001-03-08 | 2004-12-29 | Millennium Pharmaceuticals, Inc. | (homo)piperazine substituted quinolines for inhibiting the phosphorylation of kinases |
| IL157898A0 (en) | 2001-04-06 | 2004-03-28 | Wyeth Corp | Antineoplastic combinations such as rapamycin together with gemcitabine or fluorouracil |
| WO2002085926A2 (en) | 2001-04-19 | 2002-10-31 | GESELLSCHAFT FüR BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) | Method for producing stable, regeneratable antibody arrays |
| JP3602513B2 (en) | 2001-04-27 | 2004-12-15 | 麒麟麦酒株式会社 | Quinoline derivatives and quinazoline derivatives having an azolyl group |
| US6821987B2 (en) | 2001-04-27 | 2004-11-23 | Kirin Beer Kabushiki Kaisha | Quinoline derivatives and quinazoline derivatives having azolyl group |
| JP2003026576A (en) | 2001-05-09 | 2003-01-29 | Eisai Co Ltd | Medicine having improved taste |
| US6812341B1 (en) | 2001-05-11 | 2004-11-02 | Ambion, Inc. | High efficiency mRNA isolation methods and compositions |
| BR0209647A (en) | 2001-05-16 | 2004-07-27 | Novartis Ag | A combination comprising n- {5- [4- (4-methyl-piperazine-methyl) -benzoylamido] -2-methyl-phenyl} -4- (3-pyridyl) -2-pyrimidine-amine and a chemotherapeutic agent |
| DE60233736D1 (en) | 2001-06-22 | 2009-10-29 | Kirin Pharma K K | CHINOLIN DERIVATIVE AND CHINAZOLINE DERIVATIVES HARMING THE SELF-PHOSPHORYLATION OF THE HEPATOCYTUS PROLIFERATOR RECEPTOR, AND MEDICAL COMPOSITIONS CONTAINING THEREOF |
| US20030013208A1 (en) | 2001-07-13 | 2003-01-16 | Milagen, Inc. | Information enhanced antibody arrays |
| GB0117144D0 (en) | 2001-07-13 | 2001-09-05 | Glaxo Group Ltd | Process |
| JP4824213B2 (en) | 2001-07-16 | 2011-11-30 | 日本メナード化粧品株式会社 | Chitosan-containing tablets |
| GB0119467D0 (en) | 2001-08-09 | 2001-10-03 | Smithkline Beecham Plc | Novel compound |
| US7063946B2 (en) | 2001-09-10 | 2006-06-20 | Meso Scale Technologies, Llc. | Methods, reagents, kits and apparatus for protein function analysis |
| EP1427379B1 (en) | 2001-09-20 | 2008-08-13 | AB Science | Use of potent, selective and non toxic c-kit inhibitors for treating interstitial cystitis |
| US20040266779A1 (en) | 2001-09-27 | 2004-12-30 | Anderson Kenneth C. | Use of c-kit inhibitors for the treatment of myeloma |
| US6765012B2 (en) | 2001-09-27 | 2004-07-20 | Allergan, Inc. | 3-(Arylamino)methylene-1,3-dihydro-2H-indol-2-ones as kinase inhibitors |
| EP1435959A2 (en) | 2001-10-09 | 2004-07-14 | University of Cincinnati | Inhibitors of the egf receptor for the treatment of thyroid cancer |
| US7521053B2 (en) | 2001-10-11 | 2009-04-21 | Amgen Inc. | Angiopoietin-2 specific binding agents |
| US7658924B2 (en) | 2001-10-11 | 2010-02-09 | Amgen Inc. | Angiopoietin-2 specific binding agents |
| US7495104B2 (en) | 2001-10-17 | 2009-02-24 | Kirin Beer Kabushiki Kaisha | Quinoline or quinazoline derivatives inhibiting auto-phosphorylation of fibroblast growth factor receptors |
| AR037438A1 (en) | 2001-11-27 | 2004-11-10 | Wyeth Corp | 3-CYANOKINOLINES AS INHIBITORS OF EGF-R AND HER2 KINASES, A PROCESS FOR THEIR PREPARATION, PHARMACEUTICAL COMPOSITIONS AND THE USE OF SUCH COMPOUNDS FOR THE MANUFACTURE OF MEDICINES |
| GB0201508D0 (en) | 2002-01-23 | 2002-03-13 | Novartis Ag | Organic compounds |
| WO2003074045A1 (en) | 2002-03-05 | 2003-09-12 | Eisai Co., Ltd. | Antitumor agent comprising combination of sulfonamide-containing heterocyclic compound with angiogenesis inhibitor |
| AU2003220058B2 (en) | 2002-03-12 | 2008-05-01 | Toyama Chemical Company Limited | Palatable oral suspension and method |
| WO2003079020A2 (en) | 2002-03-20 | 2003-09-25 | Dana-Farber Cancer Institute Inc. | Methods and compositions for the identification, assessment, and therapy of small cell lung cancer |
| JPWO2003093238A1 (en) | 2002-05-01 | 2005-09-08 | 麒麟麦酒株式会社 | Quinoline and quinazoline derivatives that inhibit macrophage colony-stimulating factor receptor autophosphorylation |
| UA77303C2 (en) | 2002-06-14 | 2006-11-15 | Pfizer | Derivatives of thienopyridines substituted by benzocondensed heteroarylamide useful as therapeutic agents, pharmaceutical compositions and methods for their use |
| WO2004006862A2 (en) | 2002-07-16 | 2004-01-22 | Children's Medical Center Corporation | A method for the modulation of angiogenesis |
| US7169936B2 (en) | 2002-07-23 | 2007-01-30 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Indolinone derivatives substituted in the 6-position, their preparation and their use as medicaments |
| US7252976B2 (en) | 2002-08-28 | 2007-08-07 | Board Of Regents The University Of Texas System | Quantitative RT-PCR to AC133 to diagnose cancer and monitor angiogenic activity in a cell sample |
| BR0313871A (en) | 2002-08-30 | 2005-07-19 | Eisai Co Ltd | Nitrogen-containing aromatic derivatives |
| EP1551378A4 (en) | 2002-10-09 | 2006-09-06 | Kosan Biosciences Inc | Epo d + 5-fu/gemcitabine |
