US20120071651A1 - Processes for Preparing 1,2-Substituted Cyclopropyl Derivatives - Google Patents
Processes for Preparing 1,2-Substituted Cyclopropyl Derivatives Download PDFInfo
- Publication number
- US20120071651A1 US20120071651A1 US13/232,751 US201113232751A US2012071651A1 US 20120071651 A1 US20120071651 A1 US 20120071651A1 US 201113232751 A US201113232751 A US 201113232751A US 2012071651 A1 US2012071651 A1 US 2012071651A1
- Authority
- US
- United States
- Prior art keywords
- chiral
- hydrogen
- alkyl
- independently selected
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 0 *C1=C([1*])C([2*])=C([3*])C(C2CC2CN([4*])[5*])=C1* Chemical compound *C1=C([1*])C([2*])=C([3*])C(C2CC2CN([4*])[5*])=C1* 0.000 description 17
- RSRIUYJBNCLNQB-VXGBXAGGSA-N CC(=O)[C@H]1C[C@@H]1C1=CC=C(C)C=C1 Chemical compound CC(=O)[C@H]1C[C@@H]1C1=CC=C(C)C=C1 RSRIUYJBNCLNQB-VXGBXAGGSA-N 0.000 description 4
- GAGYDDATWSBNEG-ZJUUUORDSA-N CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 Chemical compound CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 GAGYDDATWSBNEG-ZJUUUORDSA-N 0.000 description 4
- RMRCDGPZBLGYGJ-JQWIXIFHSA-N CC[C@H]1C[C@@H]1C1=CC=C(C)C=C1 Chemical compound CC[C@H]1C[C@@H]1C1=CC=C(C)C=C1 RMRCDGPZBLGYGJ-JQWIXIFHSA-N 0.000 description 4
- GAGYDDATWSBNEG-UHFFFAOYSA-N CC1=CC=C(C2CC2C(=O)O)C=C1 Chemical compound CC1=CC=C(C2CC2C(=O)O)C=C1 GAGYDDATWSBNEG-UHFFFAOYSA-N 0.000 description 2
- VQLNEWGKLGXOJY-ZLTKDMPESA-N C[C@H](N)C1=CC=CC=C1.O=C(O)C1CC1C1=CC=C(Br)C=C1 Chemical compound C[C@H](N)C1=CC=CC=C1.O=C(O)C1CC1C1=CC=C(Br)C=C1 VQLNEWGKLGXOJY-ZLTKDMPESA-N 0.000 description 2
- ADXJJDKDQDJSMJ-CBZTYRTBSA-N *.*.*.*.CC(C)(C)OC(=O)CP(C)(C)=O.CC1=CC=C(/C=C/C(=O)OC(C)(C)C)C=C1.CC1=CC=C(C2CC2C(=O)OC(C)(C)C)C=C1.CC1=CC=C(C=O)C=C1.CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 Chemical compound *.*.*.*.CC(C)(C)OC(=O)CP(C)(C)=O.CC1=CC=C(/C=C/C(=O)OC(C)(C)C)C=C1.CC1=CC=C(C2CC2C(=O)OC(C)(C)C)C=C1.CC1=CC=C(C=O)C=C1.CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 ADXJJDKDQDJSMJ-CBZTYRTBSA-N 0.000 description 1
- HQHMZSBHVZJWTN-JFVNGJROSA-N B.C1CCOC1.CC(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1.CCCCNC.CC[C@H]1C[C@@H]1C1=CC=C(Br)C=C1.CC[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1.O=C(O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1.O=C1C=CC=NN1 Chemical compound B.C1CCOC1.CC(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1.CCCCNC.CC[C@H]1C[C@@H]1C1=CC=C(Br)C=C1.CC[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1.O=C(O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1.O=C1C=CC=NN1 HQHMZSBHVZJWTN-JFVNGJROSA-N 0.000 description 1
- XRBKNTXOIJFLEF-TZMCWYRMSA-N BrC1=CC=C([C@H]2C[C@@H]2CN2CCCC2)C=C1 Chemical compound BrC1=CC=C([C@H]2C[C@@H]2CN2CCCC2)C=C1 XRBKNTXOIJFLEF-TZMCWYRMSA-N 0.000 description 1
- YOAAWXGZILTNEY-UKRRQHHQSA-N BrC1=CC=C([C@H]2C[C@@H]2CN2CCCCC2)C=C1 Chemical compound BrC1=CC=C([C@H]2C[C@@H]2CN2CCCCC2)C=C1 YOAAWXGZILTNEY-UKRRQHHQSA-N 0.000 description 1
- IPELTGMLRHJEAJ-TZMCWYRMSA-N BrC1=CC=C([C@H]2C[C@@H]2CN2CCOCC2)C=C1 Chemical compound BrC1=CC=C([C@H]2C[C@@H]2CN2CCOCC2)C=C1 IPELTGMLRHJEAJ-TZMCWYRMSA-N 0.000 description 1
- IPELTGMLRHJEAJ-PYMCNQPYSA-N Brc1ccc([C@H]2C(CN3CCOCC3)C2)cc1 Chemical compound Brc1ccc([C@H]2C(CN3CCOCC3)C2)cc1 IPELTGMLRHJEAJ-PYMCNQPYSA-N 0.000 description 1
- XCBQXNGVZLLNLT-OXQJLTHESA-N CC(=O)[C@H]1C[C@@H]1C1=CC=C(C)C=C1.CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 Chemical compound CC(=O)[C@H]1C[C@@H]1C1=CC=C(C)C=C1.CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 XCBQXNGVZLLNLT-OXQJLTHESA-N 0.000 description 1
- GVZYQQFHOCMYGC-IZRXFCGDSA-N CC(=O)[C@H]1C[C@@H]1C1=CC=C(C)C=C1.CC[C@H]1C[C@@H]1C1=CC=C(C)C=C1 Chemical compound CC(=O)[C@H]1C[C@@H]1C1=CC=C(C)C=C1.CC[C@H]1C[C@@H]1C1=CC=C(C)C=C1 GVZYQQFHOCMYGC-IZRXFCGDSA-N 0.000 description 1
- IPKDUXLMDVHQFR-NQAVBDFFSA-N CC(C)(C)OC(=O)/C=C/C1=CC=C(Br)C=C1.CC(C)(C)OC(=O)C1CC1C1=CC=C(Br)C=C1.CC(C)(C)OC(=O)CP(C)(C)=O.C[S+](C)(C)=O.O=C(O)C1CC1C1=CC=C(Br)C=C1.O=CC1=CC=C(Br)C=C1.[I-] Chemical compound CC(C)(C)OC(=O)/C=C/C1=CC=C(Br)C=C1.CC(C)(C)OC(=O)C1CC1C1=CC=C(Br)C=C1.CC(C)(C)OC(=O)CP(C)(C)=O.C[S+](C)(C)=O.O=C(O)C1CC1C1=CC=C(Br)C=C1.O=CC1=CC=C(Br)C=C1.[I-] IPKDUXLMDVHQFR-NQAVBDFFSA-N 0.000 description 1
- HXHXLGMTGMUXJY-PWYQZFHGSA-O CC(C)C1=CC=CC=C1.C[C@@H]([NH3+])C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1.O=C(O)C1CC1C1=CC=C(Br)C=C1 Chemical compound CC(C)C1=CC=CC=C1.C[C@@H]([NH3+])C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1.O=C(O)C1CC1C1=CC=C(Br)C=C1 HXHXLGMTGMUXJY-PWYQZFHGSA-O 0.000 description 1
- RURHILYUWQEGOS-VOTSOKGWSA-N CC1=CC=C(/C=C/C(=O)O)C=C1 Chemical compound CC1=CC=C(/C=C/C(=O)O)C=C1 RURHILYUWQEGOS-VOTSOKGWSA-N 0.000 description 1
- KAXIRRRLKRGHRC-MDZDMXLPSA-N CC1=CC=C(/C=C/C(=O)OC(C)(C)C)C=C1 Chemical compound CC1=CC=C(/C=C/C(=O)OC(C)(C)C)C=C1 KAXIRRRLKRGHRC-MDZDMXLPSA-N 0.000 description 1
- WERRACVCHSGTAH-UXQCFNEQSA-N CC1=CC=C(C2CC2C(=O)O)C=C1.CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 Chemical compound CC1=CC=C(C2CC2C(=O)O)C=C1.CC1=CC=C([C@H]2C[C@@H]2C(=O)O)C=C1 WERRACVCHSGTAH-UXQCFNEQSA-N 0.000 description 1
- NYHWHDCODVERDM-OLZOCXBDSA-N CCN(CC)C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound CCN(CC)C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 NYHWHDCODVERDM-OLZOCXBDSA-N 0.000 description 1
- YXSKJHVBNZEUQD-TZMCWYRMSA-N CCN(CC)C[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound CCN(CC)C[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 YXSKJHVBNZEUQD-TZMCWYRMSA-N 0.000 description 1
- OPGHIXILYXDSIA-NVXWUHKLSA-N CCN(CC)C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 Chemical compound CCN(CC)C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 OPGHIXILYXDSIA-NVXWUHKLSA-N 0.000 description 1
- QLMPMAHXBVXDPB-MNOVXSKESA-N CN(C)C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound CN(C)C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 QLMPMAHXBVXDPB-MNOVXSKESA-N 0.000 description 1
- QLMPMAHXBVXDPB-VUWPPUDQSA-N CN(C)C(C(C1)[C@@H]1c(cc1)ccc1Br)=O Chemical compound CN(C)C(C(C1)[C@@H]1c(cc1)ccc1Br)=O QLMPMAHXBVXDPB-VUWPPUDQSA-N 0.000 description 1
- CNPJNPISVZTLAF-WUJWULDRSA-N CN(C)CC(C1)[C@@H]1c(cc1)ccc1N1N=CC=CC1=O Chemical compound CN(C)CC(C1)[C@@H]1c(cc1)ccc1N1N=CC=CC1=O CNPJNPISVZTLAF-WUJWULDRSA-N 0.000 description 1
- WYPJAPCMQZBXCK-ZYHUDNBSSA-N CN(C)C[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound CN(C)C[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 WYPJAPCMQZBXCK-ZYHUDNBSSA-N 0.000 description 1
- CNPJNPISVZTLAF-UKRRQHHQSA-N CN(C)C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 Chemical compound CN(C)C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 CNPJNPISVZTLAF-UKRRQHHQSA-N 0.000 description 1
- ZJOYZIXSHOANIX-HMZWWLAASA-N C[C@@H](N)C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1 Chemical compound C[C@@H](N)C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1 ZJOYZIXSHOANIX-HMZWWLAASA-N 0.000 description 1
- KUAATBRUDXUAOF-UZJXMSKXSA-N C[C@@H](N)C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1.O=C(O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound C[C@@H](N)C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1.O=C(O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 KUAATBRUDXUAOF-UZJXMSKXSA-N 0.000 description 1
- ZJOYZIXSHOANIX-HMZWWLAASA-O C[C@@H]([NH3+])C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1 Chemical compound C[C@@H]([NH3+])C1CCCCC1.O=C(O)C1CC1C1=CC=C(Br)C=C1 ZJOYZIXSHOANIX-HMZWWLAASA-O 0.000 description 1
- VJCVJUMJJXGRJG-HONMWMINSA-N C[C@@H]1CCCN1C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound C[C@@H]1CCCN1C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 VJCVJUMJJXGRJG-HONMWMINSA-N 0.000 description 1
- NMZRPOCZSZTBNJ-UXIGCNINSA-N C[C@@H]1CCCN1C[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound C[C@@H]1CCCN1C[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 NMZRPOCZSZTBNJ-UXIGCNINSA-N 0.000 description 1
- YQMKBLZYOGEKLS-QGPMSJSTSA-N C[C@@H]1CCCN1C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 Chemical compound C[C@@H]1CCCN1C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 YQMKBLZYOGEKLS-QGPMSJSTSA-N 0.000 description 1
- VJCVJUMJJXGRJG-KDICNWRVSA-N C[C@H](CCC1)N1C(C(C1)[C@@H]1c(cc1)ccc1Br)=O Chemical compound C[C@H](CCC1)N1C(C(C1)[C@@H]1c(cc1)ccc1Br)=O VJCVJUMJJXGRJG-KDICNWRVSA-N 0.000 description 1
- VJCVJUMJJXGRJG-GDLCADMTSA-N C[C@H]1CCCN1C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 Chemical compound C[C@H]1CCCN1C(=O)[C@H]1C[C@@H]1C1=CC=C(Br)C=C1 VJCVJUMJJXGRJG-GDLCADMTSA-N 0.000 description 1
- YQMKBLZYOGEKLS-YXJHDRRASA-N C[C@H]1CCCN1C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 Chemical compound C[C@H]1CCCN1C[C@H]1C[C@@H]1C1=CC=C(N2N=CC=CC2=O)C=C1 YQMKBLZYOGEKLS-YXJHDRRASA-N 0.000 description 1
- HOVHKJPHKDFKPE-OLZOCXBDSA-N O=C([C@H]1C[C@@H]1C1=CC=C(Br)C=C1)N1CCCC1 Chemical compound O=C([C@H]1C[C@@H]1C1=CC=C(Br)C=C1)N1CCCC1 HOVHKJPHKDFKPE-OLZOCXBDSA-N 0.000 description 1
- ZCVRZVLGWKLDCX-KGLIPLIRSA-N O=C([C@H]1C[C@@H]1C1=CC=C(Br)C=C1)N1CCCCC1 Chemical compound O=C([C@H]1C[C@@H]1C1=CC=C(Br)C=C1)N1CCCCC1 ZCVRZVLGWKLDCX-KGLIPLIRSA-N 0.000 description 1
- PVYODCWWKWZHDP-OLZOCXBDSA-N O=C([C@H]1C[C@@H]1C1=CC=C(Br)C=C1)N1CCOCC1 Chemical compound O=C([C@H]1C[C@@H]1C1=CC=C(Br)C=C1)N1CCOCC1 PVYODCWWKWZHDP-OLZOCXBDSA-N 0.000 description 1
- RRDUNQBJWMNJKE-NVXWUHKLSA-N O=C1C=CC=NN1C1=CC=C([C@H]2C[C@@H]2CN2CCCC2)C=C1 Chemical compound O=C1C=CC=NN1C1=CC=C([C@H]2C[C@@H]2CN2CCCC2)C=C1 RRDUNQBJWMNJKE-NVXWUHKLSA-N 0.000 description 1
- IZIAFQHCCPHXGT-SJLPKXTDSA-N O=C1C=CC=NN1C1=CC=C([C@H]2C[C@@H]2CN2CCCCC2)C=C1 Chemical compound O=C1C=CC=NN1C1=CC=C([C@H]2C[C@@H]2CN2CCCCC2)C=C1 IZIAFQHCCPHXGT-SJLPKXTDSA-N 0.000 description 1
- OOFRFROKBVNNTL-NVXWUHKLSA-N O=C1C=CC=NN1C1=CC=C([C@H]2C[C@@H]2CN2CCOCC2)C=C1 Chemical compound O=C1C=CC=NN1C1=CC=C([C@H]2C[C@@H]2CN2CCOCC2)C=C1 OOFRFROKBVNNTL-NVXWUHKLSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D237/00—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
- C07D237/02—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
- C07D237/06—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D237/10—Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D237/14—Oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/16—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
- C07C211/17—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing only non-condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/57—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C233/58—Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/09—Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/41—Preparation of salts of carboxylic acids
- C07C51/412—Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C51/00—Preparation of carboxylic acids or their salts, halides or anhydrides
- C07C51/42—Separation; Purification; Stabilisation; Use of additives
- C07C51/43—Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C61/00—Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C61/16—Unsaturated compounds
- C07C61/40—Unsaturated compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/333—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
- C07C67/343—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C67/347—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/04—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D207/06—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/06—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals
- C07D295/073—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals with the ring nitrogen atoms and the substituents separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D295/00—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
- C07D295/04—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
- C07D295/10—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms
- C07D295/104—Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms with the ring nitrogen atoms and the doubly bound oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/02—Systems containing only non-condensed rings with a three-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to processes for preparing chiral cyclopropyl amine derivatives and salts thereof; intermediates useful for the preparation of such compounds and salts; pharmaceutical compositions comprising the compounds and salts; and method of using such compositions.
- the cyclopropyl amine derivatives are useful for binding to histamine H 3 receptor sites and for providing therapeutic agents for histamine H 3 mediated disease.
- chiral 1,2-substituted cyclopropyl carboxylic acid and chiral 1,2-substituted cyclopropyl amide derivatives are intermediate compounds useful for the preparation of chiral cyclopropyl amine derivatives of a general formula:
- R 1 , R 2 , R 3 , R 3a , R 3b , R 4 , and R 5 are as defined below.
- Compounds of formula (II) are described in WO 2007150010, published on Dec. 27, 2007, corresponding to U.S. patent application Ser. No. 11/766,987, filed on Jun. 22, 2007, and U.S. patent application Ser. No. 11/956,816, filed on Dec. 14, 2007, each of which are all hereby incorporated by reference.