| GB0223380D0 (en) | 2002-10-09 | 2002-11-13 | Astrazeneca Ab | Combination therapy |
| JP4749660B2 (en) * | 2002-10-16 | 2011-08-17 | 武田薬品工業株式会社 | Stable solid formulation |
| EP2596792A1 (en) | 2002-10-16 | 2013-05-29 | Takeda Pharmaceutical Company Limited | Stable solid preparations |
| BR0315547A (en) * | 2002-10-21 | 2005-09-20 | Warner Lambert Co | Quinoline derivatives as crth2 antagonists |
| EP1566379A4 (en) | 2002-10-29 | 2005-11-09 | Kirin Brewery | QUINOLINE AND QUINAZOLINE DERIVATIVES INHIBITING THE AUTOPHOSPHORYLATION OF FLT3 AND MEDICAL COMPOSITIONS CONTAINING SAME |
| DE10250711A1 (en) | 2002-10-31 | 2004-05-19 | Degussa Ag | Pharmaceutical and cosmetic preparations |
| MXPA05004919A (en) | 2002-11-06 | 2005-08-18 | Cyclacel Ltd | Pharmaceutical composition comprising a cdk inhibitor and gemcitabine. |
| GB0226434D0 (en) | 2002-11-13 | 2002-12-18 | Astrazeneca Ab | Combination product |
| ITSV20020056A1 (en) | 2002-11-14 | 2004-05-15 | Alstom Transp Spa | DEVICE AND METHOD OF VERIFICATION OF LOGIC SOFTWARE MOTORS TO COMMAND RAILWAY SYSTEMS, IN PARTICULAR OF STATION SYSTEMS |
| AR042042A1 (en) | 2002-11-15 | 2005-06-08 | Sugen Inc | COMBINED ADMINISTRATION OF AN INDOLINONE WITH A CHEMOTHERAPEUTIC AGENT FOR CELL PROLIFERATION DISORDERS |
| CA2511970C (en) | 2003-01-14 | 2012-06-26 | Cytokinetics, Inc. | Urea derivatives useful in the treatment of heart failure |
| JP3581361B1 (en) | 2003-02-17 | 2004-10-27 | 株式会社脳機能研究所 | Brain activity measurement device |
| CA2517886A1 (en) | 2003-03-05 | 2004-09-16 | Celgene Corporation | Diphenylethylene compounds and uses thereof |
| WO2004080462A1 (en) * | 2003-03-10 | 2004-09-23 | Eisai Co., Ltd. | c-Kit KINASE INHIBITOR |
| MXPA05009751A (en) | 2003-03-14 | 2005-10-26 | Taisho Pharmaceutical Co Ltd | MONOCLONAL ANTIBODY AND HYBRIDOMA THAT PRODUCES IT. |
| RU2366655C2 (en) | 2003-03-14 | 2009-09-10 | Оно Фармасьютикал Ко., Лтд. | Nitrogen-containing heterocyclic derivatives and medicaments thereof as active ingredient |
| HRP20050867A2 (en) | 2003-04-02 | 2005-12-31 | Pliva - Istra�ivanje i razvoj d.o.o. | Pharmaceutical compositions having reduced bitter taste |
| US20070117842A1 (en) | 2003-04-22 | 2007-05-24 | Itaru Arimoto | Polymorph of 4-[3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy]-7-methoxy-6- quinolinecarboxamide and a process for the preparation of the same |
| KR100503949B1 (en) | 2003-04-28 | 2005-07-26 | 주식회사유한양행 | A composition of fast dissolving tablets effectively masked bitter taste of ondansetron hydrochloride |
| US7107104B2 (en) | 2003-05-30 | 2006-09-12 | Medtronic, Inc. | Implantable cortical neural lead and method |
| JP2005008534A (en) | 2003-06-17 | 2005-01-13 | Soc De Conseils De Recherches & D'applications Scientifiques (Scras) | Anticancer agent and cancer treatment method |
| AU2004255022B2 (en) | 2003-07-10 | 2007-08-23 | Astrazeneca Ab | Use of the quinazoline derivative ZD6474 combined with platinum compounds and optionally ionising radiation in the treatment of diseases associated with angiogenesis and/or increased vascular permeability |
| CN100508976C (en) | 2003-07-24 | 2009-07-08 | 史密丝克莱恩比彻姆公司 | orally dissolving film |
| EP1653934B1 (en) | 2003-08-15 | 2008-05-14 | AB Science | Use of c-kit inhibitors for treating type ii diabetes |
| US7485658B2 (en) | 2003-08-21 | 2009-02-03 | Osi Pharmaceuticals, Inc. | N-substituted pyrazolyl-amidyl-benzimidazolyl c-Kit inhibitors |
| RU2006108791A (en) | 2003-08-21 | 2006-07-27 | Оси Фармасьютикалз, Инк. (Us) | N-SUBSTITUTED PYRAZOLYLAMIDYLBENZIMIDAZOLYLES AS C-KIT INHIBITORS |
| EP1664021A1 (en) | 2003-08-21 | 2006-06-07 | OSI Pharmaceuticals, Inc. | N-substituted benzimidazolyl c-kit inhibitors |
| US7312243B1 (en) | 2003-08-29 | 2007-12-25 | Jay Pravda | Materials and methods for treatment of gastrointestinal disorders |
| JP2007505938A (en) | 2003-09-23 | 2007-03-15 | ノバルティス アクチエンゲゼルシャフト | Combination of VEGF receptor inhibitor and chemotherapeutic agent |
| PL2392565T3 (en) | 2003-09-26 | 2014-08-29 | Exelixis Inc | c-Met modulators and methods of use |
| US7683172B2 (en) | 2003-11-11 | 2010-03-23 | Eisai R&D Management Co., Ltd. | Urea derivative and process for preparing the same |
| KR20060110307A (en) | 2003-11-28 | 2006-10-24 | 노파르티스 아게 | Diaryl Urea Derivatives in the Treatment of Protein Kinase Dependent Diseases |
| US6984403B2 (en) | 2003-12-04 | 2006-01-10 | Pfizer Inc. | Azithromycin dosage forms with reduced side effects |
| BRPI0417302A (en) | 2003-12-05 | 2007-03-06 | Compound Therapeutics Inc | type 2 vascular endothelial growth factor receptor inhibitors |
| CN100569753C (en) | 2003-12-25 | 2009-12-16 | 卫材R&D管理有限公司 | Crystallization (C) of methanesulfonate salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide and its preparation method |
| WO2005070891A2 (en) | 2004-01-23 | 2005-08-04 | Amgen Inc | Compounds and methods of use |