- the present invention offers a more efficient process to obtain chiral compounds of formula (II) via the chiral resolution of an aryl-cyclopropanecarboxylic acid with chiral amines.
- the chiral resolution step forms a diasteriomeric chiral salt, which is crystallized to obtain an enantiomerically pure salt.
- the enantiomerically pure arylcyclopropyl carboxylic acid is obtained upon breaking up the salt.
- the resulting enantiomerically pure cyclopropyl carboxylic acids can be reacted with various amines to form amides, which can be reduced to form chiral amine derivatives.
- the intermediate chiral amines can be further coupled with a desired aromatic or heteroaromatic reagent to provide compounds of formula (II).
- histamine H 3 receptor antagonists have been identified as histamine H 3 receptor antagonists.
- Various histamine H 3 receptor antagonists are currently in clinical development for treatment of disease.
- Diseases for which histamine H 3 receptor antagonists are under clinical study include, for example, schizophrenia, cognitive deficits of schizophrenia, Alzheimer's disease, narcolepsy, cataplexy, sleep disorder, hyperalgesia, allergic rhinitis, obesity, attention-deficit hyperactivity disorder, and dementia.
- histamine H 3 receptor ligands can demonstrate therapeutic effect are deficits in attention, diseases with deficits of memory or learning, cognitive deficits and dysfunction in psychiatric disorders, mild cognitive impairment, epilepsy, seizures, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary syndrome.
- the present invention relates to a process for preparing chiral cyclopropyl amine derivatives of formula (II), as described herein.
- the present invention relates to a process for preparing the chiral salts of aryl-cyclopropanecarboxylic acid with a chiral amine.
- the present invention also is directed to the chiral compounds and salts thereof prepared by the process for preparing chiral salts described above.
- the present invention also is directed a chiral aryl-cyclopropanecarboxylic acid salt.
- the present invention also is directed to various intermediates useful for preparing chiral compounds of formula (II).
- compositions including pharmaceutical compositions
- compounds of formula (II) or a salt thereof that are prepared by the above processes.
- the present invention also is directed to methods of using the compositions of the invention.
- aryl as used herein means a monocyclic hydrocarbon aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl.
- aryl groups of this invention are substituted with 0, 1, 2, 3, 4, or 5 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, amido, carboxy, cyano, cycloalkylcarbonyl, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, thioalkoxy, NR A R B , and (NR A R B )sulfonyl.
- substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysul
- heteroaryl refers to an aromatic ring containing one or more heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Such rings can be monocyclic or bicyclic as further described herein. Heteroaryl rings are connected to the parent molecular moiety.
- heteroaryl or “5- or 6-membered heteroaryl ring”, as used herein, refer to 5- or 6-membered aromatic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof.
- examples of such rings include, but are not limited to, a ring wherein one carbon is replaced with an O or S atom; one, two, or three N atoms arranged in a suitable manner to provide an aromatic ring; or a ring wherein two carbon atoms in the ring are replaced with one O or S atom and one N atom.
- Such rings can include, but are not limited to, a six-membered aromatic ring wherein one to four of the ring carbon atoms are replaced by nitrogen atoms, five-membered rings containing a sulfur, oxygen, or nitrogen in the ring; five membered rings containing one to four nitrogen atoms; and five membered rings containing an oxygen or sulfur and one to three nitrogen atoms.
- 5- to 6-membered heteroaryl rings include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, [1,2,3]thiadiazolyl, [1,2,3]oxadiazolyl, thiazolyl, thienyl, [1,2,3]triazinyl, [1,2,4]triazinyl, [1,3,5]triazinyl, [1,2,3]triazolyl, and [1,2,4]triazolyl.
- bicyclic heteroaryl or “8- to 12-membered bicyclic heteroaryl ring”, as used herein, refers to an 8-, 9-, 10-, 11-, or 12-membered bicyclic aromatic ring containing at least 3 double bonds, and wherein the atoms of the ring include one or more heteroatoms independently selected from oxygen, sulfur, and nitrogen.
- bicyclic heteroaryl rings include indolyl, benzothienyl, benzofuranyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzoisothiazolyl, benzoisoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pteridinyl, purinyl, naphthyridinyl, cinnolinyl, thieno[2,3-d]imidazole, thieno[3,2-b]pyridinyl, and pyrrolopyrimidinyl.
- Heteroaryl groups of the invention may be substituted with hydrogen, or optionally substituted with one or more substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, amido, carboxy, cyano, cycloalkyl, fluoroalkoxy, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, alkylthio, —NR A R B , and (NR A R B )carbonyl.
- substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxy
- Monocyclic heteroaryl or 5- or 6-membered heteroaryl rings are substituted with 0, 1, 2, 3, 4, or 5 substituents.
- Bicyclic heteroaryl or 8- to 12-membered bicyclic heteroaryl rings are substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents.
- Heteroaryl groups of the present invention may be present as tautomers.
- heterocyclic ring and “heterocycle”, as used herein, refer to a 4- to 12-membered monocyclic or bicyclic ring containing one, two, three, four, or five heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur and also containing either at least one carbon atom attached to four other atoms or one carbon atom substituted with an oxo group and attached to two other atoms.
- Four- and five-membered rings may have zero or one double bond.
- Six-membered rings may have zero, one, or two double bonds.
- Seven- and eight-membered rings may have zero, one, two, or three double bonds.
- the non-aromatic heterocycle groups of the invention can be attached through a carbon atom or a nitrogen atom.
- the non-aromatic heterocycle groups may be present in tautomeric form.
- Representative examples of nitrogen-containing heterocycles include, but are not limited to, azepanyl, azetidinyl, aziridinyl, azocanyl, dihydropyridazinyl, dihydropyridinyl, dihydropyrimidinyl, morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, pyrrolinyl, dihydrothiazolyl, dihydropyridinyl, and thiomorpholinyl.
- non-nitrogen containing non-aromatic heterocycles include, but are not limited to, dioxanyl, dithianyl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, and [1,3]dioxolanyl.
- the heterocycles of the invention are substituted with hydrogen, or optionally substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylsulfonyl, amido, arylalkyl, arylalkoxycarbonyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, oxo, thioalkoxy, —NR A R B , and (NR A R B )sulfonyl.
- substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl,
- heterocycles include, but are not limited to, azetidin-2-one, azepan-2-one, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, 1H-benzo[d]imidazol-2(3H)-one, [1,2,4]thiadiazolonyl, [1,2,5]thiadiazol
- room temperature refers to about 25° C.
- room temperature can vary within a few degrees depending on the environment in which any reaction is conducted. For example, temperatures from about 20° C. to about 30° C. are considered to be room temperature.
- R denotes a chiral center that can be designated as a R- or S-stereocenter.
- These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral carbon atom.
- R and S used herein are configurations as defined in the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., 1976, 45:13-30.
- chiral refers to a compound that is enantiopure or contains only one of a possible two configurations at a designated stereocenter.
- THF for tetrahydrofuran
- CDI 1,1′-carbonyldiimidazole
- NaH for sodium hydride
- NaHCO 3 for sodium bicarbonate
- MTBE for methyl t-butyl ether
- BH 3 for borane
- DMSO for dimethylsulfoxide
- EtOAc for ethyl acetate
- NaOtBu sodium t-butoxide
- OTf for trifluoromethanesulfonate.
- NLT is used to denote “Not Less Than”.
- the present invention relates to a process for preparing a chiral compound of formula:
- R 2 , R 3 , R 3a , R 3b are hydrogen;
- R 1 is a 5- to 6-membered heteroaryl ring, cyanophenyl, a 8- to 12-membered bicyclic heteroaryl ring, or a 4- to 12-membered heterocyclic ring; and
- R 4 and R 5 taken together with the nitrogen atom to which they are attached form an amine moiety represented by structure:
- R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
- R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
- R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
- Q is O or S; and
- m is an integer from 1 to 5.
- enantiomerically pure arylcyclopropanecarboxylic acids salt can be broken-up to release the enantiomerically pure arylcyclopropanecarboxylic acids that can be further reacted with amines, reduced, and coupled with a suitable aromatic, heteroaromatic, or heterocycle group to provide compounds of formula (II).
- the chiral amine is selected from the group consisting of (S)-( ⁇ )- ⁇ -methylbenzylamine, (R)-(+)-N-benzyl- ⁇ -methylbenzylamine, (S)-( ⁇ )-N-benzyl- ⁇ -methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-( ⁇ )-N,N-dimethyl-1-phenylethylamine, [R-(R*,R*)]-(+)-bis(a-methylbenzyl)amine, [S-(R*,R*)]-( ⁇ )-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-( ⁇ )-1-(1-naphthyl)ethylamine, (1
- the chiral amine is (R)-( ⁇ )-1-cyclohexylethylamine. In another embodiment, the chiral amine is (R)-(+)-a-methylbenzylamine.
- the reaction is carried out in a polar organic solvent.
- the polar organic solvent is an alcohol.
- the alcohol can be selected from the group consisting of methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, and n-butyl alcohol.
- the alcohol is isopropyl alcohol.
- the alcohol is tert-butyl alcohol.
- the reaction is carried at a temperature of from about room temperature to about 75° C.
- the temperature is from about 40° C. to about 60° C. In one particular embodiment, the temperature at which the reaction is carried out is from about 45° C. to about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
- the aryl-cyclopropanecarboxylic acid is prepared from arylaldehyde. An illustration of a process for preparing arylcyclopropanecarboxylic acid from aryl aldehyde is shown below in Scheme A.
- aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate to provide tert-butyl arylacrylate (A-2).
- Tert-butyl arylacrylate is treated a sulfoxonium ylide to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3).
- Hydrolysis of the tert-butyl arylcyclopropanecarboxylic acid ester under basic conditions with lithium hydroxide provides arylcyclopropanecarboxylic acid (A-4).
- aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate with any strong base in a non-polar solvent.
- the strong base is a metal hydride.
- metal hydride base are lithium hydride and sodium hydride.
- the strong base can also be potassium t-butyloxide, sodium t-butyloxide, lithium t-butyloxide.
- sodium hydride (NaH) is the base or potassium t-butyloxide. The reaction is carried out in any non-polar solvent.
- the non-polar solvent is an organic solvent, for example, toluene, hexane, benzene, 1,4-dioxane, chloroform, or diethyl ether.
- the organic solvent is toluene.
- Suitable sulfoxonium ylides for treating tert-butyl arylacrylate (A-2) to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3) can be dimethylsulfoxonium iodide methylide (Corey-Chaykovsky Regent) and trimethylsulfoxonium iodide reagent.
- the sulfoxonium reagent is trimethylsulfoxonium iodide reagent.
- the sulfoxonium reagent is dimethylsulfoxonium iodide methylide.
- the reaction is carried out in a polar solvent.
- the polar solvent can be any suitable polar aprotic solvent.
- Suitable polar aprotic solvents include, but are not limited to, dimethyl sulfoxide, dimethyl acetamide, dimethyl formamide, or mixtures thereof.
- the solvent is a mixture of dimethyl sulfoxide and dimethyl acetamide.
- the mixture can be in a ratio of from about 1:1 to about 2:1 dimethyl sulfoxide/dimethyl acetamide.
- the reaction can be carried out at any temperature, however, in the reaction mixture is maintained at a temperature of less than about 10° C.
- any base is suitable for use in the hydrolysis of the ester of tert-butyl arylcyclopropanecarboxylic acid (A-3) to provide arylcyclopropanecarboxylic acid (A-4).
- the base is any metal hydroxide base.
- Such base can include, for example, sodium hydroxide, lithium hydroxide, and potassium hydroxide.
- Suitable amine reagents can be represented by the formula:
- R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
- R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
- R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
- Q is O or S; and
- m is an integer from 1 to 5.
- Suitable amines for the reaction can include any amine of formula (a), as defined above.
- Such amine can be more particularly selected from pyrrolidine, 2-(S)-methylpyrrolidine, 2-(R)-methylpyrrolidine, 3-methylpyrrolidine, 2-fluoropyrrolidine, 3-fluoropyrrolidine, 2-hydroxypyrrolidine, 3-hydroxypyrrolidine, 2-hydroxymethylpyrrolidine, and 3-hydroxymethylpyrrolidine.
- Other suitable amines can be more particularly selected from pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-fluoropyridine, 3-fluoropyridine, 4-fluoropyridine, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxymethylpyridine, 2-hydroxymethylpyridine, 3-hydroxymethylpyridine, and 4-hydroxymethylpyridine.
- the amines are those wherein one of the substituents represented by R 7 , R 8 , R 9 , and R 10 is hydrogen or alkyl and the other substituents are hydrogen.
- Particular preferred examples are pyrrolidine, 2-(S)-methylpyrrolidine, and 2-(R)-methylpyrrolidine.
- Suitable amines are those of formula (b), as defined above. Such amine may be more particularly selected from dimethylamine, diethylamine, methylamine, and ethylamine. In one particular embodiment, the amines are those wherein one of the substituents represented by R 7 , R 8 , R 9 , and R 10 is hydrogen or alkyl and the other substituents are hydrogen. Particular preferred examples are dimethylamine and diethylamine.
- Additional reagents having an amine group are those of formula (c), as defined above.
- Such amine may be more particularly selected from morpholine and thiomorpholine.
- the amine reagent is morpholine.
- the reaction is carried out using N,N′-carbonyldiimidazole.
- the arylcyclopropanecarboxylic acid, amine, and N,N′-carbonyldiimidazole are combined in an organic solvent.
- suitable organic solvents are tetrahydrofuran, toluene, 1,2-dimethoxyethane, 1,4-dioxane, N-methyl-pyrrolidinone, dimethylacetamide, and dimethylformamide.
- the solvent is tetrahydrofuran.
- the solvent is toluene. Tetrahydrofuran is the most preferred solvent.
- the reaction can be accomplished at room temperature.
- the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
- the cyclopropanecarboxylic acid amide is reduced using a reducing agent selected from borane reducing reagents.
- Suitable reducing agents are, for example, borane tetrahydrofuran complex, diborane, borane dimethylsulfide complex, a combination of sodium borohydride and sodium trifluoride.
- the reaction is conducted in a polar, aprotic solvent.
- suitable solvents are tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 1,4-dioxane, and methyl-tert-butyl ethers.
- the preferred solvent is tetrahydrofuran.
- the reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 80° C. In a preferred embodiment, the reaction is conducted at a temperature of about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
- the compound of formula (I-b) undergoes coupling reactions to provide the compounds of formula (II).
- Coupling conditions commonly referred to as metal-catalyzed reaction including palladium, nickel, iron or copper catalyzed reaction, such as Ullmann reaction conditions, are preferred for the reaction.
- Reagent suitable for providing a moiety within the definition of R 1 can be used.
- Reagents suitable for the reaction can include, for example, 5- to 6-membered heteroaryl, 8- to 12-membered bicyclic heteroaryl, and 4- to 12-membered heterocyclic reagents.
- Examples of particular 5- to 6-membered heteroaryl reagents include, but are not limited to, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, pyrroline, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, [1,2,4]thiadiazolone, [1,2,5]thiadiazolone, [1,3,4]thiadiazinone, [1,2,4]oxadiazolone, [1,2,5]oxadiazolone, and [1,3,4]oxadiazin-one.
- Examples of particular 4- to 12-membered heterocyclic reagents include, but are not limited to, azepane, azetidine, aziridine, azocane, dihydropyridine, dihydropyrimidine, piperidine, pyrrolidine, dihydrothiazole, dihydropyridine, thiomorpholine, dioxane, dithiane, tetrahydrofuran, dihydropyrane, tetrahydropyran, [1,3]dioxolane, azetidin-2-one, and azepan-2-one.
- Examples of particular 8- to 12-membered bicyclic heteroaryl reagents include, but are not limited to, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, and 1H-benzo[d]imidazol-2(3H)-one.
- the reaction is conducted with a copper catalyst and base in a polar aprotic solvent in the presence of N,N′-dimethylenediamine.
- the copper catalyst can be any copper catalyst.
- the copper catalyst is a copper (I) catalyst. Examples of such catalysts are, for example, copper (I) iodide, copper (I) bromide, and copper (I) chloride. Copper (I) iodide is preferred.
- the base is any suitable organic base.
- Examples of such base can include, for example, potassium carbonate (K 2 CO 3 ), potassium phosphate (K 3 PO 4 ), cesium carbonate (Cs 2 CO 3 ), sodium methoxide (NaOMe), sodium tert-butoxide (NaOt-Bu), sodium acetate (NaOAc), and potassium tert-butoxide (KOt-Bu).
- the base is K 2 CO 3 .
- the base is K 3 PO 4 .
- the basic solvent can be any polar aprotic solvent.
- polar aprotic solvent examples include, for example, dimethyl acetamide, dimethyl formamide, 1-methyl-2-pyrrolidinone, and pyridine.
- the polar aprotic solvent is pyridine.
- the reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 140° C. In a preferred embodiment, the reaction is conducted at a temperature of about 115° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
- the present invention in one embodiment, also relates to compounds that are:
- the chiral amines are (S)-( ⁇ )- ⁇ -methylbenzylamine, (R)-(+)-N-benzyl-a-methylbenzylamine, (S)-( ⁇ )-N-benzyl- ⁇ -methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-( ⁇ )-N,N-dimethyl-1-phenylethylamine, [R-(R*,R*)]-(+)-bis( ⁇ -methylbenzyl)amine, [S-(R*,R*)]-( ⁇ )-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-( ⁇ )-1-(1-naphthyl)ethylamine, (1R,2R,3R
- the chiral amines also can be selected from (R)-( ⁇ )-1-cyclohexylethylamine or (R)-(+)- ⁇ -methylbenzylamine.
- the chiral amine is (R)-( ⁇ )-1-cyclohexylethylamine.
- the chiral amine is (R)-(+)- ⁇ -methylbenzylamine.
- the present invention also relates to compounds that are:
- the present invention in another embodiment, relates to a compound of formula:
- R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
- R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
- R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
- Q is O or S; and
- m is an integer from 1 to 5.
- the present invention in another embodiment, relates to a compound of formula:
- R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
- R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
- R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
- Q is O or S; and
- m is an integer from 1 to 5.
- the present invention also includes isotopically-labeled compounds, which are identical to those recited in Formula (I-a), (I-b), and (II), but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
- isotopes suitable for inclusion in the compounds of the invention are hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine, and chlorine, such as but not limited to 2 H, 3 H, 13 C, 15 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
- isotopes such as deuterium, i.e., 2 H
- Compounds incorporating positron-emitting isotopes are useful in medical imaging and positron-emitting tomography (PET) studies for determining the distribution of receptors.
- Suitable positron-emitting isotopes that can be incorporated in compounds of formula (I) are 11 C, 13 N, 15 O, and 18 F.
- Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art using appropriate isotopically-labeled reagent in place of non-isotopically-labeled reagent.
- compositions typically also comprise one or more conventional pharmaceutically acceptable carriers, adjuvants, and/or vehicles (together referred to as “excipients”).
- compositions for oral administration and solid dosage forms in particular, are preferred.
- Such solid dosage forms include, for example, capsules, tablets, pills, powders, and granules.
- the compounds or salts are ordinarily combined with one or more excipients.
- the compounds or salts can be mixed with, for example, lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration.
- Such capsules or tablets can contain a controlled-release formulation, as can be provided in, for example, a dispersion of the compound or salt in hydroxypropylmethyl cellulose.
- the dosage forms also can comprise buffering agents, such as sodium citrate, or magnesium or calcium carbonate or bicarbonate. Tablets and pills additionally can be prepared with enteric coatings.
- the compounds and compositions of the invention are useful for treating and preventing certain diseases and disorders in humans and animals.
- the compounds described in the invention can affect physiological processes in humans and animals.
- the compounds and compositions described in the invention are useful for treating and preventing diseases and disorders modulated by histamine-3 receptors.
- treatment or prevention of such diseases and disorders can be effected by selectively modulating the histamine-3 receptors in a mammal, by administering a compound or composition of the invention, either alone or in combination with another active agent as part of a therapeutic regimen.
- the compounds of the invention may be useful for the treatment and prevention of diseases or conditions such as attention-deficit hyperactivity disorder (ADHD), deficits in attention, dementia, and diseases with deficits of memory, learning, schizophrenia, cognitive deficits of schizophrenia, cognitive deficits and dysfunction in psychiatric disorders, Alzheimer's disease, mild cognitive impairment, epilepsy, seizures, allergic rhinitis, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, obesity, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, sleep disorders, narcolepsy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary
- ADHD attention-deficit hyperactivity disorder
- dementia dementia
- diseases with deficits of memory learning
- schizophrenia cognitive deficit
- the preferred total daily dose of a compound or salt is typically from about 0.001 to about 100 mg/kg, more preferably from about 0.001 to about 30 mg/kg, and even more preferably from about 0.01 to about 10 mg/kg (i.e., mg of the compound or salt per kg body weight).
- Dosage unit compositions can contain such amounts or submultiples thereof to make up the daily dose.
- the administration of the compound or salt will be repeated a plurality of times. Multiple doses per day typically may be used to increase the total daily dose, if desired.
- Factors affecting the preferred dosage regimen include the type, age, weight, sex, diet, and condition of the patient; the severity of the pathological condition; the severity of the pathological condition; pharmacological considerations, such as the activity, efficacy, pharmacokinetic, and toxicology profiles of the particular compound or salt used; whether a drug delivery system is utilized; and the specific drug combination.
- the dosage regimen actually employed can vary widely, and therefore, can derive from the preferred dosage regimen set forth above.
- the flask and wetcake were rinsed with the mother liquors, followed by isopropyl alcohol (5 mL).
- the wetcake was dried on the filter under vacuum (1.88 g, 61.5% ee).
- the wetcake was then charged back to the round-bottom flask with isopropyl alcohol (38 mL, 20 mL/g).
- the suspension was heated to 80° C. After 0.5 h, all solids dissolved.
- the solution was then slowly cooled to 50° C. ( ⁇ 2 h), during which time a suspension formed.
- the suspension was stirred at 50° C. for 2 h, and then slowly cooled to room temperature (1-2 h). Stirred the suspension overnight ( ⁇ 15 h) at room temperature.
- the suspension was filtered.
- the product solution is monitored by HPLC until the boron-complexed product is completely broken (typically >10 h).
- the product solution is then cooled to room temperature and extracted with t-butyl methyl ether (40 mL, 2 ⁇ ).
- the basic aqueous layer is then extracted with more MTBE (40 mL).
- the organic layers are combined and washed with saturated sodium chloride solution (40 mL).
- the resulting product solution was assayed by HPLC against a known standard. 2.66 g product was assayed (92% assayed yield, >99% peak area).
- the yield was increased by stepwise addition of isopropyl alcohol alternating with hold times over 10 h at 15° C., reducing the water content to 10% (by volume) in the final solvent composition.
- the solid was filtered and washed with isopropyl alcohol twice (4.5 mL/g free base). Wet cake was dried at 50° C. under vacuum, in humidified environment, with intermittent slight nitrogen bleeding. The isolated solid was used as a standard.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- This application claims priority to U.S. Patent Application Ser. No. 61/397,705 filed Sep. 16, 2010, which is incorporated herein by reference.
- The present invention relates to processes for preparing chiral cyclopropyl amine derivatives and salts thereof; intermediates useful for the preparation of such compounds and salts; pharmaceutical compositions comprising the compounds and salts; and method of using such compositions. The cyclopropyl amine derivatives are useful for binding to histamine H3 receptor sites and for providing therapeutic agents for histamine H3 mediated disease.
- The chiral 1,2-substituted cyclopropyl carboxylic acid and chiral 1,2-substituted cyclopropyl amide derivatives are intermediate compounds useful for the preparation of chiral cyclopropyl amine derivatives of a general formula:
- wherein R1, R2, R3, R3a, R3b, R4, and R5 are as defined below. Compounds of formula (II) are described in WO 2007150010, published on Dec. 27, 2007, corresponding to U.S. patent application Ser. No. 11/766,987, filed on Jun. 22, 2007, and U.S. patent application Ser. No. 11/956,816, filed on Dec. 14, 2007, each of which are all hereby incorporated by reference. The present invention offers a more efficient process to obtain chiral compounds of formula (II) via the chiral resolution of an aryl-cyclopropanecarboxylic acid with chiral amines. The chiral resolution step forms a diasteriomeric chiral salt, which is crystallized to obtain an enantiomerically pure salt. The enantiomerically pure arylcyclopropyl carboxylic acid is obtained upon breaking up the salt. The resulting enantiomerically pure cyclopropyl carboxylic acids can be reacted with various amines to form amides, which can be reduced to form chiral amine derivatives. The intermediate chiral amines can be further coupled with a desired aromatic or heteroaromatic reagent to provide compounds of formula (II).
- Compounds of formula (II) have been identified as histamine H3 receptor antagonists. Various histamine H3 receptor antagonists are currently in clinical development for treatment of disease. Diseases for which histamine H3 receptor antagonists are under clinical study include, for example, schizophrenia, cognitive deficits of schizophrenia, Alzheimer's disease, narcolepsy, cataplexy, sleep disorder, hyperalgesia, allergic rhinitis, obesity, attention-deficit hyperactivity disorder, and dementia. Other conditions for which it is believed that histamine H3 receptor ligands can demonstrate therapeutic effect are deficits in attention, diseases with deficits of memory or learning, cognitive deficits and dysfunction in psychiatric disorders, mild cognitive impairment, epilepsy, seizures, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary syndrome.
- It would be beneficial to provide a more practical, economical, and robust processes for preparing the compounds having histamine H3 receptor activity to more efficiently supply histamine H3 receptor antagonist compounds for clinical studies and for eventual commercial supply. It would be particularly beneficial if the process provided the desired chiral compound using environmentally safe reagents under milder reaction conditions.
- In one aspect, the present invention relates to a process for preparing chiral cyclopropyl amine derivatives of formula (II), as described herein.
- In another aspect, the present invention relates to a process for preparing the chiral salts of aryl-cyclopropanecarboxylic acid with a chiral amine.
- The present invention also is directed to the chiral compounds and salts thereof prepared by the process for preparing chiral salts described above.
- The present invention also is directed a chiral aryl-cyclopropanecarboxylic acid salt.
- The present invention also is directed to various intermediates useful for preparing chiral compounds of formula (II).
- The present invention also is directed to compositions (including pharmaceutical compositions) that comprise compounds of formula (II) or a salt thereof that are prepared by the above processes.
- The present invention also is directed to methods of using the compositions of the invention.
- Further benefits of Applicants' invention will be apparent to one skilled in the art from reading this patent application.
- This detailed description is intended only to acquaint others skilled in the art with Applicants' invention, its principles, and its practical application so that others skilled in the art may adapt and apply the invention in its numerous forms, as they may be best suited to the requirements of a particular use. This description and its specific examples are intended for purposes of illustration only. This invention, therefore, is not limited to the embodiments described in this patent application, and may be variously modified.
- a. Definitions
- As used in the specification and the appended claims, unless specified to the contrary, the following terms have the meaning indicated:
- The term “aryl” as used herein means a monocyclic hydrocarbon aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl.
- The aryl groups of this invention are substituted with 0, 1, 2, 3, 4, or 5 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, amido, carboxy, cyano, cycloalkylcarbonyl, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, thioalkoxy, NRARB, and (NRARB)sulfonyl.
- The term “heteroaryl”, as used herein, refers to an aromatic ring containing one or more heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Such rings can be monocyclic or bicyclic as further described herein. Heteroaryl rings are connected to the parent molecular moiety.
- The terms “monocyclic heteroaryl” or “5- or 6-membered heteroaryl ring”, as used herein, refer to 5- or 6-membered aromatic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Examples of such rings include, but are not limited to, a ring wherein one carbon is replaced with an O or S atom; one, two, or three N atoms arranged in a suitable manner to provide an aromatic ring; or a ring wherein two carbon atoms in the ring are replaced with one O or S atom and one N atom. Such rings can include, but are not limited to, a six-membered aromatic ring wherein one to four of the ring carbon atoms are replaced by nitrogen atoms, five-membered rings containing a sulfur, oxygen, or nitrogen in the ring; five membered rings containing one to four nitrogen atoms; and five membered rings containing an oxygen or sulfur and one to three nitrogen atoms. Representative examples of 5- to 6-membered heteroaryl rings include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, [1,2,3]thiadiazolyl, [1,2,3]oxadiazolyl, thiazolyl, thienyl, [1,2,3]triazinyl, [1,2,4]triazinyl, [1,3,5]triazinyl, [1,2,3]triazolyl, and [1,2,4]triazolyl.
- The term “bicyclic heteroaryl” or “8- to 12-membered bicyclic heteroaryl ring”, as used herein, refers to an 8-, 9-, 10-, 11-, or 12-membered bicyclic aromatic ring containing at least 3 double bonds, and wherein the atoms of the ring include one or more heteroatoms independently selected from oxygen, sulfur, and nitrogen. Representative examples of bicyclic heteroaryl rings include indolyl, benzothienyl, benzofuranyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzoisothiazolyl, benzoisoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pteridinyl, purinyl, naphthyridinyl, cinnolinyl, thieno[2,3-d]imidazole, thieno[3,2-b]pyridinyl, and pyrrolopyrimidinyl.
- Heteroaryl groups of the invention, whether monocyclic or bicyclic, may be substituted with hydrogen, or optionally substituted with one or more substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, amido, carboxy, cyano, cycloalkyl, fluoroalkoxy, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, alkylthio, —NRARB, and (NRARB)carbonyl. Monocyclic heteroaryl or 5- or 6-membered heteroaryl rings are substituted with 0, 1, 2, 3, 4, or 5 substituents. Bicyclic heteroaryl or 8- to 12-membered bicyclic heteroaryl rings are substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents. Heteroaryl groups of the present invention may be present as tautomers.
- The terms “heterocyclic ring” and “heterocycle”, as used herein, refer to a 4- to 12-membered monocyclic or bicyclic ring containing one, two, three, four, or five heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur and also containing either at least one carbon atom attached to four other atoms or one carbon atom substituted with an oxo group and attached to two other atoms. Four- and five-membered rings may have zero or one double bond. Six-membered rings may have zero, one, or two double bonds. Seven- and eight-membered rings may have zero, one, two, or three double bonds. The non-aromatic heterocycle groups of the invention can be attached through a carbon atom or a nitrogen atom. The non-aromatic heterocycle groups may be present in tautomeric form. Representative examples of nitrogen-containing heterocycles include, but are not limited to, azepanyl, azetidinyl, aziridinyl, azocanyl, dihydropyridazinyl, dihydropyridinyl, dihydropyrimidinyl, morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, pyrrolinyl, dihydrothiazolyl, dihydropyridinyl, and thiomorpholinyl. Representative examples of non-nitrogen containing non-aromatic heterocycles include, but are not limited to, dioxanyl, dithianyl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, and [1,3]dioxolanyl.
- The heterocycles of the invention are substituted with hydrogen, or optionally substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylsulfonyl, amido, arylalkyl, arylalkoxycarbonyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, oxo, thioalkoxy, —NRARB, and (NRARB)sulfonyl.
- Additional examples of heterocycles include, but are not limited to, azetidin-2-one, azepan-2-one, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, 1H-benzo[d]imidazol-2(3H)-one, [1,2,4]thiadiazolonyl, [1,2,5]thiadiazolonyl, [1,3,4]thiadiazinonyl, [1,2,4]oxadiazolonyl, [1,2,5]oxadiazolonyl, [1,3,4]oxadiazinonyl, and 1,5-dihydro-benzo[b][1,4]diazepin-2-on-yl.
- For the purposes of the application, the term “room temperature” refers to about 25° C. One with skill in the art would understand that room temperature can vary within a few degrees depending on the environment in which any reaction is conducted. For example, temperatures from about 20° C. to about 30° C. are considered to be room temperature.
- As used herein, the * denotes a chiral center that can be designated as a R- or S-stereocenter. These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral carbon atom. The terms “R” and “S” used herein are configurations as defined in the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., 1976, 45:13-30.
- The term “chiral” refers to a compound that is enantiopure or contains only one of a possible two configurations at a designated stereocenter.
- b. Abbreviations
- Abbreviations which have been used in the descriptions that follow are: THF for tetrahydrofuran; CDI for 1,1′-carbonyldiimidazole; NaH for sodium hydride; HCl hydrochloric acid; NaHCO3 for sodium bicarbonate; MTBE for methyl t-butyl ether; BH3 for borane; DMSO for dimethylsulfoxide; EtOAc for ethyl acetate; NaOtBu for sodium t-butoxide; and OTf for trifluoromethanesulfonate.
- The abbreviation NLT is used to denote “Not Less Than”.
- The abbreviation KF is used to denote “Karl Fischer”.