| NZ547517A (en) | 2004-02-27 | 2009-04-30 | Eisai R&D Man Co Ltd | Novel pyridine and pyrimidine derivatives for hepatocyte growth and tumour inihibition |
| KR20050091462A (en) | 2004-03-12 | 2005-09-15 | 한국과학기술연구원 | Furopyrimidine compound and ddr2 tyrosine kinase activity inhibitor comprising the same |
| US20050244493A1 (en) | 2004-04-30 | 2005-11-03 | Withiam Michael C | Rapidly disintegrating tablets comprising calcium carbonate |
| MXPA06011958A (en) | 2004-05-21 | 2006-12-15 | Chiron Corp | Substituted quinoline derivatives as mitotic kinesin inhibitors. |
| CN1960732A (en) | 2004-06-03 | 2007-05-09 | 霍夫曼-拉罗奇有限公司 | Treatment with gemcitabine and EGFR-inhibitor |
| AU2005265027A1 (en) | 2004-06-18 | 2006-01-26 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Methods for the identification and use of compounds suitable for the treatment of drug resistant cancer cells |
| US20050288521A1 (en) | 2004-06-29 | 2005-12-29 | Phytogen Life Sciences Inc. | Semi-synthetic conversion of paclitaxel to docetaxel |
| WO2006030941A1 (en) | 2004-09-13 | 2006-03-23 | Eisai R & D Management Co., Ltd. | Simultaneous use of sulfonamide-containing compound and angiogenesis inhibitor |
| US8772269B2 (en) | 2004-09-13 | 2014-07-08 | Eisai R&D Management Co., Ltd. | Use of sulfonamide-including compounds in combination with angiogenesis inhibitors |
| US7306807B2 (en) | 2004-09-13 | 2007-12-11 | Wyeth | Hemorrhagic feline calicivirus, calicivirus vaccine and method for preventing calicivirus infection or disease |
| US8969379B2 (en) * | 2004-09-17 | 2015-03-03 | Eisai R&D Management Co., Ltd. | Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7=methoxy-6-quinolinecarboxide |
| CA2581375A1 (en) | 2004-09-27 | 2006-04-06 | Kosan Biosciences Incorporated | Specific kinase inhibitors |
| RU2404992C2 (en) | 2004-10-19 | 2010-11-27 | Эмджен Инк. | Angiopoietin-2-specific coupling agents |
| EP1827445A2 (en) | 2004-11-22 | 2007-09-05 | King Pharmaceuticals Research and Development Inc. | Enhancing treatment of cancer and hif-1 mediated disoders with adenosine a3 receptor antagonists |
| JP4773456B2 (en) | 2004-11-23 | 2011-09-14 | ドン ファ ファーマシューティカル カンパニー リミテッド | Oral preparation with improved bioavailability |
| EP1824843A2 (en) | 2004-12-07 | 2007-08-29 | Locus Pharmaceuticals, Inc. | Inhibitors of protein kinases |
| PL1838733T3 (en) | 2004-12-21 | 2012-02-29 | Medimmune Ltd | Antibodies directed to angiopoietin-2 and uses thereof |
| US20060198885A1 (en) | 2005-02-22 | 2006-09-07 | Sun Pharmaceutical Industries Ltd. | Oral pharmaceutical composition |
| JP5106098B2 (en) | 2005-02-28 | 2012-12-26 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | New combination of sulfonamide compounds with anticancer agents |
| PT1859793E (en) | 2005-02-28 | 2011-07-05 | Eisai R&D Man Co Ltd | Novel combinational use of a sulfonamide compound in the treatment of cancer |
| EP2161336B2 (en) | 2005-05-09 | 2017-03-29 | ONO Pharmaceutical Co., Ltd. | Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics |
| RU2404774C2 (en) | 2005-05-17 | 2010-11-27 | Актелион Фармасьютиклз Лтд | Dispersed pills of bosentan |
| CA2608733A1 (en) | 2005-05-17 | 2007-02-01 | Plexxikon, Inc. | Pyrrol (2,3-b) pyridine derivatives protein kinase inhibitors |
| EP2395004B1 (en) | 2005-06-22 | 2016-01-20 | Plexxikon Inc. | Pyrrolo [2,3-b]pyridine derivatives as protein kinase inhibitors |
| WO2006137474A1 (en) | 2005-06-23 | 2006-12-28 | Eisai R & D Management Co., Ltd. | Amorphous salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide and process for producing the same |
| WO2007000347A2 (en) | 2005-06-29 | 2007-01-04 | Roselli, Patrizia | Agonistic and antagonistic peptide mimetics of the vegf alpha-helix binding region for use in therapy |
| AU2006230974C1 (en) | 2005-07-11 | 2012-02-02 | Takeda Pharma A/S | Benzimidazole formulation |
| US8101799B2 (en) | 2005-07-21 | 2012-01-24 | Ardea Biosciences | Derivatives of N-(arylamino) sulfonamides as inhibitors of MEK |
| US20080219977A1 (en) | 2005-07-27 | 2008-09-11 | Isaiah Josh Fidler | Combinations Comprising Gemcitabine and Tyrosine Kinase Inhibitors for the Treatment of Pancreatic Cancer |
| JP5066446B2 (en) | 2005-08-01 | 2012-11-07 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Methods for predicting the effects of angiogenesis inhibitors |
| JP4989476B2 (en) | 2005-08-02 | 2012-08-01 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Methods for assaying the effects of angiogenesis inhibitors |
| KR100950737B1 (en) | 2005-08-24 | 2010-03-31 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | New pyridine derivatives and pyrimidine derivatives (3) |
| JP5209966B2 (en) | 2005-09-01 | 2013-06-12 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Method for producing pharmaceutical composition with improved disintegration |
| WO2007052849A1 (en) | 2005-11-07 | 2007-05-10 | Eisai R & D Management Co., Ltd. | USE OF COMBINATION OF ANTI-ANGIOGENIC SUBSTANCE AND c-kit KINASE INHIBITOR |
| WO2007061130A1 (en) | 2005-11-22 | 2007-05-31 | Eisai R & D Management Co., Ltd. | Anti-tumor agent for multiple myeloma |
| JP5058150B2 (en) | 2006-02-22 | 2012-10-24 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Stabilized pharmaceutical composition |
| WO2007109057A2 (en) | 2006-03-16 | 2007-09-27 | Novartis Ag | Solid dosage form containing a taste masked active agent |
| KR100728926B1 (en) | 2006-03-20 | 2007-06-15 | 삼성전자주식회사 | Portable electronic device with three axis hinge structure |
| JP5190361B2 (en) | 2006-05-18 | 2013-04-24 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Antitumor agent for thyroid cancer |
| CA2654243A1 (en) | 2006-06-22 | 2007-12-27 | Solvay Pharmaceuticals B.V. | Oral pharmaceutical composition of a poorly water-soluble active substance |
| ES2375284T3 (en) | 2006-08-23 | 2012-02-28 | Eisai R&D Management Co., Ltd. | SALT FROM A PHENOXIPIRIDINE DERIVATIVE, OR CRYSTAL OF THE SAME, AND PRODUCTION PROCEDURE OF THE SAME. |
| CN101511793B (en) | 2006-08-28 | 2011-08-03 | 卫材R&D管理有限公司 | Antitumor agent for undifferentiated gastric cancer |
| BRPI0716555A2 (en) | 2006-09-07 | 2013-09-24 | Astrazeneca Ab | Methods to predict the likelihood that a patient is a candidate for treatment with a ret drug will respond to said treatment, and to treat a patient, mutant direct primer, and diagnostic kit. |
| WO2008045566A1 (en) | 2006-10-12 | 2008-04-17 | Ptc Therapeutics, Inc. | Methods for dosing an orally active 1,2,4-oxadiazole for nonsense mutation suppression therapy |
| JP2009184925A (en) | 2006-11-02 | 2009-08-20 | Dai Ichi Seiyaku Co Ltd | 5-(1h-1,2,3-triazol-4-yl)-1h-pyrazole derivative |
| AU2008206045A1 (en) | 2007-01-19 | 2008-07-24 | Ardea Biosciences, Inc. | Inhibitors of MEK |
| EP2116246A1 (en) | 2007-01-19 | 2009-11-11 | Eisai R&D Management Co., Ltd. | Composition for treatment of pancreatic cancer |
| WO2008093855A1 (en) | 2007-01-29 | 2008-08-07 | Eisai R & D Management Co., Ltd. | Composition for treatment of undifferentiated-type of gastric cancer |
| JP2008214249A (en) | 2007-03-02 | 2008-09-18 | Takeda Chem Ind Ltd | Method for improving dissolution in pharmaceutical preparation and pharmaceutical preparation having improved dissolution property |
| CN101622015A (en) | 2007-03-05 | 2010-01-06 | 协和发酵麒麟株式会社 | Pharmaceutical composition |
| CA2680161A1 (en) | 2007-03-05 | 2008-09-12 | Kyowa Hakko Kirin Co., Ltd. | Pharmaceutical composition |
| US7807172B2 (en) | 2007-06-13 | 2010-10-05 | University Of Washington | Methods and compositions for detecting thyroglobulin in a biological sample |
| PE20090368A1 (en) | 2007-06-19 | 2009-04-28 | Boehringer Ingelheim Int | ANTI-IGF ANTIBODIES |
| CA2694646C (en) | 2007-07-30 | 2017-09-05 | Ardea Biosciences, Inc. | Combinations of mek inhibitors and raf kinase inhibitors and uses thereof |
| EP2218712B1 (en) | 2007-11-09 | 2015-07-01 | Eisai R&D Management Co., Ltd. | Combination of anti-angiogenic substance and anti-tumor platinum complex |
| JP2009132660A (en) | 2007-11-30 | 2009-06-18 | Eisai R & D Management Co Ltd | Composition for treating esophageal cancer |
| JP5399926B2 (en) | 2008-01-29 | 2014-01-29 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Combination of vascular inhibitor and taxane |
| GB2456907A (en) | 2008-01-30 | 2009-08-05 | Astrazeneca Ab | Method for determining subsequent VEGFR2 inhibitor therapy comprising measuring baseline VEGF level. |
| US8044240B2 (en) | 2008-03-06 | 2011-10-25 | Ardea Biosciences Inc. | Polymorphic form of N-(S)-(3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2,3-dihydroxypropyl)cyclopropane-1-sulfonamide and uses thereof |
| EP2262837A4 (en) | 2008-03-12 | 2011-04-06 | Merck Sharp & Dohme | BINDING PROTEINS WITH PD-1 |
| MX2010011314A (en) | 2008-04-14 | 2010-11-12 | Ardea Biosciences Inc | Compositions and methods for preparing and using same. |
| JP2009263298A (en) | 2008-04-28 | 2009-11-12 | Ss Pharmaceut Co Ltd | Oral composition having masked disagreeable taste |
| US8637554B2 (en) | 2008-05-07 | 2014-01-28 | The Trustees Of The University Of Pennsylvania | Methods for treating thyroid cancer |
| EP2288383A1 (en) | 2008-05-14 | 2011-03-02 | Amgen, Inc | Combinations vegf(r) inhibitors and hepatocyte growth factor (c-met) inhibitors for the treatment of cancer |
| WO2009150255A2 (en) | 2008-06-13 | 2009-12-17 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Markers for predicting response and survival in anti-egfr treated patients |
| CN102089007B (en) | 2008-07-11 | 2013-05-15 | 诺瓦提斯公司 | Combination of (a) a phosphoinositide 3-kinase inhibitor and (b) a modulator of RAS/RAF/MEK pathway |
| WO2010048304A2 (en) | 2008-10-21 | 2010-04-29 | Bayer Healthcare Llc | Identification of signature genes associated with hepatocellular carcinoma |