- c. Description of Present Invention
- In one aspect, the present invention relates to a process for preparing a chiral compound of formula:
- wherein R2, R3, R3a, R3b, are hydrogen; R1 is a 5- to 6-membered heteroaryl ring, cyanophenyl, a 8- to 12-membered bicyclic heteroaryl ring, or a 4- to 12-membered heterocyclic ring; and R4 and R5 taken together with the nitrogen atom to which they are attached form an amine moiety represented by structure:
- wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
A. Chiral Resolution of Cyclopropanecarboxylic Acid with Chiral Amines - The process involves chiral resolution of an aryl-cyclopropanecarboxylic acid with a chiral amine. An illustration of this process step is shown below in Scheme 1:
- The cyclopropanecarboxylic acids:
- is treated with a chiral amine to form a diasteromeric chiral salt, which can be further crystallized to form an enantiomerically pure salt. The enantiomerically pure arylcyclopropanecarboxylic acids salt can be broken-up to release the enantiomerically pure arylcyclopropanecarboxylic acids that can be further reacted with amines, reduced, and coupled with a suitable aromatic, heteroaromatic, or heterocycle group to provide compounds of formula (II). In one embodiment, the chiral amine is selected from the group consisting of (S)-(−)-α-methylbenzylamine, (R)-(+)-N-benzyl-α-methylbenzylamine, (S)-(−)-N-benzyl-α-methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-(−)-N,N-dimethyl-1-phenylethylamine, [R-(R*,R*)]-(+)-bis(a-methylbenzyl)amine, [S-(R*,R*)]-(−)-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-(−)-1-(1-naphthyl)ethylamine, (1R,2R,3R,5S)-(−)-isopinocamphenylamine, (1S,2S,3S,5R)-(+)-isopinocamphenylamine, (1R2R)-(−)-pseudoephedrine, (1S,2S)-(+)-pseudoephedrine, (1R,2S)-(−)-ephedrine, (1S,2R)-(+)-ephedrine, (1R,2S)-(−)-N-methylephedrine, (1S,2R)-(+)-N-methylephedrine, (1R,2S)-(−)-norephedrine, (1S,2R)-(+)-norephedrine, (1R,2S)-(+)-cis-1-amino-2-indanol, (1S,2R)-(−)- cis-1-amino-2-indanol, quinine, and cinchonine. In one embodiment, the chiral amine is (R)-(−)-1-cyclohexylethylamine. In another embodiment, the chiral amine is (R)-(+)-a-methylbenzylamine. In a preferred embodiment, the reaction is carried out in a polar organic solvent. In one embodiment the polar organic solvent is an alcohol. The alcohol can be selected from the group consisting of methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, and n-butyl alcohol. In one embodiment, the alcohol is isopropyl alcohol. In another embodiment, the alcohol is tert-butyl alcohol. In one embodiment, the reaction is carried at a temperature of from about room temperature to about 75° C. In a particular embodiment, the temperature is from about 40° C. to about 60° C. In one particular embodiment, the temperature at which the reaction is carried out is from about 45° C. to about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
In another embodiment, the aryl-cyclopropanecarboxylic acid is prepared from arylaldehyde. An illustration of a process for preparing arylcyclopropanecarboxylic acid from aryl aldehyde is shown below in Scheme A. - To prepare arylcyclopropanecarboxylic acid, aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate to provide tert-butyl arylacrylate (A-2). Tert-butyl arylacrylate is treated a sulfoxonium ylide to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3). Hydrolysis of the tert-butyl arylcyclopropanecarboxylic acid ester under basic conditions with lithium hydroxide provides arylcyclopropanecarboxylic acid (A-4).
- In one embodiment, aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate with any strong base in a non-polar solvent. In one embodiment, the strong base is a metal hydride. Examples of metal hydride base are lithium hydride and sodium hydride. The strong base can also be potassium t-butyloxide, sodium t-butyloxide, lithium t-butyloxide. In one embodiment, sodium hydride (NaH) is the base or potassium t-butyloxide. The reaction is carried out in any non-polar solvent. The non-polar solvent is an organic solvent, for example, toluene, hexane, benzene, 1,4-dioxane, chloroform, or diethyl ether. In one embodiment, the organic solvent is toluene.
- Suitable sulfoxonium ylides for treating tert-butyl arylacrylate (A-2) to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3) can be dimethylsulfoxonium iodide methylide (Corey-Chaykovsky Regent) and trimethylsulfoxonium iodide reagent. In one embodiment, the sulfoxonium reagent is trimethylsulfoxonium iodide reagent. In another embodiment, the sulfoxonium reagent is dimethylsulfoxonium iodide methylide. The reaction is carried out in a polar solvent. The polar solvent can be any suitable polar aprotic solvent. Examples of suitable polar aprotic solvents include, but are not limited to, dimethyl sulfoxide, dimethyl acetamide, dimethyl formamide, or mixtures thereof. In one particular embodiment, the solvent is a mixture of dimethyl sulfoxide and dimethyl acetamide. The mixture can be in a ratio of from about 1:1 to about 2:1 dimethyl sulfoxide/dimethyl acetamide. The reaction can be carried out at any temperature, however, in the reaction mixture is maintained at a temperature of less than about 10° C.
- Any base is suitable for use in the hydrolysis of the ester of tert-butyl arylcyclopropanecarboxylic acid (A-3) to provide arylcyclopropanecarboxylic acid (A-4). In one embodiment, the base is any metal hydroxide base. Such base can include, for example, sodium hydroxide, lithium hydroxide, and potassium hydroxide.
- The enantiomerically pure arylcyclopropanecarboxylic acid:
- obtained from the chiral resolution is coupled with an amine. An illustration of the process is shown below in Scheme 2.
- Suitable amine reagents can be represented by the formula:
- wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
- Suitable amines for the reaction can include any amine of formula (a), as defined above. Such amine can be more particularly selected from pyrrolidine, 2-(S)-methylpyrrolidine, 2-(R)-methylpyrrolidine, 3-methylpyrrolidine, 2-fluoropyrrolidine, 3-fluoropyrrolidine, 2-hydroxypyrrolidine, 3-hydroxypyrrolidine, 2-hydroxymethylpyrrolidine, and 3-hydroxymethylpyrrolidine. Other suitable amines can be more particularly selected from pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-fluoropyridine, 3-fluoropyridine, 4-fluoropyridine, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxymethylpyridine, 2-hydroxymethylpyridine, 3-hydroxymethylpyridine, and 4-hydroxymethylpyridine. In one particular embodiment, the amines are those wherein one of the substituents represented by R7, R8, R9, and R10 is hydrogen or alkyl and the other substituents are hydrogen. Particular preferred examples are pyrrolidine, 2-(S)-methylpyrrolidine, and 2-(R)-methylpyrrolidine.
- Other suitable amines are those of formula (b), as defined above. Such amine may be more particularly selected from dimethylamine, diethylamine, methylamine, and ethylamine. In one particular embodiment, the amines are those wherein one of the substituents represented by R7, R8, R9, and R10 is hydrogen or alkyl and the other substituents are hydrogen. Particular preferred examples are dimethylamine and diethylamine.
- Additional reagents having an amine group are those of formula (c), as defined above. Such amine may be more particularly selected from morpholine and thiomorpholine. In a particular embodiment, the amine reagent is morpholine.
- The reaction is carried out using N,N′-carbonyldiimidazole. In a preferred embodiment, the arylcyclopropanecarboxylic acid, amine, and N,N′-carbonyldiimidazole are combined in an organic solvent. Examples of suitable organic solvents are tetrahydrofuran, toluene, 1,2-dimethoxyethane, 1,4-dioxane, N-methyl-pyrrolidinone, dimethylacetamide, and dimethylformamide. In one embodiment, the solvent is tetrahydrofuran. In another embodiment, the solvent is toluene. Tetrahydrofuran is the most preferred solvent. The reaction can be accomplished at room temperature. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
- The resulting compound of formula:
- is reduced to provide a compound as shown below in Scheme 3.
- In one embodiment of the invention, the cyclopropanecarboxylic acid amide is reduced using a reducing agent selected from borane reducing reagents. Suitable reducing agents are, for example, borane tetrahydrofuran complex, diborane, borane dimethylsulfide complex, a combination of sodium borohydride and sodium trifluoride. In a preferred embodiment, the reaction is conducted in a polar, aprotic solvent. Examples of suitable solvents are tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 1,4-dioxane, and methyl-tert-butyl ethers. The preferred solvent is tetrahydrofuran. The reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 80° C. In a preferred embodiment, the reaction is conducted at a temperature of about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
- D. Coupling with Aromatic, Heteroaromatic, and Heterocyclic Reagent
- In one embodiment of the invention, the compound of formula:
- is reacted with a suitable aromatic or non-aromatic reagent to provide compounds of formula (II). An illustration of this process is shown below in Scheme 4.
- In a preferred embodiment, the compound of formula (I-b) undergoes coupling reactions to provide the compounds of formula (II). Coupling conditions, commonly referred to as metal-catalyzed reaction including palladium, nickel, iron or copper catalyzed reaction, such as Ullmann reaction conditions, are preferred for the reaction.
- Any reagent suitable for providing a moiety within the definition of R1 can be used. Reagents suitable for the reaction can include, for example, 5- to 6-membered heteroaryl, 8- to 12-membered bicyclic heteroaryl, and 4- to 12-membered heterocyclic reagents. Examples of particular 5- to 6-membered heteroaryl reagents include, but are not limited to, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, pyrroline, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, [1,2,4]thiadiazolone, [1,2,5]thiadiazolone, [1,3,4]thiadiazinone, [1,2,4]oxadiazolone, [1,2,5]oxadiazolone, and [1,3,4]oxadiazin-one. Examples of particular 4- to 12-membered heterocyclic reagents include, but are not limited to, azepane, azetidine, aziridine, azocane, dihydropyridine, dihydropyrimidine, piperidine, pyrrolidine, dihydrothiazole, dihydropyridine, thiomorpholine, dioxane, dithiane, tetrahydrofuran, dihydropyrane, tetrahydropyran, [1,3]dioxolane, azetidin-2-one, and azepan-2-one. Examples of particular 8- to 12-membered bicyclic heteroaryl reagents include, but are not limited to, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, and 1H-benzo[d]imidazol-2(3H)-one.
- In one embodiment, the reaction is conducted with a copper catalyst and base in a polar aprotic solvent in the presence of N,N′-dimethylenediamine. The copper catalyst can be any copper catalyst. In a preferred embodiment, the copper catalyst is a copper (I) catalyst. Examples of such catalysts are, for example, copper (I) iodide, copper (I) bromide, and copper (I) chloride. Copper (I) iodide is preferred.
- The base is any suitable organic base. Examples of such base can include, for example, potassium carbonate (K2CO3), potassium phosphate (K3PO4), cesium carbonate (Cs2CO3), sodium methoxide (NaOMe), sodium tert-butoxide (NaOt-Bu), sodium acetate (NaOAc), and potassium tert-butoxide (KOt-Bu). In one embodiment, the base is K2CO3. In another embodiment, the base is K3PO4.
- The basic solvent can be any polar aprotic solvent. Examples of such solvents are, for example, dimethyl acetamide, dimethyl formamide, 1-methyl-2-pyrrolidinone, and pyridine. In a preferred embodiment the polar aprotic solvent is pyridine.
- The reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 140° C. In a preferred embodiment, the reaction is conducted at a temperature of about 115° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
- In addition to the processes described above, certain intermediates prepared during the processes are new and useful for preparing enantiomerically pure cyclopropyl amine derivatives as described. Accordingly, the present invention, in one embodiment, also relates to compounds that are:
- wherein, the chiral amines are (S)-(−)-α-methylbenzylamine, (R)-(+)-N-benzyl-a-methylbenzylamine, (S)-(−)-N-benzyl-α-methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-(−)-N,N-dimethyl-1-phenylethylamine, [R-(R*,R*)]-(+)-bis(α-methylbenzyl)amine, [S-(R*,R*)]-(−)-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-(−)-1-(1-naphthyl)ethylamine, (1R,2R,3R,5S)-(−)-isopinocamphenylamine, (1S,2S,3S,5R)-(+)-isopinocamphenylamine, (1R2R)-(−)-pseudoephedrine, (1S,2S)-(+)-pseudoephedrine, (1R,2S)-(−)-ephedrine, (1S,2R)-(+)-ephedrine, (1R,2S)-(−)- N-methylephedrine, (1S,2R)-(+)-N-methylephedrine, (1R,2S)-(−)-norephedrine, (1S,2R)-(+)-norephedrine, (1R,2S)-(+)-cis-1-amino-2-indanol, (1S,2R)-(−)- cis-1-amino-2-indanol, quinine, or cinchonine. The chiral amines also can be selected from (R)-(−)-1-cyclohexylethylamine or (R)-(+)-α-methylbenzylamine. In one embodiment, the chiral amine is (R)-(−)-1-cyclohexylethylamine. In another embodiment, the chiral amine is (R)-(+)-α-methylbenzylamine.
- In another embodiment, the present invention also relates to compounds that are:
- i.e. 2-(4-bromophenyl)cyclopropanecarboxylic acid R-(−)-1-cyclohexylethylamine salt and 2-(4-bromophenyl)cyclopropanecarboxylic acid (R)-(+)-α-methylbenzylamine salt.
- In addition, the present invention, in another embodiment, relates to a compound of formula:
- wherein the amine moiety in the structure above is represented by:
- wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
- Still yet, the present invention, in another embodiment, relates to a compound of formula:
- wherein the amine moiety in the structure above is represented by:
- wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
- The present invention also includes isotopically-labeled compounds, which are identical to those recited in Formula (I-a), (I-b), and (II), but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes suitable for inclusion in the compounds of the invention are hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine, and chlorine, such as but not limited to 2H, 3H, 13C, 15C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively. Substitution with heavier isotopes such as deuterium, i.e., 2H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Compounds incorporating positron-emitting isotopes are useful in medical imaging and positron-emitting tomography (PET) studies for determining the distribution of receptors. Suitable positron-emitting isotopes that can be incorporated in compounds of formula (I) are 11C, 13N, 15O, and 18F. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art using appropriate isotopically-labeled reagent in place of non-isotopically-labeled reagent.
- The cyclopropyl amine derivatives of formula (II) and salts prepared by the above processes can be used to prepare compositions. These compositions typically also comprise one or more conventional pharmaceutically acceptable carriers, adjuvants, and/or vehicles (together referred to as “excipients”).
- Compositions for oral administration, and solid dosage forms in particular, are preferred. Such solid dosage forms include, for example, capsules, tablets, pills, powders, and granules. In such solid dosage forms, the compounds or salts are ordinarily combined with one or more excipients. If administered per os, the compounds or salts can be mixed with, for example, lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets can contain a controlled-release formulation, as can be provided in, for example, a dispersion of the compound or salt in hydroxypropylmethyl cellulose. In the case of capsules, tablets, and pills, the dosage forms also can comprise buffering agents, such as sodium citrate, or magnesium or calcium carbonate or bicarbonate. Tablets and pills additionally can be prepared with enteric coatings.
- The compounds and compositions of the invention are useful for treating and preventing certain diseases and disorders in humans and animals. As an important consequence of the ability of the compounds of the invention to modulate the effects of histamine-3 receptors in cells, the compounds described in the invention can affect physiological processes in humans and animals. In this way, the compounds and compositions described in the invention are useful for treating and preventing diseases and disorders modulated by histamine-3 receptors. Typically, treatment or prevention of such diseases and disorders can be effected by selectively modulating the histamine-3 receptors in a mammal, by administering a compound or composition of the invention, either alone or in combination with another active agent as part of a therapeutic regimen.
- The compounds of the invention, including but not limited to those specified in the examples, possess an affinity for the histamine-3 receptors and therefore, the compounds of the invention may be useful for the treatment and prevention of diseases or conditions such as attention-deficit hyperactivity disorder (ADHD), deficits in attention, dementia, and diseases with deficits of memory, learning, schizophrenia, cognitive deficits of schizophrenia, cognitive deficits and dysfunction in psychiatric disorders, Alzheimer's disease, mild cognitive impairment, epilepsy, seizures, allergic rhinitis, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, obesity, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, sleep disorders, narcolepsy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary syndrome.
- The preferred total daily dose of a compound or salt (administered in single or divided doses) is typically from about 0.001 to about 100 mg/kg, more preferably from about 0.001 to about 30 mg/kg, and even more preferably from about 0.01 to about 10 mg/kg (i.e., mg of the compound or salt per kg body weight). Dosage unit compositions can contain such amounts or submultiples thereof to make up the daily dose. In many instances, the administration of the compound or salt will be repeated a plurality of times. Multiple doses per day typically may be used to increase the total daily dose, if desired.
- Factors affecting the preferred dosage regimen include the type, age, weight, sex, diet, and condition of the patient; the severity of the pathological condition; the severity of the pathological condition; pharmacological considerations, such as the activity, efficacy, pharmacokinetic, and toxicology profiles of the particular compound or salt used; whether a drug delivery system is utilized; and the specific drug combination. Thus, the dosage regimen actually employed can vary widely, and therefore, can derive from the preferred dosage regimen set forth above.
- The present invention is illustrated by the following examples. It will be understood, however, that the invention is not limited to the specific details of the examples. It will be clear to one with skill in the art that the processes of invention, as described by the Schemes, Detailed Description, and Examples provided herein, would be suitable for preparing the other enantiomer of any of the compounds and intermediates described by the Schemes or the Examples, with the resulting compound having the opposite stereochemistry as described.
-
- To a three-necked flask was charged with NaH (95%, 2.6 g, 103 mmol) followed by Toluene (250 ml). The suspension was cooled to 5° C. and to the mixture was added the t-butyldimethylphosphonoacetate (95%, 25.5 ml, 103 mmol) slowly keeping the temperature below 5° C. (very little exotherm observed and H2 gas generated), the resulting mixture was stirred at 5° C. for NLT20 min until no more H2 gas was generated). To the above mixture was then added the aldehyde (17.6 g, 94.2 mmol) and the resulting mixture was stirred at 10° C. for 2 hours and then at room temperature overnight. The reaction was monitored by HPLC until the starting material is consumed (<1.0 pa % of aldehyde). The reaction mixture was poured into 400 ml of water and the organic layer was separated and washed with brine (400 ml), dried with Na2SO4 and concentrated to give an oil, which solidified upon standing to give crude product which was purified by crystallization from ethanol/water water (1:1, 30 mL/g) to give 25 g of product. 1H NMR (400 MHz, DMSO-d6) δ 1.47 (s, 9H), 6.53 (d, 1H, J=15.92), 7.50 (d, 1H, J=16.05), 7.57 (d, 2H, J=8.51), 7.63 (d, 2H, J=8.51). 13C NMR (100 MHz, DMSO-d6) δ 27.8, 79.8, 120.3, 123.0, 129.6, 131.3, 132.9, 141.6 & 164.6 with 4 peaks overlapping. A sample of the isolated product was purified by crystallization from ethanol/water (1:1, 30 mL/g). 1H NMR (400 MHz, DMSO-d6) δ 1.47 (s, 9H), 6.53 (d, 1H, J=15.92), 7.50 (d, 1H, J=16.05), 7.57 (d, 2H, J=8.51), 7.63 (d, 2H, J=8.51). 13C NMR (100 MHz, DMSO-d6) δ 27.8, 79.8, 120.3, 123.0, 129.6, 131.3, 132.9, 141.6 & 164.6 with 4 peaks overlapping.
- In a round-bottom flask, mixed trimethylsulfoxonium iodide (6.6 g, 30 mmol) in dimethyl sulfoxide (28 mL, KF=266 ppm H2O) and dimethylacetamide (12 mL, KF=249 ppm H2O). Added sodium tert-butoxide (2.7 g, 28 mmol) in one portion. Stirred the suspension for NLT 0.5 H at room temperature. Separately, mixed (E)-tert-butyl 3-(4-bromophenyl)acrylate 1 (5.66 g, 20 mmol) in dimethyl sulfoxide (20 mL) and heated to 50° C. Then, transferred the sulfur ylide mixture (slight suspension) by cannula (<10 min addition). The flask/cannula were rinsed into the reaction mixture with dimethyl sulfoxide (2-4 mL). Stirred the resulting yellow solution at 50° C., monitoring by HPLC for reaction completion (<1% pA of 1 after 0.5 h). Cooled the reaction mixture to <10° C. before quenching (exothermic) by slow addition with water (120 mL, product precipitates). The resulting product slurry was stirred at room temperature (1-2 h) and then filtered. The flask and wetcake were washed with water (˜70 mL total). The wetcake was dried under vacuum at 45° C. Isolated 4.44 g of an off-white solid (98% pA, 96 wt %) in 71% wt-adjusted yield. A sample of the isolated product was further purified by crystallization from methanol/water (1:1, 20 mL/g). 1H NMR (400 MHz, CDCl3) δ 1.16-1.21 (m, 1H), 1.47 (s, 9H), 1.50-1.55 (m, 1H), 1.77-1.81 (m, 1H), 2.37-2.41 (m, 1H), 6.95 (d, 2H, J=8.37), 7.37 (d, 2H, J=8.51). 13C NMR (100 MHz, CDCl3) δ 17.3, 25.4, 25.5, 28.4, 80.7, 119.7, 127.5, 131.1, 139.2, 171.7 with 4 peaks overlapping.
- In a round bottom flask, mixed the tert-butyl 2-(4-bromophenyl)cyclopropanecarboxylate 2 (3.7 g, 12.0 mmol) in methanol/tetrahydrofuran (1:1, 30 mL) and heated to 50° C. Separately dissolved lithium hydroxide (1.4 g, 60 mmol) in water (15 mL) and then added to the solution of 2. Increased the heat to 65° C., and monitored by HPLC for reaction completion (<1% pA of 2, ˜3 h). The reaction mixture was then cooled to room temperature and distilled to ½ volume. Cooled the suspension to <20° C. and acidified (exothermic addition) the product mixture to pH<2 with 2N HCl (˜30 mL) to precipitate the product. Stirred the resulting suspension at 20° C. for NLT 0.5 h. Filtered the suspension and washed the wetcake with water (˜20 mL). Dried the wetcake at 45° C. under vacuum. Isolated 2.96 g of an off-white solid (98% pA, 97 wt %=99% wt-adjusted yield). 1H NMR (400 MHz, CDCl3) δ 1.35-1.40 (m, 1H), 1.65-1.69 (m, 1H), 1.85-1.89 (m, 1H), 2.53-2.58 (m, 1H), 6.97 (d, 2H, J=8.37), 7.40 (d, 2H, J=8.37). 13C NMR (100 MHz, CDCl3) δ 17.7, 24.2, 26.7, 120.2, 127.7, 131.3, 138.1 & 178.9 with 2 peaks overlapping.
-
- In a round-bottom flask, mixed the racemic 2-(4-bromophenyl)cyclopropanecarboxylic acid (2.0 g, 8.3 mmol) in isopropyl alcohol (37 mL, 20 mL/g total volume) and heated to 50° C. Added a solution of the R-(−)-1-cyclohexylethylamine (1.1 g, 8.3 mmol) in isopropyl alcohol (3 mL). In <5 min a suspension formed. Continued to stir the suspension at 50° C. for 2 h. Then slowly cooled to room temperature (1-2 h) and stirred the suspension overnight (˜15 h). The suspension was filtered. The flask and wetcake were rinsed with the mother liquors, followed by isopropyl alcohol (5 mL). The wetcake was dried on the filter under vacuum (1.88 g, 61.5% ee). The wetcake was then charged back to the round-bottom flask with isopropyl alcohol (38 mL, 20 mL/g). The suspension was heated to 80° C. After 0.5 h, all solids dissolved. The solution was then slowly cooled to 50° C. (−2 h), during which time a suspension formed. The suspension was stirred at 50° C. for 2 h, and then slowly cooled to room temperature (1-2 h). Stirred the suspension overnight (˜15 h) at room temperature. The suspension was filtered. The flask and wetcake were rinsed with the liquors, followed by isopropyl alcohol (5 mL). The wetcake was dried under vacuum at 45° C. Isolated 1.25 g (97.8% ee, ˜81% recovery). 1H NMR (400 MHz, CD3OD) δ 0.98-1.12 (m, 3H), 1.12-1.21 (m, 1H), 1.23 (d, 3H, J=6.72), 1.24-1.36 (m, 2H), 1.39-1.45 (m, 1H), 1.45-1.55 (m, 1H), 1.65-1.86 (m, 6H), 2.25-2.32 (m, 1H), 3.00-3.08 (m, 1H), 7.00 (d, 2H, J=8.37), 7.35 (d, 2H, J=8.51). 13C NMR (100 MHz, CD3OD) δ 16.2, 17.2, 25.3, 27.1, 27.1, 27.2, 28.9, 29.0, 30.1, 42.8, 53.3, 119.7, 128.4, 131.8, 142.4, 180.4 with 2 peaks overlapping.
-
-
- ((1S,2S)-2-(4-bromophenyl)cyclopropyl)(amino)methanone (6a): The chiral salt 5 was first broken up by treating it with citric acid solution, exacted with MTBE and drying to obtain the free acid, 2-(4-bromophenyl)cyclopropanecarboxylic acid 4 (4.82 g, 20 mmol) and mixed with 1,1′-carbonyldiimidazole (4.22 g, 26 mmol) in THF (45 mL, 10 mL/g total volume). A suspension formed after stirring at room temperature for >30 min. The suspension was cooled to ˜15° C. Then a solution of the (S)-2-methylpyrrolidine (2.55 g, 30 mmol) in THF (5 mL) was added over ˜5 min. The mixture was stirred at room temperature and monitored by HPLC for reaction completion (typically <1 h). Tert-butyl methyl ether (60 mL) was added and the resulting mixture was extracted with a 10% solution of citric acid (40 mL, 4×), followed by a water wash (40 mL). The organic product layer was then concentrated to ˜¼ volume (3-4 mL/g) and then chased with THF (50 mL, 2×). The product solution in THF was then diluted with more THF to ˜10 mL/g and assayed by HPLC against a known standard. 6.1 g product was assayed (99% assayed yield, 98% peak area). A sample was purified by silica gel chromatography and then concentrated in vacuo under high vacuum to an oil that crystallized at room temperature to provide the standard. 1H NMR (400 MHz, DMSO-d6) δ 0.97/1.08 (d, 3H, J=6.4), 1.14-1.19 (m, 1H), 1.38-1.43/1.46-1.51 (m, 1H), 1.46-1.51/1.56-1.63 (m, 1H), 1.72-2.08 (m, 4H), 2.16-2.26 (m, 1H), 3.24-3.30/3.33-3.43 (m, 1H), 3.33-3.43/3.62-3.67 (m, 1H), 3.97-4.04/4.18-4.25 (m, 1H), 7.12/7.13 (d, 2H, J=8.4), 7.41/7.43 (d, 2H, J=8.4). 13C NMR (100 MHz, DMSO-d6) δ 15.9/16.2, 19.5/21.7, 21.7/23.4, 24.1/24.3, 24.6/24.7, 31.4/32.7, 45.6/46.4, 52.1/52.2, 118.3/118.4, 127.5/127.7, 130.5/130.6, 140.0/140.1, 167.8/167.9 with 2 peaks overlapping.
- ((1S,2S)-2-(4-bromophenyl)cyclopropyl)(piperidin-1-yl)methanone (6b): Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and piperidine (2.22 mL, 22.5 mmol) afforded 6b in an assay yield of 4.55 g (14.8 mmol, 99% assay yield, 99% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
- 1H NMR (400 MHz, DMSO) δ 7.43 (d, J=8.5, 2H), 7.14 (d, J=8.5, 2H), 3.74-3.53 (m, 2H), 3.44 (s, 2H), 2.32-2.16 (m, 2H), 1.69-1.50 (m, 2H), 1.50-1.33 (m, 5H), 1.16 (ddd, J=8.1, 6.3, 3.9, 1H). 13C NMR (101 MHz, DMSO) δ 168.08, 140.12, 130.53, 127.69, 118.31, 45.86, 42.57, 26.35, 25.30, 24.21, 23.85, 22.57, 16.29. MS (ESI+) 308, 310 (M+H).
- (1S,2S)-2-(4-bromophenyl)-N,N-diethylcyclopropanecarboxamide (6c): Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and diethylamine (2.33 mL, 22.5 mmol) afforded 6c in an assay yield of 4.18 g (14.1 mmol, 94% assay yield, 98% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, DMSO) δ 7.43 (d, J=8.5, 2H), 7.14 (d, J=8.5, 2H), 3.50 (dq, J=14.2, 7.1, 1H), 3.41-3.29 (m, 2H), 3.24 (dq, J=14.0, 7.1, 1H), 2.25 (ddd, J=8.9, 6.1, 4.3, 1H), 2.15 (ddd, J=8.3, 5.3, 4.3, 1H), 1.41 (ddd, J=9.0, 5.3, 3.9, 1H), 1.18 (ddd, J=8.3, 6.1, 3.8, 1H), 1.06 (t, J=7.1, 3H), 1.01 (t, J=7.1, 3H). 13C NMR (101 MHz, DMSO) δ 168.82, 140.08, 130.54, 127.64, 118.32, 41.44, 40.17, 24.23, 22.82, 16.43, 15.01, 13.34. MS (ESI+) 296, 298 (M+H).
- (1S,2S)-2-(4-bromophenyl)-N,N-dimethylcyclopropanecarboxamide (6d): Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and 2 M dimethylamine in THF (11.25 mL, 22.5 mmol) afforded 6d in an assay yield of 3.67 g (13.7 mmol, 91% assay yield, 99% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
- 1H NMR (400 MHz, DMSO) δ 7.43 (d, J=8.5, 2H), 7.14 (d, J=8.5, 2H), 3.07 (s, 3H), 2.84 (s, 3H), 2.30-2.18 (m, 2H), 1.42-1.33 (m, 1H), 1.19 (ddd, J=8.3, 6.2, 3.9, 1H). 13C NMR (101 MHz, DMSO) δ 169.68, 140.05, 130.52, 127.71, 118.32, 36.72, 35.20, 24.09, 22.59, 16.45. MS (ESI+) 268, 270 (M+H).
- ((1S,2S)-2-(4-bromophenyl)cyclopropyl)(morpholino)methanone (6e): Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and morpholine (1.96 mL, 22.5 mmol) afforded 6e in an assay yield of 4.48 g (14.45 mmol, 96% assay yield, 100% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to a white solid to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.42 (d, J=8.4, 2H), 7.00 (d, J=8.4, 2H), 3.82-3.54 (m, 8H), 2.50 (ddd, J=9.1, 6.2, 4.2, 1H), 1.93 (ddd, J=8.3, 5.3, 4.3, 1H), 1.77-1.65 (m, 1H), 1.30 (ddd, J=8.3, 6.2, 4.5, 1H). 13C NMR (101 MHz, CDCL3) δ 169.72, 139.43, 131.19, 127.42, 119.68, 66.82, 66.73, 46.11, 25.20, 23.27, 16.53. MS (DCI+) 310, 312 (M+H), 327, 329 (M+NH4).
- ((1S,2S)-2-(4-bromophenyl)cyclopropyl)(pyrrolidin-1-yl)methanone (60: Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and pyrrolidine (1.86 mL, 22.5 mmol) afforded 6f in an assay yield of 4.24 g (14.40 mmol, 96% assay yield, 100% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to a white solid to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.41 (d, J=8.5, 2H), 7.01 (d, J=8.4, 2H), 3.72-3.47 (m, 4H), 2.51 (ddd, J=9.0, 6.2, 4.2, 1H), 2.09-1.82 (m, 5H), 1.69 (ddd, J=9.1, 5.3, 4.3, 1H), 1.32-1.19 (m, 1H). 13C NMR (101 MHz, CDCL3) δ 169.47, 139.94, 131.07, 127.51, 119.45, 46.21, 26.25, 24.97, 24.67, 16.59. MS (DCI+) 294, 296 (M+H), 311, 313 (M+NH4).
- ((1S,2S)-2-(4-bromophenyl)cyclopropyl)((R)-2-methylpyrrolidin-1-yl)methanone (6 g): Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and (R)-2-methylpyrrolidine (1.92 g, 22.5 mmol) afforded 6 g in an assay yield of 4.62 g (15.00 mmol, 100% assay yield, 97.5% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.43-7.38 (m, 2H), 7.04-6.97 (m, 2H), 4.30-4.06 (m, 1H), 3.70-3.43 (m, 2H), 2.54 (dddd, J=19.1, 9.1, 6.2, 4.2, 1H), 2.18-1.81 (m, 4H), 1.75-1.54 (m, 2H), 1.32-1.26 (m, 2H), 1.26-1.18 (m, 2H). 13C NMR (101 MHz, CDCL3) δ 169.31, 169.22, 140.07, 139.94, 131.08, 131.04, 127.57, 127.50, 119.46, 119.40, 53.26, 53.14, 47.09, 46.14, 33.39, 32.16, 25.08, 24.95, 24.92, 24.83, 24.08, 22.29, 21.94, 19.97, 16.95, 16.78. MS (DCI+) 308, 310 (M+H), 325, 327 (M+NH4).
-
- (S)-1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)-amine (7a): The solution of the amide 6a (3.0 g assayed, 9.8 mmol) in THF (KF=561 ppm H2O) was stirred at room temperature under N2. A 1M solution of Borane-THF complex (34.2 mL) was added and the reaction mixture was stirred at room temperature. The reaction mixture was monitored by HPLC for reaction completion (typically >16 h). Upon completion (<1% starting material), the reaction is quenched with slow addition of 2N HCl (20 mL) to control the evolving gas. The product solution is then heated to 65° C. The product solution is monitored by HPLC until the boron-complexed product is completely broken (typically >10 h). The product solution is then cooled to room temperature and extracted with t-butyl methyl ether (40 mL, 2×). The aqueous product solution is then basified to pH=10 with 10% solution of sodium hydroxide in the presence of MTBE (40 mL). The basic aqueous layer is then extracted with more MTBE (40 mL). The organic layers are combined and washed with saturated sodium chloride solution (40 mL). The resulting product solution was assayed by HPLC against a known standard. 2.66 g product was assayed (92% assayed yield, >99% peak area). A sample was concentrated under high vacuum to an oil to provide a standard. 1H NMR (400 MHz, CDCl3) δ 0.82-0.87 (m, 1H), 0.88-0.93 (m, 1H), 1.10 (d, 3H, J=6.03), 1.18-1.26 (m, 1H), 1.36-1.46 (m, 1H), 1.60-1.70 (m, 2H), 1.72-1.80 (m, 1H), 1.82-1.94 (m, 2H), 2.10-2.16 (m, 1H), 2.18-2.27 (m, 1H), 2.99-3.03 (m, 1H), 3.20-3.24 (m, 1H), 6.89 (d, 2H, J=8.37), 7.32 (d, 2H, J=8.51). 13C NMR (100 MHz, CDCl3) δ 14.7, 19.3, 21.9, 23.0, 23.5, 32.7, 54.6, 58.3, 59.9, 118.6, 127.0, 130.9, 141.7 with 2 peaks overlapping.