| WO2010086964A1 (en) | 2009-01-28 | 2010-08-05 | 株式会社 静岡カフェイン工業所 | Combination therapy for treating cancer |
| US20120164148A1 (en) | 2009-08-07 | 2012-06-28 | The Wistar Institute | Compositions Containing JARID1B Inhibitors and Methods for Treating Cancer |
| WO2011021597A1 (en) | 2009-08-19 | 2011-02-24 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Quinoline derivative-containing pharmaceutical composition |
| WO2011022335A1 (en) | 2009-08-21 | 2011-02-24 | Mount Sinai School Of Medicine Of New York University | Methods of using cd44 fusion proteins to treat cancer |
| EP2293071A1 (en) | 2009-09-07 | 2011-03-09 | Universität Zu Köln | Biomarker for colorectal cancer |
| BR112012032462A2 (en) | 2010-06-25 | 2016-11-08 | Eisai R&D Man Co Ltd | antitumor agent employing compounds which, in combination, have kinase inhibiting effect. |
| WO2012008563A1 (en) | 2010-07-16 | 2012-01-19 | 協和発酵キリン株式会社 | Nitrogenated aromatic heterocyclic ring derivative |
| EP3156800A1 (en) | 2010-07-19 | 2017-04-19 | F. Hoffmann-La Roche AG | Blood plasma biomarkers for bevacizumab combination therapies for treatment of breast cancer |
| SG187119A1 (en) | 2010-07-19 | 2013-02-28 | Hoffmann La Roche | Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy |
| MX339427B (en) | 2010-07-19 | 2016-05-25 | Hoffmann La Roche | Blood plasma biomarkers for bevacizumab combination therapies for treatment of pancreatic cancer. |
| BR112012033162A2 (en) | 2010-07-19 | 2016-10-25 | Hoffmann La Roche | patient identification method, patient reaction capacity prediction method, cancer patient likelihood determination method to display benefits of anticancer therapy, therapeutic efficacy optimization method, cancer treatment method, kit and compound set |
| WO2012019300A1 (en) | 2010-08-10 | 2012-02-16 | Siu K W Michael | Endometrial cancer biomarkers and methods of identifying and using same |
| JP5259880B2 (en) | 2010-09-01 | 2013-08-07 | 興和株式会社 | Oral |
| US20120077837A1 (en) | 2010-09-24 | 2012-03-29 | Eisai R&D Management Co., Ltd. | Anti-tumor agent |
| RU2568258C2 (en) | 2011-02-28 | 2015-11-20 | Саншайн Лейк Фарма Ко., Лтд | Substituted quinoline compounds and methods of their application |
| WO2012119095A1 (en) | 2011-03-02 | 2012-09-07 | Board Of Regents, The University Of Texas System | Fus1/tusc2 therapies |
| JP6322413B2 (en) | 2011-03-10 | 2018-05-09 | プロヴェクタス ファーマテック,インク. | Combination of local and systemic immunomodulatory therapy for improved cancer treatment |
| DK2691112T3 (en) | 2011-03-31 | 2018-07-30 | Merck Sharp & Dohme | STABLE FORMULATIONS OF ANTIBODIES AGAINST HUMAN PD (PROGRAMMED DEATH) 1- RECEPTOR AND RELATED TREATMENTS |
| US8962650B2 (en) | 2011-04-18 | 2015-02-24 | Eisai R&D Management Co., Ltd. | Therapeutic agent for tumor |
| WO2012154935A1 (en) | 2011-05-12 | 2012-11-15 | Eisai R&D Management Co., Ltd. | Biomarkers that are predictive of responsiveness or non-responsiveness to treatment with lenvatinib or a pharmaceutically acceptable salt thereof |
| WO2012157672A1 (en) | 2011-05-17 | 2012-11-22 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Method for predicting effectiveness of angiogenesis inhibitor |
| ES2705950T3 (en) | 2011-06-03 | 2019-03-27 | Eisai R&D Man Co Ltd | Biomarkers to predict and assess the responsiveness of subjects with thyroid and kidney cancer to lenvatinib compounds |
| TR201820873T4 (en) | 2011-08-01 | 2019-01-21 | Hoffmann La Roche | Methods for treating cancer using Pd-1 axis binding antagonists and mech inhibitors. |
| AU2013201121A1 (en) | 2011-09-20 | 2013-04-04 | Vical Incorporated | Synergistic anti-tumor efficacy using alloantigen combination immunotherapy |
| JP5941558B2 (en) | 2012-02-28 | 2016-06-29 | 株式会社ソウル製薬Seoul Pharma. Co., Ltd. | High content fast dissolving film containing sildenafil as an active ingredient and concealing bitterness |
| AR090263A1 (en) | 2012-03-08 | 2014-10-29 | Hoffmann La Roche | COMBINED ANTIBODY THERAPY AGAINST HUMAN CSF-1R AND USES OF THE SAME |
| KR20240135058A (en) | 2012-05-15 | 2024-09-10 | 브리스톨-마이어스 스큅 컴퍼니 | Cancer immunotherapy by disrupting pd-1/pd-l1 signaling |
| US8992915B2 (en) | 2012-05-16 | 2015-03-31 | Boehringer Ingelheim International Gmbh | Combination of CD37 antibodies with ICE |
| HRP20171788T1 (en) | 2012-10-02 | 2017-12-29 | Bristol-Myers Squibb Company | Combination of anti-kir antibodies and anti-pd-1 antibodies to treat cancer |
| EP2928464A1 (en) | 2012-12-04 | 2015-10-14 | Eisai R&D Management Co., Ltd. | Use of eribulin in the treatment of breast cancer |
| US10980804B2 (en) | 2013-01-18 | 2021-04-20 | Foundation Medicine, Inc. | Methods of treating cholangiocarcinoma |
| MX374488B (en) | 2013-03-15 | 2025-03-06 | Genentech Inc | BIOMARKERS AND THEIR USE IN THE TREATMENT OF CONDITIONS RELATED TO PD-1 AND PD-L1. |
| JP6411379B2 (en) | 2013-05-14 | 2018-10-24 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds |
| CA2915005C (en) | 2013-06-26 | 2021-12-28 | Eisai R&D Management Co., Ltd. | Use of eribulin and lenvatinib as combination therapy for treatment of cancer |
| US9174998B2 (en) | 2013-12-25 | 2015-11-03 | Eisai R&D Management Co., Ltd. | (6S,9aS)-N-benzyl-6-[(4-hydroxyphenyl)methyl]-4,7-dioxo-8-({6-[3-(piperazin-1-yl)azetidin-1-yl]pyridin-2-yl}methyl)-2-(prop-2-en-1-yl)-octahydro-1H-pyrazino[2,1-c][1,2,4]triazine-1-carboxamide compound |
| JOP20200094A1 (en) | 2014-01-24 | 2017-06-16 | Dana Farber Cancer Inst Inc | Antibody molecules to pd-1 and uses thereof |
| EP3102237B1 (en) | 2014-02-04 | 2020-12-02 | Incyte Corporation | Combination of a pd-1 antagonist and an ido1 inhibitor for treating cancer |
| EP3122354B1 (en) | 2014-03-28 | 2022-06-15 | Universita' degli Studi di Genova | Tyrosine kinase inhibitors for use in a method of treating cancer in association with a reduced caloric intake |
| DK3524595T3 (en) | 2014-08-28 | 2022-09-19 | Eisai R&D Man Co Ltd | QUINOLINE DERIVATIVE OF HIGH PURITY AND PROCESS FOR THE PREPARATION THEREOF |
| WO2016140717A1 (en) | 2015-03-04 | 2016-09-09 | Merck Sharp & Dohme Corp. | Combination of a pd-1 antagonist and a vegfr/fgfr/ret tyrosine kinase inhibitor for treating cancer |
| EP3287444A4 (en) | 2015-05-21 | 2018-09-12 | Crystal Pharmatech Co., Ltd. | New crystal form of lenvatinib methanesulfonate salt and preparation method thereof |
| US11078278B2 (en) | 2015-05-29 | 2021-08-03 | Bristol-Myers Squibb Company | Treatment of renal cell carcinoma |
| US11369623B2 (en) | 2015-06-16 | 2022-06-28 | Prism Pharma Co., Ltd. | Anticancer combination of a CBP/catenin inhibitor and an immune checkpoint inhibitor |
| US10259817B2 (en) | 2015-06-23 | 2019-04-16 | Eisai R&D Management Co., Ltd. | Crystal (6S,9aS)-N-benzyl-8-({6-[3-(4-ethylpiperazin-1-yl)azetidin-1-yl]pyridin-2-yl}methyl)-6-(2-fluoro-4-hydroxybenzyl)-4,7-dioxo-2-(prop-2-en-1-yl)hexahydro-2H-pyrazino[2,1-c][1,2,4]triazine-1(6H)-carboxamide |
| US20200375975A1 (en) | 2016-04-15 | 2020-12-03 | Eisai R&D Management Co., Ltd. | Treatment of Renal Cell Carcinoma with Lenvatinib and Everolimus |
| CN107305202B (en) | 2016-04-22 | 2020-04-17 | 北京睿创康泰医药研究院有限公司 | HPLC method for analyzing impurities of levovatinib mesylate and preparation thereof and application of impurities as reference standard |
| WO2018147275A1 (en) | 2017-02-08 | 2018-08-16 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Tumor-treating pharmaceutical composition |
| PL3384901T3 (en) | 2017-04-04 | 2025-01-13 | Synthon B.V. | Pharmaceutical composition comprising lenvatinib mesylate |
| CN110494423B (en) | 2017-04-25 | 2022-04-26 | 苏州科睿思制药有限公司 | Novel crystal form of lenvatinib mesylate and preparation method thereof |
| CN109988112A (en) | 2017-12-29 | 2019-07-09 | 四川科伦药物研究院有限公司 | The crystal form and preparation method thereof that logical sequence is cut down for Buddhist nun's mesylate |
| US10583133B2 (en) | 2018-03-12 | 2020-03-10 | Shilpa Medicare Limited | Pharmaceutical compositions of lenvatinib |
| WO2019228485A1 (en) | 2018-06-01 | 2019-12-05 | 成都苑东生物制药股份有限公司 | New crystal form of lenvatinib mesylate and preparation method therefor |
| CN110818634B (en) | 2018-08-13 | 2021-11-30 | 上海新礼泰药业有限公司 | Refining method of lervatinib mesylate |
| CN110903239A (en) | 2018-09-18 | 2020-03-24 | 苏州科睿思制药有限公司 | Novel crystal form of lenvatinib mesylate and preparation method thereof |
| CN110563644A (en) | 2019-10-30 | 2019-12-13 | 北京赛思源生物医药技术有限公司 | Novel crystal form of Lunvatinib mesylate |
| EP4147689A1 (en) | 2021-09-13 | 2023-03-15 | Lotus Pharmaceutical Co., Ltd. | Lenvatinib formulation |
-
2010
- 2010-08-16 WO PCT/JP2010/063804 patent/WO2011021597A1/en not_active Ceased
- 2010-08-16 MY MYPI2011700172A patent/MY162940A/en unknown
- 2010-08-16 NZ NZ598291A patent/NZ598291A/en unknown
- 2010-08-16 JP JP2011527665A patent/JP5048871B2/en active Active
- 2010-08-16 CA CA2771403A patent/CA2771403C/en active Active
- 2010-08-16 UA UAA201203132A patent/UA105671C2/en unknown
- 2010-08-16 RS RS20160176A patent/RS54686B1/en unknown
- 2010-08-16 PL PL10809938T patent/PL2468281T3/en unknown
- 2010-08-16 ME MEP-2016-45A patent/ME02359B/en unknown
- 2010-08-16 US US13/322,961 patent/US20120077842A1/en not_active Abandoned
- 2010-08-16 AU AU2010285740A patent/AU2010285740C1/en active Active
- 2010-08-16 BR BR112012003592A patent/BR112012003592B8/en active IP Right Grant
- 2010-08-16 TH TH1001000221A patent/TH121482A/en unknown
- 2010-08-16 HU HUE10809938A patent/HUE026957T2/en unknown
- 2010-08-16 EP EP10809938.3A patent/EP2468281B1/en active Active
- 2010-08-16 SI SI201031141A patent/SI2468281T1/en unknown
- 2010-08-16 PE PE2011002081A patent/PE20121030A1/en active IP Right Grant
- 2010-08-16 HR HRP20160283TT patent/HRP20160283T1/en unknown
- 2010-08-16 KR KR1020127003846A patent/KR101496395B1/en active Active
- 2010-08-16 MX MX2014010594A patent/MX344927B/en unknown