- 1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)piperidine (7b): Following the general procedure, reaction of 6b (3.70 g assayed, 12.0 mmol) with 1 M BH3 in THF (42.0 mL, 42.0 mmol) afforded 7b in an assay yield of 2.77 g (9.4 mmol, 78% assay yield, 99% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.38 (d, J=8.3, 2H), 6.94 (d, J=8.4, 2H), 2.57-2.41 (m, 5H), 2.34 (dd, J=12.7, 6.8, 1H), 1.69-1.58 (m, 5H), 1.51-1.42 (m, 2H), 1.30-1.20 (m, 1H), 0.95 (dt, J=8.6, 5.1, 1H), 0.87 (dt, J=8.6, 5.4, 1H). 13C NMR (101 MHz, CDCL3) δ 141.77, 130.93, 127.08, 118.61, 63.77, 54.57, 26.21, 24.62, 22.63, 21.34, 15.71. MS (ESI+) 294, 296 (M+H).
- N-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)-N-ethylethanamine (7c): Following the general procedure, reaction of 6c (3.55 g assayed, 12.0 mmol) with 1 M BH3 in THF (42.0 mL, 42.0 mmol) afforded 7c in an assay yield of 2.98 g (10.6 mmol, 88% assay yield, 99% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.38 (d, J=8.5, 2H), 6.94 (d, J=8.4, 2H), 2.72-2.49 (m, 6H), 1.72-1.64 (m, 1H), 1.26-1.16 (m, 1H), 1.07 (t, J=7.1, 6H), 0.96 (dt, J=8.5, 5.1, 1H), 0.88 (dt, J=8.5, 5.1, 1H). 13C NMR (101 MHz, CDCL3) δ 141.87, 130.91, 127.05, 118.58, 56.95, 46.82, 22.42, 21.62, 15.52, 11.96. MS (ESI+) 282, 284 (M+H).
- 1-((1S,2S)-2-(4-bromophenyl)cyclopropyl)-N,N-dimethylmethanamine (7d): Following the general procedure, reaction of 6d (3.22 g assayed, 12.0 mmol) with 1 M BH3 in THF (42.0 mL, 42.0 mmol) afforded 7d in an assayed yield of 2.21 g (8.7 mmol, 73% assay yield, 99% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.38 (d, J=8.4, 2H), 6.96 (d, J=8.4, 2H), 2.45 (dd, J=12.5, 6.2, 1H), 2.32 (s, 6H), 2.29 (dd, J=12.5, 6.9, 1H), 1.73-1.64 (m, 1H), 1.28-1.16 (m, 1H), 0.97 (dt, J=8.5, 5.1, 1H), 0.89 (dt, J=8.6, 5.4, 1H). 13C NMR (101 MHz, CDCL3) δ 141.66, 130.94, 127.12, 118.67, 63.92, 45.60, 22.48, 22.10, 15.38. MS (ESI+) 254, 256 (M+H).
- 4-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)morpholine (7e): Following the general procedure, reaction of 6e (4.20 g assayed, 13.55 mmol) with 1 M BH3 in THF (47.4 mL, 47.4 mmol) afforded 7e in an assay yield of 2.68 g (9.05 mmol, 67% assay yield, 100% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.41-7.34 (m, 2H), 6.97-6.89 (m, 2H), 3.82-3.66 (m, 4H), 2.63-2.45 (m, 5H), 2.35 (dd, J=12.6, 7.0, 1H), 1.75-1.59 (m, 2H), 1.30-1.14 (m, 1H), 0.97 (dt, J=8.5, 5.1, 1H), 0.92-0.83 (m, 1H). 13C NMR (101 MHz, CDCL3) δ 141.42, 131.02, 127.04, 118.79, 66.98, 63.34, 53.76, 22.56, 21.11, 15.43 MS (DCI+) 296, 298 (M+H).
- 1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)pyrrolidine (71): Following the general procedure, reaction of 6f (3.95 g assayed, 13.42 mmol) with 1 M BH3 in THF (40.3 mL, 40.3 mmol) afforded 7f in an assay yield of 3.15 g (11.25 mmol, 84% assay yield, 100% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.41-7.34 (m, 2H), 6.98-6.89 (m, 2H), 2.65 (dd, J=12.3, 6.2, 1H), 2.58 (tt, J=4.4, 2.7, 4H), 2.39 (dd, J=12.3, 7.0, 1H), 1.86-1.73 (m, 4H), 1.73-1.61 (m, 1H), 1.36-1.22 (m, 1H), 1.02-0.84 (m, 2H). 13C NMR (101 MHz, CDCL3) δ 141.78, 130.91, 127.11, 118.61, 60.50, 54.42, 23.67, 23.02, 22.45, 15.52. MS (DCI+) 280, 282 (M+H).
- (R)-1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)-2-methylpyrrolidine (7 g): Following the general procedure, reaction of 6 g (4.35 g assayed, 14.10 mmol) with 1 M BH3 in THF (42.3 mL, 42.3 mmol) afforded 7 g in an assayed yield of 3.44 g (11.70 mmol, 83% assay yield, 100% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
- 1H NMR (400 MHz, CDCL3) δ 7.40-7.34 (m, 2H), 6.97-6.90 (m, 2H), 3.35-3.25 (m, 1H), 3.07 (dd, J=12.4, 5.5, 1H), 2.40-2.28 (m, 1H), 2.21 (dd, J=17.7, 9.0, 1H), 2.02-1.62 (m, 6H), 1.45 (dddd, J=12.1, 10.5, 8.4, 5.6, 1H), 1.36-1.23 (m, 1H), 1.13 (t, J=6.0, 3H), 0.94 (ddt, J=10.7, 8.6, 5.1, 2H). 13C NMR (101 MHz, CDCL3) δ 141.95, 130.89, 127.10, 118.53, 59.69, 57.92, 54.49, 32.76, 22.52, 22.05, 21.22, 19.34, 17.06. MS (DCI+) 294, 296 (M+H).
-
- 2-(4-((1S,2S)-2-(amino)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one, L-tartrate monohydrate salt (8): The solution of the bromophenyl 7a in EtOAc (14.5 g assayed, 49.2 mmol) was diluted with pyridine (75 mL) and distilled to ½ volume. N,N′-dimethylethylenediamine (20.1 mL, 19.7 mmol) was added and the solution sparged with N2. Separately, added copper (I) iodide (1.87 g, 9.8 mmol), 3(2H)-pyridazinone (6.15 g, 63.9 mmol) and milled potassium carbonate (10.2 g, 73.8 mmol) to a reactor. Evacuated and purged with N2 (3×). Added the solution of 6 and heated to reflux (˜115° C.). The reaction mixture was monitored by HPLC for reaction completion (typically >16 h). The reaction mixture was cooled to room temperature. Added a 5% solution of ammonium hydroxide (200 mL) and extracted with toluene (300 mL). The aqueous layer was removed and the product, organic layer was distilled to ¼ volume. After chased with more toluene (150 mL), the product layer was extracted with 5% solution of ammonium hydroxide (100 mL, 2×) and then a 12% solution of sodium chloride (100 mL). The product layer was distilled to ¼ volume and chased with Isopropyl Alcohol (150 mL). The resulting product solution (−130 mL) was assayed by HPLC against a known standard. 13.1 g product was assayed (86% assayed yield, 98% peak area).
- To the free base solution in isopropyl alcohol was charged a solution of L-tartaric acid in water (1.2 equivalents), at the inner temperature of 35° C. (concentration of the freebase was ˜60 mg/g solution). The solvent composition was adjusted to ˜17% water in isopropyl alcohol (by volume). The solution was cooled to 15° C., and seeded (1 percent calculated for the expected yield, without pretreatment) to induce crystallization. The slurry was held for 1 h, then reheated to 35° C. and held for 1 h to generate a seedbed. Controlled de-supersaturation was carried out by cooling the crystallization slurry to 15° C. over 10 h. The yield was increased by stepwise addition of isopropyl alcohol alternating with hold times over 10 h at 15° C., reducing the water content to 10% (by volume) in the final solvent composition. The solid was filtered and washed with isopropyl alcohol twice (4.5 mL/g free base). Wet cake was dried at 50° C. under vacuum, in humidified environment, with intermittent slight nitrogen bleeding. The isolated solid was used as a standard. 1H NMR (400 MHz, DMSO) δ 0.97-1.17 (m, 2H), 1.26 (d, J=6.4, 3H), 1.40-1.47 (m, 1H), 1.52-1.60 (m, 1H), 1.77-1.95 (m, 2H), 1.99-2.19 (m, 2H), 2.70-2.75 (m, 1H), 2.95-3.02 (m, 1H), 3.08-3.14 (m, 1H), 3.27-3.38 (m, 1H), 3.39-3.55 (m, 1H), 4.02 (s, 2H), 7.04 (dd, J=1.6, 9.5, 1H), 7.16-7.29 (m, 2H), 7.39-7.43 (m, 2H), 7.46 (dd, J=3.7, 9.5, 1H), 8.02 (dd, J=1.6, 3.8, 1H). 13C NMR (100 MHz, DMSO) δ 14.5, 16.2, 19.6, 21.1, 22.3, 31.2, 52.4, 55.3, 61.5, 71.7, 125.0, 125.3, 130.1, 131.8, 136.9, 138.7, 141.2, 158.7, 173.6 with 4 peaks overlapping.
- 2-(4-((1S,2S)-2-(piperidin-1-ylmethyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8b): Following the general procedure, reaction of 7b (2.67 g assayed, 9.08 mmol) with 3(2H)-pyridazinone (1.14 g, 11.8 mmol) afforded a solution of the free base of 8b in an assayed yield of 2.61 g (93% assay yield, 95% peak area).
- Formation of the L-(+)-tartaric acid salt gave 3.64 g (82% yield corrected for 5.8 wt % H2O, 99% peak area) of 8b as a white solid which was used as a standard.
- 1H NMR (400 MHz, DMSO) δ 8.01 (dd, J=3.8, 1.6, 1H), 7.46 (dd, J=9.5, 3.8, 1H), 7.41 (d, J=8.5, 2H), 7.20 (d, J=8.5, 2H), 7.03 (dd, J=9.5, 1.6, 1H), 4.01 (s, 2H), 3.05-2.88 (m, 5H), 2.83 (dd, J=12.9, 7.5, 1H), 2.04-1.94 (m, 1H), 1.72-1.61 (m, 5.4, 4H), 1.52-1.35 (m, 3H), 1.09 (dt, J=8.5, 5.1, 1H), 1.02 (dt, J=8.9, 5.1, 1H). 13C NMR (101 MHz, DMSO) δ 173.51, 158.65, 141.31, 138.65, 136.85, 131.79, 130.05, 125.23, 124.98, 71.61, 59.84, 51.99, 23.22, 22.22, 21.95, 18.42, 14.99. MS (ESI+) 310 (M+H).
- 2-(4-((1S,2S)-2-((diethylamino)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8c): Following the general procedure, reaction of 7c (2.87 g assayed, 10.2 mmol) with 3(2H)-pyridazinone (1.27 g, 13.2 mmol) afforded a solution of the free base of 8c in an assayed yield of 2.55 g (84% assay yield, 93% peak area).
- Formation of the L-(+)-tartaric acid salt gave 3.24 g (68% yield corrected for 4.9 wt % H2O, 98% peak area) of 8c as a white solid which was used as a standard.
- 1H NMR (400 MHz, DMSO) δ 8.02 (dd, J=3.8, 1.6, 1H), 7.46 (dd, J=9.5, 3.8, 1H), 7.41 (d, J=8.5, 2H), 7.21 (d, J=8.5, 2H), 7.03 (dd, J=9.5, 1.6, 1H), 3.98 (s, 2H), 3.12-2.90 (m, 6H), 2.09-2.01 (m, 1H), 1.46-1.35 (m, 1H), 1.15 (t, J=7.2, 6H), 1.12-1.00 (m, 2H). 13C NMR (101 MHz, DMSO) δ 173.57, 158.65, 141.23, 138.68, 136.85, 131.80, 130.05, 125.28, 124.97, 71.54, 54.47, 45.60, 21.81, 18.34, 14.86, 9.15. MS (ESI+) 298 (M+H).
- 2-(4-((1S,2S)-2-((dimethylamino)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8d): Following the general procedure, reaction of 7d (2.13 g assayed, 8.37 mmol) with 3(2H)-pyridazinone (1.05 g, 10.5 mmol) afforded a solution of the free base of 8d in an assayed yield of 1.57 g (5.8 mmol, 70% assay yield, 93% peak area).
- Formation of the L-(+)-tartaric acid salt gave 2.33 g (65% yield corrected for 2.7 wt % H2O, 95% peak area) of 8d as a white solid which was used as a standard.
- 1H NMR (400 MHz, DMSO) δ 8.01 (dd, J=3.8, 1.6, 1H), 7.46 (dd, J=9.5, 3.8, 1H), 7.41 (d, J=8.5, 2H), 7.22 (d, J=8.6, 2H), 7.03 (dd, J=9.5, 1.6, 1H), 4.02 (s, 2H), 3.01 (dd, J=12.9, 6.5, 1H), 2.85 (dd, J=12.0, 6.7, 1H), 2.62 (s, 6H), 2.07-1.97 (m, 1H), 1.47-1.31 (m, 1H), 1.11 (dt, J=8.5, 5.1, 1H), 1.03 (dt, J=5.1, 4.4, 1H). 13C NMR (101 MHz, DMSO) δ 173.67, 158.64, 141.20, 138.67, 136.85, 131.79, 130.05, 125.29, 124.95, 71.67, 60.16, 42.34, 21.76, 18.84, 14.69. MS (ESI+) 270 (M+H).
- 2-(4-((1S,2S)-2-(morpholinomethyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8e): Following the general procedure, reaction of 7e (2.59 g assayed, 8.75 mmol) with 3(2H)-pyridazinone (1.09 g, 11.37 mmol) afforded a solution of the free base of 8e in an assayed yield of 2.03 g (50% assay yield, 96% peak area). Formation of the L-(+)-tartaric acid salt gave 1.96 g (49% yield, 100% peak area) of 8e as a white solid which was used as a standard.
- 1H NMR (400 MHz, DMSO) δ 8.00 (dd, J=3.8, 1.6, 1H), 7.44 (dd, J=9.5, 3.8, 1H), 7.40-7.34 (m, 2H), 7.18-7.12 (m, 2H), 7.02 (dd, J=9.5, 1.6, 1H), 4.14 (s, 2H), 3.63-3.48 (m, 4H), 2.59 (dd, J=12.7, 5.7, 1H), 2.48 (dt, J=3.7, 1.9, 2H), 2.30 (dd, J=12.6, 7.4, 1H), 1.86-1.74 (m, 1H), 1.29-1.15 (m, 1H), 1.04-0.81 (m, 2H). 13C NMR (101 MHz, DMSO) δ 172.68, 158.65, 142.26, 138.41, 136.80, 131.75, 130.03, 124.97, 124.92, 71.59, 65.76, 62.02, 52.87, 22.12, 20.90, 14.93. MS (ESI+) 312 (M+H).
- 2-(4-((1S,2S)-2-(pyrrolidin-1-ylmethyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8t): Following the general procedure, reaction of 7f (3.05 g assayed, 10.90 mmol) with 3(211)-pyridazinone (1.36 g, 14.17 mmol) afforded a solution of the free base of 8f in an assayed yield of 3.60 g (74% assay yield, 97% peak area).
- Formation of the L-(+)-tartaric acid salt gave 3.46 g (71% yield, 100% peak area) of 8f as a white solid which was used as a standard.
- 1H NMR (400 MHz, DMSO) δ 8.00 (dd, J=3.8, 1.6, 1H), 7.45 (dd, J=9.5, 3.8, 1H), 7.42-7.36 (m, 2H), 7.23-7.16 (m, 2H), 7.02 (dd, J=9.5, 1.6, 1H), 3.96 (s, 2H), 3.11 (dd, J=12.9, 6.4, 3H), 2.91 (dd, J=12.7, 7.7, 1H), 2.09-1.98 (m, 1H), 1.85 (t, J=6.5, 4H), 1.50-1.33 (m, 1H), 1.14-0.96 (m, 2H). 13C NMR (101 MHz, DMSO) δ 173.40, 158.68, 141.33, 138.66, 136.86, 131.80, 130.05, 125.29, 124.96, 71.28, 57.54, 52.84, 22.76, 21.79, 20.12, 14.69. MS (ESI+) 296 (M+H).
- 2-(4-((1S,2S)-2-(((R)-2-methylpyrrolidin-1-yl)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8 g): Following the general procedure, reaction of 7 g (3.34 g assayed, 11.34 mmol) with 3(2H)-pyridazinone (1.42 g, 14.75 mmol) afforded a solution of the free base of 8 g in an assayed yield of 3.85 g (74% assay yield, 97% peak area).
- Formation of the L-(+)-tartaric acid salt gave 3.56 g (68% yield, 99% peak area) of 8 g as a white solid which was used as a standard.
- 1H NMR (400 MHz, DMSO) δ 8.00 (dd, J=3.8, 1.6, 1H), 7.45 (dd, J=9.5, 3.8, 1H), 7.42-7.36 (m, 2H), 7.23-7.17 (m, 2H), 7.02 (dd, J=9.5, 1.6, 1H), 3.96 (s, 2H), 3.47-3.35 (m, 1H), 2.90 (d, J=10.2, 1H), 2.86-2.75 (m, 1H), 2.12-2.03 (m, 1H), 2.03-1.97 (m, 1H), 1.93-1.74 (m, 2H), 1.62-1.47 (m, 1H), 1.47-1.34 (m, 1H), 1.22 (d, J=6.4, 3H), 1.12-0.98 (m, 2H). 13C NMR (101 MHz, DMSO) δ 173.44, 158.70, 141.41, 138.65, 136.88, 131.82, 130.07, 125.35, 124.94, 71.44, 61.36, 55.38, 52.46, 31.23, 21.38, 21.17, 19.54, 16.41, 15.50. MS (ESI+) 310 (M+H).
- It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, formulations and/or methods of use of the invention, may be made without departing from the spirit and scope thereof.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/232,751 US8853390B2 (en) | 2010-09-16 | 2011-09-14 | Processes for preparing 1,2-substituted cyclopropyl derivatives |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39770510P | 2010-09-16 | 2010-09-16 | |
US13/232,751 US8853390B2 (en) | 2010-09-16 | 2011-09-14 | Processes for preparing 1,2-substituted cyclopropyl derivatives |
Publications (2)
Publication Number | Publication Date |
---|---|
US20120071651A1 true US20120071651A1 (en) | 2012-03-22 |
US8853390B2 US8853390B2 (en) | 2014-10-07 |
Family
ID=44678063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/232,751 Expired - Fee Related US8853390B2 (en) | 2010-09-16 | 2011-09-14 | Processes for preparing 1,2-substituted cyclopropyl derivatives |
Country Status (2)
Country | Link |
---|---|
US (1) | US8853390B2 (en) |
WO (1) | WO2012037258A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080021081A1 (en) * | 2006-06-23 | 2008-01-24 | Huaqing Liu | Cyclopropyl amine derivatives |
US20080242653A1 (en) * | 2006-06-23 | 2008-10-02 | Huaqing Liu | Cyclopropyl amine derivatives |
US8853390B2 (en) | 2010-09-16 | 2014-10-07 | Abbvie Inc. | Processes for preparing 1,2-substituted cyclopropyl derivatives |
US20150057443A1 (en) * | 2013-08-21 | 2015-02-26 | Prexa Pharmaceuticals, Inc. | Cycloalkyl Amine Compounds |
US9186353B2 (en) | 2009-04-27 | 2015-11-17 | Abbvie Inc. | Treatment of osteoarthritis pain |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA111746C2 (en) | 2011-07-08 | 2016-06-10 | Х. Луннбек А/С | POSITIVE Allosteric Modulators of the Nicotinic Acetylcholine Receptor |
US10285998B1 (en) | 2018-04-04 | 2019-05-14 | The Menopause Method, Inc. | Composition and method to aid in hormone replacement therapy |
CN113277974B (en) * | 2020-02-20 | 2023-04-07 | 上海科技大学 | 2-phenylcyclopropylmethylamine derivative, and preparation method and use thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0188887A1 (en) * | 1985-01-17 | 1986-07-30 | Imperial Chemical Industries Plc | Tertiary amine compounds |
WO2007150010A2 (en) * | 2006-06-23 | 2007-12-27 | Abbott Laboratories | Cyclopropyl amine derivatives as histamin h3 receptor modulators |
Family Cites Families (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1766987A (en) | 1923-10-18 | 1930-06-24 | Universal Oil Prod Co | Process of cracking petroleum oil |
NL128365C (en) | 1963-11-05 | |||
FR2508033A1 (en) | 1981-06-23 | 1982-12-24 | Fabre Sa Pierre | ARYL-1 AMINOMETHYL-2 CYCLOPROPANES CARBOXYLATES (Z), THEIR PREPARATION AND THEIR USE AS MEDICAMENTS USEFUL IN THE TREATMENT OF VARIOUS ALGAE |
GB8615313D0 (en) | 1986-06-23 | 1986-07-30 | Ici Plc | Chemical process |
GB2210364A (en) | 1987-09-29 | 1989-06-07 | Ici Plc | Cyclopropane ring-containing tertiary amine derivatives |
US5086054A (en) | 1990-07-31 | 1992-02-04 | Sri International | Novel arylcycloalkanepolyalkylamines |
FR2716192B1 (en) | 1994-02-17 | 1996-04-12 | Rhone Poulenc Agrochimie | 2-Imidazoline-5-ones fungicidal derivatives. |
ATE294778T1 (en) | 1995-01-23 | 2005-05-15 | Daiichi Suntory Pharma Co Ltd | IMPROVEMENT OR CURE OF SYMPTOMS CAUSED BY ISCHEMIC DISEASES AND PHENYLPIPERIDINE COMPOUNDS USABLE THEREFOR |
FR2751645B1 (en) | 1996-07-29 | 1998-12-24 | Sanofi Sa | AMINES FOR THE MANUFACTURE OF DRUGS TO PREVENT THE PROLIFERATION OF TUMOR CELLS |
DE19821002A1 (en) | 1998-05-11 | 1999-11-18 | Dresden Arzneimittel | New indazole derivatives useful as antiasthmatic, antiallergic, neuroprotective agents and for treatment of inflammation and immune disorders |
JP2000047358A (en) | 1998-07-28 | 2000-02-18 | Fuji Photo Film Co Ltd | Photosensitive material processor |
AU3033100A (en) | 1999-01-18 | 2000-08-01 | Boehringer Ingelheim International Gmbh | Substituted imidazoles, their preparation and use |
UA71945C2 (en) | 1999-01-27 | 2005-01-17 | Pfizer Prod Inc | Substituted bicyclic derivatives being used as anticancer agents |
AU3956900A (en) | 1999-04-16 | 2000-11-02 | Boehringer Ingelheim International Gmbh | Substituted imidazoles, their preparation and use |
WO2000064884A1 (en) | 1999-04-26 | 2000-11-02 | Novo Nordisk A/S | Piperidyl-imidazole derivatives, their preparations and therapeutic uses |
JP2004516239A (en) | 2000-07-06 | 2004-06-03 | ニューロジェン コーポレイション | Melanin-concentrating hormone receptor ligand |
US6620839B2 (en) | 2000-07-13 | 2003-09-16 | Abbott Laboratories | 1,3-disubstituted and 1,3,3-trisubstituted pyrrolidines as histamine-3 receptor ligands and their therapeutic applications |
US6515013B2 (en) | 2000-07-13 | 2003-02-04 | Abbott Laboratories | 1,3-disubstituted and 1,3,3-trisubstituted pyrrolidines as histamine-3 receptor ligands and their therapeutic applications |
WO2002013821A1 (en) | 2000-08-17 | 2002-02-21 | Gliatech, Inc. | Novel alicyclic imidazoles as h3 agents |
US6996472B2 (en) | 2000-10-10 | 2006-02-07 | The United States Of America As Represented By The Department Of Health And Human Services | Drift compensation method for fingerprint spectra |
AU2002219920A1 (en) | 2000-11-28 | 2002-06-11 | Sunesis Pharmaceuticals, Inc. | Salicylate analogs as interleukin-4 antagonists |
JP2002236340A (en) | 2001-02-09 | 2002-08-23 | Konica Corp | Processing method for silver halide photographic sensitive material with automatic processing machine |
US6969730B2 (en) | 2001-03-16 | 2005-11-29 | Abbott Laboratories | Amines as histamine-3 receptor ligands and their therapeutic applications |
US7056906B2 (en) | 2001-09-21 | 2006-06-06 | Schering Corporation | Combinations of hormone replacement therapy composition(s) and sterol absorption inhibitor(s) and treatments for vascular conditions in post-menopausal women |
DE10153345A1 (en) | 2001-10-29 | 2003-05-08 | Gruenenthal Gmbh | Substituted 1H-quinoxalin-2-one compounds and substituted 4-aryl and 4-heteroarylcyclohexane compounds |
DE10153347A1 (en) | 2001-10-29 | 2003-05-08 | Gruenenthal Gmbh | Substituted 1H-quinolin-2-one compounds |
EP1321169A1 (en) | 2001-12-18 | 2003-06-25 | Biofrontera Pharmaceuticals AG | Combination of a serotonin receptor antagonist with a histidine decarboxylase inhibitor as a medicament |
PE20030701A1 (en) | 2001-12-20 | 2003-08-21 | Schering Corp | COMPOUNDS FOR THE TREATMENT OF INFLAMMATORY DISORDERS |
CN1628109A (en) | 2002-02-05 | 2005-06-15 | 诺沃挪第克公司 | Novel aryl- and heteroarylpiperazines |
TW200307667A (en) | 2002-05-06 | 2003-12-16 | Bristol Myers Squibb Co | Sulfonylaminovalerolactams and derivatives thereof as factor Xa inhibitors |
EP1505966A4 (en) | 2002-05-10 | 2006-08-30 | Bristol Myers Squibb Co | 1,1-disubstituted cycloalkyl derivatives as factor xa inhibitors |
ATE356127T1 (en) | 2002-06-06 | 2007-03-15 | Novo Nordisk As | SUBSTITUTED HEXAHYDROPYRROLO(1,2-A)PYRAZINE, OCTAHYDROPYRIDO(1,2-A)PYRAZINE AND DECAHYDROPYRAZINO(1,2-A)AZEPINE |
US7381719B2 (en) | 2002-09-19 | 2008-06-03 | Eli Lilly And Company | Diaryl ethers as opioid receptor antagonist |
GB0224084D0 (en) | 2002-10-16 | 2002-11-27 | Glaxo Group Ltd | Novel compounds |
SI1558595T1 (en) | 2002-10-23 | 2010-03-31 | Janssen Pharmaceutica Nv | Piperazinyl and diazapanyl benzamides and benzthioamides |
AU2003275838A1 (en) | 2002-10-25 | 2004-05-13 | Beunard, Jean-Luc | Pyrrolidin-2-on derivatives as ep4 receptor agonists |
US7153889B2 (en) | 2002-11-12 | 2006-12-26 | Abbott Laboratories | Bicyclic-substituted amines as histamine-3 receptor ligands |
WO2004046110A1 (en) | 2002-11-15 | 2004-06-03 | Yamanouchi Pharmaceutical Co., Ltd. | Antagonist to melanin-concentrating hormone receptor |
MXPA05006567A (en) | 2002-12-20 | 2005-08-16 | Glaxo Group Ltd | BENZO aC¦ D!AZEPINE DERIVATIVES FOR THE TREATMENT OF NEUROLOGICAL DISORDERS. |
AR044045A1 (en) | 2003-04-23 | 2005-08-24 | Glaxo Group Ltd | COMPOSITE OF PIPERIDINCARBONILPIPERAZINA, PHARMACEUTICAL COMPOSITION THAT INCLUDES IT, ITS USE FOR THE PREPARATION OF A MEDICINAL PRODUCT AND PROCEDURE FOR PREPARATION |
US8338120B2 (en) | 2003-05-05 | 2012-12-25 | Probiodrug Ag | Method of treating inflammation with glutaminyl cyclase inhibitors |
WO2004098625A2 (en) | 2003-05-05 | 2004-11-18 | Probiodrug Ag | Medical use of inhibitors of glutaminyl and glutamate cyclases |
KR20100106630A (en) | 2003-05-05 | 2010-10-01 | 프로비오드룩 아게 | Use of effectors of glutaminyl and glutamate cyclases |
US7732162B2 (en) | 2003-05-05 | 2010-06-08 | Probiodrug Ag | Inhibitors of glutaminyl cyclase for treating neurodegenerative diseases |
WO2004099199A1 (en) | 2003-05-06 | 2004-11-18 | Ranbaxy Laboratories Limited | Oxazolidinone derivatives as antimicrobials |
US7094790B2 (en) | 2003-05-07 | 2006-08-22 | Abbott Laboratories | Fused bicyclic-substituted amines as histamine-3 receptor ligands |
FR2856596B1 (en) | 2003-06-27 | 2007-04-27 | Bioprojet Soc Civ | NOVEL PSYCHIATRIC DRUG ASSOCIATION AND THE USE OF AN INVERSE HISTAMINE H3 RECEPTOR ANTAGONIST OR AGONIST TO PREPARE A MEDICAMENT PREVENTING ADVERSE EFFECTS OF PSYCHOTROPES. |
JP2007528860A (en) | 2003-07-28 | 2007-10-18 | 財団法人大阪産業振興機構 | Hypoglycemic composition |
AU2004259263B2 (en) | 2003-07-29 | 2010-12-16 | High Point Pharmaceuticals, Llc | Pyridazinyl- piperazines and their use as histamine H3 receptor ligands |
GB0319211D0 (en) | 2003-08-15 | 2003-09-17 | Koninkl Philips Electronics Nv | Antenna arrangement and a module and a radio communications apparatus having such an arrangement |
US7199149B2 (en) | 2003-10-01 | 2007-04-03 | Bristol Myers Squibb Company | Monocyclic and bicyclic lactams as factor Xa inhibitors |
BRPI0415409A (en) | 2003-10-15 | 2006-12-05 | Probiodrug Ag | use of glutaminyl and glutamate cyclase effectors |
JP4617837B2 (en) | 2003-11-21 | 2011-01-26 | チッソ株式会社 | Polymerizable liquid crystalline compound having alkylene fluoride and polymer thereof |
GB0329214D0 (en) | 2003-12-17 | 2004-01-21 | Glaxo Group Ltd | Novel compounds |
EP1718309A2 (en) | 2004-01-30 | 2006-11-08 | Japan Tobacco, Inc. | Anorectic compounds |
WO2005080361A1 (en) | 2004-02-02 | 2005-09-01 | Pfizer Products Inc. | Histamine-3 receptor modulators |
EP1717230B1 (en) | 2004-02-13 | 2014-08-06 | Msd K.K. | Fused-ring 4-oxopyrimidine derivative |
GB0405628D0 (en) | 2004-03-12 | 2004-04-21 | Glaxo Group Ltd | Novel compounds |
JP2005281223A (en) | 2004-03-30 | 2005-10-13 | Chisso Corp | Optically active compound having 1,2-cyclohexylene ring, liquid crystal composition, liquid crystal display element and molded product |
US7345034B2 (en) | 2004-04-07 | 2008-03-18 | Abbott Laboratories | Azacyclosteroid histamine-3 receptor ligands |
DE102004017930A1 (en) | 2004-04-14 | 2005-11-03 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | New alkyne compounds having MCH antagonist activity and medicaments containing these compounds |
US20050245529A1 (en) | 2004-04-14 | 2005-11-03 | Boehringer Ingelheim International Gmbh | Alkyne compounds with MCH antagonistic activity and medicaments comprising these compounds |
EA011161B1 (en) | 2004-05-07 | 2009-02-27 | Уорнер-Ламберт Компани Ллс | 3-or 4-monosubstituted phenol and thiophenol derivatives useful as h3 ligands |
US7205316B2 (en) | 2004-05-12 | 2007-04-17 | Abbott Laboratories | Tri- and bi-cyclic heteroaryl histamine-3 receptor ligands |
EP1595881A1 (en) | 2004-05-12 | 2005-11-16 | Pfizer Limited | Tetrahydronaphthyridine derivates useful as histamine H3 receptor ligands |
US7098222B2 (en) | 2004-05-12 | 2006-08-29 | Abbott Laboratories | Bicyclic-substituted amines having cyclic-substituted monocyclic substituents |
EP1756094A1 (en) | 2004-06-18 | 2007-02-28 | Glaxo Group Limited | 3-cycloalkylbenzazepines as histamine h3 antagonists |
EP1773345B1 (en) | 2004-06-30 | 2013-12-11 | Athersys, Inc. | Non-imidazole tertiary amines as histamine 3 receptor inhibitors for the treatment of cognitive and sleep disorders, obesity and other cns disorders |
GB0418267D0 (en) | 2004-08-16 | 2004-09-15 | Glaxo Group Ltd | Novel compounds |