- 2010-08-16 SG SG2011086022A patent/SG178009A1/en unknown
- 2010-08-16 ES ES10809938.3T patent/ES2564797T3/en active Active
- 2010-08-16 RU RU2012103471A patent/RU2548673C3/en active Protection Beyond IP Right Term
- 2010-08-16 MX MX2012002011A patent/MX2012002011A/en unknown
- 2010-08-16 CN CN2010800305086A patent/CN102470133B/en not_active Ceased
- 2010-08-16 DK DK10809938.3T patent/DK2468281T3/en active
-
2011
- 2011-11-25 ZA ZA2011/08697A patent/ZA201108697B/en unknown
- 2011-12-25 IL IL217197A patent/IL217197A/en active IP Right Grant
-
2012
- 2012-02-09 CO CO12022608A patent/CO6440512A2/en not_active Application Discontinuation
- 2012-02-16 CL CL2012000412A patent/CL2012000412A1/en unknown
- 2012-03-12 MA MA34683A patent/MA33581B1/en unknown
-
2013
- 2013-06-21 US US13/923,858 patent/US20130296365A1/en not_active Abandoned
-
2016
- 2016-03-17 SM SM201600077T patent/SMT201600077B/en unknown
- 2016-04-05 CY CY20161100273T patent/CY1117481T1/en unknown
-
2021
- 2021-04-12 US US17/228,025 patent/US12508313B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7550483B2 (en) * | 2005-06-23 | 2009-06-23 | Eisai R&D Management Co., Ltd. | Amorphous salt of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide and process for preparing the same |
| US20090304694A1 (en) * | 2006-01-27 | 2009-12-10 | Amgen Inc. | Ang2 and Vegf Inhibitor Combinations |
| US20110158983A1 (en) * | 2008-03-05 | 2011-06-30 | Newell Bascomb | Compositions and methods for mucositis and oncology therapies |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080214604A1 (en) * | 2004-09-17 | 2008-09-04 | Hisao Furitsu | Medicinal Composition |
| US9504746B2 (en) | 2004-09-17 | 2016-11-29 | Eisai R&D Management Co., Ltd. | Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7-methoxy-6-quinolinecarboxamide |
| US8969379B2 (en) | 2004-09-17 | 2015-03-03 | Eisai R&D Management Co., Ltd. | Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7=methoxy-6-quinolinecarboxide |
| US8969344B2 (en) | 2005-08-02 | 2015-03-03 | Eisai R&D Management Co., Ltd. | Method for assay on the effect of vascularization inhibitor |
| US20100092490A1 (en) * | 2005-08-02 | 2010-04-15 | Eisai R&D Management Co., Ltd. | Method for assay on the effect of vascularization inhibitor |
| US9006240B2 (en) | 2005-08-02 | 2015-04-14 | Eisai R&D Management Co., Ltd. | Method for assay on the effect of vascularization inhibitor |
| US20080214557A1 (en) * | 2005-09-01 | 2008-09-04 | Eisai R&D Management Co., Ltd. | Method for preparation of pharmaceutical composition having improved disintegratability and pharmaceutical composition manufactured by same method |
| US8815241B2 (en) | 2005-11-07 | 2014-08-26 | Eisai R&D Management Co., Ltd. | Use of combination of anti-angiogenic substance and c-kit kinase inhibitor |
| US20110207756A1 (en) * | 2006-05-18 | 2011-08-25 | Eisai R&D Management Co., Ltd. | Antitumor agent for thyroid cancer |
| US9006256B2 (en) | 2006-05-18 | 2015-04-14 | Eisai R&D Management Co., Ltd. | Antitumor agent for thyroid cancer |
| US8865737B2 (en) | 2006-08-28 | 2014-10-21 | Eisai R&D Management Co., Ltd. | Antitumor agent for undifferentiated gastric cancer |
| US20090264464A1 (en) * | 2006-08-28 | 2009-10-22 | Eisai R & D Management Co., Ltd. | Antitumor agent for undifferentiated gastric cancer |
| US8962655B2 (en) | 2007-01-29 | 2015-02-24 | Eisai R&D Management Co., Ltd. | Composition for treatment of undifferentiated gastric cancer |
| US20100048620A1 (en) * | 2007-01-29 | 2010-02-25 | Yuji Yamamoto | Composition for treatment of undifferentiated gastric cancer |
| US20100239688A1 (en) * | 2007-11-09 | 2010-09-23 | Yuji Yamamoto | Combination of anti-angiogenic substance and anti-tumor platinum complex |
| US8952035B2 (en) | 2007-11-09 | 2015-02-10 | Eisai R&D Management Co., Ltd. | Combination of anti-angiogenic substance and anti-tumor platinum complex |
| US12508313B2 (en) | 2009-08-19 | 2025-12-30 | Eisai R&D Management Co., Ltd. | Quinoline derivative-containing pharmaceutical composition |
| US9012458B2 (en) | 2010-06-25 | 2015-04-21 | Eisai R&D Management Co., Ltd. | Antitumor agent using compounds having kinase inhibitory effect in combination |
| US8962650B2 (en) | 2011-04-18 | 2015-02-24 | Eisai R&D Management Co., Ltd. | Therapeutic agent for tumor |
| US9945862B2 (en) | 2011-06-03 | 2018-04-17 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds |
| US11598776B2 (en) | 2011-06-03 | 2023-03-07 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds |
| US9334239B2 (en) | 2012-12-21 | 2016-05-10 | Eisai R&D Management Co., Ltd. | Amorphous form of quinoline derivative, and method for producing same |
| US10517861B2 (en) | 2013-05-14 | 2019-12-31 | Eisai R&D Management Co., Ltd. | Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds |
| US11186547B2 (en) | 2014-08-28 | 2021-11-30 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