GB0420831D0 (en) | 2004-09-17 | 2004-10-20 | Glaxo Group Ltd | Novel compounds |
US20060074103A1 (en) | 2004-10-06 | 2006-04-06 | Corte James R | Cyclic beta-amino acid derivatives as factor Xa inhibitors |
PT1802307E (en) | 2004-10-15 | 2008-06-06 | Glaxo Group Ltd | Pyrrolidine derivatives as histamine receptors ligands |
US20090306052A1 (en) | 2004-12-07 | 2009-12-10 | Glaxo Group Limited | Indenyl derivatives and use thereof for the treatment of neurological disorders |
US7560453B2 (en) | 2005-01-07 | 2009-07-14 | Glaxo Group Limited | 6-(2, 3, 4, 5-tetrahydro-1H-benzo [D] azepin-7-yloxy) -nicotamide derivatives as radio labelled ligands |
US7790731B2 (en) | 2005-02-14 | 2010-09-07 | Banyu Pharmaceutical Co. Ltd. | Crystal form of 2-methyl-3-{4-[3-(1-pyrrolidinyl)propoxy]phenyl}-5-trifluoromethyl-4(3H)-quinazolinone |
WO2006090142A1 (en) | 2005-02-24 | 2006-08-31 | Glaxo Group Limited | l-{4- [ (l-CYCLOBUTYL-4-PIPERIDINYL) OXY] PHENYL] -4-{ [4- (METHYLSULFONYL) PHENYL]CARBONYL PIPERAZINE AS HISTAMINE H3 ANTAGONIST |
JP2008533117A (en) | 2005-03-14 | 2008-08-21 | グラクソ グループ リミテッド | Condensed thiazole derivatives having affinity for histamine H3 receptor |
EP1707203A1 (en) | 2005-04-01 | 2006-10-04 | Bioprojet | Treatment of parkinson's disease obstructive sleep apnea, dementia with lewy bodies, vascular dementia with non-imidazole alkylamines histamine H3- receptor ligands |
EP1707204A1 (en) | 2005-04-01 | 2006-10-04 | Bioprojet | Treatment of epilepsy with non-imidazole alkylamines histamine H3-receptor ligands |
US8188128B2 (en) | 2005-05-12 | 2012-05-29 | The University Of Medicine And Dentistry Of New Jersey | Opioid receptor subtype-selective agents |
JP2008540618A (en) | 2005-05-18 | 2008-11-20 | ブルスター,ジークフリート | Peptidomimetics selective for somatostatin receptor subtype 1 and / or 4 |
JP4981794B2 (en) | 2005-06-03 | 2012-07-25 | アボット・ラボラトリーズ | Cyclobutylamine derivative |
EP1900733A4 (en) | 2005-06-07 | 2009-12-30 | Banyu Pharma Co Ltd | Process for production of 4(3h)-quinazolinone derivative |
CA2614116A1 (en) | 2005-07-04 | 2007-01-11 | Novo Nordisk A/S | Novel medicaments |
JP4240146B2 (en) | 2005-07-05 | 2009-03-18 | 萬有製薬株式会社 | Method for producing 4 (3H) -quinazolinone derivative |
GB0513886D0 (en) | 2005-07-06 | 2005-08-10 | Glaxo Group Ltd | Novel compounds |
WO2007025144A1 (en) | 2005-08-24 | 2007-03-01 | University Of Illinois - Chicago | 5-ht2c receptor agonists as anorectic agents |
AU2006282260A1 (en) | 2005-08-24 | 2007-03-01 | Msd K.K. | Phenylpyridone derivative |
EA014370B1 (en) | 2005-09-16 | 2010-10-29 | Янссен Фармацевтика Н.В. | Cyclopropyl amines as modulators of the histamine h3 receptor |
JP4860700B2 (en) | 2005-09-20 | 2012-01-25 | シェーリング コーポレイション | 1-[[1-[(2-Amino-6-methyl-4-pyridinyl) methyl] -4-fluoro-4-piperidinyl] carbonyl] -4- [2- (2-pyridinyl) useful as histamine H3 antagonists ) -3H-imidazo [4,5-b] pyridin-3-yl] piperidine |
US7576110B2 (en) | 2005-09-22 | 2009-08-18 | Abbott Laboratories | Benzothiazole cyclobutyl amine derivatives |
US7943605B2 (en) | 2005-10-27 | 2011-05-17 | Ucb Pharma S.A. | Compounds comprising a lactam or a lactam derivative moiety, processes for making them, and their uses |
EP1945639A1 (en) | 2005-11-04 | 2008-07-23 | Pfizer Limited | Tetrahydronaphthyridine derivative |
EP1962855B1 (en) | 2005-12-22 | 2013-08-21 | Hydra Biosciences, Inc. | Trpa1 inhibitors for treating pain |
WO2007091106A2 (en) | 2006-02-10 | 2007-08-16 | Summit Corporation Plc | Treatment of duchenne muscular dystrophy |
DK2402317T3 (en) | 2006-03-31 | 2013-10-07 | Novartis Ag | DGAT inhibitor |
CN102295606A (en) | 2006-05-29 | 2011-12-28 | 高点制药有限责任公司 | Method of combining 3- (1, 3-benz0di0x0l-5-yl) -6- (4-cyclopropylpiperazin-1-yl) -pyridazine,and applicable intermediates thereof its salts and solvates and its use as histamine h3 receptor antagonist |
US9108948B2 (en) * | 2006-06-23 | 2015-08-18 | Abbvie Inc. | Cyclopropyl amine derivatives |
PL2069312T3 (en) | 2006-07-25 | 2013-03-29 | Cephalon Inc | Pyridizinone derivatives |
WO2008064317A1 (en) | 2006-11-22 | 2008-05-29 | University Of Medicine And Dentistry Of New Jersey | Lipophilic opioid receptor active compounds |
WO2008064310A2 (en) | 2006-11-22 | 2008-05-29 | University Of Medicine And Dentistry Of New Jersey | Mixed opioid receptor active compounds |
WO2008064318A2 (en) | 2006-11-22 | 2008-05-29 | University Of Medicine And Dentistry Of New Jersey | Peripheral opioid receptor active compounds |
EP2117526B1 (en) | 2006-11-29 | 2013-04-03 | Abbott Laboratories | Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme |
SI2124933T1 (en) | 2007-01-22 | 2012-12-31 | Pfizer Products Inc. | Tosylate salt of a therapeutic compound and pharmaceutical compositions thereof |
CL2008000596A1 (en) | 2007-03-01 | 2008-09-05 | Glaxo Group Ltd | DOSAGE FORM INCLUDING 1- (6 - [(3-CYCLLOBUTIL-2,3,4,5-TETRAHIDRO-1H-3-BENZAZEPIN-7-IL) OXI] -3-PIRIDINIL) -2-PIRROLIDINONA, A STABILIZER , A EXCIPIENT; PREPARATION PROCEDURE; AND ITS USE TO TREAT NEUROLOGICAL DISEASES. |
EP2117540A1 (en) | 2007-03-01 | 2009-11-18 | Probiodrug AG | New use of glutaminyl cyclase inhibitors |
RU2470011C2 (en) | 2007-05-31 | 2012-12-20 | Сепракор Инк. | Cycloalkylamines, containing phenyl as substituent, as inhibitors of monoamine reuptake |
EP2167096A4 (en) | 2007-06-13 | 2010-07-14 | Cypress Bioscience Inc | Improving the tolerability of mirtazapine and a second active by using them in combination |
CA2694253A1 (en) | 2007-06-28 | 2009-01-08 | Intervet International B.V. | Substituted piperazines as cb1 antagonists |
JP2010531874A (en) | 2007-06-28 | 2010-09-30 | インターベット インターナショナル ベー. フェー. | Substituted piperazines as CB1 antagonists |
US20090036425A1 (en) | 2007-08-02 | 2009-02-05 | Pfizer Inc | Substituted bicyclolactam compounds |
CN101678107A (en) | 2007-08-03 | 2010-03-24 | 萨米特公开有限公司 | Drug combinations for the treatment of duchenne muscular dystrophy |
PT2195293E (en) | 2007-08-22 | 2014-01-21 | Astrazeneca Ab | Cycloptopyl amide derivatives |
PE20091199A1 (en) | 2007-09-06 | 2009-09-12 | Glaxo Group Ltd | PIPERAZINE DERIVATIVE HAVING AFFINITY FOR THE HISTAMINE H3 RECEPTOR |
US20100317679A1 (en) | 2007-09-21 | 2010-12-16 | Ligand Pharmaceuticals, Inc. | Substituted aryl-fused spirocyclic amines |
US8153813B2 (en) | 2007-12-20 | 2012-04-10 | Abbott Laboratories | Benzothiazole and benzooxazole derivatives and methods of use |
PE20091682A1 (en) | 2007-12-20 | 2009-12-04 | Astrazeneca Ab | CARBAMOYL COMPOUNDS AS INHIBITORS OF DGAT1 190 |
US20090192168A1 (en) | 2008-01-04 | 2009-07-30 | Alex Muci | Compounds, Compositions and Methods |
EP2238144A1 (en) | 2008-01-24 | 2010-10-13 | UCB Pharma, S.A. | Compounds comprising a cyclobutoxy group |
WO2009100120A2 (en) | 2008-02-04 | 2009-08-13 | Neurogen Corporation | Pyridinyl-substituted piperazinyl oxoethyl tetrahydropyrazolopyridines |
KR20100124272A (en) | 2008-02-07 | 2010-11-26 | 아보트 러보러터리즈 | Amide derivatives as positive allosteric modulators and methods of use thereof |
WO2009115874A2 (en) | 2008-03-17 | 2009-09-24 | Matrix Laboratories Ltd. | Novel heterocyclic compounds, pharmaceutical compositions containing them and processes for their preparation |
WO2009124553A2 (en) | 2008-04-09 | 2009-10-15 | Neurokey A/S | Use of hypothermia inducing drugs |
JP2011524344A (en) | 2008-06-06 | 2011-09-01 | ユセベ ファルマ ソシエテ アノニム | Compound containing cyclobutoxy group |
CA2727242A1 (en) | 2008-06-11 | 2009-12-17 | Merck Sharp & Dohme Corp. | Pyrazole derivatives useful as inhibitors of faah |
US8268846B2 (en) | 2008-07-11 | 2012-09-18 | Abbott Laboratories | Amino heterocyclic linked pyrimidine derivatives |
JP2011528341A (en) | 2008-07-18 | 2011-11-17 | 武田薬品工業株式会社 | Benzazepine derivatives and their use as histamine H3 antagonists |
US9643922B2 (en) | 2008-08-18 | 2017-05-09 | Yale University | MIF modulators |
EP2328930B1 (en) | 2008-08-20 | 2014-12-24 | Probiodrug AG | Antibodies directed against pyroglutamate monocyte chemoattractant protein-1 (mcp-1 n1pe) |
WO2010071822A1 (en) | 2008-12-19 | 2010-06-24 | Schering Corporation | Piperidine and piperazine derivatives and methods of use thereof |
WO2010080757A2 (en) | 2009-01-07 | 2010-07-15 | Astrazeneca Ab | Combinations with an alpha-4beta-2 nicotinic agonist |
TW201039825A (en) | 2009-02-20 | 2010-11-16 | Astrazeneca Ab | Cyclopropyl amide derivatives 983 |
US20100227876A1 (en) | 2009-03-06 | 2010-09-09 | Rechfensen Llp | Methods of Reducing Side Effects of Analgesics |
US9186353B2 (en) | 2009-04-27 | 2015-11-17 | Abbvie Inc. | Treatment of osteoarthritis pain |
AR079851A1 (en) | 2010-01-08 | 2012-02-22 | Takeda Pharmaceutical | BENZAZEPINE DERIVATIVES FOR TREATMENT OF DISORDERS IN THE CENTRAL NERVOUS SYSTEM |
WO2011083316A1 (en) | 2010-01-08 | 2011-07-14 | Takeda Pharmaceutical Company Limited | Benzazepine derivatives for the treatment of central nervous system disorders |
WO2011083315A1 (en) | 2010-01-08 | 2011-07-14 | Takeda Pharmaceutical Company Limited | Compounds and their use |
WO2012037258A1 (en) | 2010-09-16 | 2012-03-22 | Abbott Laboratories | Processes for preparing 1,2-substituted cyclopropyl derivatives |
-
2011
- 2011-09-14 WO PCT/US2011/051603 patent/WO2012037258A1/en active Application Filing
- 2011-09-14 US US13/232,751 patent/US8853390B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0188887A1 (en) * | 1985-01-17 | 1986-07-30 | Imperial Chemical Industries Plc | Tertiary amine compounds |
WO2007150010A2 (en) * | 2006-06-23 | 2007-12-27 | Abbott Laboratories | Cyclopropyl amine derivatives as histamin h3 receptor modulators |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080021081A1 (en) * | 2006-06-23 | 2008-01-24 | Huaqing Liu | Cyclopropyl amine derivatives |
US20080242653A1 (en) * | 2006-06-23 | 2008-10-02 | Huaqing Liu | Cyclopropyl amine derivatives |
US8829041B2 (en) | 2006-06-23 | 2014-09-09 | Abbvie Inc. | Cyclopropyl amine derivatives |
US9108948B2 (en) | 2006-06-23 | 2015-08-18 | Abbvie Inc. | Cyclopropyl amine derivatives |
US9186353B2 (en) | 2009-04-27 | 2015-11-17 | Abbvie Inc. | Treatment of osteoarthritis pain |
US8853390B2 (en) | 2010-09-16 | 2014-10-07 | Abbvie Inc. | Processes for preparing 1,2-substituted cyclopropyl derivatives |
US20150057443A1 (en) * | 2013-08-21 | 2015-02-26 | Prexa Pharmaceuticals, Inc. | Cycloalkyl Amine Compounds |
Also Published As
Publication number | Publication date |
---|---|
WO2012037258A1 (en) | 2012-03-22 |
US8853390B2 (en) | 2014-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8853390B2 (en) | Processes for preparing 1,2-substituted cyclopropyl derivatives | |
AU2018351651B2 (en) | Antagonists of the muscarinic acetylcholine receptor M4 | |
US20230303489A1 (en) | Compounds, compositions and methods of use | |
CA2401711C (en) | Cyclic amide derivatives | |
EP3153167B1 (en) | Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor m1 | |
KR102471058B1 (en) | Substituted [1,2,4]triazolo[1,5-a]pyrimidin-7-yl compounds as pde2 inhibitors | |
US9309199B2 (en) | Inhibitors of catechol O-methyl transferase and their use in the treatment of psychotic disorders | |
AU2017245125A1 (en) | Heterocyclic compound | |
US20080280879A1 (en) | Substituted heterocyclic derivatives and their pharmaceutical use and compositions | |
JP2020507582A (en) | Aminotriazolopyridines as kinase inhibitors | |
WO2013103931A1 (en) | Substituted 1-benzylindolin-2-one analogs as positive allosteric modulators of muscarinic acetylcholine m1 receptors | |
WO2008029825A1 (en) | Imidazole derivative | |
CZ361392A3 (en) | Novel azaheterocyclylmethyl-chromans | |
IL206353A (en) | (e)-n-(5-((e)-3-fluoro-6h-dibenzo[b,e]oxepin-11-ylidenemethyl)-1-((r)-1-methyl-2-morpholin-4-yl-ethyl)-1,3-dihydro-benzoimidazol-2-ylidene)-urea and pharmaceutically acceptable salt thereof for use in therapy | |
JP2012524798A (en) | 2-alkylpiperidine MGLUR5 receptor modulator | |
WO2011163280A1 (en) | Indole compounds as positive allosteric modulators of the muscarinic receptor | |
KR102150739B1 (en) | Carbamate/urea derivatives | |
US10246414B2 (en) | Allosteric modulators of CB1 cannabinoid receptors | |
WO2010059922A1 (en) | Pyrrolidine carboxamide compounds | |
WO2021216951A1 (en) | Condensed substituted hydropyrroles as antagonists of the muscarinic acetylcholine receptor m4 | |
CA2755335C (en) | Process for the preparation of histamine h3 receptor modulators | |
US9073864B2 (en) | Aromatic ring compound | |
WO2016204135A1 (en) | Five-membered-heterocycle derivative | |
WO1993020053A1 (en) | Pyridylserine derivative | |
TW201206901A (en) | Substituted N-heteroaryl bipyrrolidine carboxamides, preparation and therapeutic use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KU, YI-YIN;GRIEME, TIMOTHY A.;KALLEMEYN, JEFFREY M.;AND OTHERS;REEL/FRAME:027072/0677 Effective date: 20111012 |
|
AS | Assignment |
Owner name: ABBVIE INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT LABORATORIES;REEL/FRAME:030137/0222 Effective date: 20120801 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20221007 |