| US10822307B2 (en) | 2014-08-28 | 2020-11-03 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
| US10259791B2 (en) | 2014-08-28 | 2019-04-16 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
| US10407393B2 (en) | 2014-08-28 | 2019-09-10 | Eisai R&D Management Co., Ltd. | High-purity quinoline derivative and method for manufacturing same |
| EP3263106A4 (en) * | 2015-02-25 | 2018-08-29 | Eisai R&D Management Co., Ltd. | Method for suppressing bitterness of quinoline derivative |
| IL253946B1 (en) * | 2015-02-25 | 2025-02-01 | Eisai R&D Man Co Ltd | Method for suppressing bitterness of quinoline derivative |
| WO2016136745A1 (en) | 2015-02-25 | 2016-09-01 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Method for suppressing bitterness of quinoline derivative |
| AU2016224583B2 (en) * | 2015-02-25 | 2021-06-03 | Eisai R&D Management Co., Ltd. | Method for suppressing bitterness of quinoline derivative |
| US11090386B2 (en) | 2015-02-25 | 2021-08-17 | Eisai R&D Management Co., Ltd. | Method for suppressing bitterness of quinoline derivative |
| KR102763349B1 (en) * | 2015-02-25 | 2025-02-07 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | Method for suppressing bitterness of quinoline derivatives |
| EP3263106B1 (en) | 2015-02-25 | 2023-10-25 | Eisai R&D Management Co., Ltd. | Method for suppressing bitterness of quinoline derivative |
| KR20170122734A (en) * | 2015-02-25 | 2017-11-06 | 에자이 알앤드디 매니지먼트 가부시키가이샤 | A method for inhibiting the quinoline derivative |
| US11547705B2 (en) | 2015-03-04 | 2023-01-10 | Merck Sharp & Dohme Llc | Combination of a PD-1 antagonist and a VEGF-R/FGFR/RET tyrosine kinase inhibitor for treating cancer |
| US12083112B2 (en) | 2015-03-04 | 2024-09-10 | Eisai R&D Management Co., Ltd. | Combination of a PD-1 antagonist and a VEGFR/FGFR/RET tyrosine kinase inhibitor for treating cancer |
| US11369623B2 (en) | 2015-06-16 | 2022-06-28 | Prism Pharma Co., Ltd. | Anticancer combination of a CBP/catenin inhibitor and an immune checkpoint inhibitor |
| US12220398B2 (en) | 2015-08-20 | 2025-02-11 | Eisai R&D Management Co., Ltd. | Tumor therapeutic agent |
| US12303505B2 (en) | 2017-02-08 | 2025-05-20 | Eisai R&D Management Co., Ltd. | Tumor-treating pharmaceutical composition |
| EP3606511B1 (en) | 2017-04-04 | 2022-04-20 | Synthon B.V. | Pharmaceutical composition comprising lenvatinib mesylate |
| US11911509B2 (en) | 2017-04-04 | 2024-02-27 | Synthon B.V. | Pharmaceutical composition comprising Lenvatinib mesylate |
| EP3384901A1 (en) * | 2017-04-04 | 2018-10-10 | Synthon B.V. | Pharmaceutical composition comprising lenvatinib mesylate |
| WO2018185175A1 (en) * | 2017-04-04 | 2018-10-11 | Synthon B.V. | Pharmaceutical composition comprising lenvatinib mesylate |
| US12226409B2 (en) | 2017-05-16 | 2025-02-18 | Eisai R&D Management Co., Ltd. | Treatment of hepatocellular carcinoma |
| CN110404079A (en) * | 2018-04-27 | 2019-11-05 | 北京睿创康泰医药研究院有限公司 | A kind of not carbonate containing, the quinoline of low genotoxicity impurity content or the pharmaceutical composition of its salt |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12508313B2 (en) | Quinoline derivative-containing pharmaceutical composition | |
| EP2815752B1 (en) | Oral pharmaceutical composition | |
| TW201418244A (en) | Pharmaceutical compositions | |
| EP4147689A1 (en) | Lenvatinib formulation | |
| KR20190045286A (en) | Pharmaceutical compositions comprising rosuvastatin and ezetimibe and methods for their preparation | |
| EP3632436B1 (en) | Pharmaceutical composition comprising lenvatinib salts | |
| KR102206104B1 (en) | Granule comprising silodosin, and pharmaceutical composition and formulation comprising the same | |
| JP2025123520A (en) | Nilotinib tablets | |
| TWI501950B (en) | Pharmaceutical composition comprising quinoline derivative | |
| JPWO2005099698A1 (en) | Stabilized 4-amino-5-chloro-N-[(1R, 3r, 5S) -8-methyl-8-azabicyclo [3.2.1] oct-3-yl] -2- [1-methylbuta -2-Inyloxy] benzamide-containing composition | |
| EP2839835A1 (en) | Encapsulated formulation | |
| HK1169599B (en) | Quinoline derivative-containing pharmaceutical composition | |
| HK1167607B (en) | Quinoline derivative-containing pharmaceutical composition | |
| CN118159274A (en) | Syrup | |
| SA112330839B1 (en) | Pharmaceutical composition and preparation method thereof | |
| KR20220088362A (en) | New formulation comprising 1-(5-(2,4-difluorophenyl)-1-((3-fluorophenyl)sulfonyl)-4-methoxy-1H-pyrrol-3-yl)-N-methylmethanamine for the oral administration | |
| JP2011063567A (en) | Tablet having improved storage stability | |
| HK1206989B (en) | Encapsulated formulation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: EISAI R&D MANAGEMENT CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BANDO, MASASHI;REEL/FRAME:027318/0169 Effective date: 20111101 |
|
| STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION |



