US8853390B2 - Processes for preparing 1,2-substituted cyclopropyl derivatives - Google Patents

Processes for preparing 1,2-substituted cyclopropyl derivatives Download PDF

Info

Publication number
US8853390B2
US8853390B2 US13/232,751 US201113232751A US8853390B2 US 8853390 B2 US8853390 B2 US 8853390B2 US 201113232751 A US201113232751 A US 201113232751A US 8853390 B2 US8853390 B2 US 8853390B2
Authority
US
United States
Prior art keywords
chiral
amine
hydrogen
group
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US13/232,751
Other versions
US20120071651A1 (en
Inventor
Yi-Yin Ku
Timothy A. Grieme
Jeffrey M. Kallemeyn
Mathew M. Mulhern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AbbVie Inc
Original Assignee
AbbVie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AbbVie Inc filed Critical AbbVie Inc
Priority to US13/232,751 priority Critical patent/US8853390B2/en
Assigned to ABBOTT LABORATORIES reassignment ABBOTT LABORATORIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GRIEME, TIMOTHY A., KALLEMEYN, JEFFREY M., KU, YI-YIN, MULHERN, MATHEW M.
Publication of US20120071651A1 publication Critical patent/US20120071651A1/en
Assigned to ABBVIE INC. reassignment ABBVIE INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABBOTT LABORATORIES
Application granted granted Critical
Publication of US8853390B2 publication Critical patent/US8853390B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/14Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/17Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/57Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C233/58Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C61/00Compounds having carboxyl groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C61/16Unsaturated compounds
    • C07C61/40Unsaturated compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C67/347Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/06Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/06Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals
    • C07D295/073Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by halogen atoms or nitro radicals with the ring nitrogen atoms and the substituents separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/10Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms
    • C07D295/104Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by doubly bound oxygen or sulphur atoms with the ring nitrogen atoms and the doubly bound oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to processes for preparing chiral cyclopropyl amine derivatives and salts thereof; intermediates useful for the preparation of such compounds and salts; pharmaceutical compositions comprising the compounds and salts; and method of using such compositions.
  • the cyclopropyl amine derivatives are useful for binding to histamine H 3 receptor sites and for providing therapeutic agents for histamine H 3 mediated disease.
  • chiral 1,2-substituted cyclopropyl carboxylic acid and chiral 1,2-substituted cyclopropyl amide derivatives are intermediate compounds useful for the preparation of chiral cyclopropyl amine derivatives of a general formula:
  • R 1 , R 2 , R 3 , R 3a , R 3b , R 4 , and R 5 are as defined below.
  • Compounds of formula (II) are described in WO 2007150010, published on Dec. 27, 2007, corresponding to U.S. patent application Ser. No. 11/766,987, filed on Jun. 22, 2007, and U.S. patent application Ser. No. 11/956,816, filed on Dec. 14, 2007, each of which are all hereby incorporated by reference.
  • the present invention offers a more efficient process to obtain chiral compounds of formula (II) via the chiral resolution of an aryl-cyclopropanecarboxylic acid with chiral amines.
  • the chiral resolution step forms a diasteriomeric chiral salt, which is crystallized to obtain an enantiomerically pure salt.
  • the enantiomerically pure arylcyclopropyl carboxylic acid is obtained upon breaking up the salt.
  • the resulting enantiomerically pure cyclopropyl carboxylic acids can be reacted with various amines to form amides, which can be reduced to form chiral amine derivatives.
  • the intermediate chiral amines can be further coupled with a desired aromatic or heteroaromatic reagent to provide compounds of formula (II).
  • histamine H 3 receptor antagonists have been identified as histamine H 3 receptor antagonists.
  • Various histamine H 3 receptor antagonists are currently in clinical development for treatment of disease.
  • Diseases for which histamine H 3 receptor antagonists are under clinical study include, for example, schizophrenia, cognitive deficits of schizophrenia, Alzheimer's disease, narcolepsy, cataplexy, sleep disorder, hyperalgesia, allergic rhinitis, obesity, attention-deficit hyperactivity disorder, and dementia.
  • histamine H 3 receptor ligands can demonstrate therapeutic effect are deficits in attention, diseases with deficits of memory or learning, cognitive deficits and dysfunction in psychiatric disorders, mild cognitive impairment, epilepsy, seizures, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary syndrome.
  • the present invention relates to a process for preparing chiral cyclopropyl amine derivatives of formula (II), as described herein.
  • the present invention relates to a process for preparing the chiral salts of aryl-cyclopropanecarboxylic acid with a chiral amine.
  • the present invention also is directed to the chiral compounds and salts thereof prepared by the process for preparing chiral salts described above.
  • the present invention also is directed a chiral aryl-cyclopropanecarboxylic acid salt.
  • the present invention also is directed to various intermediates useful for preparing chiral compounds of formula (II).
  • compositions including pharmaceutical compositions
  • compounds of formula (II) or a salt thereof that are prepared by the above processes.
  • the present invention also is directed to methods of using the compositions of the invention.
  • aryl as used herein means a monocyclic hydrocarbon aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl.
  • aryl groups of this invention are substituted with 0, 1, 2, 3, 4, or 5 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, amido, carboxy, cyano, cycloalkylcarbonyl, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, thioalkoxy, NR A R B , and (NR A R B )sulfonyl.
  • substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysul
  • heteroaryl refers to an aromatic ring containing one or more heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Such rings can be monocyclic or bicyclic as further described herein. Heteroaryl rings are connected to the parent molecular moiety.
  • heteroaryl or “5- or 6-membered heteroaryl ring”, as used herein, refer to 5- or 6-membered aromatic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof.
  • examples of such rings include, but are not limited to, a ring wherein one carbon is replaced with an O or S atom; one, two, or three N atoms arranged in a suitable manner to provide an aromatic ring; or a ring wherein two carbon atoms in the ring are replaced with one O or S atom and one N atom.
  • Such rings can include, but are not limited to, a six-membered aromatic ring wherein one to four of the ring carbon atoms are replaced by nitrogen atoms, five-membered rings containing a sulfur, oxygen, or nitrogen in the ring; five membered rings containing one to four nitrogen atoms; and five membered rings containing an oxygen or sulfur and one to three nitrogen atoms.
  • 5- to 6-membered heteroaryl rings include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, [1,2,3]thiadiazolyl, [1,2,3]oxadiazolyl, thiazolyl, thienyl, [1,2,3]triazinyl, [1,2,4]triazinyl, [1,3,5]triazinyl, [1,2,3]triazolyl, and [1,2,4]triazolyl.
  • bicyclic heteroaryl or “8- to 12-membered bicyclic heteroaryl ring”, as used herein, refers to an 8-, 9-, 10-, 11-, or 12-membered bicyclic aromatic ring containing at least 3 double bonds, and wherein the atoms of the ring include one or more heteroatoms independently selected from oxygen, sulfur, and nitrogen.
  • bicyclic heteroaryl rings include indolyl, benzothienyl, benzofuranyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzoisothiazolyl, benzoisoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pteridinyl, purinyl, naphthyridinyl, cinnolinyl, thieno[2,3-d]imidazole, thieno[3,2-b]pyridinyl, and pyrrolopyrimidinyl.
  • Heteroaryl groups of the invention may be substituted with hydrogen, or optionally substituted with one or more substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, amido, carboxy, cyano, cycloalkyl, fluoroalkoxy, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, alkylthio, —NR A R B , and (NR A R B )carbonyl.
  • substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxy
  • Monocyclic heteroaryl or 5- or 6-membered heteroaryl rings are substituted with 0, 1, 2, 3, 4, or 5 substituents.
  • Bicyclic heteroaryl or 8- to 12-membered bicyclic heteroaryl rings are substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents.
  • Heteroaryl groups of the present invention may be present as tautomers.
  • heterocyclic ring and “heterocycle”, as used herein, refer to a 4- to 12-membered monocyclic or bicyclic ring containing one, two, three, four, or five heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur and also containing either at least one carbon atom attached to four other atoms or one carbon atom substituted with an oxo group and attached to two other atoms.
  • Four- and five-membered rings may have zero or one double bond.
  • Six-membered rings may have zero, one, or two double bonds.
  • Seven- and eight-membered rings may have zero, one, two, or three double bonds.
  • the non-aromatic heterocycle groups of the invention can be attached through a carbon atom or a nitrogen atom.
  • the non-aromatic heterocycle groups may be present in tautomeric form.
  • Representative examples of nitrogen-containing heterocycles include, but are not limited to, azepanyl, azetidinyl, aziridinyl, azocanyl, dihydropyridazinyl, dihydropyridinyl, dihydropyrimidinyl, morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, pyrrolinyl, dihydrothiazolyl, dihydropyridinyl, and thiomorpholinyl.
  • non-nitrogen containing non-aromatic heterocycles include, but are not limited to, dioxanyl, dithianyl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, and [1,3]dioxolanyl.
  • the heterocycles of the invention are substituted with hydrogen, or optionally substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylsulfonyl, amido, arylalkyl, arylalkoxycarbonyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, oxo, thioalkoxy, —NR A R B , and (NR A R B )sulfonyl.
  • substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl,
  • heterocycles include, but are not limited to, azetidin-2-one, azepan-2-one, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, 1H-benzo[d]imidazol-2(3H)-one, [1,2,4]thiadiazolonyl, [1,2,5]thiadiazol
  • room temperature refers to about 25° C.
  • room temperature can vary within a few degrees depending on the environment in which any reaction is conducted. For example, temperatures from about 20° C. to about 30° C. are considered to be room temperature.
  • R denotes a chiral center that can be designated as a R- or S-stereocenter.
  • These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral carbon atom.
  • R and S used herein are configurations as defined in the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., 1976, 45:13-30.
  • chiral refers to a compound that is enantiopure or contains only one of a possible two configurations at a designated stereocenter.
  • THF for tetrahydrofuran
  • CDI 1,1′-carbonyldiimidazole
  • NaH for sodium hydride
  • NaHCO 3 for sodium bicarbonate
  • MTBE for methyl t-butyl ether
  • BH 3 for borane
  • DMSO for dimethylsulfoxide
  • EtOAc for ethyl acetate
  • NaOtBu sodium t-butoxide
  • OTf for trifluoromethanesulfonate.
  • NLT is used to denote “Not Less Than”.
  • the present invention relates to a process for preparing a chiral compound of formula:
  • R 2 , R 3 , R 3a , R 3b are hydrogen;
  • R 1 is a 5- to 6-membered heteroaryl ring, cyanophenyl, a 8- to 12-membered bicyclic heteroaryl ring, or a 4- to 12-membered heterocyclic ring; and
  • R 4 and R 5 taken together with the nitrogen atom to which they are attached form an amine moiety represented by structure:
  • R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
  • R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
  • R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
  • Q is O or S; and
  • m is an integer from 1 to 5.
  • enantiomerically pure arylcyclopropanecarboxylic acids salt can be broken-up to release the enantiomerically pure arylcyclopropanecarboxylic acids that can be further reacted with amines, reduced, and coupled with a suitable aromatic, heteroaromatic, or heterocycle group to provide compounds of formula (II).
  • the chiral amine is selected from the group consisting of (S)-( ⁇ )- ⁇ -methylbenzylamine, (R)-(+)-N-benzyl- ⁇ -methylbenzylamine, (S)-( ⁇ )-N-benzyl- ⁇ -methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-( ⁇ )-N,N-dimethyl-1-phenylethylamine, [R—(R*,R*)]-(+)-bis(a-methylbenzyl)amine, [S—(R*,R*)]-( ⁇ )-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-( ⁇ )-1-(1-naphthyl)ethylamine, (1
  • the chiral amine is (R)-( ⁇ )-1-cyclohexylethylamine. In another embodiment, the chiral amine is (R)-(+)-a-methylbenzylamine.
  • the reaction is carried out in a polar organic solvent.
  • the polar organic solvent is an alcohol.
  • the alcohol can be selected from the group consisting of methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, and n-butyl alcohol.
  • the alcohol is isopropyl alcohol.
  • the alcohol is tert-butyl alcohol.
  • the reaction is carried at a temperature of from about room temperature to about 75° C.
  • the temperature is from about 40° C. to about 60° C. In one particular embodiment, the temperature at which the reaction is carried out is from about 45° C. to about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
  • the aryl-cyclopropanecarboxylic acid is prepared from arylaldehyde. An illustration of a process for preparing arylcyclopropanecarboxylic acid from aryl aldehyde is shown below in Scheme A.
  • aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate to provide tert-butyl arylacrylate (A-2).
  • Tert-butyl arylacrylate is treated a sulfoxonium ylide to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3).
  • Hydrolysis of the tert-butyl arylcyclopropanecarboxylic acid ester under basic conditions with lithium hydroxide provides arylcyclopropanecarboxylic acid (A-4).
  • aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate with any strong base in a non-polar solvent.
  • the strong base is a metal hydride.
  • metal hydride base are lithium hydride and sodium hydride.
  • the strong base can also be potassium t-butyloxide, sodium t-butyloxide, lithium t-butyloxide.
  • sodium hydride (NaH) is the base or potassium t-butyloxide. The reaction is carried out in any non-polar solvent.
  • the non-polar solvent is an organic solvent, for example, toluene, hexane, benzene, 1,4-dioxane, chloroform, or diethyl ether.
  • the organic solvent is toluene.
  • Suitable sulfoxonium ylides for treating tert-butyl arylacrylate (A-2) to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3) can be dimethylsulfoxonium iodide methylide (Corey-Chaykovsky Regent) and trimethylsulfoxonium iodide reagent.
  • the sulfoxonium reagent is trimethylsulfoxonium iodide reagent.
  • the sulfoxonium reagent is dimethylsulfoxonium iodide methylide.
  • the reaction is carried out in a polar solvent.
  • the polar solvent can be any suitable polar aprotic solvent.
  • Suitable polar aprotic solvents include, but are not limited to, dimethyl sulfoxide, dimethyl acetamide, dimethyl formamide, or mixtures thereof.
  • the solvent is a mixture of dimethyl sulfoxide and dimethyl acetamide.
  • the mixture can be in a ratio of from about 1:1 to about 2:1 dimethyl sulfoxide/dimethyl acetamide.
  • the reaction can be carried out at any temperature, however, in the reaction mixture is maintained at a temperature of less than about 10° C.
  • any base is suitable for use in the hydrolysis of the ester of tert-butyl arylcyclopropanecarboxylic acid (A-3) to provide arylcyclopropanecarboxylic acid (A-4).
  • the base is any metal hydroxide base.
  • Such base can include, for example, sodium hydroxide, lithium hydroxide, and potassium hydroxide.
  • Suitable amine reagents can be represented by the formula:
  • R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
  • R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
  • R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
  • Q is O or S; and
  • m is an integer from 1 to 5.
  • Suitable amines for the reaction can include any amine of formula (a), as defined above.
  • Such amine can be more particularly selected from pyrrolidine, 2-(S)-methylpyrrolidine, 2-(R)-methylpyrrolidine, 3-methylpyrrolidine, 2-fluoropyrrolidine, 3-fluoropyrrolidine, 2-hydroxypyrrolidine, 3-hydroxypyrrolidine, 2-hydroxymethylpyrrolidine, and 3-hydroxymethylpyrrolidine.
  • Other suitable amines can be more particularly selected from pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-fluoropyridine, 3-fluoropyridine, 4-fluoropyridine, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxymethylpyridine, 2-hydroxymethylpyridine, 3-hydroxymethylpyridine, and 4-hydroxymethylpyridine.
  • the amines are those wherein one of the substituents represented by R 7 , R 8 , R 9 , and R 10 is hydrogen or alkyl and the other substituents are hydrogen.
  • Particular preferred examples are pyrrolidine, 2-(S)-methylpyrrolidine, and 2-(R)-methylpyrrolidine.
  • Suitable amines are those of formula (b), as defined above. Such amine may be more particularly selected from dimethylamine, diethylamine, methylamine, and ethylamine. In one particular embodiment, the amines are those wherein one of the substituents represented by R 7 , R 8 , R 9 , and R 10 is hydrogen or alkyl and the other substituents are hydrogen. Particular preferred examples are dimethylamine and diethylamine.
  • Additional reagents having an amine group are those of formula (c), as defined above.
  • Such amine may be more particularly selected from morpholine and thiomorpholine.
  • the amine reagent is morpholine.
  • the reaction is carried out using N,N′-carbonyldiimidazole.
  • the arylcyclopropanecarboxylic acid, amine, and N,N′-carbonyldiimidazole are combined in an organic solvent.
  • suitable organic solvents are tetrahydrofuran, toluene, 1,2-dimethoxyethane, 1,4-dioxane, N-methyl-pyrrolidinone, dimethylacetamide, and dimethylformamide.
  • the solvent is tetrahydrofuran.
  • the solvent is toluene. Tetrahydrofuran is the most preferred solvent.
  • the reaction can be accomplished at room temperature.
  • the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
  • the cyclopropanecarboxylic acid amide is reduced using a reducing agent selected from borane reducing reagents.
  • Suitable reducing agents are, for example, borane tetrahydrofuran complex, diborane, borane dimethylsulfide complex, a combination of sodium borohydride and sodium trifluoride.
  • the reaction is conducted in a polar, aprotic solvent.
  • suitable solvents are tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 1,4-dioxane, and methyl-tert-butyl ethers.
  • the preferred solvent is tetrahydrofuran.
  • the reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 80° C. In a preferred embodiment, the reaction is conducted at a temperature of about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
  • the compound of formula (I-b) undergoes coupling reactions to provide the compounds of formula (II).
  • Coupling conditions commonly referred to as metal-catalyzed reaction including palladium, nickel, iron or copper catalyzed reaction, such as Ullmann reaction conditions, are preferred for the reaction.
  • Reagent suitable for providing a moiety within the definition of R 1 can be used.
  • Reagents suitable for the reaction can include, for example, 5- to 6-membered heteroaryl, 8- to 12-membered bicyclic heteroaryl, and 4- to 12-membered heterocyclic reagents.
  • Examples of particular 5- to 6-membered heteroaryl reagents include, but are not limited to, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, pyrroline, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, [1,2,4]thiadiazolone, [1,2,5]thiadiazolone, [1,3,4]thiadiazinone, [1,2,4]oxadiazolone, [1,2,5]oxadiazolone, and [1,3,4]oxadiazin-one.
  • Examples of particular 4- to 12-membered heterocyclic reagents include, but are not limited to, azepane, azetidine, aziridine, azocane, dihydropyridine, dihydropyrimidine, piperidine, pyrrolidine, dihydrothiazole, dihydropyridine, thiomorpholine, dioxane, dithiane, tetrahydrofuran, dihydropyrane, tetrahydropyran, [1,3]dioxolane, azetidin-2-one, and azepan-2-one.
  • Examples of particular 8- to 12-membered bicyclic heteroaryl reagents include, but are not limited to, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, and 1H-benzo[d]imidazol-2(3H)-one.
  • the reaction is conducted with a copper catalyst and base in a polar aprotic solvent in the presence of N,N′-dimethylenediamine.
  • the copper catalyst can be any copper catalyst.
  • the copper catalyst is a copper (I) catalyst. Examples of such catalysts are, for example, copper (I) iodide, copper (I) bromide, and copper (I) chloride. Copper (I) iodide is preferred.
  • the base is any suitable organic base.
  • Examples of such base can include, for example, potassium carbonate (K 2 CO 3 ), potassium phosphate (K 3 PO 4 ), cesium carbonate (Cs 2 CO 3 ), sodium methoxide (NaOMe), sodium tert-butoxide (NaOt-Bu), sodium acetate (NaOAc), and potassium tert-butoxide (KOt-Bu).
  • the base is K 2 CO 3 .
  • the base is K 3 PO 4 .
  • the basic solvent can be any polar aprotic solvent.
  • polar aprotic solvent examples include, for example, dimethyl acetamide, dimethyl formamide, 1-methyl-2-pyrrolidinone, and pyridine.
  • the polar aprotic solvent is pyridine.
  • the reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 140° C. In a preferred embodiment, the reaction is conducted at a temperature of about 115° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
  • the present invention in one embodiment, also relates to compounds that are:
  • the chiral amines are (S)-( ⁇ )- ⁇ -methylbenzylamine, (R)-(+)-N-benzyl-a-methylbenzylamine, (S)-( ⁇ )-N-benzyl- ⁇ -methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-( ⁇ )-N,N-dimethyl-1-phenylethylamine, [R—(R*,R*)]-(+)-bis( ⁇ -methylbenzyl)amine, [S-(R*,R*)]-( ⁇ )-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-( ⁇ )-1-(1-naphthyl)ethylamine, (1R,2R,3R
  • the chiral amines also can be selected from (R)-( ⁇ )-1-cyclohexylethylamine or (R)-(+)- ⁇ -methylbenzylamine.
  • the chiral amine is (R)-( ⁇ )-1-cyclohexylethylamine.
  • the chiral amine is (R)-(+)- ⁇ -methylbenzylamine.
  • the present invention also relates to compounds that are:
  • the present invention in another embodiment, relates to a compound of formula:
  • R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
  • R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
  • R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
  • Q is O or S; and
  • m is an integer from 1 to 5.
  • the present invention in another embodiment, relates to a compound of formula:
  • R 7 , R 8 , R 9 , and R 10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl;
  • R 11 , R 12 , R 13 , and R 14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl;
  • R x and R y are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino;
  • Q is O or S; and
  • m is an integer from 1 to 5.
  • the present invention also includes isotopically-labeled compounds, which are identical to those recited in Formula (I-a), (I-b), and (II), but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature.
  • isotopes suitable for inclusion in the compounds of the invention are hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine, and chlorine, such as but not limited to 2 H, 3 H, 13 C, 15 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, and 36 Cl, respectively.
  • isotopes such as deuterium, i.e., 2 H
  • Compounds incorporating positron-emitting isotopes are useful in medical imaging and positron-emitting tomography (PET) studies for determining the distribution of receptors.
  • Suitable positron-emitting isotopes that can be incorporated in compounds of formula (I) are 11 C, 13 N, 15 O, and 18 F.
  • Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art using appropriate isotopically-labeled reagent in place of non-isotopically-labeled reagent.
  • compositions typically also comprise one or more conventional pharmaceutically acceptable carriers, adjuvants, and/or vehicles (together referred to as “excipients”).
  • compositions for oral administration and solid dosage forms in particular, are preferred.
  • Such solid dosage forms include, for example, capsules, tablets, pills, powders, and granules.
  • the compounds or salts are ordinarily combined with one or more excipients.
  • the compounds or salts can be mixed with, for example, lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration.
  • Such capsules or tablets can contain a controlled-release formulation, as can be provided in, for example, a dispersion of the compound or salt in hydroxypropylmethyl cellulose.
  • the dosage forms also can comprise buffering agents, such as sodium citrate, or magnesium or calcium carbonate or bicarbonate. Tablets and pills additionally can be prepared with enteric coatings.
  • the compounds and compositions of the invention are useful for treating and preventing certain diseases and disorders in humans and animals.
  • the compounds described in the invention can affect physiological processes in humans and animals.
  • the compounds and compositions described in the invention are useful for treating and preventing diseases and disorders modulated by histamine-3 receptors.
  • treatment or prevention of such diseases and disorders can be effected by selectively modulating the histamine-3 receptors in a mammal, by administering a compound or composition of the invention, either alone or in combination with another active agent as part of a therapeutic regimen.
  • the compounds of the invention may be useful for the treatment and prevention of diseases or conditions such as attention-deficit hyperactivity disorder (ADHD), deficits in attention, dementia, and diseases with deficits of memory, learning, schizophrenia, cognitive deficits of schizophrenia, cognitive deficits and dysfunction in psychiatric disorders, Alzheimer's disease, mild cognitive impairment, epilepsy, seizures, allergic rhinitis, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, obesity, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, sleep disorders, narcolepsy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary
  • ADHD attention-deficit hyperactivity disorder
  • dementia dementia
  • diseases with deficits of memory learning
  • schizophrenia cognitive deficit
  • the preferred total daily dose of a compound or salt is typically from about 0.001 to about 100 mg/kg, more preferably from about 0.001 to about 30 mg/kg, and even more preferably from about 0.01 to about 10 mg/kg (i.e., mg of the compound or salt per kg body weight).
  • Dosage unit compositions can contain such amounts or submultiples thereof to make up the daily dose.
  • the administration of the compound or salt will be repeated a plurality of times. Multiple doses per day typically may be used to increase the total daily dose, if desired.
  • Factors affecting the preferred dosage regimen include the type, age, weight, sex, diet, and condition of the patient; the severity of the pathological condition; the severity of the pathological condition; pharmacological considerations, such as the activity, efficacy, pharmacokinetic, and toxicology profiles of the particular compound or salt used; whether a drug delivery system is utilized; and the specific drug combination.
  • the dosage regimen actually employed can vary widely, and therefore, can derive from the preferred dosage regimen set forth above.
  • the flask and wetcake were rinsed with the mother liquors, followed by isopropyl alcohol (5 mL).
  • the wetcake was dried on the filter under vacuum (1.88 g, 61.5% ee).
  • the wetcake was then charged back to the round-bottom flask with isopropyl alcohol (38 mL, 20 mL/g).
  • the suspension was heated to 80° C. After 0.5 h, all solids dissolved.
  • the solution was then slowly cooled to 50° C. ( ⁇ 2 h), during which time a suspension formed.
  • the suspension was stirred at 50° C. for 2 h, and then slowly cooled to room temperature (1-2 h). Stirred the suspension overnight ( ⁇ 15 h) at room temperature.
  • the suspension was filtered.
  • the chiral salt 5 was first broken up by treating it with citric acid solution, exacted with MTBE and drying to obtain the free acid, 2-(4-bromophenyl)cyclopropanecarboxylic acid 4 (4.82 g, 20 mmol) and mixed with 1,1′-carbonyldiimidazole (4.22 g, 26 mmol) in THF (45 mL, 10 mL/g total volume). A suspension formed after stirring at room temperature for >30 min. The suspension was cooled to ⁇ 15° C. Then a solution of the (S)-2-methylpyrrolidine (2.55 g, 30 mmol) in THF (5 mL) was added over ⁇ 5 min.
  • reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and piperidine (2.22 mL, 22.5 mmol) afforded 6b in an assay yield of 4.55 g (14.8 mmol, 99% assay yield, 99% peak area).
  • a sample was purified by washing the product solution with 5% NaHCO 3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
  • reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and diethylamine (2.33 mL, 22.5 mmol) afforded 6c in an assay yield of 4.18 g (14.1 mmol, 94% assay yield, 98% peak area).
  • a sample was purified by washing the product solution with 5% NaHCO 3 and concentrating in vacuo to an oil to provide the standard.
  • reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and 2 M dimethylamine in THF (11.25 mL, 22.5 mmol) afforded 6d in an assay yield of 3.67 g (13.7 mmol, 91% assay yield, 99% peak area).
  • a sample was purified by washing the product solution with 5% NaHCO 3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
  • reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and morpholine (1.96 mL, 22.5 mmol) afforded 6e in an assay yield of 4.48 g (14.45 mmol, 96% assay yield, 100% peak area).
  • a sample was purified by washing the product solution with 5% NaHCO 3 and concentrating in vacuo to a white solid to provide the standard.
  • reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and pyrrolidine (1.86 mL, 22.5 mmol) afforded 6f in an assay yield of 4.24 g (14.40 mmol, 96% assay yield, 100% peak area).
  • a sample was purified by washing the product solution with 5% NaHCO 3 and concentrating in vacuo to a white solid to provide the standard.
  • reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and (R)-2-methylpyrrolidine (1.92 g, 22.5 mmol) afforded 6 g in an assay yield of 4.62 g (15.00 mmol, 100% assay yield, 97.5% peak area).
  • a sample was purified by washing the product solution with 5% NaHCO 3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
  • the product solution is then cooled to room temperature and extracted with t-butyl methyl ether (40 mL, 2 ⁇ ).
  • the basic aqueous layer is then extracted with more MTBE (40 mL).
  • the organic layers are combined and washed with saturated sodium chloride solution (40 mL).
  • the resulting product solution was assayed by HPLC against a known standard. 2.66 g product was assayed (92% assayed yield, >99% peak area).
  • a sample was concentrated under high vacuum to an oil to provide a standard.
  • reaction of 6b (3.70 g assayed, 12.0 mmol) with 1 M BH 3 in THF (42.0 mL, 42.0 mmol) afforded 7b in an assay yield of 2.77 g (9.4 mmol, 78% assay yield, 99% peak area).
  • a sample was concentrated in vacuo to an oil to provide the standard.
  • a sample was concentrated in vacuo to an oil to provide the standard.
  • a sample was concentrated in vacuo to an oil to provide the standard.
  • reaction of 6e (4.20 g assayed, 13.55 mmol) with 1 M BH 3 in THF (47.4 mL, 47.4 mmol) afforded 7e in an assay yield of 2.68 g (9.05 mmol, 67% assay yield, 100% peak area).
  • a sample was concentrated in vacuo to an oil to provide the standard.
  • a sample was concentrated in vacuo to an oil to provide the standard.
  • a sample was concentrated in vacuo to an oil to provide the standard.
  • the yield was increased by stepwise addition of isopropyl alcohol alternating with hold times over 10 h at 15° C., reducing the water content to 10% (by volume) in the final solvent composition.
  • the solid was filtered and washed with isopropyl alcohol twice (4.5 mL/g free base). Wet cake was dried at 50° C. under vacuum, in humidified environment, with intermittent slight nitrogen bleeding. The isolated solid was used as a standard.
  • reaction of 7b (2.67 g assayed, 9.08 mmol) with 3(2H)-pyridazinone (1.14 g, 11.8 mmol) afforded a solution of the free base of 8b in an assayed yield of 2.61 g (93% assay yield, 95% peak area).
  • reaction of 7c (2.87 g assayed, 10.2 mmol) with 3(2H)-pyridazinone (1.27 g, 13.2 mmol) afforded a solution of the free base of 8c in an assayed yield of 2.55 g (84% assay yield, 93% peak area).
  • reaction of 7d (2.13 g assayed, 8.37 mmol) with 3(2H)-pyridazinone (1.05 g, 10.5 mmol) afforded a solution of the free base of 8d in an assayed yield of 1.57 g (5.8 mmol, 70% assay yield, 93% peak area).
  • reaction of 7f (3.05 g assayed, 10.90 mmol) with 3(211)-pyridazinone (1.36 g, 14.17 mmol) afforded a solution of the free base of 8f in an assayed yield of 3.60 g (74% assay yield, 97% peak area).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to processes for preparing enantiomerically pure cyclopropyl amine derivatives and salts thereof; the chiral intermediates such as the chiral salts are useful for the preparation of such chiral compounds and salts; pharmaceutical compositions comprising the compounds and salts; and method of using such compositions. The chiral cyclopropyl amine derivatives are useful for binding to histamine H3 receptor sites and for providing therapeutic agents for histamine H3 mediated disease.

Description

This application claims priority to U.S. Patent Application Ser. No. 61/397,705 filed Sep. 16, 2010, which is incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to processes for preparing chiral cyclopropyl amine derivatives and salts thereof; intermediates useful for the preparation of such compounds and salts; pharmaceutical compositions comprising the compounds and salts; and method of using such compositions. The cyclopropyl amine derivatives are useful for binding to histamine H3 receptor sites and for providing therapeutic agents for histamine H3 mediated disease.
BACKGROUND OF THE INVENTION
The chiral 1,2-substituted cyclopropyl carboxylic acid and chiral 1,2-substituted cyclopropyl amide derivatives are intermediate compounds useful for the preparation of chiral cyclopropyl amine derivatives of a general formula:
Figure US08853390-20141007-C00001

wherein R1, R2, R3, R3a, R3b, R4, and R5 are as defined below. Compounds of formula (II) are described in WO 2007150010, published on Dec. 27, 2007, corresponding to U.S. patent application Ser. No. 11/766,987, filed on Jun. 22, 2007, and U.S. patent application Ser. No. 11/956,816, filed on Dec. 14, 2007, each of which are all hereby incorporated by reference. The present invention offers a more efficient process to obtain chiral compounds of formula (II) via the chiral resolution of an aryl-cyclopropanecarboxylic acid with chiral amines. The chiral resolution step forms a diasteriomeric chiral salt, which is crystallized to obtain an enantiomerically pure salt. The enantiomerically pure arylcyclopropyl carboxylic acid is obtained upon breaking up the salt. The resulting enantiomerically pure cyclopropyl carboxylic acids can be reacted with various amines to form amides, which can be reduced to form chiral amine derivatives. The intermediate chiral amines can be further coupled with a desired aromatic or heteroaromatic reagent to provide compounds of formula (II).
Compounds of formula (II) have been identified as histamine H3 receptor antagonists. Various histamine H3 receptor antagonists are currently in clinical development for treatment of disease. Diseases for which histamine H3 receptor antagonists are under clinical study include, for example, schizophrenia, cognitive deficits of schizophrenia, Alzheimer's disease, narcolepsy, cataplexy, sleep disorder, hyperalgesia, allergic rhinitis, obesity, attention-deficit hyperactivity disorder, and dementia. Other conditions for which it is believed that histamine H3 receptor ligands can demonstrate therapeutic effect are deficits in attention, diseases with deficits of memory or learning, cognitive deficits and dysfunction in psychiatric disorders, mild cognitive impairment, epilepsy, seizures, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary syndrome.
It would be beneficial to provide a more practical, economical, and robust processes for preparing the compounds having histamine H3 receptor activity to more efficiently supply histamine H3 receptor antagonist compounds for clinical studies and for eventual commercial supply. It would be particularly beneficial if the process provided the desired chiral compound using environmentally safe reagents under milder reaction conditions.
SUMMARY OF THE INVENTION
In one aspect, the present invention relates to a process for preparing chiral cyclopropyl amine derivatives of formula (II), as described herein.
In another aspect, the present invention relates to a process for preparing the chiral salts of aryl-cyclopropanecarboxylic acid with a chiral amine.
The present invention also is directed to the chiral compounds and salts thereof prepared by the process for preparing chiral salts described above.
The present invention also is directed a chiral aryl-cyclopropanecarboxylic acid salt.
The present invention also is directed to various intermediates useful for preparing chiral compounds of formula (II).
The present invention also is directed to compositions (including pharmaceutical compositions) that comprise compounds of formula (II) or a salt thereof that are prepared by the above processes.
The present invention also is directed to methods of using the compositions of the invention.
Further benefits of Applicants' invention will be apparent to one skilled in the art from reading this patent application.
DETAILED DESCRIPTION
This detailed description is intended only to acquaint others skilled in the art with Applicants' invention, its principles, and its practical application so that others skilled in the art may adapt and apply the invention in its numerous forms, as they may be best suited to the requirements of a particular use. This description and its specific examples are intended for purposes of illustration only. This invention, therefore, is not limited to the embodiments described in this patent application, and may be variously modified.
a. Definitions
As used in the specification and the appended claims, unless specified to the contrary, the following terms have the meaning indicated:
The term “aryl” as used herein means a monocyclic hydrocarbon aromatic ring system. Representative examples of aryl include, but are not limited to, phenyl.
The aryl groups of this invention are substituted with 0, 1, 2, 3, 4, or 5 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, alkynyl, amido, carboxy, cyano, cycloalkylcarbonyl, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, thioalkoxy, NRARB, and (NRARB)sulfonyl.
The term “heteroaryl”, as used herein, refers to an aromatic ring containing one or more heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Such rings can be monocyclic or bicyclic as further described herein. Heteroaryl rings are connected to the parent molecular moiety.
The terms “monocyclic heteroaryl” or “5- or 6-membered heteroaryl ring”, as used herein, refer to 5- or 6-membered aromatic rings containing 1, 2, 3, or 4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a tautomer thereof. Examples of such rings include, but are not limited to, a ring wherein one carbon is replaced with an O or S atom; one, two, or three N atoms arranged in a suitable manner to provide an aromatic ring; or a ring wherein two carbon atoms in the ring are replaced with one O or S atom and one N atom. Such rings can include, but are not limited to, a six-membered aromatic ring wherein one to four of the ring carbon atoms are replaced by nitrogen atoms, five-membered rings containing a sulfur, oxygen, or nitrogen in the ring; five membered rings containing one to four nitrogen atoms; and five membered rings containing an oxygen or sulfur and one to three nitrogen atoms. Representative examples of 5- to 6-membered heteroaryl rings include, but are not limited to, furyl, imidazolyl, isoxazolyl, isothiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridazinyl, pyridinyl, pyrimidinyl, pyrrolyl, tetrazolyl, [1,2,3]thiadiazolyl, [1,2,3]oxadiazolyl, thiazolyl, thienyl, [1,2,3]triazinyl, [1,2,4]triazinyl, [1,3,5]triazinyl, [1,2,3]triazolyl, and [1,2,4]triazolyl.
The term “bicyclic heteroaryl” or “8- to 12-membered bicyclic heteroaryl ring”, as used herein, refers to an 8-, 9-, 10-, 11-, or 12-membered bicyclic aromatic ring containing at least 3 double bonds, and wherein the atoms of the ring include one or more heteroatoms independently selected from oxygen, sulfur, and nitrogen. Representative examples of bicyclic heteroaryl rings include indolyl, benzothienyl, benzofuranyl, indazolyl, benzimidazolyl, benzothiazolyl, benzoxazolyl, benzoisothiazolyl, benzoisoxazolyl, quinolinyl, isoquinolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pteridinyl, purinyl, naphthyridinyl, cinnolinyl, thieno[2,3-d]imidazole, thieno[3,2-b]pyridinyl, and pyrrolopyrimidinyl.
Heteroaryl groups of the invention, whether monocyclic or bicyclic, may be substituted with hydrogen, or optionally substituted with one or more substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylcarbonyl, alkylsulfonyl, amido, carboxy, cyano, cycloalkyl, fluoroalkoxy, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, alkylthio, —NRARB, and (NRARB)carbonyl. Monocyclic heteroaryl or 5- or 6-membered heteroaryl rings are substituted with 0, 1, 2, 3, 4, or 5 substituents. Bicyclic heteroaryl or 8- to 12-membered bicyclic heteroaryl rings are substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents. Heteroaryl groups of the present invention may be present as tautomers.
The terms “heterocyclic ring” and “heterocycle”, as used herein, refer to a 4- to 12-membered monocyclic or bicyclic ring containing one, two, three, four, or five heteroatoms independently selected from the group consisting of nitrogen, oxygen, and sulfur and also containing either at least one carbon atom attached to four other atoms or one carbon atom substituted with an oxo group and attached to two other atoms. Four- and five-membered rings may have zero or one double bond. Six-membered rings may have zero, one, or two double bonds. Seven- and eight-membered rings may have zero, one, two, or three double bonds. The non-aromatic heterocycle groups of the invention can be attached through a carbon atom or a nitrogen atom. The non-aromatic heterocycle groups may be present in tautomeric form. Representative examples of nitrogen-containing heterocycles include, but are not limited to, azepanyl, azetidinyl, aziridinyl, azocanyl, dihydropyridazinyl, dihydropyridinyl, dihydropyrimidinyl, morpholinyl, piperazinyl, piperidinyl, pyrrolidinyl, pyrrolinyl, dihydrothiazolyl, dihydropyridinyl, and thiomorpholinyl. Representative examples of non-nitrogen containing non-aromatic heterocycles include, but are not limited to, dioxanyl, dithianyl, tetrahydrofuryl, dihydropyranyl, tetrahydropyranyl, and [1,3]dioxolanyl.
The heterocycles of the invention are substituted with hydrogen, or optionally substituted with 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 substituents independently selected from acyl, acyloxy, alkenyl, alkoxy, alkoxyalkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxyimino, alkoxysulfonyl, alkyl, alkylsulfonyl, amido, arylalkyl, arylalkoxycarbonyl, carboxy, cyano, formyl, haloalkoxy, haloalkyl, halogen, hydroxy, hydroxyalkyl, mercapto, nitro, oxo, thioalkoxy, —NRARB, and (NRARB)sulfonyl.
Additional examples of heterocycles include, but are not limited to, azetidin-2-one, azepan-2-one, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, 1H-benzo[d]imidazol-2(3H)-one, [1,2,4]thiadiazolonyl, [1,2,5]thiadiazolonyl, [1,3,4]thiadiazinonyl, [1,2,4]oxadiazolonyl, [1,2,5]oxadiazolonyl, [1,3,4]oxadiazinonyl, and 1,5-dihydro-benzo[b][1,4]diazepin-2-on-yl.
For the purposes of the application, the term “room temperature” refers to about 25° C. One with skill in the art would understand that room temperature can vary within a few degrees depending on the environment in which any reaction is conducted. For example, temperatures from about 20° C. to about 30° C. are considered to be room temperature.
As used herein, the * denotes a chiral center that can be designated as a R- or S-stereocenter. These stereoisomers are “R” or “S” depending on the configuration of substituents around the chiral carbon atom. The terms “R” and “S” used herein are configurations as defined in the IUPAC 1974 Recommendations for Section E, Fundamental Stereochemistry, Pure Appl. Chem., 1976, 45:13-30.
The term “chiral” refers to a compound that is enantiopure or contains only one of a possible two configurations at a designated stereocenter.
b. Abbreviations
Abbreviations which have been used in the descriptions that follow are: THF for tetrahydrofuran; CDI for 1,1′-carbonyldiimidazole; NaH for sodium hydride; HCl hydrochloric acid; NaHCO3 for sodium bicarbonate; MTBE for methyl t-butyl ether; BH3 for borane; DMSO for dimethylsulfoxide; EtOAc for ethyl acetate; NaOtBu for sodium t-butoxide; and OTf for trifluoromethanesulfonate.
The abbreviation NLT is used to denote “Not Less Than”.
The abbreviation KF is used to denote “Karl Fischer”.
c. Description of Present Invention
In one aspect, the present invention relates to a process for preparing a chiral compound of formula:
Figure US08853390-20141007-C00002

wherein R2, R3, R3a, R3b, are hydrogen; R1 is a 5- to 6-membered heteroaryl ring, cyanophenyl, a 8- to 12-membered bicyclic heteroaryl ring, or a 4- to 12-membered heterocyclic ring; and R4 and R5 taken together with the nitrogen atom to which they are attached form an amine moiety represented by structure:
Figure US08853390-20141007-C00003

wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
A. Chiral Resolution of Cyclopropanecarboxylic Acid with Chiral Amines
The process involves chiral resolution of an aryl-cyclopropanecarboxylic acid with a chiral amine. An illustration of this process step is shown below in Scheme 1:
Figure US08853390-20141007-C00004

The cyclopropanecarboxylic acids:
Figure US08853390-20141007-C00005

is treated with a chiral amine to form a diasteromeric chiral salt, which can be further crystallized to form an enantiomerically pure salt. The enantiomerically pure arylcyclopropanecarboxylic acids salt can be broken-up to release the enantiomerically pure arylcyclopropanecarboxylic acids that can be further reacted with amines, reduced, and coupled with a suitable aromatic, heteroaromatic, or heterocycle group to provide compounds of formula (II). In one embodiment, the chiral amine is selected from the group consisting of (S)-(−)-α-methylbenzylamine, (R)-(+)-N-benzyl-α-methylbenzylamine, (S)-(−)-N-benzyl-α-methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-(−)-N,N-dimethyl-1-phenylethylamine, [R—(R*,R*)]-(+)-bis(a-methylbenzyl)amine, [S—(R*,R*)]-(−)-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-(−)-1-(1-naphthyl)ethylamine, (1R,2R,3R,5S)-(−)-isopinocamphenylamine, (1S,2S,3S,5R)-(+)-isopinocamphenylamine, (1R2R)-(−)-pseudoephedrine, (1S,2S)-(+)-pseudoephedrine, (1R,2S)-(−)-ephedrine, (1S,2R)-(+)-ephedrine, (1R,2S)-(−)-N-methylephedrine, (1S,2R)-(+)-N-methylephedrine, (1R,2S)-(−)-norephedrine, (1S,2R)-(+)-norephedrine, (1R,2S)-(+)-cis-1-amino-2-indanol, (1S,2R)-(−)-cis-1-amino-2-indanol, quinine, and cinchonine. In one embodiment, the chiral amine is (R)-(−)-1-cyclohexylethylamine. In another embodiment, the chiral amine is (R)-(+)-a-methylbenzylamine. In a preferred embodiment, the reaction is carried out in a polar organic solvent. In one embodiment the polar organic solvent is an alcohol. The alcohol can be selected from the group consisting of methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, and n-butyl alcohol. In one embodiment, the alcohol is isopropyl alcohol. In another embodiment, the alcohol is tert-butyl alcohol. In one embodiment, the reaction is carried at a temperature of from about room temperature to about 75° C. In a particular embodiment, the temperature is from about 40° C. to about 60° C. In one particular embodiment, the temperature at which the reaction is carried out is from about 45° C. to about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
In another embodiment, the aryl-cyclopropanecarboxylic acid is prepared from arylaldehyde. An illustration of a process for preparing arylcyclopropanecarboxylic acid from aryl aldehyde is shown below in Scheme A.
Figure US08853390-20141007-C00006
To prepare arylcyclopropanecarboxylic acid, aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate to provide tert-butyl arylacrylate (A-2). Tert-butyl arylacrylate is treated a sulfoxonium ylide to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3). Hydrolysis of the tert-butyl arylcyclopropanecarboxylic acid ester under basic conditions with lithium hydroxide provides arylcyclopropanecarboxylic acid (A-4).
In one embodiment, aryl aldehyde (A-1) is treated with t-butyldimethylphosphonoacetate with any strong base in a non-polar solvent. In one embodiment, the strong base is a metal hydride. Examples of metal hydride base are lithium hydride and sodium hydride. The strong base can also be potassium t-butyloxide, sodium t-butyloxide, lithium t-butyloxide. In one embodiment, sodium hydride (NaH) is the base or potassium t-butyloxide. The reaction is carried out in any non-polar solvent. The non-polar solvent is an organic solvent, for example, toluene, hexane, benzene, 1,4-dioxane, chloroform, or diethyl ether. In one embodiment, the organic solvent is toluene.
Suitable sulfoxonium ylides for treating tert-butyl arylacrylate (A-2) to provide tert-butyl arylcyclopropanecarboxylic acid ester (A-3) can be dimethylsulfoxonium iodide methylide (Corey-Chaykovsky Regent) and trimethylsulfoxonium iodide reagent. In one embodiment, the sulfoxonium reagent is trimethylsulfoxonium iodide reagent. In another embodiment, the sulfoxonium reagent is dimethylsulfoxonium iodide methylide. The reaction is carried out in a polar solvent. The polar solvent can be any suitable polar aprotic solvent. Examples of suitable polar aprotic solvents include, but are not limited to, dimethyl sulfoxide, dimethyl acetamide, dimethyl formamide, or mixtures thereof. In one particular embodiment, the solvent is a mixture of dimethyl sulfoxide and dimethyl acetamide. The mixture can be in a ratio of from about 1:1 to about 2:1 dimethyl sulfoxide/dimethyl acetamide. The reaction can be carried out at any temperature, however, in the reaction mixture is maintained at a temperature of less than about 10° C.
Any base is suitable for use in the hydrolysis of the ester of tert-butyl arylcyclopropanecarboxylic acid (A-3) to provide arylcyclopropanecarboxylic acid (A-4). In one embodiment, the base is any metal hydroxide base. Such base can include, for example, sodium hydroxide, lithium hydroxide, and potassium hydroxide.
B. Amide Formation
The enantiomerically pure arylcyclopropanecarboxylic acid:
Figure US08853390-20141007-C00007

obtained from the chiral resolution is coupled with an amine. An illustration of the process is shown below in Scheme 2.
Figure US08853390-20141007-C00008

Suitable amine reagents can be represented by the formula:
Figure US08853390-20141007-C00009

wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
Suitable amines for the reaction can include any amine of formula (a), as defined above. Such amine can be more particularly selected from pyrrolidine, 2-(S)-methylpyrrolidine, 2-(R)-methylpyrrolidine, 3-methylpyrrolidine, 2-fluoropyrrolidine, 3-fluoropyrrolidine, 2-hydroxypyrrolidine, 3-hydroxypyrrolidine, 2-hydroxymethylpyrrolidine, and 3-hydroxymethylpyrrolidine. Other suitable amines can be more particularly selected from pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2-fluoropyridine, 3-fluoropyridine, 4-fluoropyridine, 2-hydroxypyridine, 3-hydroxypyridine, 4-hydroxymethylpyridine, 2-hydroxymethylpyridine, 3-hydroxymethylpyridine, and 4-hydroxymethylpyridine. In one particular embodiment, the amines are those wherein one of the substituents represented by R7, R8, R9, and R10 is hydrogen or alkyl and the other substituents are hydrogen. Particular preferred examples are pyrrolidine, 2-(S)-methylpyrrolidine, and 2-(R)-methylpyrrolidine.
Other suitable amines are those of formula (b), as defined above. Such amine may be more particularly selected from dimethylamine, diethylamine, methylamine, and ethylamine. In one particular embodiment, the amines are those wherein one of the substituents represented by R7, R8, R9, and R10 is hydrogen or alkyl and the other substituents are hydrogen. Particular preferred examples are dimethylamine and diethylamine.
Additional reagents having an amine group are those of formula (c), as defined above. Such amine may be more particularly selected from morpholine and thiomorpholine. In a particular embodiment, the amine reagent is morpholine.
The reaction is carried out using N,N′-carbonyldiimidazole. In a preferred embodiment, the arylcyclopropanecarboxylic acid, amine, and N,N′-carbonyldiimidazole are combined in an organic solvent. Examples of suitable organic solvents are tetrahydrofuran, toluene, 1,2-dimethoxyethane, 1,4-dioxane, N-methyl-pyrrolidinone, dimethylacetamide, and dimethylformamide. In one embodiment, the solvent is tetrahydrofuran. In another embodiment, the solvent is toluene. Tetrahydrofuran is the most preferred solvent. The reaction can be accomplished at room temperature. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In a preferred embodiment, the reaction is conducted for a time period of about 8 hours.
C. Reduction of Amide
The resulting compound of formula:
Figure US08853390-20141007-C00010

is reduced to provide a compound as shown below in Scheme 3.
Figure US08853390-20141007-C00011
In one embodiment of the invention, the cyclopropanecarboxylic acid amide is reduced using a reducing agent selected from borane reducing reagents. Suitable reducing agents are, for example, borane tetrahydrofuran complex, diborane, borane dimethylsulfide complex, a combination of sodium borohydride and sodium trifluoride. In a preferred embodiment, the reaction is conducted in a polar, aprotic solvent. Examples of suitable solvents are tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, 1,4-dioxane, and methyl-tert-butyl ethers. The preferred solvent is tetrahydrofuran. The reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 80° C. In a preferred embodiment, the reaction is conducted at a temperature of about 50° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
D. Coupling with Aromatic, Heteroaromatic, and Heterocyclic Reagent
In one embodiment of the invention, the compound of formula:
Figure US08853390-20141007-C00012

is reacted with a suitable aromatic or non-aromatic reagent to provide compounds of formula (II). An illustration of this process is shown below in Scheme 4.
Figure US08853390-20141007-C00013

In a preferred embodiment, the compound of formula (I-b) undergoes coupling reactions to provide the compounds of formula (II). Coupling conditions, commonly referred to as metal-catalyzed reaction including palladium, nickel, iron or copper catalyzed reaction, such as Ullmann reaction conditions, are preferred for the reaction.
Any reagent suitable for providing a moiety within the definition of R1 can be used. Reagents suitable for the reaction can include, for example, 5- to 6-membered heteroaryl, 8- to 12-membered bicyclic heteroaryl, and 4- to 12-membered heterocyclic reagents. Examples of particular 5- to 6-membered heteroaryl reagents include, but are not limited to, pyridazin-3(2H)-one, pyridin-2(1H)-one, pyrimidin-2(1H)-one, pyrimidin-2,4(1H,3H)-dione, pyrrolidin-2-one, benzo[d]thiazol-2(3H)-one, pyridin-4(1H)-one, pyrroline, imidazolidin-2-one, 1H-imidazol-2(3H)-one, piperidin-2-one, tetrahydropyrimidin-2(1H)-one, [1,2,4]thiadiazolone, [1,2,5]thiadiazolone, [1,3,4]thiadiazinone, [1,2,4]oxadiazolone, [1,2,5]oxadiazolone, and [1,3,4]oxadiazin-one. Examples of particular 4- to 12-membered heterocyclic reagents include, but are not limited to, azepane, azetidine, aziridine, azocane, dihydropyridine, dihydropyrimidine, piperidine, pyrrolidine, dihydrothiazole, dihydropyridine, thiomorpholine, dioxane, dithiane, tetrahydrofuran, dihydropyrane, tetrahydropyran, [1,3]dioxolane, azetidin-2-one, and azepan-2-one. Examples of particular 8- to 12-membered bicyclic heteroaryl reagents include, but are not limited to, isoindolin-1,3-dione, (Z)-1H-benzo[e][1,4]diazepin-5(4H)-one, and 1H-benzo[d]imidazol-2(3H)-one.
In one embodiment, the reaction is conducted with a copper catalyst and base in a polar aprotic solvent in the presence of N,N′-dimethylenediamine. The copper catalyst can be any copper catalyst. In a preferred embodiment, the copper catalyst is a copper (I) catalyst. Examples of such catalysts are, for example, copper (I) iodide, copper (I) bromide, and copper (I) chloride. Copper (I) iodide is preferred.
The base is any suitable organic base. Examples of such base can include, for example, potassium carbonate (K2CO3), potassium phosphate (K3PO4), cesium carbonate (Cs2CO3), sodium methoxide (NaOMe), sodium tert-butoxide (NaOt-Bu), sodium acetate (NaOAc), and potassium tert-butoxide (KOt-Bu). In one embodiment, the base is K2CO3. In another embodiment, the base is K3PO4.
The basic solvent can be any polar aprotic solvent. Examples of such solvents are, for example, dimethyl acetamide, dimethyl formamide, 1-methyl-2-pyrrolidinone, and pyridine. In a preferred embodiment the polar aprotic solvent is pyridine.
The reaction can be conducted at any suitable temperature. Typically, the reaction is conducted at a temperature between 0° C. and 140° C. In a preferred embodiment, the reaction is conducted at a temperature of about 115° C. Typically, the reaction is accomplished in a period of about 1 to 48 hours, however, the length of the reaction time can vary depending on the particular conditions and quality of the reagents, among other aspects of the reaction. In one embodiment, the reaction is conducted for a time period of about 8 hours.
E. Intermediates
In addition to the processes described above, certain intermediates prepared during the processes are new and useful for preparing enantiomerically pure cyclopropyl amine derivatives as described. Accordingly, the present invention, in one embodiment, also relates to compounds that are:
Figure US08853390-20141007-C00014

wherein, the chiral amines are (S)-(−)-α-methylbenzylamine, (R)-(+)-N-benzyl-a-methylbenzylamine, (S)-(−)-N-benzyl-α-methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-(−)-N,N-dimethyl-1-phenylethylamine, [R—(R*,R*)]-(+)-bis(α-methylbenzyl)amine, [S-(R*,R*)]-(−)-bis(a-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-(−)-1-(1-naphthyl)ethylamine, (1R,2R,3R,5S)-(−)-isopinocamphenylamine, (1S,2S,3S,5R)-(+)-isopinocamphenylamine, (1R2R)-(−)-pseudoephedrine, (1S,2S)-(+)-pseudoephedrine, (1R,2S)-(−)-ephedrine, (1S,2R)-(+)-ephedrine, (1R,2S)-(−)-N-methylephedrine, (1S,2R)-(+)-N-methylephedrine, (1R,2S)-(−)-norephedrine, (1S,2R)-(+)-norephedrine, (1R,2S)-(+)-cis-1-amino-2-indanol, (1S,2R)-(−)-cis-1-amino-2-indanol, quinine, or cinchonine. The chiral amines also can be selected from (R)-(−)-1-cyclohexylethylamine or (R)-(+)-α-methylbenzylamine. In one embodiment, the chiral amine is (R)-(−)-1-cyclohexylethylamine. In another embodiment, the chiral amine is (R)-(+)-α-methylbenzylamine.
In another embodiment, the present invention also relates to compounds that are:
Figure US08853390-20141007-C00015

i.e. 2-(4-bromophenyl)cyclopropanecarboxylic acid R-(−)-1-cyclohexylethylamine salt and 2-(4-bromophenyl)cyclopropanecarboxylic acid (R)-(+)-α-methylbenzylamine salt.
In addition, the present invention, in another embodiment, relates to a compound of formula:
Figure US08853390-20141007-C00016

wherein the amine moiety in the structure above is represented by:
Figure US08853390-20141007-C00017

wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
Still yet, the present invention, in another embodiment, relates to a compound of formula:
Figure US08853390-20141007-C00018

wherein the amine moiety in the structure above is represented by:
Figure US08853390-20141007-C00019

wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; R11, R12, R13, and R14 are each independently selected from the group consisting of hydrogen, hydroxyalkyl, alkyl, and fluoroalkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; Q is O or S; and m is an integer from 1 to 5.
F. Isotopically-Labeled Compounds
The present invention also includes isotopically-labeled compounds, which are identical to those recited in Formula (I-a), (I-b), and (II), but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes suitable for inclusion in the compounds of the invention are hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine, and chlorine, such as but not limited to 2H, 3H, 13C, 15C, 15N, 18O, 17O, 31P, 32P, 35S, 18F, and 36Cl, respectively. Substitution with heavier isotopes such as deuterium, i.e., 2H, can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances. Compounds incorporating positron-emitting isotopes are useful in medical imaging and positron-emitting tomography (PET) studies for determining the distribution of receptors. Suitable positron-emitting isotopes that can be incorporated in compounds of formula (I) are 11C, 13N, 15O, and 18F. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art using appropriate isotopically-labeled reagent in place of non-isotopically-labeled reagent.
G. Compositions
The cyclopropyl amine derivatives of formula (II) and salts prepared by the above processes can be used to prepare compositions. These compositions typically also comprise one or more conventional pharmaceutically acceptable carriers, adjuvants, and/or vehicles (together referred to as “excipients”).
Compositions for oral administration, and solid dosage forms in particular, are preferred. Such solid dosage forms include, for example, capsules, tablets, pills, powders, and granules. In such solid dosage forms, the compounds or salts are ordinarily combined with one or more excipients. If administered per os, the compounds or salts can be mixed with, for example, lactose, sucrose, starch powder, cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets can contain a controlled-release formulation, as can be provided in, for example, a dispersion of the compound or salt in hydroxypropylmethyl cellulose. In the case of capsules, tablets, and pills, the dosage forms also can comprise buffering agents, such as sodium citrate, or magnesium or calcium carbonate or bicarbonate. Tablets and pills additionally can be prepared with enteric coatings.
H. Methods of Use
The compounds and compositions of the invention are useful for treating and preventing certain diseases and disorders in humans and animals. As an important consequence of the ability of the compounds of the invention to modulate the effects of histamine-3 receptors in cells, the compounds described in the invention can affect physiological processes in humans and animals. In this way, the compounds and compositions described in the invention are useful for treating and preventing diseases and disorders modulated by histamine-3 receptors. Typically, treatment or prevention of such diseases and disorders can be effected by selectively modulating the histamine-3 receptors in a mammal, by administering a compound or composition of the invention, either alone or in combination with another active agent as part of a therapeutic regimen.
The compounds of the invention, including but not limited to those specified in the examples, possess an affinity for the histamine-3 receptors and therefore, the compounds of the invention may be useful for the treatment and prevention of diseases or conditions such as attention-deficit hyperactivity disorder (ADHD), deficits in attention, dementia, and diseases with deficits of memory, learning, schizophrenia, cognitive deficits of schizophrenia, cognitive deficits and dysfunction in psychiatric disorders, Alzheimer's disease, mild cognitive impairment, epilepsy, seizures, allergic rhinitis, and asthma, motion sickness, dizziness, Meniere's disease, vestibular disorders, vertigo, obesity, diabetes, type II diabetes, Syndrome X, insulin resistance syndrome, metabolic syndrome, pain, including neuropathic pain, neuropathy, sleep disorders, narcolepsy, pathological sleepiness, jet lag, drug abuse, mood alteration, bipolar disorder, depression, obsessive compulsive disorder, Tourette's syndrome, Parkinson's disease, and medullary thyroid carcinoma, melanoma, and polycystic ovary syndrome.
The preferred total daily dose of a compound or salt (administered in single or divided doses) is typically from about 0.001 to about 100 mg/kg, more preferably from about 0.001 to about 30 mg/kg, and even more preferably from about 0.01 to about 10 mg/kg (i.e., mg of the compound or salt per kg body weight). Dosage unit compositions can contain such amounts or submultiples thereof to make up the daily dose. In many instances, the administration of the compound or salt will be repeated a plurality of times. Multiple doses per day typically may be used to increase the total daily dose, if desired.
Factors affecting the preferred dosage regimen include the type, age, weight, sex, diet, and condition of the patient; the severity of the pathological condition; the severity of the pathological condition; pharmacological considerations, such as the activity, efficacy, pharmacokinetic, and toxicology profiles of the particular compound or salt used; whether a drug delivery system is utilized; and the specific drug combination. Thus, the dosage regimen actually employed can vary widely, and therefore, can derive from the preferred dosage regimen set forth above.
EXAMPLES
The present invention is illustrated by the following examples. It will be understood, however, that the invention is not limited to the specific details of the examples. It will be clear to one with skill in the art that the processes of invention, as described by the Schemes, Detailed Description, and Examples provided herein, would be suitable for preparing the other enantiomer of any of the compounds and intermediates described by the Schemes or the Examples, with the resulting compound having the opposite stereochemistry as described.
Example 1 Preparation of 2-(4-bromophenyl)cyclopropanecarboxylic acid (4)
Figure US08853390-20141007-C00020
Example 1a Preparation of (E)-tert-butyl 3-(4-bromophenyl)acrylate (2)
To a three-necked flask was charged with NaH (95%, 2.6 g, 103 mmol) followed by Toluene (250 ml). The suspension was cooled to 5° C. and to the mixture was added the t-butyldimethylphosphonoacetate (95%, 25.5 ml, 103 mmol) slowly keeping the temperature below 5° C. (very little exotherm observed and H2 gas generated), the resulting mixture was stirred at 5° C. for NLT20 min until no more H2 gas was generated). To the above mixture was then added the aldehyde (17.6 g, 94.2 mmol) and the resulting mixture was stirred at 10° C. for 2 hours and then at room temperature overnight. The reaction was monitored by HPLC until the starting material is consumed (<1.0 pa % of aldehyde). The reaction mixture was poured into 400 ml of water and the organic layer was separated and washed with brine (400 ml), dried with Na2SO4 and concentrated to give an oil, which solidified upon standing to give crude product which was purified by crystallization from ethanol/water water (1:1, 30 mL/g) to give 25 g of product. 1H NMR (400 MHz, DMSO-d6) δ 1.47 (s, 9H), 6.53 (d, 1H, J=15.92), 7.50 (d, 1H, J=16.05), 7.57 (d, 2H, J=8.51), 7.63 (d, 2H, J=8.51). 13C NMR (100 MHz, DMSO-d6) δ 27.8, 79.8, 120.3, 123.0, 129.6, 131.3, 132.9, 141.6 & 164.6 with 4 peaks overlapping. A sample of the isolated product was purified by crystallization from ethanol/water (1:1, 30 mL/g). 1H NMR (400 MHz, DMSO-d6) δ 1.47 (s, 9H), 6.53 (d, 1H, J=15.92), 7.50 (d, 1H, J=16.05), 7.57 (d, 2H, J=8.51), 7.63 (d, 2H, J=8.51). 13C NMR (100 MHz, DMSO-d6) δ 27.8, 79.8, 120.3, 123.0, 129.6, 131.3, 132.9, 141.6 & 164.6 with 4 peaks overlapping.
Example 1b Preparation of tert-butyl 2-(4-bromophenyl)cyclopropanecarboxylate (3)
In a round-bottom flask, mixed trimethylsulfoxonium iodide (6.6 g, 30 mmol) in dimethyl sulfoxide (28 mL, KF=266 ppm H2O) and dimethylacetamide (12 mL, KF=249 ppm H2O). Added sodium tert-butoxide (2.7 g, 28 mmol) in one portion. Stirred the suspension for NLT 0.5 H at room temperature. Separately, mixed (E)-tert-butyl 3-(4-bromophenyl)acrylate 1 (5.66 g, 20 mmol) in dimethyl sulfoxide (20 mL) and heated to 50° C. Then, transferred the sulfur ylide mixture (slight suspension) by cannula (<10 min addition). The flask/cannula were rinsed into the reaction mixture with dimethyl sulfoxide (2-4 mL). Stirred the resulting yellow solution at 50° C., monitoring by HPLC for reaction completion (<1% pA of 1 after 0.5 h). Cooled the reaction mixture to <10° C. before quenching (exothermic) by slow addition with water (120 mL, product precipitates). The resulting product slurry was stirred at room temperature (1-2 h) and then filtered. The flask and wetcake were washed with water (˜70 mL total). The wetcake was dried under vacuum at 45° C. Isolated 4.44 g of an off-white solid (98% pA, 96 wt %) in 71% wt-adjusted yield. A sample of the isolated product was further purified by crystallization from methanol/water (1:1, 20 mL/g). 1H NMR (400 MHz, CDCl3) δ 1.16-1.21 (m, 1H), 1.47 (s, 9H), 1.50-1.55 (m, 1H), 1.77-1.81 (m, 1H), 2.37-2.41 (m, 1H), 6.95 (d, 2H, J=8.37), 7.37 (d, 2H, J=8.51). 13C NMR (100 MHz, CDCl3) δ 17.3, 25.4, 25.5, 28.4, 80.7, 119.7, 127.5, 131.1, 139.2, 171.7 with 4 peaks overlapping.
Example 1c Preparation of 2-(4-bromophenyl)cyclopropanecarboxylic acid (4)
In a round bottom flask, mixed the tert-butyl 2-(4-bromophenyl)cyclopropanecarboxylate 2 (3.7 g, 12.0 mmol) in methanol/tetrahydrofuran (1:1, 30 mL) and heated to 50° C. Separately dissolved lithium hydroxide (1.4 g, 60 mmol) in water (15 mL) and then added to the solution of 2. Increased the heat to 65° C., and monitored by HPLC for reaction completion (<1% pA of 2, ˜3 h). The reaction mixture was then cooled to room temperature and distilled to ½ volume. Cooled the suspension to <20° C. and acidified (exothermic addition) the product mixture to pH<2 with 2N HCl (˜30 mL) to precipitate the product. Stirred the resulting suspension at 20° C. for NLT 0.5 h. Filtered the suspension and washed the wetcake with water (˜20 mL). Dried the wetcake at 45° C. under vacuum. Isolated 2.96 g of an off-white solid (98% pA, 97 wt %=99% wt-adjusted yield). 1H NMR (400 MHz, CDCl3) δ 1.35-1.40 (m, 1H), 1.65-1.69 (m, 1H), 1.85-1.89 (m, 1H), 2.53-2.58 (m, 1H), 6.97 (d, 2H, J=8.37), 7.40 (d, 2H, J=8.37). 13C NMR (100 MHz, CDCl3) δ 17.7, 24.2, 26.7, 120.2, 127.7, 131.3, 138.1 & 178.9 with 2 peaks overlapping.
Example 2 Preparation of 2-(4-bromophenyl)cyclopropanecarboxylic acid, R-(−)-1-cyclohexylethylamine salt
Figure US08853390-20141007-C00021
Example 2 Preparation of 2-(4-bromophenyl)cyclopropanecarboxylic acid, R-(−)-1-cyclohexylethylamine salt. (5)
In a round-bottom flask, mixed the racemic 2-(4-bromophenyl)cyclopropanecarboxylic acid (2.0 g, 8.3 mmol) in isopropyl alcohol (37 mL, 20 mL/g total volume) and heated to 50° C. Added a solution of the R-(−)-1-cyclohexylethylamine (1.1 g, 8.3 mmol) in isopropyl alcohol (3 mL). In <5 min a suspension formed. Continued to stir the suspension at 50° C. for 2 h. Then slowly cooled to room temperature (1-2 h) and stirred the suspension overnight (˜15 h). The suspension was filtered. The flask and wetcake were rinsed with the mother liquors, followed by isopropyl alcohol (5 mL). The wetcake was dried on the filter under vacuum (1.88 g, 61.5% ee). The wetcake was then charged back to the round-bottom flask with isopropyl alcohol (38 mL, 20 mL/g). The suspension was heated to 80° C. After 0.5 h, all solids dissolved. The solution was then slowly cooled to 50° C. (−2 h), during which time a suspension formed. The suspension was stirred at 50° C. for 2 h, and then slowly cooled to room temperature (1-2 h). Stirred the suspension overnight (˜15 h) at room temperature. The suspension was filtered. The flask and wetcake were rinsed with the liquors, followed by isopropyl alcohol (5 mL). The wetcake was dried under vacuum at 45° C. Isolated 1.25 g (97.8% ee, ˜81% recovery). 1H NMR (400 MHz, CD3OD) δ 0.98-1.12 (m, 3H), 1.12-1.21 (m, 1H), 1.23 (d, 3H, J=6.72), 1.24-1.36 (m, 2H), 1.39-1.45 (m, 1H), 1.45-1.55 (m, 1H), 1.65-1.86 (m, 6H), 2.25-2.32 (m, 1H), 3.00-3.08 (m, 1H), 7.00 (d, 2H, J=8.37), 7.35 (d, 2H, J=8.51). 13C NMR (100 MHz, CD3OD) δ 16.2, 17.2, 25.3, 27.1, 27.1, 27.2, 28.9, 29.0, 30.1, 42.8, 53.3, 119.7, 128.4, 131.8, 142.4, 180.4 with 2 peaks overlapping.
Example 3 Preparation of 2-(4-((1S,2S)-2-(((S)-2-methylpyrrolidin-1-yl)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one, L-tartrate monohydrate salt
Figure US08853390-20141007-C00022
Example 3a Preparation of a Compound of Structure 6, Scheme 3
Figure US08853390-20141007-C00023
((1S,2S)-2-(4-bromophenyl)cyclopropyl)(amino)methanone (6a)
The chiral salt 5 was first broken up by treating it with citric acid solution, exacted with MTBE and drying to obtain the free acid, 2-(4-bromophenyl)cyclopropanecarboxylic acid 4 (4.82 g, 20 mmol) and mixed with 1,1′-carbonyldiimidazole (4.22 g, 26 mmol) in THF (45 mL, 10 mL/g total volume). A suspension formed after stirring at room temperature for >30 min. The suspension was cooled to ˜15° C. Then a solution of the (S)-2-methylpyrrolidine (2.55 g, 30 mmol) in THF (5 mL) was added over ˜5 min. The mixture was stirred at room temperature and monitored by HPLC for reaction completion (typically <1 h). Tert-butyl methyl ether (60 mL) was added and the resulting mixture was extracted with a 10% solution of citric acid (40 mL, 4×), followed by a water wash (40 mL). The organic product layer was then concentrated to ˜¼ volume (3-4 mL/g) and then chased with THF (50 mL, 2×). The product solution in THF was then diluted with more THF to ˜10 mL/g and assayed by HPLC against a known standard. 6.1 g product was assayed (99% assayed yield, 98% peak area). A sample was purified by silica gel chromatography and then concentrated in vacuo under high vacuum to an oil that crystallized at room temperature to provide the standard. 1H NMR (400 MHz, DMSO-d6) δ 0.97/1.08 (d, 3H, J=6.4), 1.14-1.19 (m, 1H), 1.38-1.43/1.46-1.51 (m, 1H), 1.46-1.51/1.56-1.63 (m, 1H), 1.72-2.08 (m, 4H), 2.16-2.26 (m, 1H), 3.24-3.30/3.33-3.43 (m, 1H), 3.33-3.43/3.62-3.67 (m, 1H), 3.97-4.04/4.18-4.25 (m, 1H), 7.12/7.13 (d, 2H, J=8.4), 7.41/7.43 (d, 2H, J=8.4). 13C NMR (100 MHz, DMSO-d6) δ 15.9/16.2, 19.5/21.7, 21.7/23.4, 24.1/24.3, 24.6/24.7, 31.4/32.7, 45.6/46.4, 52.1/52.2, 118.3/118.4, 127.5/127.7, 130.5/130.6, 140.0/140.1, 167.8/167.9 with 2 peaks overlapping.
Figure US08853390-20141007-C00024
((1S,2S)-2-(4-bromophenyl)cyclopropyl)(piperidin-1-yl)methanone (6b)
Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and piperidine (2.22 mL, 22.5 mmol) afforded 6b in an assay yield of 4.55 g (14.8 mmol, 99% assay yield, 99% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
1H NMR (400 MHz, DMSO) δ 7.43 (d, J=8.5, 2H), 7.14 (d, J=8.5, 2H), 3.74-3.53 (m, 2H), 3.44 (s, 2H), 2.32-2.16 (m, 2H), 1.69-1.50 (m, 2H), 1.50-1.33 (m, 5H), 1.16 (ddd, J=8.1, 6.3, 3.9, 1H). 13C NMR (101 MHz, DMSO) δ 168.08, 140.12, 130.53, 127.69, 118.31, 45.86, 42.57, 26.35, 25.30, 24.21, 23.85, 22.57, 16.29. MS (ESI+) 308, 310 (M+H).
Figure US08853390-20141007-C00025
(1S,2S)-2-(4-bromophenyl)-N,N-diethylcyclopropanecarboxamide (6c)
Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and diethylamine (2.33 mL, 22.5 mmol) afforded 6c in an assay yield of 4.18 g (14.1 mmol, 94% assay yield, 98% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil to provide the standard.
1H NMR (400 MHz, DMSO) δ 7.43 (d, J=8.5, 2H), 7.14 (d, J=8.5, 2H), 3.50 (dq, J=14.2, 7.1, 1H), 3.41-3.29 (m, 2H), 3.24 (dq, J=14.0, 7.1, 1H), 2.25 (ddd, J=8.9, 6.1, 4.3, 1H), 2.15 (ddd, J=8.3, 5.3, 4.3, 1H), 1.41 (ddd, J=9.0, 5.3, 3.9, 1H), 1.18 (ddd, J=8.3, 6.1, 3.8, 1H), 1.06 (t, J=7.1, 3H), 1.01 (t, J=7.1, 3H). 13C NMR (101 MHz, DMSO) δ 168.82, 140.08, 130.54, 127.64, 118.32, 41.44, 40.17, 24.23, 22.82, 16.43, 15.01, 13.34. MS (ESI+) 296, 298 (M+H).
Figure US08853390-20141007-C00026
(1S,2S)-2-(4-bromophenyl)-N,N-dimethylcyclopropanecarboxamide (6d)
Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and 2 M dimethylamine in THF (11.25 mL, 22.5 mmol) afforded 6d in an assay yield of 3.67 g (13.7 mmol, 91% assay yield, 99% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
1H NMR (400 MHz, DMSO) δ 7.43 (d, J=8.5, 2H), 7.14 (d, J=8.5, 2H), 3.07 (s, 3H), 2.84 (s, 3H), 2.30-2.18 (m, 2H), 1.42-1.33 (m, 1H), 1.19 (ddd, J=8.3, 6.2, 3.9, 1H). 13C NMR (101 MHz, DMSO) δ 169.68, 140.05, 130.52, 127.71, 118.32, 36.72, 35.20, 24.09, 22.59, 16.45. MS (ESI+) 268, 270 (M+H).
Figure US08853390-20141007-C00027
((1S,2S)-2-(4-bromophenyl)cyclopropyl)(morpholino)methanone (6e)
Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and morpholine (1.96 mL, 22.5 mmol) afforded 6e in an assay yield of 4.48 g (14.45 mmol, 96% assay yield, 100% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to a white solid to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.42 (d, J=8.4, 2H), 7.00 (d, J=8.4, 2H), 3.82-3.54 (m, 8H), 2.50 (ddd, J=9.1, 6.2, 4.2, 1H), 1.93 (ddd, J=8.3, 5.3, 4.3, 1H), 1.77-1.65 (m, 1H), 1.30 (ddd, J=8.3, 6.2, 4.5, 1H). 13C NMR (101 MHz, CDCL3) δ 169.72, 139.43, 131.19, 127.42, 119.68, 66.82, 66.73, 46.11, 25.20, 23.27, 16.53. MS (DCI+) 310, 312 (M+H), 327, 329 (M+NH4).
Figure US08853390-20141007-C00028
((1S,2S)-2-(4-bromophenyl)cyclopropyl)(pyrrolidin-1-yl)methanone (6f)
Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and pyrrolidine (1.86 mL, 22.5 mmol) afforded 6f in an assay yield of 4.24 g (14.40 mmol, 96% assay yield, 100% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to a white solid to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.41 (d, J=8.5, 2H), 7.01 (d, J=8.4, 2H), 3.72-3.47 (m, 4H), 2.51 (ddd, J=9.0, 6.2, 4.2, 1H), 2.09-1.82 (m, 5H), 1.69 (ddd, J=9.1, 5.3, 4.3, 1H), 1.32-1.19 (m, 1H). 13C NMR (101 MHz, CDCL3) δ 169.47, 139.94, 131.07, 127.51, 119.45, 46.21, 26.25, 24.97, 24.67, 16.59. MS (DCI+) 294, 296 (M+H), 311, 313 (M+NH4).
Figure US08853390-20141007-C00029
((1S,2S)-2-(4-bromophenyl)cyclopropyl)((R)-2-methylpyrrolidin-1-yl)methanone (6 g)
Following the general procedure, reaction of 5 (3.62 g, 15 mmol) with CDI (3.16 g, 19.5 mmol) and (R)-2-methylpyrrolidine (1.92 g, 22.5 mmol) afforded 6 g in an assay yield of 4.62 g (15.00 mmol, 100% assay yield, 97.5% peak area). A sample was purified by washing the product solution with 5% NaHCO3 and concentrating in vacuo to an oil that solidified at room temperature to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.43-7.38 (m, 2H), 7.04-6.97 (m, 2H), 4.30-4.06 (m, 1H), 3.70-3.43 (m, 2H), 2.54 (dddd, J=19.1, 9.1, 6.2, 4.2, 1H), 2.18-1.81 (m, 4H), 1.75-1.54 (m, 2H), 1.32-1.26 (m, 2H), 1.26-1.18 (m, 2H). 13C NMR (101 MHz, CDCL3) δ 169.31, 169.22, 140.07, 139.94, 131.08, 131.04, 127.57, 127.50, 119.46, 119.40, 53.26, 53.14, 47.09, 46.14, 33.39, 32.16, 25.08, 24.95, 24.92, 24.83, 24.08, 22.29, 21.94, 19.97, 16.95, 16.78. MS (DCI+) 308, 310 (M+H), 325, 327 (M+NH4).
Example 3b Preparation of a Compound of Structure 7, Scheme 3
Figure US08853390-20141007-C00030
(S)-1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)-amine (7a)
The solution of the amide 6a (3.0 g assayed, 9.8 mmol) in THF (KF=561 ppm H2O) was stirred at room temperature under N2. A 1M solution of Borane-THF complex (34.2 mL) was added and the reaction mixture was stirred at room temperature. The reaction mixture was monitored by HPLC for reaction completion (typically >16 h). Upon completion (<1% starting material), the reaction is quenched with slow addition of 2N HCl (20 mL) to control the evolving gas. The product solution is then heated to 65° C. The product solution is monitored by HPLC until the boron-complexed product is completely broken (typically >10 h). The product solution is then cooled to room temperature and extracted with t-butyl methyl ether (40 mL, 2×). The aqueous product solution is then basified to pH=10 with 10% solution of sodium hydroxide in the presence of MTBE (40 mL). The basic aqueous layer is then extracted with more MTBE (40 mL). The organic layers are combined and washed with saturated sodium chloride solution (40 mL). The resulting product solution was assayed by HPLC against a known standard. 2.66 g product was assayed (92% assayed yield, >99% peak area). A sample was concentrated under high vacuum to an oil to provide a standard. 1H NMR (400 MHz, CDCl3) δ 0.82-0.87 (m, 1H), 0.88-0.93 (m, 1H), 1.10 (d, 3H, J=6.03), 1.18-1.26 (m, 1H), 1.36-1.46 (m, 1H), 1.60-1.70 (m, 2H), 1.72-1.80 (m, 1H), 1.82-1.94 (m, 2H), 2.10-2.16 (m, 1H), 2.18-2.27 (m, 1H), 2.99-3.03 (m, 1H), 3.20-3.24 (m, 1H), 6.89 (d, 2H, J=8.37), 7.32 (d, 2H, J=8.51). 13C NMR (100 MHz, CDCl3) δ 14.7, 19.3, 21.9, 23.0, 23.5, 32.7, 54.6, 58.3, 59.9, 118.6, 127.0, 130.9, 141.7 with 2 peaks overlapping.
Figure US08853390-20141007-C00031
1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)piperidine (7b)
Following the general procedure, reaction of 6b (3.70 g assayed, 12.0 mmol) with 1 M BH3 in THF (42.0 mL, 42.0 mmol) afforded 7b in an assay yield of 2.77 g (9.4 mmol, 78% assay yield, 99% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.38 (d, J=8.3, 2H), 6.94 (d, J=8.4, 2H), 2.57-2.41 (m, 5H), 2.34 (dd, J=12.7, 6.8, 1H), 1.69-1.58 (m, 5H), 1.51-1.42 (m, 2H), 1.30-1.20 (m, 1H), 0.95 (dt, J=8.6, 5.1, 1H), 0.87 (dt, J=8.6, 5.4, 1H). 13C NMR (101 MHz, CDCL3) δ 141.77, 130.93, 127.08, 118.61, 63.77, 54.57, 26.21, 24.62, 22.63, 21.34, 15.71. MS (ESI+) 294, 296 (M+H).
Figure US08853390-20141007-C00032
N-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)-N-ethylethanamine (7c)
Following the general procedure, reaction of 6c (3.55 g assayed, 12.0 mmol) with 1 M BH3 in THF (42.0 mL, 42.0 mmol) afforded 7c in an assay yield of 2.98 g (10.6 mmol, 88% assay yield, 99% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.38 (d, J=8.5, 2H), 6.94 (d, J=8.4, 2H), 2.72-2.49 (m, 6H), 1.72-1.64 (m, 1H), 1.26-1.16 (m, 1H), 1.07 (t, J=7.1, 6H), 0.96 (dt, J=8.5, 5.1, 1H), 0.88 (dt, J=8.5, 5.1, 1H). 13C NMR (101 MHz, CDCL3) δ 141.87, 130.91, 127.05, 118.58, 56.95, 46.82, 22.42, 21.62, 15.52, 11.96. MS (ESI+) 282, 284 (M+H).
Figure US08853390-20141007-C00033
1-((1S,2S)-2-(4-bromophenyl)cyclopropyl)-N,N-dimethylmethanamine (7d)
Following the general procedure, reaction of 6d (3.22 g assayed, 12.0 mmol) with 1 M BH3 in THF (42.0 mL, 42.0 mmol) afforded 7d in an assayed yield of 2.21 g (8.7 mmol, 73% assay yield, 99% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.38 (d, J=8.4, 2H), 6.96 (d, J=8.4, 2H), 2.45 (dd, J=12.5, 6.2, 1H), 2.32 (s, 6H), 2.29 (dd, J=12.5, 6.9, 1H), 1.73-1.64 (m, 1H), 1.28-1.16 (m, 1H), 0.97 (dt, J=8.5, 5.1, 1H), 0.89 (dt, J=8.6, 5.4, 1H). 13C NMR (101 MHz, CDCL3) δ 141.66, 130.94, 127.12, 118.67, 63.92, 45.60, 22.48, 22.10, 15.38. MS (ESI+) 254, 256 (M+H).
Figure US08853390-20141007-C00034
4-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)morpholine (7e)
Following the general procedure, reaction of 6e (4.20 g assayed, 13.55 mmol) with 1 M BH3 in THF (47.4 mL, 47.4 mmol) afforded 7e in an assay yield of 2.68 g (9.05 mmol, 67% assay yield, 100% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.41-7.34 (m, 2H), 6.97-6.89 (m, 2H), 3.82-3.66 (m, 4H), 2.63-2.45 (m, 5H), 2.35 (dd, J=12.6, 7.0, 1H), 1.75-1.59 (m, 2H), 1.30-1.14 (m, 1H), 0.97 (dt, J=8.5, 5.1, 1H), 0.92-0.83 (m, 1H). 13C NMR (101 MHz, CDCL3) δ 141.42, 131.02, 127.04, 118.79, 66.98, 63.34, 53.76, 22.56, 21.11, 15.43 MS (DCI+) 296, 298 (M+H).
Figure US08853390-20141007-C00035
1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)pyrrolidine (7f)
Following the general procedure, reaction of 6f (3.95 g assayed, 13.42 mmol) with 1 M BH3 in THF (40.3 mL, 40.3 mmol) afforded 7f in an assay yield of 3.15 g (11.25 mmol, 84% assay yield, 100% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.41-7.34 (m, 2H), 6.98-6.89 (m, 2H), 2.65 (dd, J=12.3, 6.2, 1H), 2.58 (tt, J=4.4, 2.7, 4H), 2.39 (dd, J=12.3, 7.0, 1H), 1.86-1.73 (m, 4H), 1.73-1.61 (m, 1H), 1.36-1.22 (m, 1H), 1.02-0.84 (m, 2H). 13C NMR (101 MHz, CDCL3) δ 141.78, 130.91, 127.11, 118.61, 60.50, 54.42, 23.67, 23.02, 22.45, 15.52. MS (DCI+) 280, 282 (M+H).
Figure US08853390-20141007-C00036
(R)-1-(((1S,2S)-2-(4-bromophenyl)cyclopropyl)methyl)-2-methylpyrrolidine (7 g)
Following the general procedure, reaction of 6 g (4.35 g assayed, 14.10 mmol) with 1 M BH3 in THF (42.3 mL, 42.3 mmol) afforded 7 g in an assayed yield of 3.44 g (11.70 mmol, 83% assay yield, 100% peak area). A sample was concentrated in vacuo to an oil to provide the standard.
1H NMR (400 MHz, CDCL3) δ 7.40-7.34 (m, 2H), 6.97-6.90 (m, 2H), 3.35-3.25 (m, 1H), 3.07 (dd, J=12.4, 5.5, 1H), 2.40-2.28 (m, 1H), 2.21 (dd, J=17.7, 9.0, 1H), 2.02-1.62 (m, 6H), 1.45 (dddd, J=12.1, 10.5, 8.4, 5.6, 1H), 1.36-1.23 (m, 1H), 1.13 (t, J=6.0, 3H), 0.94 (ddt, J=10.7, 8.6, 5.1, 2H). 13C NMR (101 MHz, CDCL3) δ 141.95, 130.89, 127.10, 118.53, 59.69, 57.92, 54.49, 32.76, 22.52, 22.05, 21.22, 19.34, 17.06. MS (DCI+) 294, 296 (M+H).
Example 3c Preparation of a Compound of Structure 8, Scheme 3
Figure US08853390-20141007-C00037
2-(4-((1S,2S)-2-(amino)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one, L-tartrate monohydrate salt (8)
The solution of the bromophenyl 7a in EtOAc (14.5 g assayed, 49.2 mmol) was diluted with pyridine (75 mL) and distilled to ½ volume. N,N′-dimethylethylenediamine (20.1 mL, 19.7 mmol) was added and the solution sparged with N2. Separately, added copper (I) iodide (1.87 g, 9.8 mmol), 3(2H)-pyridazinone (6.15 g, 63.9 mmol) and milled potassium carbonate (10.2 g, 73.8 mmol) to a reactor. Evacuated and purged with N2 (3×). Added the solution of 6 and heated to reflux (˜115° C.). The reaction mixture was monitored by HPLC for reaction completion (typically >16 h). The reaction mixture was cooled to room temperature. Added a 5% solution of ammonium hydroxide (200 mL) and extracted with toluene (300 mL). The aqueous layer was removed and the product, organic layer was distilled to ¼ volume. After chased with more toluene (150 mL), the product layer was extracted with 5% solution of ammonium hydroxide (100 mL, 2×) and then a 12% solution of sodium chloride (100 mL). The product layer was distilled to ¼ volume and chased with Isopropyl Alcohol (150 mL). The resulting product solution (−130 mL) was assayed by HPLC against a known standard. 13.1 g product was assayed (86% assayed yield, 98% peak area).
To the free base solution in isopropyl alcohol was charged a solution of L-tartaric acid in water (1.2 equivalents), at the inner temperature of 35° C. (concentration of the freebase was ˜60 mg/g solution). The solvent composition was adjusted to ˜17% water in isopropyl alcohol (by volume). The solution was cooled to 15° C., and seeded (1 percent calculated for the expected yield, without pretreatment) to induce crystallization. The slurry was held for 1 h, then reheated to 35° C. and held for 1 h to generate a seedbed. Controlled de-supersaturation was carried out by cooling the crystallization slurry to 15° C. over 10 h. The yield was increased by stepwise addition of isopropyl alcohol alternating with hold times over 10 h at 15° C., reducing the water content to 10% (by volume) in the final solvent composition. The solid was filtered and washed with isopropyl alcohol twice (4.5 mL/g free base). Wet cake was dried at 50° C. under vacuum, in humidified environment, with intermittent slight nitrogen bleeding. The isolated solid was used as a standard. 1H NMR (400 MHz, DMSO) δ 0.97-1.17 (m, 2H), 1.26 (d, J=6.4, 3H), 1.40-1.47 (m, 1H), 1.52-1.60 (m, 1H), 1.77-1.95 (m, 2H), 1.99-2.19 (m, 2H), 2.70-2.75 (m, 1H), 2.95-3.02 (m, 1H), 3.08-3.14 (m, 1H), 3.27-3.38 (m, 1H), 3.39-3.55 (m, 1H), 4.02 (s, 2H), 7.04 (dd, J=1.6, 9.5, 1H), 7.16-7.29 (m, 2H), 7.39-7.43 (m, 2H), 7.46 (dd, J=3.7, 9.5, 1H), 8.02 (dd, J=1.6, 3.8, 1H). 13C NMR (100 MHz, DMSO) δ 14.5, 16.2, 19.6, 21.1, 22.3, 31.2, 52.4, 55.3, 61.5, 71.7, 125.0, 125.3, 130.1, 131.8, 136.9, 138.7, 141.2, 158.7, 173.6 with 4 peaks overlapping.
Figure US08853390-20141007-C00038
2-(4-((1S,2S)-2-(piperidin-1-ylmethyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8b)
Following the general procedure, reaction of 7b (2.67 g assayed, 9.08 mmol) with 3(2H)-pyridazinone (1.14 g, 11.8 mmol) afforded a solution of the free base of 8b in an assayed yield of 2.61 g (93% assay yield, 95% peak area).
Formation of the L-(+)-tartaric acid salt gave 3.64 g (82% yield corrected for 5.8 wt % H2O, 99% peak area) of 8b as a white solid which was used as a standard.
1H NMR (400 MHz, DMSO) δ 8.01 (dd, J=3.8, 1.6, 1H), 7.46 (dd, J=9.5, 3.8, 1H), 7.41 (d, J=8.5, 2H), 7.20 (d, J=8.5, 2H), 7.03 (dd, J=9.5, 1.6, 1H), 4.01 (s, 2H), 3.05-2.88 (m, 5H), 2.83 (dd, J=12.9, 7.5, 1H), 2.04-1.94 (m, 1H), 1.72-1.61 (m, 5.4, 4H), 1.52-1.35 (m, 3H), 1.09 (dt, J=8.5, 5.1, 1H), 1.02 (dt, J=8.9, 5.1, 1H). 13C NMR (101 MHz, DMSO) δ 173.51, 158.65, 141.31, 138.65, 136.85, 131.79, 130.05, 125.23, 124.98, 71.61, 59.84, 51.99, 23.22, 22.22, 21.95, 18.42, 14.99. MS (ESI+) 310 (M+H).
Figure US08853390-20141007-C00039
2-(4-((1S,2S)-2-((diethylamino)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8c)
Following the general procedure, reaction of 7c (2.87 g assayed, 10.2 mmol) with 3(2H)-pyridazinone (1.27 g, 13.2 mmol) afforded a solution of the free base of 8c in an assayed yield of 2.55 g (84% assay yield, 93% peak area).
Formation of the L-(+)-tartaric acid salt gave 3.24 g (68% yield corrected for 4.9 wt % H2O, 98% peak area) of 8c as a white solid which was used as a standard.
1H NMR (400 MHz, DMSO) δ 8.02 (dd, J=3.8, 1.6, 1H), 7.46 (dd, J=9.5, 3.8, 1H), 7.41 (d, J=8.5, 2H), 7.21 (d, J=8.5, 2H), 7.03 (dd, J=9.5, 1.6, 1H), 3.98 (s, 2H), 3.12-2.90 (m, 6H), 2.09-2.01 (m, 1H), 1.46-1.35 (m, 1H), 1.15 (t, J=7.2, 6H), 1.12-1.00 (m, 2H). 13C NMR (101 MHz, DMSO) δ 173.57, 158.65, 141.23, 138.68, 136.85, 131.80, 130.05, 125.28, 124.97, 71.54, 54.47, 45.60, 21.81, 18.34, 14.86, 9.15. MS (ESI+) 298 (M+H).
Figure US08853390-20141007-C00040
2-(4-((1S,2S)-2-((dimethylamino)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8d)
Following the general procedure, reaction of 7d (2.13 g assayed, 8.37 mmol) with 3(2H)-pyridazinone (1.05 g, 10.5 mmol) afforded a solution of the free base of 8d in an assayed yield of 1.57 g (5.8 mmol, 70% assay yield, 93% peak area).
Formation of the L-(+)-tartaric acid salt gave 2.33 g (65% yield corrected for 2.7 wt % H2O, 95% peak area) of 8d as a white solid which was used as a standard.
1H NMR (400 MHz, DMSO) δ 8.01 (dd, J=3.8, 1.6, 1H), 7.46 (dd, J=9.5, 3.8, 1H), 7.41 (d, J=8.5, 2H), 7.22 (d, J=8.6, 2H), 7.03 (dd, J=9.5, 1.6, 1H), 4.02 (s, 2H), 3.01 (dd, J=12.9, 6.5, 1H), 2.85 (dd, J=12.0, 6.7, 1H), 2.62 (s, 6H), 2.07-1.97 (m, 1H), 1.47-1.31 (m, 1H), 1.11 (dt, J=8.5, 5.1, 1H), 1.03 (dt, J=5.1, 4.4, 1H). 13C NMR (101 MHz, DMSO) δ 173.67, 158.64, 141.20, 138.67, 136.85, 131.79, 130.05, 125.29, 124.95, 71.67, 60.16, 42.34, 21.76, 18.84, 14.69. MS (ESI+) 270 (M+H).
Figure US08853390-20141007-C00041
2-(4-((1S,2S)-2-(morpholinomethyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8e)
Following the general procedure, reaction of 7e (2.59 g assayed, 8.75 mmol) with 3(2H)-pyridazinone (1.09 g, 11.37 mmol) afforded a solution of the free base of 8e in an assayed yield of 2.03 g (50% assay yield, 96% peak area).
Formation of the L-(+)-tartaric acid salt gave 1.96 g (49% yield, 100% peak area) of 8e as a white solid which was used as a standard.
1H NMR (400 MHz, DMSO) δ 8.00 (dd, J=3.8, 1.6, 1H), 7.44 (dd, J=9.5, 3.8, 1H), 7.40-7.34 (m, 2H), 7.18-7.12 (m, 2H), 7.02 (dd, J=9.5, 1.6, 1H), 4.14 (s, 2H), 3.63-3.48 (m, 4H), 2.59 (dd, J=12.7, 5.7, 1H), 2.48 (dt, J=3.7, 1.9, 2H), 2.30 (dd, J=12.6, 7.4, 1H), 1.86-1.74 (m, 1H), 1.29-1.15 (m, 1H), 1.04-0.81 (m, 2H). 13C NMR (101 MHz, DMSO) δ 172.68, 158.65, 142.26, 138.41, 136.80, 131.75, 130.03, 124.97, 124.92, 71.59, 65.76, 62.02, 52.87, 22.12, 20.90, 14.93. MS (ESI+) 312 (M+H).
Figure US08853390-20141007-C00042
2-(4-((1S,2S)-2-(pyrrolidin-1-ylmethyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8f)
Following the general procedure, reaction of 7f (3.05 g assayed, 10.90 mmol) with 3(211)-pyridazinone (1.36 g, 14.17 mmol) afforded a solution of the free base of 8f in an assayed yield of 3.60 g (74% assay yield, 97% peak area).
Formation of the L-(+)-tartaric acid salt gave 3.46 g (71% yield, 100% peak area) of 8f as a white solid which was used as a standard.
1H NMR (400 MHz, DMSO) δ 8.00 (dd, J=3.8, 1.6, 1H), 7.45 (dd, J=9.5, 3.8, 1H), 7.42-7.36 (m, 2H), 7.23-7.16 (m, 2H), 7.02 (dd, J=9.5, 1.6, 1H), 3.96 (s, 2H), 3.11 (dd, J=12.9, 6.4, 3H), 2.91 (dd, J=12.7, 7.7, 1H), 2.09-1.98 (m, 1H), 1.85 (t, J=6.5, 4H), 1.50-1.33 (m, 1H), 1.14-0.96 (m, 2H). 13C NMR (101 MHz, DMSO) δ 173.40, 158.68, 141.33, 138.66, 136.86, 131.80, 130.05, 125.29, 124.96, 71.28, 57.54, 52.84, 22.76, 21.79, 20.12, 14.69. MS (ESI+) 296 (M+H).
Figure US08853390-20141007-C00043
2-(4-((1S,2S)-2-(((R)-2-methylpyrrolidin-1-yl)methyl)cyclopropyl)phenyl)pyridazin-3(2H)-one (8 g)
Following the general procedure, reaction of 7 g (3.34 g assayed, 11.34 mmol) with 3(2H)-pyridazinone (1.42 g, 14.75 mmol) afforded a solution of the free base of 8 g in an assayed yield of 3.85 g (74% assay yield, 97% peak area).
Formation of the L-(+)-tartaric acid salt gave 3.56 g (68% yield, 99% peak area) of 8 g as a white solid which was used as a standard.
1H NMR (400 MHz, DMSO) δ 8.00 (dd, J=3.8, 1.6, 1H), 7.45 (dd, J=9.5, 3.8, 1H), 7.42-7.36 (m, 2H), 7.23-7.17 (m, 2H), 7.02 (dd, J=9.5, 1.6, 1H), 3.96 (s, 2H), 3.47-3.35 (m, 1H), 2.90 (d, J=10.2, 1H), 2.86-2.75 (m, 1H), 2.12-2.03 (m, 1H), 2.03-1.97 (m, 1H), 1.93-1.74 (m, 2H), 1.62-1.47 (m, 1H), 1.47-1.34 (m, 1H), 1.22 (d, J=6.4, 3H), 1.12-0.98 (m, 2H). 13C NMR (101 MHz, DMSO) δ 173.44, 158.70, 141.41, 138.65, 136.88, 131.82, 130.07, 125.35, 124.94, 71.44, 61.36, 55.38, 52.46, 31.23, 21.38, 21.17, 19.54, 16.41, 15.50. MS (ESI+) 310 (M+H).
It is understood that the foregoing detailed description and accompanying examples are merely illustrative and are not to be taken as limitations upon the scope of the invention, which is defined solely by the appended claims and their equivalents. Various changes and modifications to the disclosed embodiments will be apparent to those skilled in the art. Such changes and modifications, including without limitation those relating to the chemical structures, substituents, derivatives, intermediates, syntheses, formulations and/or methods of use of the invention, may be made without departing from the spirit and scope thereof.

Claims (16)

What is claimed is:
1. A process for preparing a chiral compound of formula:
Figure US08853390-20141007-C00044
wherein R2, R3, R3a, and R3b, are hydrogen; R1 is a 5- to 6-membered heteroaryl ring, cyanophenyl, a 8- to 12-membered bicyclic heteroaryl ring, or a 4- to 12-membered heterocyclic ring; and R4 and R5 taken together with the nitrogen atom to which they are attached form an amine moiety represented by structure:
Figure US08853390-20141007-C00045
wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; and m is an integer from 1 to 5;
comprising the steps of:
a) providing enantiomerically pure chiral salts using chiral resolution with a chiral amine:
Figure US08853390-20141007-C00046
wherein the chiral amine is selected from the group consisting of R-(−)-1-cyclohexylethylamine, (R)-(+)-α-methylbenzylamine, (S)-(−)-α-methylbenzylamine, (R)-(+)-N-benzyl-α-methylbenzylamine, (S)-(−)-N-benzyl-α-methylbenzylamine, (R)-(+)-N,N-dimethyl-1-phenylethylamine, (S)-(−)-N,N-dimethyl-1-phenylethylamine, [R-(R*,R*)]-(+)-bis(α-methylbenzyl)amine, [S-(R*,R*)]-(−)-bis(α-methylbenzyl)amine, (S)-(+)-1-cyclohexylethylamine, (R)-(+)-1-(1-naphthyl)ethylamine, (S)-(−)-1-(1-naphthyl)ethylamine, (1R,2R,3R,5S)-(−)-isopinocamphenylamine, (1S,2S,3S,5R)-(+)-isopinocamphenylamine, (1R2R)-(−)-pseudoephedrine, (1S,2S)-(+)-pseudoephedrine, (1R,2S)-(−)-ephedrine, (1S,2R)-(+)-ephedrine, (1R,2S)-(−)-N-methylephedrine, (1S,2R)-(+)-N-methylephedrine, (1R,2S)-(−)-norephedrine, (1S,2R)-(+)-norephedrine, (1R,2S)-(+)-cis-1-amino-2-indanol, (1S,2R)-(−)-cis-1-amino-2-indanol, quinine, and cinchonine;
b) reacting the chiral pure arylcyclopropanecarboxylic acid after released from the chiral salt obtained from chiral resolution with an amine of formula:
Figure US08853390-20141007-C00047
wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; and m is an integer from 1 to 5; and N,N′-carbonyldiimidazole in tetrahydrofuran to provide a chiral compound of structure:
Figure US08853390-20141007-C00048
wherein X is chloro, bromo, iodo, or trifluoromethanesulfonate, and the amine moiety in the structure above is represented by:
Figure US08853390-20141007-C00049
wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; and m is an integer from 1 to 5;
c) reducing the product of step b to provide a compound of structure:
Figure US08853390-20141007-C00050
wherein X and the amine moiety are as described above for compounds of step b); and d) treating the product of step c with a reagent selected from the group consisting of 5- to 6-membered heteroaryl, 8- to 12-membered bicyclic heteroaryl, 4- to 12-membered heterocycloalkyl, N,N′-dimethylethylenediamine, a copper catalyst, and base, in a basic solvent; to provide a compound of formula (II).
2. The process of claim 1, the chiral amine is R-(−)-1-cyclohexylethylamine and (R)-(+)-α-methylbenzylamine.
3. The process of claim 1, wherein the amine of formula (a) in step b) is pyrrolidine, 2-R-methylpyrrolidine, 2-S-methylpyrrolidine, or 3-methylpyrrolidine.
4. The process of claim 1, wherein the compound of structure (1-a) is reduced using borane.
5. The process of claim 4, wherein the borane reagent is borane or diborane.
6. The process of claim 1, wherein the compound of structure (I-a) is reduced using borane in a polar solvent.
7. The process of claim 6, wherein the polar solvent is tetrahydrofuran.
8. The process of claim 6, wherein the non-polar solvent is toluene.
9. The process of claim 1, wherein the copper catalyst in step d) is copper (I) iodide.
10. The process of claim 1, wherein the copper catalyst in step d) is copper (I) bromide or copper (I) chloride.
11. The process of claim 1, wherein the base in step d) is potassium carbonate (K2CO3).
12. The process of claim 1, wherein the base in step d) is potassium phosphate (K3PO4).
13. The process of claim 1, wherein the base is step d) is cesium carbonate (Cs2CO3), sodium methoxide (NaOMe), sodium tert-butoxide (NaOt-Bu), sodium acetate (NaOAc), potassium tert-butoxide (KOt-Bu).
14. The process of claim 1, wherein the polar aprotic solvent in step d) is pyridine.
15. The process of claim 1, wherein the polar aprotic solvent in step d) is dimethyl acetamide, dimethyl formamide, or 1-methyl-2-pyrrolidinone.
16. A compound of formula:
Figure US08853390-20141007-C00051
wherein the amine moiety in the structure above is represented by:
Figure US08853390-20141007-C00052
wherein R7, R8, R9, and R10 at each occurrence are independently selected from the group consisting of hydrogen, hydroxyalkyl, fluoroalkyl, cycloalkyl, and alkyl; Rx and Ry are each independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkoxy, alkylamino, fluoro, and dialkylamino; and m is an integer from 1 to 5.
US13/232,751 2010-09-16 2011-09-14 Processes for preparing 1,2-substituted cyclopropyl derivatives Expired - Fee Related US8853390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/232,751 US8853390B2 (en) 2010-09-16 2011-09-14 Processes for preparing 1,2-substituted cyclopropyl derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39770510P 2010-09-16 2010-09-16
US13/232,751 US8853390B2 (en) 2010-09-16 2011-09-14 Processes for preparing 1,2-substituted cyclopropyl derivatives

Publications (2)

Publication Number Publication Date
US20120071651A1 US20120071651A1 (en) 2012-03-22
US8853390B2 true US8853390B2 (en) 2014-10-07

Family

ID=44678063

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/232,751 Expired - Fee Related US8853390B2 (en) 2010-09-16 2011-09-14 Processes for preparing 1,2-substituted cyclopropyl derivatives

Country Status (2)

Country Link
US (1) US8853390B2 (en)
WO (1) WO2012037258A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10285998B1 (en) 2018-04-04 2019-05-14 The Menopause Method, Inc. Composition and method to aid in hormone replacement therapy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5203360B2 (en) * 2006-06-23 2013-06-05 アボット・ラボラトリーズ Cyclopropylamine derivatives as histamine H3 receptor modulators
US9108948B2 (en) * 2006-06-23 2015-08-18 Abbvie Inc. Cyclopropyl amine derivatives
US9186353B2 (en) 2009-04-27 2015-11-17 Abbvie Inc. Treatment of osteoarthritis pain
WO2012037258A1 (en) 2010-09-16 2012-03-22 Abbott Laboratories Processes for preparing 1,2-substituted cyclopropyl derivatives
UA111746C2 (en) 2011-07-08 2016-06-10 Х. Луннбек А/С POSITIVE Allosteric Modulators of the Nicotinic Acetylcholine Receptor
WO2015027058A2 (en) * 2013-08-21 2015-02-26 Prexa Pharmaceuticals, Inc. Cyclolkyl amine compounds
CN113277974B (en) * 2020-02-20 2023-04-07 上海科技大学 2-phenylcyclopropylmethylamine derivative, and preparation method and use thereof

Citations (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6412766A (en) 1963-11-05 1965-05-06
US4507318A (en) 1981-06-23 1985-03-26 Pierre Fabre S.A. 1-Aryl 2-aminomethyl cyclopropane carboxylates (Z) as drugs in the treatment of pain
EP0188887A1 (en) 1985-01-17 1986-07-30 Imperial Chemical Industries Plc Tertiary amine compounds
EP0251466A2 (en) 1986-06-23 1988-01-07 Imperial Chemical Industries Plc Chemical process for the preparation of esters of substituted cyclopropyl caboxylic acids
GB2210364A (en) 1987-09-29 1989-06-07 Ici Plc Cyclopropane ring-containing tertiary amine derivatives
US5086054A (en) 1990-07-31 1992-02-04 Sri International Novel arylcycloalkanepolyalkylamines
EP0668270A2 (en) 1994-02-17 1995-08-23 Rhone-Poulenc Agrochimie 2-Imidazoline-5-ones derivatives as fungicides
JP2000047358A (en) 1998-07-28 2000-02-18 Fuji Photo Film Co Ltd Photosensitive material processor
US6048876A (en) 1995-01-23 2000-04-11 Suntory Limited Medicament for the alleviation or treatment of symptom derived from ischemic disease and compound useful therefor
WO2000042023A1 (en) 1999-01-18 2000-07-20 Novo Nordisk A/S Substituted imidazoles, their preparation and use
WO2000044728A1 (en) 1999-01-27 2000-08-03 Pfizer Products Inc. Substituted bicyclic derivatives useful as anticancer agents
WO2000063208A1 (en) 1999-04-16 2000-10-26 Novo Nordisk A/S Substituted imidazoles, their preparation and use
WO2000064884A1 (en) 1999-04-26 2000-11-02 Novo Nordisk A/S Piperidyl-imidazole derivatives, their preparations and therapeutic uses
US6166023A (en) 1998-05-11 2000-12-26 Arzneimittelwerk Dresden Gmbh 1,5- and 3-O-substituted 1H-indazoles having anti-asthmatic, anti-allergic, anti-inflammatory, immunomodulating and neuroprotective action, process for their preparation and their use as medicaments
US6235791B1 (en) 1996-07-29 2001-05-22 Sanofi-Synthelabo Use of amines to produce drugs for preventing tumor cell proliferation
WO2002013821A1 (en) 2000-08-17 2002-02-21 Gliatech, Inc. Novel alicyclic imidazoles as h3 agents
US20020052383A1 (en) 2000-07-06 2002-05-02 Rajagopal Bakthavatchalam Melanin concentrating hormone receptor ligands
WO2002044128A2 (en) 2000-11-28 2002-06-06 Sunesis Pharmaceuticals, Inc. Salicylate analogs as interleukin-4 antagonists
JP2002236340A (en) 2001-02-09 2002-08-23 Konica Corp Processing method for silver halide photographic sensitive material with automatic processing machine
US20020138210A1 (en) 2000-10-10 2002-09-26 The Government Of The United States Of America Microbial identification databases
US20020169188A1 (en) 2001-03-16 2002-11-14 Cowart Marlon D. Novel amines as histamine-3 receptor ligands and their therapeutic applications
US6515013B2 (en) 2000-07-13 2003-02-04 Abbott Laboratories 1,3-disubstituted and 1,3,3-trisubstituted pyrrolidines as histamine-3 receptor ligands and their therapeutic applications
DE10153345A1 (en) 2001-10-29 2003-05-08 Gruenenthal Gmbh Substituted 1H-quinoxalin-2-one compounds and substituted 4-aryl and 4-heteroarylcyclohexane compounds
DE10153347A1 (en) 2001-10-29 2003-05-08 Gruenenthal Gmbh Substituted 1H-quinolin-2-one compounds
EP1321169A1 (en) 2001-12-18 2003-06-25 Biofrontera Pharmaceuticals AG Combination of a serotonin receptor antagonist with a histidine decarboxylase inhibitor as a medicament
US20030119796A1 (en) 2001-09-21 2003-06-26 Schering Corporation Combinations of hormone replacement therapy composition(s) and sterol absorption inhibitor(s) and treatments for vascular conditions in post-menopausal women
WO2003066604A2 (en) 2002-02-05 2003-08-14 Novo Nordisk A/S Novel aryl- and heteroarylpiperazines
US6620839B2 (en) 2000-07-13 2003-09-16 Abbott Laboratories 1,3-disubstituted and 1,3,3-trisubstituted pyrrolidines as histamine-3 receptor ligands and their therapeutic applications
WO2003099276A1 (en) 2002-05-10 2003-12-04 Bristol-Myers Squibb Company 1,1-disubstituted cycloalkyl derivatives as factor xa inhibitors
WO2003104235A1 (en) 2002-06-06 2003-12-18 Novo Nordisk A/S Substituted hexahydropyrrolo[1,2-a]pyrazines, octahydropyrido[1,2-a]pyrazines and decahydropyrazino[1,2-a]azepines
WO2004026305A1 (en) 2002-09-19 2004-04-01 Eli Lilly And Company Diaryl ethers as opioid receptor antagonist
WO2004035556A1 (en) 2002-10-16 2004-04-29 Glaxo Group Limited Substituted piperazines, (1,4) diaszepines, and 2,5-diazabicyclo (2.2.1) heptanes as histamine h1 and/or h3 antagonists or histamine h3 reverse antagonists
WO2004037813A1 (en) 2002-10-25 2004-05-06 Merck Frosst Canada & Co. Pyrrolidin-2-on derivatives as ep4 receptor agonists
WO2004037801A1 (en) 2002-10-23 2004-05-06 Janssen Pharmaceutica, N.V. Piperazinyl and diazapanyl benzamides and benzthioamides
WO2004041776A2 (en) 2002-05-06 2004-05-21 Bristol-Myers Squibb Company SULFONYLAMINOVALEROLAC TAMS AND DERIVATIVES THEREOF AS FACTOR Xa INHIBITORS
WO2004046110A1 (en) 2002-11-15 2004-06-03 Yamanouchi Pharmaceutical Co., Ltd. Antagonist to melanin-concentrating hormone receptor
WO2004056369A1 (en) 2002-12-20 2004-07-08 Glaxo Group Limited Benzo ‘ d!azepine derivatives for the treatment of neurological disorders
WO2004098625A2 (en) 2003-05-05 2004-11-18 Probiodrug Ag Medical use of inhibitors of glutaminyl and glutamate cyclases
WO2004099199A1 (en) 2003-05-06 2004-11-18 Ranbaxy Laboratories Limited Oxazolidinone derivatives as antimicrobials
WO2004101546A1 (en) 2003-04-23 2004-11-25 Glaxo Group Limited Piperazine derivatives and their use for the treatment of neurological and psychiatric diseases
FR2856596A1 (en) 2003-06-27 2004-12-31 Bioprojet Soc Civ NOVEL PSYCHIATRIC DRUG ASSOCIATION AND THE USE OF AN INVERSE HISTAMINE H3 RECEPTOR ANTAGONIST OR AGONIST TO PREPARE A MEDICAMENT PREVENTING ADVERSE EFFECTS OF PSYCHOTROPES.
US6838466B2 (en) 2001-12-20 2005-01-04 Schering Corporation Compounds for the treatment of inflammatory disorders
WO2005009976A1 (en) 2003-07-29 2005-02-03 Novo Nordisk A/S Pyridazinyl- piperazines and their use as histamine h3 receptor ligands
WO2005009471A1 (en) 2003-07-28 2005-02-03 Osaka Industrial Promotion Organization Composition for lowering blood-sugar level
WO2005018045A1 (en) 2003-08-15 2005-02-24 Koninklijke Philips Electronics N.V. Antenna arrangement and a module and a radio communications apparatus having such an arrangement
WO2005032468A2 (en) 2003-10-01 2005-04-14 Bristol-Myers Squibb Company Monocyclic and bicyclic lactams as factor xa inhibitors
JP2005170934A (en) 2003-11-21 2005-06-30 Chisso Corp Liquid crystalline compound with polymerizing ability, which has alkylene fluoride, and polymer thereof
WO2005058837A1 (en) 2003-12-17 2005-06-30 Glaxo Group Limited Benzazepine derivatives as histamine h3 antagonists
US20050171181A1 (en) 2004-02-02 2005-08-04 Pfizer Inc Histamine-3 receptor modulators
WO2005072740A2 (en) 2004-01-30 2005-08-11 Japan Tobacco Inc. Anorectic compounds
US20050182045A1 (en) 2004-02-13 2005-08-18 Banyu Pharmaceutical Co., Ltd. Fused ring 4-oxopyrimidine derivative
WO2005087746A1 (en) 2004-03-12 2005-09-22 Glaxo Group Limited Benzazepine derivatives for the treatment of neurological and psychiatric disorders
JP2005281223A (en) 2004-03-30 2005-10-13 Chisso Corp Optically active compound having 1,2-cyclohexylene ring, liquid crystal composition, liquid crystal display element and molded product
WO2005103032A2 (en) 2004-04-14 2005-11-03 Boehringer Ingelheim International Gmbh Novel alkyne compounds having an mch-antagonistic effect, and medicaments containing said compounds
US20050245529A1 (en) 2004-04-14 2005-11-03 Boehringer Ingelheim International Gmbh Alkyne compounds with MCH antagonistic activity and medicaments comprising these compounds
EP1595881A1 (en) 2004-05-12 2005-11-16 Pfizer Limited Tetrahydronaphthyridine derivates useful as histamine H3 receptor ligands
WO2005108384A1 (en) 2004-05-07 2005-11-17 Warner-Lambert Company Llc 3- or 4-monosubstituted phenol and thiophenol derivatives useful as h3 ligands
WO2005123723A1 (en) 2004-06-18 2005-12-29 Glaxo Group Limited 3-cycloalkylbenzazepines as histamine h3 antagonists
WO2006004937A2 (en) 2004-06-30 2006-01-12 Athersys, Inc. Non-imidazole tertiary amines as histamine 3 receptor inhibitors for the treatment of cognitive and sleep disorders, obesity and other cns disorders
WO2006018260A1 (en) 2004-08-16 2006-02-23 Glaxo Group Limited Tetrahydrobenzazepines as antagonists and/or reverse agonists of the histamine h 3 receptor
WO2006029906A1 (en) 2004-09-17 2006-03-23 Glaxo Group Limited Methylene dipiperidine derivatives
US20060074103A1 (en) 2004-10-06 2006-04-06 Corte James R Cyclic beta-amino acid derivatives as factor Xa inhibitors
WO2006040192A1 (en) 2004-10-15 2006-04-20 Glaxo Group Limited Pyrrolidine derivatives as histamine receptors ligands
WO2006061193A1 (en) 2004-12-07 2006-06-15 Glaxo Group Limited Indenyl derivatives and use thereof for the treatment of neurological disorders
EP1675578A2 (en) 2003-10-15 2006-07-05 Probiodrug AG Use of effectors of glutaminyl and glutamate cyclases
WO2006072596A1 (en) 2005-01-07 2006-07-13 Glaxo Group Limited 6- (2 , 3 , 4 , 5-TETRAHYDRO-lH-BENZO [D] AZEPIN-7-YLOXY) -NICOTAMIDE DERIVATIVES AS RADIOLABELLED LIGANDS
WO2006085692A1 (en) 2005-02-14 2006-08-17 Banyu Pharmaceutical Co., Ltd Crystal of 4(3h)-quinazolinone derivative
US7094790B2 (en) 2003-05-07 2006-08-22 Abbott Laboratories Fused bicyclic-substituted amines as histamine-3 receptor ligands
US7098222B2 (en) 2004-05-12 2006-08-29 Abbott Laboratories Bicyclic-substituted amines having cyclic-substituted monocyclic substituents
WO2006090142A1 (en) 2005-02-24 2006-08-31 Glaxo Group Limited l-{4- [ (l-CYCLOBUTYL-4-PIPERIDINYL) OXY] PHENYL] -4-{ [4- (METHYLSULFONYL) PHENYL]CARBONYL PIPERAZINE AS HISTAMINE H3 ANTAGONIST
WO2006097691A1 (en) 2005-03-14 2006-09-21 Glaxo Group Limited Fused thiazole derivatives having affinity for the histamine h3 receptor
WO2006103537A2 (en) 2005-04-01 2006-10-05 Bioprojet Treatment of epilepsy with non-imidazole alkylamines histamine h3-receptor ligands
WO2006103546A2 (en) 2005-04-01 2006-10-05 Bioprojet Treatment of parkinson's disease, obstructive sleep apnea, dementia with lewy bodies, vascular dementia with non-imidazole alkylamines histamine h3-receptor ligands
WO2006124687A1 (en) 2005-05-12 2006-11-23 University Of Medicine And Dentistry Of New Jersey Opioid receptor subtype-selective agents
WO2006123020A1 (en) 2005-05-18 2006-11-23 Juvantia Pharma Ltd Oy Peptidomimetics selective for the somatostatin receptor subtypes 1 and/or 4
WO2006132424A1 (en) 2005-06-07 2006-12-14 Banyu Pharmaceutical Co., Ltd. Process for production of 4(3h)-quinazolinone derivative
WO2006132914A2 (en) 2005-06-03 2006-12-14 Abbott Laboratories Cyclobutyl amine derivatives
US7153889B2 (en) 2002-11-12 2006-12-26 Abbott Laboratories Bicyclic-substituted amines as histamine-3 receptor ligands
WO2007004735A1 (en) 2005-07-05 2007-01-11 Banyu Pharmaceutical Co., Ltd. Method for producing 4(3h)-quinazolinone derivative
WO2007003604A2 (en) 2005-07-04 2007-01-11 Novo Nordisk A/S Hists1mine h3 receptor antagonists
WO2007025144A1 (en) 2005-08-24 2007-03-01 University Of Illinois - Chicago 5-ht2c receptor agonists as anorectic agents
WO2007024004A1 (en) 2005-08-24 2007-03-01 Banyu Pharmaceutical Co., Ltd. Phenylpyridone derivative
WO2007025596A1 (en) 2005-07-06 2007-03-08 Glaxo Group Limited Pyrazolo [3 , 4-d] azepine derivatives as histamine h3 antagonists
US20070066644A1 (en) 2005-09-20 2007-03-22 Schering Corporation 1-[[1-[(2-Amino-6-methyl-4-pyridinyl)methyl]-4-fluoro-4-piperidinyl]carbonyl]-4-[2-(2-pyridinyl)-3H-imidazo[4,5-b]pyridin-3-yl]piperidine
US20070066588A1 (en) 2005-09-22 2007-03-22 Cowart Marlon D Benzothiazole cyclobutyl amine derivatives
US20070066821A1 (en) 2005-09-16 2007-03-22 Allison Brett D Cyclopropyl amines as modulators of the histamine h3 receptor
US7205316B2 (en) 2004-05-12 2007-04-17 Abbott Laboratories Tri- and bi-cyclic heteroaryl histamine-3 receptor ligands
WO2007048595A1 (en) 2005-10-27 2007-05-03 Ucb Pharma, S.A. Compounds comprising a lactam or a lactam derivative moiety, processes for making them, and their uses
WO2007052124A1 (en) 2005-11-04 2007-05-10 Pfizer Limited Tetrahydronaphthyridine derivative
WO2007126957A2 (en) 2006-03-31 2007-11-08 Novartis Ag New compounds
WO2007137968A1 (en) 2006-05-29 2007-12-06 High Point Pharmaceuticals, Llc 3- (1, 3-benz0di0x0l-5-yl) -6- (4-cyclopropylpiperazin-1-yl) -pyridazine, its salts and solvates and its use as histamine h3 receptor antagonist
WO2007150010A2 (en) * 2006-06-23 2007-12-27 Abbott Laboratories Cyclopropyl amine derivatives as histamin h3 receptor modulators
US20080027041A1 (en) 2006-07-25 2008-01-31 Cephalon, Inc. Pyridizinone derivatives
US7345034B2 (en) 2004-04-07 2008-03-18 Abbott Laboratories Azacyclosteroid histamine-3 receptor ligands
WO2008064310A2 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Mixed opioid receptor active compounds
WO2008064318A2 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Peripheral opioid receptor active compounds
WO2008064317A1 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Lipophilic opioid receptor active compounds
US7381537B2 (en) 2003-05-05 2008-06-03 Probiodrug Ag Use of inhibitors of glutaminyl cyclases for treatment and prevention of disease
WO2008067257A2 (en) 2006-11-29 2008-06-05 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
US20080176925A1 (en) 2007-01-22 2008-07-24 Pfizer Inc Toluene sulfonic acid salt of a therapeutic compound and pharmaceutical compositions thereof
WO2008104590A2 (en) 2007-03-01 2008-09-04 Glaxo Group Limited Novel dosage form
US20080242653A1 (en) 2006-06-23 2008-10-02 Huaqing Liu Cyclopropyl amine derivatives
WO2008151156A1 (en) 2007-05-31 2008-12-11 Sepracor Inc. Phenyl substituted cycloalkylamines as monoamine reuptake inhibitors
US20090036425A1 (en) 2007-08-02 2009-02-05 Pfizer Inc Substituted bicyclolactam compounds
WO2009024823A2 (en) 2007-08-22 2009-02-26 Astrazeneca Ab Oxadiazole derivatives as dgat inhibitors
WO2009030716A1 (en) 2007-09-06 2009-03-12 Glaxo Group Limited Piperazine derivative having affinity for the histamine h3 receptor
US20090068699A1 (en) 2003-05-05 2009-03-12 Probiodrug Ag Use of glutaminyl cyclase inhibitors
US20090075938A1 (en) 2006-02-10 2009-03-19 Graham Michael Wynne Treatment of duchenne muscular dystrophy
WO2009039431A2 (en) 2007-09-21 2009-03-26 Neurogen Corporation Substituted aryl-fused spirocyclic amines
WO2009081195A1 (en) 2007-12-20 2009-07-02 Astrazeneca Ab Carbamoyl compounds as dgat1 inhibitors 190
WO2009085945A1 (en) 2007-12-20 2009-07-09 Abbott Laboratories Benzothiazole and benzoxazole derivatives and methods of use
US20090192168A1 (en) 2008-01-04 2009-07-30 Alex Muci Compounds, Compositions and Methods
WO2009092764A1 (en) 2008-01-24 2009-07-30 Ucb Pharma, S.A. Compounds comprising a cyclobutoxy group
WO2009100294A2 (en) 2008-02-07 2009-08-13 Abbott Laboratories Amide derivatives as positive allosteric modulators and methods of use thereof
WO2009100120A2 (en) 2008-02-04 2009-08-13 Neurogen Corporation Pyridinyl-substituted piperazinyl oxoethyl tetrahydropyrazolopyridines
WO2009115874A2 (en) 2008-03-17 2009-09-24 Matrix Laboratories Ltd. Novel heterocyclic compounds, pharmaceutical compositions containing them and processes for their preparation
WO2009124553A2 (en) 2008-04-09 2009-10-15 Neurokey A/S Use of hypothermia inducing drugs
EP2117540A1 (en) 2007-03-01 2009-11-18 Probiodrug AG New use of glutaminyl cyclase inhibitors
WO2009147149A1 (en) 2008-06-06 2009-12-10 Ucb Pharma, S.A. Compounds comprising a cyclobutoxy group
WO2009151991A1 (en) 2008-06-11 2009-12-17 Merck & Co., Inc. Pyrazole derivatives useful as inhibitors of faah
US20100016344A1 (en) 2008-07-11 2010-01-21 Abbott Laboratories Amino heterocyclic linked pyrimidine derivatives
WO2010007382A1 (en) 2008-07-18 2010-01-21 Takeda Pharmaceutical Company Limited. Benzazepine derivatives and their use as hstamine h3 antagonists
US20100040575A1 (en) 2003-05-05 2010-02-18 Probiodrug Ag Use of inhibitors of glutaminyl cyclase and glutamate cyclase for treatment and prevention of neurodegenerative diseases
CA2734800A1 (en) 2008-08-20 2010-02-25 Probiodrug Ag Antibodies directed against pyroglutamate monocyte chemoattractant protein-1 (mcp-1 n1pe)
WO2010071822A1 (en) 2008-12-19 2010-06-24 Schering Corporation Piperidine and piperazine derivatives and methods of use thereof
WO2010080757A2 (en) 2009-01-07 2010-07-15 Astrazeneca Ab Combinations with an alpha-4beta-2 nicotinic agonist
US20100204205A1 (en) 2007-06-13 2010-08-12 Nir Barak Tolerability of mirtazapine and a second active agent by using them in combination
US20100216812A1 (en) 2009-02-20 2010-08-26 Astrazeneca Ab Cyclopropyl Amide Derivatives
US20100227876A1 (en) 2009-03-06 2010-09-09 Rechfensen Llp Methods of Reducing Side Effects of Analgesics
US20100249144A1 (en) 2007-06-28 2010-09-30 Demong Duane Eugene Substituted piperazines as cb1 antagonists
US20100267714A1 (en) 2008-08-18 2010-10-21 Jorgensen William L Mif modulators
US20100273778A1 (en) 2009-04-27 2010-10-28 Abbott Laboratories Treatment of osteoarthritis pain
US20100286160A1 (en) 2007-06-28 2010-11-11 Intervet Inc. Substituted piperazines as cb1 antagonists
US20110009430A1 (en) 2005-12-22 2011-01-13 Moran Magdalene M Methods and compositions for treating pain
WO2011083314A1 (en) 2010-01-08 2011-07-14 Takeda Pharmaceutical Company Limited Benzazepine derivatives for the treatment of central nervous system disorders
WO2011083315A1 (en) 2010-01-08 2011-07-14 Takeda Pharmaceutical Company Limited Compounds and their use
WO2011083316A1 (en) 2010-01-08 2011-07-14 Takeda Pharmaceutical Company Limited Benzazepine derivatives for the treatment of central nervous system disorders
US20110195932A1 (en) 2007-08-03 2011-08-11 Graham Michael Wynne Drug Combinations for the Treatment of Duchenne Muscular Dystrophy
US20120071651A1 (en) 2010-09-16 2012-03-22 Abbott Laboratories Processes for Preparing 1,2-Substituted Cyclopropyl Derivatives

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1766987A (en) 1923-10-18 1930-06-24 Universal Oil Prod Co Process of cracking petroleum oil

Patent Citations (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1086191A (en) 1963-11-05 1967-10-04 Whitefin Holding Sa Phenylcyclopropane derivatives
NL6412766A (en) 1963-11-05 1965-05-06
US4507318A (en) 1981-06-23 1985-03-26 Pierre Fabre S.A. 1-Aryl 2-aminomethyl cyclopropane carboxylates (Z) as drugs in the treatment of pain
EP0188887A1 (en) 1985-01-17 1986-07-30 Imperial Chemical Industries Plc Tertiary amine compounds
EP0251466A2 (en) 1986-06-23 1988-01-07 Imperial Chemical Industries Plc Chemical process for the preparation of esters of substituted cyclopropyl caboxylic acids
GB2210364A (en) 1987-09-29 1989-06-07 Ici Plc Cyclopropane ring-containing tertiary amine derivatives
US5086054A (en) 1990-07-31 1992-02-04 Sri International Novel arylcycloalkanepolyalkylamines
EP0668270A2 (en) 1994-02-17 1995-08-23 Rhone-Poulenc Agrochimie 2-Imidazoline-5-ones derivatives as fungicides
US6048876A (en) 1995-01-23 2000-04-11 Suntory Limited Medicament for the alleviation or treatment of symptom derived from ischemic disease and compound useful therefor
US6235791B1 (en) 1996-07-29 2001-05-22 Sanofi-Synthelabo Use of amines to produce drugs for preventing tumor cell proliferation
US6166023A (en) 1998-05-11 2000-12-26 Arzneimittelwerk Dresden Gmbh 1,5- and 3-O-substituted 1H-indazoles having anti-asthmatic, anti-allergic, anti-inflammatory, immunomodulating and neuroprotective action, process for their preparation and their use as medicaments
JP2000047358A (en) 1998-07-28 2000-02-18 Fuji Photo Film Co Ltd Photosensitive material processor
WO2000042023A1 (en) 1999-01-18 2000-07-20 Novo Nordisk A/S Substituted imidazoles, their preparation and use
WO2000044728A1 (en) 1999-01-27 2000-08-03 Pfizer Products Inc. Substituted bicyclic derivatives useful as anticancer agents
WO2000063208A1 (en) 1999-04-16 2000-10-26 Novo Nordisk A/S Substituted imidazoles, their preparation and use
WO2000064884A1 (en) 1999-04-26 2000-11-02 Novo Nordisk A/S Piperidyl-imidazole derivatives, their preparations and therapeutic uses
US20020052383A1 (en) 2000-07-06 2002-05-02 Rajagopal Bakthavatchalam Melanin concentrating hormone receptor ligands
US6515013B2 (en) 2000-07-13 2003-02-04 Abbott Laboratories 1,3-disubstituted and 1,3,3-trisubstituted pyrrolidines as histamine-3 receptor ligands and their therapeutic applications
US6620839B2 (en) 2000-07-13 2003-09-16 Abbott Laboratories 1,3-disubstituted and 1,3,3-trisubstituted pyrrolidines as histamine-3 receptor ligands and their therapeutic applications
WO2002013821A1 (en) 2000-08-17 2002-02-21 Gliatech, Inc. Novel alicyclic imidazoles as h3 agents
US20020138210A1 (en) 2000-10-10 2002-09-26 The Government Of The United States Of America Microbial identification databases
WO2002044128A2 (en) 2000-11-28 2002-06-06 Sunesis Pharmaceuticals, Inc. Salicylate analogs as interleukin-4 antagonists
JP2002236340A (en) 2001-02-09 2002-08-23 Konica Corp Processing method for silver halide photographic sensitive material with automatic processing machine
US20020169188A1 (en) 2001-03-16 2002-11-14 Cowart Marlon D. Novel amines as histamine-3 receptor ligands and their therapeutic applications
US6969730B2 (en) 2001-03-16 2005-11-29 Abbott Laboratories Amines as histamine-3 receptor ligands and their therapeutic applications
US20030119796A1 (en) 2001-09-21 2003-06-26 Schering Corporation Combinations of hormone replacement therapy composition(s) and sterol absorption inhibitor(s) and treatments for vascular conditions in post-menopausal women
DE10153347A1 (en) 2001-10-29 2003-05-08 Gruenenthal Gmbh Substituted 1H-quinolin-2-one compounds
US20040224954A1 (en) 2001-10-29 2004-11-11 Michael Sattlegger Substituted 1H-quinoxalin-2-one compounds and substituted 4-aryl- and 4-heteroarylcyclohexane compounds
DE10153345A1 (en) 2001-10-29 2003-05-08 Gruenenthal Gmbh Substituted 1H-quinoxalin-2-one compounds and substituted 4-aryl and 4-heteroarylcyclohexane compounds
US20040224980A1 (en) 2001-10-29 2004-11-11 Michael Sattlegger Substituted 1H-quinolin-2-one compounds
EP1321169A1 (en) 2001-12-18 2003-06-25 Biofrontera Pharmaceuticals AG Combination of a serotonin receptor antagonist with a histidine decarboxylase inhibitor as a medicament
US6838466B2 (en) 2001-12-20 2005-01-04 Schering Corporation Compounds for the treatment of inflammatory disorders
WO2003066604A2 (en) 2002-02-05 2003-08-14 Novo Nordisk A/S Novel aryl- and heteroarylpiperazines
WO2004041776A2 (en) 2002-05-06 2004-05-21 Bristol-Myers Squibb Company SULFONYLAMINOVALEROLAC TAMS AND DERIVATIVES THEREOF AS FACTOR Xa INHIBITORS
WO2003099276A1 (en) 2002-05-10 2003-12-04 Bristol-Myers Squibb Company 1,1-disubstituted cycloalkyl derivatives as factor xa inhibitors
WO2003104235A1 (en) 2002-06-06 2003-12-18 Novo Nordisk A/S Substituted hexahydropyrrolo[1,2-a]pyrazines, octahydropyrido[1,2-a]pyrazines and decahydropyrazino[1,2-a]azepines
WO2004026305A1 (en) 2002-09-19 2004-04-01 Eli Lilly And Company Diaryl ethers as opioid receptor antagonist
WO2004035556A1 (en) 2002-10-16 2004-04-29 Glaxo Group Limited Substituted piperazines, (1,4) diaszepines, and 2,5-diazabicyclo (2.2.1) heptanes as histamine h1 and/or h3 antagonists or histamine h3 reverse antagonists
WO2004037801A1 (en) 2002-10-23 2004-05-06 Janssen Pharmaceutica, N.V. Piperazinyl and diazapanyl benzamides and benzthioamides
WO2004037813A1 (en) 2002-10-25 2004-05-06 Merck Frosst Canada & Co. Pyrrolidin-2-on derivatives as ep4 receptor agonists
US7153889B2 (en) 2002-11-12 2006-12-26 Abbott Laboratories Bicyclic-substituted amines as histamine-3 receptor ligands
WO2004046110A1 (en) 2002-11-15 2004-06-03 Yamanouchi Pharmaceutical Co., Ltd. Antagonist to melanin-concentrating hormone receptor
WO2004056369A1 (en) 2002-12-20 2004-07-08 Glaxo Group Limited Benzo ‘ d!azepine derivatives for the treatment of neurological disorders
US20060040918A1 (en) 2002-12-20 2006-02-23 Bamford Mark J Benzo d!azepine derivatives for the treatment of neurological disorders
US7799773B2 (en) 2002-12-20 2010-09-21 Glaxo Group Limited Benzazepine derivatives for the treatment of neurological disorders
US7696193B2 (en) 2002-12-20 2010-04-13 Glaxo Group Limited Benzazepine derivatives for the treatment of neurological disorders
US20070299056A1 (en) 2002-12-20 2007-12-27 Bamford Mark J Benzazepine derivatives for the treatment of neurological disorders
WO2004101546A1 (en) 2003-04-23 2004-11-25 Glaxo Group Limited Piperazine derivatives and their use for the treatment of neurological and psychiatric diseases
US7381537B2 (en) 2003-05-05 2008-06-03 Probiodrug Ag Use of inhibitors of glutaminyl cyclases for treatment and prevention of disease
US20100040575A1 (en) 2003-05-05 2010-02-18 Probiodrug Ag Use of inhibitors of glutaminyl cyclase and glutamate cyclase for treatment and prevention of neurodegenerative diseases
WO2004098625A2 (en) 2003-05-05 2004-11-18 Probiodrug Ag Medical use of inhibitors of glutaminyl and glutamate cyclases
EP2206496A1 (en) 2003-05-05 2010-07-14 Probiodrug AG Medical use of inhibitors of glutaminyl and glutamate cyclases
EP1961416A1 (en) 2003-05-05 2008-08-27 Probiodrug AG Medical use of inhibitors of glutaminyl and glutamate cyclases
US20080286810A1 (en) 2003-05-05 2008-11-20 Probiodrug Ag Use of Inhibtors of Glutaminyl Cyclases for Treatment and Prevention of Disease
US7732162B2 (en) 2003-05-05 2010-06-08 Probiodrug Ag Inhibitors of glutaminyl cyclase for treating neurodegenerative diseases
US20090068699A1 (en) 2003-05-05 2009-03-12 Probiodrug Ag Use of glutaminyl cyclase inhibitors
WO2004099199A1 (en) 2003-05-06 2004-11-18 Ranbaxy Laboratories Limited Oxazolidinone derivatives as antimicrobials
US7094790B2 (en) 2003-05-07 2006-08-22 Abbott Laboratories Fused bicyclic-substituted amines as histamine-3 receptor ligands
US7358263B2 (en) 2003-05-07 2008-04-15 Abbott Laboratories Fused bicyclic-substituted amines as histamine-3 receptor ligands
WO2005000315A1 (en) 2003-06-27 2005-01-06 Bioprojet Combination product comprising an antagonist or inverse agonist of histamine receptor h3 and an antipsychotic or antidepressant agent, and use thereof for the preparation of a medicament that prevents the adverse effects of psychotropic drugs
FR2856596A1 (en) 2003-06-27 2004-12-31 Bioprojet Soc Civ NOVEL PSYCHIATRIC DRUG ASSOCIATION AND THE USE OF AN INVERSE HISTAMINE H3 RECEPTOR ANTAGONIST OR AGONIST TO PREPARE A MEDICAMENT PREVENTING ADVERSE EFFECTS OF PSYCHOTROPES.
WO2005009471A1 (en) 2003-07-28 2005-02-03 Osaka Industrial Promotion Organization Composition for lowering blood-sugar level
WO2005009976A1 (en) 2003-07-29 2005-02-03 Novo Nordisk A/S Pyridazinyl- piperazines and their use as histamine h3 receptor ligands
WO2005018045A1 (en) 2003-08-15 2005-02-24 Koninklijke Philips Electronics N.V. Antenna arrangement and a module and a radio communications apparatus having such an arrangement
WO2005032468A2 (en) 2003-10-01 2005-04-14 Bristol-Myers Squibb Company Monocyclic and bicyclic lactams as factor xa inhibitors
US7462599B2 (en) 2003-10-15 2008-12-09 Probiodrug Ag Use of effectors of glutaminyl and glutamate cyclases
EP1675578A2 (en) 2003-10-15 2006-07-05 Probiodrug AG Use of effectors of glutaminyl and glutamate cyclases
EP2289498A1 (en) 2003-10-15 2011-03-02 Probiodrug AG Use of inhibitors of glutaminyl clyclase
JP2005170934A (en) 2003-11-21 2005-06-30 Chisso Corp Liquid crystalline compound with polymerizing ability, which has alkylene fluoride, and polymer thereof
WO2005058837A1 (en) 2003-12-17 2005-06-30 Glaxo Group Limited Benzazepine derivatives as histamine h3 antagonists
WO2005072740A2 (en) 2004-01-30 2005-08-11 Japan Tobacco Inc. Anorectic compounds
US20050171181A1 (en) 2004-02-02 2005-08-04 Pfizer Inc Histamine-3 receptor modulators
WO2005080361A1 (en) 2004-02-02 2005-09-01 Pfizer Products Inc. Histamine-3 receptor modulators
US20050182045A1 (en) 2004-02-13 2005-08-18 Banyu Pharmaceutical Co., Ltd. Fused ring 4-oxopyrimidine derivative
WO2005087746A1 (en) 2004-03-12 2005-09-22 Glaxo Group Limited Benzazepine derivatives for the treatment of neurological and psychiatric disorders
JP2005281223A (en) 2004-03-30 2005-10-13 Chisso Corp Optically active compound having 1,2-cyclohexylene ring, liquid crystal composition, liquid crystal display element and molded product
US7345034B2 (en) 2004-04-07 2008-03-18 Abbott Laboratories Azacyclosteroid histamine-3 receptor ligands
WO2005103032A2 (en) 2004-04-14 2005-11-03 Boehringer Ingelheim International Gmbh Novel alkyne compounds having an mch-antagonistic effect, and medicaments containing said compounds
US20050245529A1 (en) 2004-04-14 2005-11-03 Boehringer Ingelheim International Gmbh Alkyne compounds with MCH antagonistic activity and medicaments comprising these compounds
WO2005108384A1 (en) 2004-05-07 2005-11-17 Warner-Lambert Company Llc 3- or 4-monosubstituted phenol and thiophenol derivatives useful as h3 ligands
US7098222B2 (en) 2004-05-12 2006-08-29 Abbott Laboratories Bicyclic-substituted amines having cyclic-substituted monocyclic substituents
US7205316B2 (en) 2004-05-12 2007-04-17 Abbott Laboratories Tri- and bi-cyclic heteroaryl histamine-3 receptor ligands
EP1595881A1 (en) 2004-05-12 2005-11-16 Pfizer Limited Tetrahydronaphthyridine derivates useful as histamine H3 receptor ligands
WO2005123723A1 (en) 2004-06-18 2005-12-29 Glaxo Group Limited 3-cycloalkylbenzazepines as histamine h3 antagonists
WO2006004937A2 (en) 2004-06-30 2006-01-12 Athersys, Inc. Non-imidazole tertiary amines as histamine 3 receptor inhibitors for the treatment of cognitive and sleep disorders, obesity and other cns disorders
WO2006018260A1 (en) 2004-08-16 2006-02-23 Glaxo Group Limited Tetrahydrobenzazepines as antagonists and/or reverse agonists of the histamine h 3 receptor
US20070208005A1 (en) 2004-08-16 2007-09-06 Parr Christopher A Tetrahydrobenzazepines as antagonists and/or reverse agonists of the histamine h3 receptor
WO2006029906A1 (en) 2004-09-17 2006-03-23 Glaxo Group Limited Methylene dipiperidine derivatives
US20060074103A1 (en) 2004-10-06 2006-04-06 Corte James R Cyclic beta-amino acid derivatives as factor Xa inhibitors
WO2006040192A1 (en) 2004-10-15 2006-04-20 Glaxo Group Limited Pyrrolidine derivatives as histamine receptors ligands
WO2006061193A1 (en) 2004-12-07 2006-06-15 Glaxo Group Limited Indenyl derivatives and use thereof for the treatment of neurological disorders
WO2006072596A1 (en) 2005-01-07 2006-07-13 Glaxo Group Limited 6- (2 , 3 , 4 , 5-TETRAHYDRO-lH-BENZO [D] AZEPIN-7-YLOXY) -NICOTAMIDE DERIVATIVES AS RADIOLABELLED LIGANDS
WO2006085692A1 (en) 2005-02-14 2006-08-17 Banyu Pharmaceutical Co., Ltd Crystal of 4(3h)-quinazolinone derivative
US20080139589A1 (en) 2005-02-14 2008-06-12 Akio Kanatani Crystal of 4(3H)-Quinazolinone Derivative
WO2006090142A1 (en) 2005-02-24 2006-08-31 Glaxo Group Limited l-{4- [ (l-CYCLOBUTYL-4-PIPERIDINYL) OXY] PHENYL] -4-{ [4- (METHYLSULFONYL) PHENYL]CARBONYL PIPERAZINE AS HISTAMINE H3 ANTAGONIST
WO2006097691A1 (en) 2005-03-14 2006-09-21 Glaxo Group Limited Fused thiazole derivatives having affinity for the histamine h3 receptor
WO2006103546A2 (en) 2005-04-01 2006-10-05 Bioprojet Treatment of parkinson's disease, obstructive sleep apnea, dementia with lewy bodies, vascular dementia with non-imidazole alkylamines histamine h3-receptor ligands
WO2006103537A2 (en) 2005-04-01 2006-10-05 Bioprojet Treatment of epilepsy with non-imidazole alkylamines histamine h3-receptor ligands
WO2006124687A1 (en) 2005-05-12 2006-11-23 University Of Medicine And Dentistry Of New Jersey Opioid receptor subtype-selective agents
WO2006123020A1 (en) 2005-05-18 2006-11-23 Juvantia Pharma Ltd Oy Peptidomimetics selective for the somatostatin receptor subtypes 1 and/or 4
WO2006132914A2 (en) 2005-06-03 2006-12-14 Abbott Laboratories Cyclobutyl amine derivatives
US20070078133A1 (en) 2005-06-03 2007-04-05 Huaqing Liu Cyclobutyl amine derivatives
WO2006132914A3 (en) 2005-06-03 2007-03-29 Abbott Lab Cyclobutyl amine derivatives
WO2006132424A1 (en) 2005-06-07 2006-12-14 Banyu Pharmaceutical Co., Ltd. Process for production of 4(3h)-quinazolinone derivative
WO2007003604A2 (en) 2005-07-04 2007-01-11 Novo Nordisk A/S Hists1mine h3 receptor antagonists
WO2007004735A1 (en) 2005-07-05 2007-01-11 Banyu Pharmaceutical Co., Ltd. Method for producing 4(3h)-quinazolinone derivative
WO2007025596A1 (en) 2005-07-06 2007-03-08 Glaxo Group Limited Pyrazolo [3 , 4-d] azepine derivatives as histamine h3 antagonists
US20090137587A1 (en) 2005-08-24 2009-05-28 Akira Naya Phenylpyridone Derivative
WO2007025144A1 (en) 2005-08-24 2007-03-01 University Of Illinois - Chicago 5-ht2c receptor agonists as anorectic agents
WO2007024004A1 (en) 2005-08-24 2007-03-01 Banyu Pharmaceutical Co., Ltd. Phenylpyridone derivative
US20070066821A1 (en) 2005-09-16 2007-03-22 Allison Brett D Cyclopropyl amines as modulators of the histamine h3 receptor
US20070066644A1 (en) 2005-09-20 2007-03-22 Schering Corporation 1-[[1-[(2-Amino-6-methyl-4-pyridinyl)methyl]-4-fluoro-4-piperidinyl]carbonyl]-4-[2-(2-pyridinyl)-3H-imidazo[4,5-b]pyridin-3-yl]piperidine
US20070066588A1 (en) 2005-09-22 2007-03-22 Cowart Marlon D Benzothiazole cyclobutyl amine derivatives
WO2007038074A1 (en) 2005-09-22 2007-04-05 Abbott Laboratories Benzothiazole cyclobutyl amine derivatives and their use as histamine-3 receptors ligands
US7576110B2 (en) 2005-09-22 2009-08-18 Abbott Laboratories Benzothiazole cyclobutyl amine derivatives
WO2007048595A1 (en) 2005-10-27 2007-05-03 Ucb Pharma, S.A. Compounds comprising a lactam or a lactam derivative moiety, processes for making them, and their uses
WO2007052124A1 (en) 2005-11-04 2007-05-10 Pfizer Limited Tetrahydronaphthyridine derivative
US20110009430A1 (en) 2005-12-22 2011-01-13 Moran Magdalene M Methods and compositions for treating pain
US20090075938A1 (en) 2006-02-10 2009-03-19 Graham Michael Wynne Treatment of duchenne muscular dystrophy
WO2007126957A2 (en) 2006-03-31 2007-11-08 Novartis Ag New compounds
WO2007137968A1 (en) 2006-05-29 2007-12-06 High Point Pharmaceuticals, Llc 3- (1, 3-benz0di0x0l-5-yl) -6- (4-cyclopropylpiperazin-1-yl) -pyridazine, its salts and solvates and its use as histamine h3 receptor antagonist
US20080242653A1 (en) 2006-06-23 2008-10-02 Huaqing Liu Cyclopropyl amine derivatives
WO2007150010A2 (en) * 2006-06-23 2007-12-27 Abbott Laboratories Cyclopropyl amine derivatives as histamin h3 receptor modulators
US20080021081A1 (en) 2006-06-23 2008-01-24 Huaqing Liu Cyclopropyl amine derivatives
US20080027041A1 (en) 2006-07-25 2008-01-31 Cephalon, Inc. Pyridizinone derivatives
WO2008064318A2 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Peripheral opioid receptor active compounds
WO2008064317A1 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Lipophilic opioid receptor active compounds
WO2008064310A2 (en) 2006-11-22 2008-05-29 University Of Medicine And Dentistry Of New Jersey Mixed opioid receptor active compounds
WO2008067257A2 (en) 2006-11-29 2008-06-05 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
US20080176925A1 (en) 2007-01-22 2008-07-24 Pfizer Inc Toluene sulfonic acid salt of a therapeutic compound and pharmaceutical compositions thereof
WO2008104590A2 (en) 2007-03-01 2008-09-04 Glaxo Group Limited Novel dosage form
EP2117540A1 (en) 2007-03-01 2009-11-18 Probiodrug AG New use of glutaminyl cyclase inhibitors
WO2008151156A1 (en) 2007-05-31 2008-12-11 Sepracor Inc. Phenyl substituted cycloalkylamines as monoamine reuptake inhibitors
US20100204205A1 (en) 2007-06-13 2010-08-12 Nir Barak Tolerability of mirtazapine and a second active agent by using them in combination
US20100249144A1 (en) 2007-06-28 2010-09-30 Demong Duane Eugene Substituted piperazines as cb1 antagonists
US20100286160A1 (en) 2007-06-28 2010-11-11 Intervet Inc. Substituted piperazines as cb1 antagonists
US20090036425A1 (en) 2007-08-02 2009-02-05 Pfizer Inc Substituted bicyclolactam compounds
US20110195932A1 (en) 2007-08-03 2011-08-11 Graham Michael Wynne Drug Combinations for the Treatment of Duchenne Muscular Dystrophy
WO2009024823A2 (en) 2007-08-22 2009-02-26 Astrazeneca Ab Oxadiazole derivatives as dgat inhibitors
EP2195293A2 (en) 2007-08-22 2010-06-16 AstraZeneca AB Cycloptopyl amide derivatives
US20090076020A1 (en) 2007-08-22 2009-03-19 Astrazeneca Ab Cyclopropyl Amide Derivatives 978
EP2253615A1 (en) 2007-08-22 2010-11-24 AstraZeneca AB Cyclopropyl amide derivatives
WO2009030716A1 (en) 2007-09-06 2009-03-12 Glaxo Group Limited Piperazine derivative having affinity for the histamine h3 receptor
WO2009039431A2 (en) 2007-09-21 2009-03-26 Neurogen Corporation Substituted aryl-fused spirocyclic amines
WO2009081195A1 (en) 2007-12-20 2009-07-02 Astrazeneca Ab Carbamoyl compounds as dgat1 inhibitors 190
WO2009085945A1 (en) 2007-12-20 2009-07-09 Abbott Laboratories Benzothiazole and benzoxazole derivatives and methods of use
US20090192168A1 (en) 2008-01-04 2009-07-30 Alex Muci Compounds, Compositions and Methods
US20100292188A1 (en) 2008-01-24 2010-11-18 Ucb Pharma S.A. Compounds Comprising A Cyclobutoxy Group
WO2009092764A1 (en) 2008-01-24 2009-07-30 Ucb Pharma, S.A. Compounds comprising a cyclobutoxy group
EP2238144A1 (en) 2008-01-24 2010-10-13 UCB Pharma, S.A. Compounds comprising a cyclobutoxy group
WO2009100120A2 (en) 2008-02-04 2009-08-13 Neurogen Corporation Pyridinyl-substituted piperazinyl oxoethyl tetrahydropyrazolopyridines
WO2009100294A2 (en) 2008-02-07 2009-08-13 Abbott Laboratories Amide derivatives as positive allosteric modulators and methods of use thereof
WO2009115874A2 (en) 2008-03-17 2009-09-24 Matrix Laboratories Ltd. Novel heterocyclic compounds, pharmaceutical compositions containing them and processes for their preparation
WO2009124553A2 (en) 2008-04-09 2009-10-15 Neurokey A/S Use of hypothermia inducing drugs
EP2300426A1 (en) 2008-06-06 2011-03-30 UCB Pharma, S.A. Compounds comprising a cyclobutoxy group
US20110098300A1 (en) 2008-06-06 2011-04-28 Ucb Pharma, S.A. Compounds Comprising A Cyclobutoxy Group
WO2009147149A1 (en) 2008-06-06 2009-12-10 Ucb Pharma, S.A. Compounds comprising a cyclobutoxy group
WO2009151991A1 (en) 2008-06-11 2009-12-17 Merck & Co., Inc. Pyrazole derivatives useful as inhibitors of faah
US20100016344A1 (en) 2008-07-11 2010-01-21 Abbott Laboratories Amino heterocyclic linked pyrimidine derivatives
WO2010007382A1 (en) 2008-07-18 2010-01-21 Takeda Pharmaceutical Company Limited. Benzazepine derivatives and their use as hstamine h3 antagonists
US20100267714A1 (en) 2008-08-18 2010-10-21 Jorgensen William L Mif modulators
CA2734800A1 (en) 2008-08-20 2010-02-25 Probiodrug Ag Antibodies directed against pyroglutamate monocyte chemoattractant protein-1 (mcp-1 n1pe)
WO2010071822A1 (en) 2008-12-19 2010-06-24 Schering Corporation Piperidine and piperazine derivatives and methods of use thereof
WO2010080757A2 (en) 2009-01-07 2010-07-15 Astrazeneca Ab Combinations with an alpha-4beta-2 nicotinic agonist
US20100216812A1 (en) 2009-02-20 2010-08-26 Astrazeneca Ab Cyclopropyl Amide Derivatives
US20100227876A1 (en) 2009-03-06 2010-09-09 Rechfensen Llp Methods of Reducing Side Effects of Analgesics
WO2010129242A2 (en) 2009-04-27 2010-11-11 Abbott Laboratories Treatment of osteoarthritis pain
US20100273778A1 (en) 2009-04-27 2010-10-28 Abbott Laboratories Treatment of osteoarthritis pain
WO2011083314A1 (en) 2010-01-08 2011-07-14 Takeda Pharmaceutical Company Limited Benzazepine derivatives for the treatment of central nervous system disorders
WO2011083315A1 (en) 2010-01-08 2011-07-14 Takeda Pharmaceutical Company Limited Compounds and their use
WO2011083316A1 (en) 2010-01-08 2011-07-14 Takeda Pharmaceutical Company Limited Benzazepine derivatives for the treatment of central nervous system disorders
US20120071651A1 (en) 2010-09-16 2012-03-22 Abbott Laboratories Processes for Preparing 1,2-Substituted Cyclopropyl Derivatives

Non-Patent Citations (135)

* Cited by examiner, † Cited by third party
Title
Airaksinen M.S., et al., "Histamine Neurons in Human Hypothalamus: Anatomy in Normal and Alzheimer Diseased Brains," Neuroscience, 1991, vol. 44 (2), pp. 465-481.
Arrang J.M., et al., "Auto-inhibition Of Brain Histamine Release Mediated by a Novel Class (H3) of Histamine Receptor," Nature, 1983, vol. 302, pp. 832-837.
Arrang J.M., et al., "Highly Potent and Selective Ligands for Histamine H3-Receptors," Nature, 1987, vol. 327, pp. 117-123.
Arrang J.M., et al., "Histamine H3 Receptor Binding Sites in Rat Brain Membranes:Modulations by Guanine Nucleotides and Divalent Cations," European Journal of Pharmacology, 1990, vol. 188, pp. 219-227.
Barbier A.J., et al., "Acute Wake-Promoting Actions of JNJ-5207852, a Novel, Diamine-based H3 Antagonist," British Journal of Pharmacology, 2004, vol. 143, pp. 649-661.
Barbier A.J., et al., "Histaminergic Control of Sleep-Wake Cycles: Recent Therapeutic Advances for Sleep and Wake Disorders ," CNS and Neurological Disorders-Drug Targets, 2007, vol. 6, pp. 31-43.
Berlin M., et al., "Histamine H3 Receptor as a Drug Discovery Target," Journal of Medicinal Chemistry, 2011, vol. 54 (1), pp. 26-53.
Berlin M., et al., "Recent Advances in the Development of Histamine H3 Antagonists," Expert Opinion in the Therapeutic Patents, 2007, vol. 17 (6), pp. 675-687.
Bernaerts P., et al., "Histamine H3 Antagonist Thioperamide Dose-Dependently Enhances Memory Consolidation and Reverse Amnesia Induced by Dizocilpine or Scopolamine in a One-Trail Inhibitory Avoidance Task in Mice," Behavioural Brain Research, 2004, vol. 154, pp. 211-219.
Bjenning C., et al., "Peripherally Administered Ciproxifan Elevates Hypothalamic Histamine levels and Potently Reduces Food Intake in the Sprague Dawley Rat" in: Histamine Research in the New Mellennium, Watanabe T., et al., eds., Elsevier Science, 2001, pp. 449-450.
Blandina P., et al., "Histamine Neuronal System as a Therapeutic Target for the Treatment of Cognitive Disorders," Future Neurology, 2010, vol. 5 (4), pp. 543-555.
Browman K.E. et al., "Enhancement of Prepulse Inhibition of Startle in Mice by the H3 Receptor Antagonists Thioperamide and Ciproxifan," Behavioiral Brain Research, 2004m vol. 153 (1), pp. 69-76.
Burger A., et al., "2-(4-imidazolul)cyclopropylamine," Journal of Medicinal Chemistry, 1970, vol. 13, pp. 33-35.
Celanire S., et al., "Keynote Review: Histamine H3 Receptor Antagonists Reach Out for The Clinic," Drug Discovery Today, 2005, vol. 10 (23/24), pp. 1613-1627.
Charette A.B. et al., "(2S,3S)-(+)-(3-Phenylcyclopropyl)Methanol," Org Syntheses Coll, 1999, vol. 76, pp. 86-96.
Chen Z., et al., "Effects of Histamine on MK-801-induced Memory Deficits in Radial Maze Performance in Rats," Brain Research, 1999, vol. 839, pp. 186-189.
Chen Z., et al., "Pharmacological Effects of Carcinine on Histaminergic Neurons in the Brain," British Journal of Pharmacology, 2004, vol. 143, pp. 573-580.
Clapham J., et al., "Thioperamide, the Selective Histamine H3 Receptor Antagonist, Attenuates Stimulant Induced Locomotor Acitivity in the Mouse," European Jounal of Pharmacology, 1994, vol. 259 (2), pp. 107-114.
Collins S.D., "Emerging Therapies for Neuropathic Pain," Expert Opinion on Emerging Drugs, 2005, vol. 10 (1), pp. 95-108.
Cowart M., et al., "4-(2-[2-(2(R)- Methylpyrrolidin-1-yl) ethyl] Benzofuran-5yl) Benzonitrile and Related 2-Aminoethylbenzofuran H3 Receptor Antagonists Potently Enhance Cognition and Attention," Journal of Medicinal Chemistry, 2005, vol. 48 (1), pp. 38-55.
Cowart M., et al., "Pharmacological Characterization of A-960656, a Histamine H3 Receptor Antagonist with Efficacy in Animal Models of Osteoarthritis and Neuropathic Pain," European Journal of Pharmacology, 2012, vol. 684 (1-3), pp. 87-94.
Cross, L.C. et al., "IUPAC Commission on Nomenclature of Organic Chemistry: Rules for the Nomenclature of Organic Chemistry, Section E: Stereochemistry," Pure and Applied Chemistry, 1976, vol. 45, pp. 13-30.
De Almeida M.A., et al., "Memory Facilitation by Histamine," Archives Internationales De Physiologie Et De Biochimie, 1986, vol. 283 (2), pp. 193-198.
Delaunois A., et al., "Modulation of Acetylcholine, Capsaicin and subsztance P Effects by Histamine H3 Receptors in Isolated Perfused Rabbit Lungs," European Journal of Pharmacology, 1995, vol. 277 (2-3), pp. 243-250.
Dimitriadou V., et al., "Functional Relationship Between Mast Cells and C-Sensitive Nerve Fibres Evidenced by Histamine H3 -Receptor Modulation in Rat Lung and Spleen," Clinical Science, 1994, vol. 87, pp. 151-163.
Dray A., et al., "Pharmacology of Chronic Pain," Trends in Pharmacological Sciences, 1994, vol. 15 (6), pp. 190-197.
Dray et al., "Arthritis Pain. Future Targets to Control Osteoarthritis Pain," Arthritis Research and Therapy, 2007, vol. 9 (3), pp. 212.
Dumery V., et al., "Development of Amygdaloid Cholinergic Mediation of Passive Avoidance Learning in the Rat," Experimental Brain Research , 1987, vol. 67(1), pp. 61-69.
Dvorak C.A., et al., "4-Phenoxypiperidines: Potent, Conformationally Restricted, non-Imidazole Histamine H3 Antagonists," Journal of Medicinal Chemistry, 2005, vol. 48 (6), pp. 2229-2238.
Dworkin R.H., "An Overview of Neuropathic Pain: Syndromes, Symptoms, Signs, and Several Mechanisms," Clinical Journal of Pain, 2002, vol. 18 (6), pp. 343-349.
Esbenshade T.A., et al., "Histamine H3 Receptor Antagonists: Preclinical Promise for Treating Obesity and Cognitive Disorders," Molecular Interventions, 2006, vol. 6 (2), pp. 77-88.
Esbenshade T.A., et al., "Pharmacological and Behavioral Properties of A-349821, a Selective and Potent Human Histamine H3 Receptor Antagonist," Biochemical Pharmacology, 2004, vol. 68 (5), pp. 933-945.
Esbenshade T.A., et al., "Pharmacological Properties of ABT-239 [4-(2- {2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yObenzonitrile]: I. Potent and Selective Histamine H3 Receptor Antagonist with Drug-Like Properties," Journal of Pharmacology and Experimental Therapeutics, 2005, vol. 313 (1), pp. 165-175.
Esbenshade T.A., et al., "The Histamine H3 Receptor: An Attractive Target for the Treatment of Cognitive Disorders," British Journal of Pharmacology, 2008, vol. 154 (6), pp. 1166-1181.
Fernihough J., et al., "Pain Related Behaviour in Two Models of Osteoarthritis in the Rat Knee," Pain, 2004, vol. 112 (1-2), pp. 83-93.
Final Office Action mailed Aug. 8, 2011 for U.S. Appl. No. 11/766,987, filed Jun. 22, 2007.
Fitzsimons C., et al., "Histamine Receptors Signaling in Epidermal Tumor Cell Lines with H-Ras Gene Alterations," Inflammation Research, 1998, vol. 47 (1), pp. S50-S51.
Foley A.G., et al., "H3 Receptor Antagonism Enhances NCAM PSA-Mediated Plasticity and Improves Memory Consolidation in Odor Discrimination and Delayed Match-to-Position Paradigms," Neuropsychopharmacology, 2009, vol. 34 (12), pp. 2585-2600.
Fox G.B., et al., "Effects of Histamine H3 Receptor Ligands GT2331 and Ciproxifan in a Repeated Acquisition Response in the Spontaneously Hypertensive Rat Pup," Behavioural Brain Research, 2002, vol. 131 (1-2), pp. 151-161.
Fox G.B., et al., "Identification of Novel H3 Receptor (H3R) Antagonists with Cognition Enhancing Properties in Rats," Inflammation Research, 2003, vol. 52 (1), pp. S31-S32.
Fox G.B., et al., "Pharmacological Properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinty]ethyl}-benzofuran-5-yhbenzonitrile]- : II Neurophysiological Characterization and Broad Preclinical Efficacy in Cognition and Schizophrenia of a Potent and Selective Histamine H3 R," Journal of Pharmacology and Experimental Therapeutics, 2005, vol. 313 (1), pp. 176-190.
Fox G.B., et al., "Two Novel and Selective Nonimidazole H3 Receptor Antagonists A-304121 and A-317920: II. In Vivo Behavioral and Neurophysiological Characterization," Journal of Pharmacology and Experimental Therapeutics, 2003, vol. 305 (3), pp. 897-908.
Furniss B.S., et al., Vogel's Textbook of Practical Organic Chemistry, 5th Edition, Longman Scientific & Technical, 1989, Table of Contents.
Glase S.A., et al., "Attention Deficit Hyperactivity Disorder: Pathophysiology and Design of New Treatments," Annual Reports in Medicinal Chemistry, 2002, vol. 37, pp. 11-20.
Haas L., et al., "Subcortical Modulation of Synaptic Plasticity in the Hippocampus," Behavioural Brain Research, 1995, vol. 66 (1-2), pp. 41-44.
Halpern, M.T., "GT-2331," Current Opinion in Central and Peripheral Nervous System Investigational Drugs, vol. 1, pp. 524-527, 1999.
Hancock A.A., et al., "Antiobesity Effects of A-331440, a Novel Non-Imidazole Histamine H3 Receptor Antagonist," European Journal of Pharmacology, 2004, vol. 487 (1-3), pp. 183-197.
Hancock A.A., et al., "Histamine H3 Antagonists in Models of Obesity," Inflammatory Research, 2004, vol. 53 (Suppl. 1), pp. S47-S48.
Harada C., et al., "Inhibitory Effect of lodophenpropit, a Selective Histamine H3 Antagonist, on Amygdaloid Kindled Seizures," Brain Research Bulletin, 2004, vol. 63 (2), pp. 143-146.
Harada C., et al., "Intracerebroventricular Administration of Histamine H3 Receptor Antagonists Decreases Seizures in Ray Models of Epilepsia," Methods and Findings in Experimental and Clinical Pharmacology, 2004, vol. 26 (4), pp. 263-270.
Hriscu A., et al., "Experimental Evaluation of the Analgesic Efficacy of Some Antihistamines as Proof of the Histaminergic Receptor Involvement in Pain," Famacia, 2001, vol. 49 (2), pp. 23-30.
Hsieh G.C., et al., "The Histamine H3 Receptor as a Potential Antinociceptive Target: Effects of Selective H3 Antagonists in Several Preclinical Pain Models and the Involvement of Noradrenergic Systems," Global Pharmaceutical Research & Development, 2009, Abbott Laboratories, Abbott Park, IL 60064.
Huang Y.W., et al., "Effect of the Histamine H3-antagonist Clobenpropit on Spatial Memory Deficits Induced by MK-801 as Evaluated by Radial Maze in Sprague-Dawley Rats," Behavioural Brain Research, 2004, vol. 151 (1-2), pp. 287-293.
International Search Report for Application No. PCT/DK2003/000071, mailed on Jul. 29, 2003, 10 pages.
International Search Report for Application No. PCT/EP2006/063753, mailed on Apr. 27, 2007, 11 pages.
International Search Report for Application No. PCT/EP2008/052430, mailed on May 25, 2009, 5 pages.
International Search Report for Application No. PCT/US2007/071849, mailed on Jan. 29, 2008, 4 pages.
International Search Report for Application No. PCT/US2008/077103, mailed on Apr. 27, 2009, 3 pages.
International Search Report for Application No. PCT/US2008/085622, mailed on Jun. 8, 2009, 6 pages.
International Search Report for Application No. PCT/US2008/085662, mailed on Jun. 8, 2009, 4 pages.
International Search Report for Application No. PCT/US2009/033062, mailed on Sep. 1, 2009, 4 pages.
International Search Report for Application No. PCT/US2009/033329, mailed on Sep. 17, 2009, 3 pages.
International Search Report for Application No. PCT/US2010/032488, mailed on Nov. 2, 2010, 11 pages.
International Search Report for Application No. PCT/US2011/051603, mailed on Dec. 5, 2011, 5 pages.
Itoh E., et al., "Thioperamide, A Histamine H3 Receptor Antagonist, Powerfully Suppresses Peptide YY-Induced Food Intake in Rats," Biological Psychiatry, 1999, vol. 45 (4), pp. 475-481.
Jantzen, et al., Modern Pharmacueticals, 1996, pp. 596.
Joshi S.K., et al., "Animal Models of Pain for Drug Discovery," Expert Opinion on Drug Discovery, 2006, vol. 1 (4), pp. 341-352.
Kallemeyn J.M., et al., "Asymmetric Synthesis of Di- and Trisubstituted Cyclopropanes Through an Intramolecular Ring Closure," Synlett, 2011, vol. 4, pp. 535-538.
Kallemeyn J.M., et al., ChemInform, 2011, vol. 42 (26), 4 pages.
Komater V.A., et al., "H3 Receptor Blockade by Thioperamide Enhances Cognition in Rats without Inducing Locomotor Sensitization," Psychopharmacology, 2003, vol. 167 (4), pp. 363-372.
Krueger K.M., et al., "G Protein-Dependent Pharmacology of Histamine H3 Receptor Ligands: Evidence for Heterogeneous Active State Receptor Conformations," Journal of Pharmacology and Experimental Therapeutics, 2005, vol. 314 (1), pp. 271-281.
Leurs R., et al., "En Route to New Blockbuster Anti-Histamines: Surveying the Offspring of the Expanding Histamine Receptor Family," Trends in Pharmacological Sciences, 2011, vol. 32 (4), pp. 250-257.
Leurs R., et al., "Histamine Homologues Discriminating between Two Functional H3 Receptor Assays. Evidence for H3 Receptor," Journal of Pharmacology and Experimental Therapeutics, 1996, vol. 276 (3), pp. 1009-1015.
Leurs R., et al., "The Medicinal Chemistry And Therapeutic Potentials Of Ligands Of The Histamine H3 Receptor," Progress In Drug Research, 1995, vol. 45, pp. 107-165.
Leurs R., et al., eds., "The Histamine H3 Receptor: A Target for New Drugs," vol. 30, Elsevier Science B.V., 1998, Table of Contents.
Leurs R., et al., The Histamine H3-Receptor: A Target For Developing New Drugs, Elsevier Science, 1998, vol. 39, pp. 127-165.
Ligneau X., et al., "Neurochemical and Behavioral Effects of Ciproxifan, a Potent Histamine H3-Receptor Antagonist," Journal of Pharmaceutical and Experimental Therapeutics, 1998, vol. 287 (2), pp. 658-666.
Lin J.S., et al., "Involvement of Histaminergic Neurons in Arousal Mechanisms Demonstrated with H3 -Receptor Ligands in the Cat," 1990, vol. 523 (2), pp. 325-330.
Lozada A.F., et al., "Plasticity of Histamine H3 Receptor Expression and Binding in the Vestibular Nuclei After Labyrinthectomy in Rat," Biomedical Center Neuroscience, 2004, vol. 5, pp. 32.
Malmberg Aiello P., et al., "Role of Histamine in Rodent Antinociception," British Journal of Pharmacology, 1994, vol. 111 (4), pp. 1269-1279.
Mazurkiewicz-Kwilecki I.M., et al., "Changes in the Regional Brain Histamine and Histidine Levels in Postmortem Brains of Alzheimer Patients," Canadian Journal of Physiology and Pharmacology, 1989, vol. 67 (1), pp. 75-78.
McLeod R.L., et al., "Combined Histamine H1 and H3 Receptor Blockade Produces Nasal Decongestion in an Experimental Model of Nasal Congestion," American Journal of Rhinology, 1999, vol. 13 (5), pp. 391-399.
McLeod R.L., et al., "Histamine H3 Antagonists," Progress in Respiratory Research, 2001, vol. 31, pp. 133-136.
Medhurst a.D., et al., "GSK189254, a Novel H3 Receptor Antagonist that Binds to Histamine H3 Receptors in Alzheimer's Disease Brain and Improves Cognitive Performance in Preclinical Models," Journal of Pharmacology and Experimental Therapeutics, 2007, vol. 321 (3), pp. 1032-1045.
Medhurst A.D., et al., "Structually Novel Histamine H3 Receptor Antagonists GSK207040 Secondary Allodynia in Rats," Biochemical Pharmacology, 2007, vol. 73, pp. 1182-1194.
Medhurst S.J., et al., "Novel histamine H3 receptor antagonists GSK189254 and GSK334429 are efficacious in surgically-induced and virally-induced rat models of neuropathic pain," Pain, 2008, vol. 138 (1), pp. 61-69.
Meguro K., et al., "Effects of Thioperamide, a Histamine H3 Antagonist, on the Step-Through Passive Avoidance Response and Histidine Decarboxylase Activity in Senescence-Accelerated Mice," Pharmacology, Biochemistry and Behavior, 1995, vol. 50 (3), pp. 321-325.
Monti J., et al., "Sleep and Waking During Acute Histamine H3 Agonist BP2.94 or H3 Antagonist Carboperamide (MR 16155) Administration in Rats," Neuropsychopharmacology, 1996, vol. 15 (1), pp. 31-35.
Morisset S., et al., "Atypical Neuroleptics Enhance Histamine Turnoer in Brain Via 5-Hydroxytryptamino2A Receptor Blockade," Journal Pharmacology and Experimental Therapeutics, 1999, vol. 288 (2), pp. 590-596.
Murakami K., et al., "AQ-0145, A Newly Developed Histamine H3 Antagonist, Decreased Seizure Susceptibility of Electrically Induced Convulsions In Mice," Methods and Findings in Experimental and Clinical Pharmacology, 1995, vol. 17 Suppl C, pp. 70-73.
Njar, "High-Yields Synthesis of Novel Imidazoles and Triazoles form Alcohols and Phenols," Synthesis, 2000, pp. 2019-2028.
Office Action mailed Jan. 7, 2011 for U.S. Appl. No. 11/766,987, filed Jun. 22, 2007.
Office Action mailed Jan. 9, 2009 for U.S. Appl. No. 11/766,987, filed Jun. 22, 2007.
Office Action mailed Mar. 22, 2010 for U.S. Appl. No. 11/956,816, filed Dec. 14, 2007.
Office Action mailed Oct. 19, 2009 for U.S. Appl. No. 11/766,987, filed Jun. 22, 2007.
Office Action mailed Oct. 7, 2010 for U.S. Appl. No. 11/956,816, filed Dec. 14, 2007.
Office Action mailed Sep. 8, 2008 for U.S. Appl. No. 11/766,987, filed Jun. 22, 2007.
O'Neill A.B., et al., "Pharmacological Evaluation of the in Vivo Model of Vestibular Dysfunction in the Rat," Methods and Findings in Experimental and Clinical Pharmacology, 1999, vol. 21 (4), pp. 285-289.
Onodera K., et al., "Improvement by FUB 181, A Novel Histamine H 3-Receptor Antagonist, of Learning and Memory in the Elevated Plus-Maze Test in Mice," Naunyn-Schmiedebergs' Archives of Pharmacology, 1998, vol. 357 (5), pp. 508-513.
Onodera K., et al., "Neuropharmacology of the Histaminergic Neuron System in the Brain And its Relationship with Behavioral Disorders," Progress in Neurobiology, 1994, vol. 42 (6), pp. 685-702.
Pan J.B., et al., "Histaminergic Ligands Attenuate Barrel Rotation in Rats Following Unilateral Labyrinthectomy," Methods and Findings in Experimental and Clinical Pharmacology, 1998, vol. 20 (9), pp. 771-777.
Panula P., et al., "Neuronal Histamine Deficit in Alzheimer's Disease," Neuroscience, 1998, vol. 82 (4), pp. 993-997.
Passani M.B., et al., "Central Histaminergic System and Cognition," Neuroscience and Biobehavioral Reviews, 2000, vol. 24 (1), pp. 107-113.
Penning T.D., et al., "Structure-Activity Relationship Studies on 1-[2-(4-Phenylphenoxy)ethly]pyrrolidine (SC-22716), a Potent Inhibitor of Leukotriene A4 (LTA4) Hydrolase," Journal of Medicinal Chemistry, 2000, vol. 43 (4), pp. 721-735.
Perez-Garcia C., et al., "Effects of Histamine H3 Receptor Ligands in Experimental Models Of Anxiety And Depression," Psychopharmacology, 1999, vol. 142 (2), pp. 215-220.
Poste G. et al., "Lipid Vesicles as Carriers for Introducing Biologically Active Materials into Cells," Methods in Cell Biology, 1976, vol. 14, pp. 33-71.
Prast H., et al., "Histaminergic Neurons Facilitate Social Memory in Rats," Brain Research, 1996, vol. 734 (1-2), pp. 316-318.
Pu Y.M., et al., "A Facile and Scaleable Synthesis of ABT-239, A Benzofuranoid H3 Antagonist," Organic Process Research and Development, 2005, vol. 9, pp. 45-50.
Roche E.B., ed., Bioreversible Carries in Drug Design Theory and Application, Pergamon Press, 1987, Table of Contents.
Rodrigues A.A., et al., "Interaction of Clozapine with the Histamine H3 Receptor in Rat Brain," British Journal of Pharmacology, 1995, vol. 114 (8), pp. 1523-1524.
Rubin B.R., "Management of Osteoarthritic Knee Pain," Journal of the American Osteopathic Association, 2005, vol. 105 (9 Suppl. 4), pp. S23-S28.
Sakai N., et al., "Effects of Thioperamide, A Histamine H3 Receptor Antagonist, On Locomotor Activity and Brain Histamine Content in Mast Cell-Deficient Wiwv Mice," Life Sciences, 1991, vol. 48 (25), pp. 2397-2404.
Sakata T., et al., "Hypothalamic Neuronal Histamine Modulates Ad Libitum Feeding by Rats," Brain research, 1990, vol. 537 (1-2), pp. 303-306.
Sanchez-Lemus E., et al., "Histamine H3 Receptor Activation Inhibits Dopamine D1 Receptor-Induced Camp Accumulation in Rat Striatal Slices," Neuroscience Letters, 2004, vol. 364 (3), pp. 179-184.
Sander K., et al., "Histamine H3 Receptor Antagonists Go to Clinics," Biological & Pharmaeutical Bulletin, 2008, vol. 31 (12), pp. 2163-2181.
Schwartz J., et al., "Histamine", in: Psychopharmacology: The Fourth Generation Of Progress, Chapter 35, Bloom F.E., et al., eds., Raven Press, 1995, pp. 397-405.
Schweitzer J.B., et al., "Drugs Under Investigation for Attention-Deficit Hyperactivity Disorder," Current Opinion in Investigational Drugs, 2002, vol. 3 (8), pp. 1207-1211.
Shaywitz B.A., et al., "Dopaminergic But Not Noradrenergic Mediation of Hyperactivity and Performance Deficits in the Developing Rat Pup," Psychopharmacology, 1984, vol. 82 (1-2), pp. 73-77.
Smith P.A., et al., "Neuropathic Pain and the Electrophsiology and Pharmacology of Nerve Injury," Drug Development Research, 2001, vol. 54 (3), pp. 140-153.
Szelag A., "Role of Histamine H3 -Receptors in the Proliferation Neoplastic Cells in Vitro," Medical Science Monitor, 1998, vol. 4 (5), pp. 747-755.
Tedford C.E., "Pharmacological Characterization of Gt-2016, A Non-Thiourea-Containing Histamine H3 Antagonist: in Vitro and in Vivo Studies," The Journals Of Pharmacology And Experimental Therapeutics, 1995, vol. 275 (2), pp. 598-604.
Tedford et al., "Cognition and Locomotor Activity in the Developing Rat: Comparisons Of Histamine H3 Receptor Antagonists And ADHD Therapeutics," Society For Neuroscience Abstr, vol. 22, pp. 22, 1996.
Tozer M., et al., "Histamine H3 Receptor Antagonists," Expert Opinion Therapeutic Patents, 2000, vol. 10 (7), pp. 1045-1055.
Vinik A.L., et al., "Diabetic Neuropathies," The Medical Clinics of North America, 2004, vol. 88 (4), pp. 947-999.
Vohora D., et al., "Thioperamide, A Selective Histamine H3 Receptor Antagonist, Protects Against PTZ-Induced Seizures in Mice," Life Sciences, 2000, vol. 66 (22), pp. PL297-PL301.
Wada H., et al., "Is the Histaminergic Neuron System a Regulatory Center for Whole-Brain Activity", Trends in Neurosciences, 1991, vol. 14 (9), pp. 415-418.
Wang Y., et al., "Design and Synthesis of Ether Analogues as Potent and Selective M2 Muscarinic Receptor Antagonists," Bioorganic and Medicinal Chemistry Letters, 2001, vol. 11 (7), pp. 891-894.
Witkin J.M., et al., "Selective Histamine H3 Receptor Antagonists for the Treatment of Cognitive Deficiencies and Other Disorders of the Central Nervous System," Pharmacology and Therapeutics, 2004, vol. 103 (1), pp. 1-20.
Yates S.L., et al., "Identification and Pharmacological Characterization of a Series of New 1H-4-Substituted-Imidazoyl Histamine H3 Receptor Ligands," Journal of Pharmacology and Experimental Therapeutics, 1999, vol. 289 (2), pp. 1151-1159.
Yates, S.L., et al., "Effects of a novel histamine H3 receptor antagonist, GT2394, on food intake and weight gain in Sprague-Dawley rats," Society for Neuroscience, vol. 102 (10), pp. 219, 2000.
Yawata I., et al., "Role Of Histaminergic Neurons in Development of Epileptic Seizures in El Mice," Brain Research. Molecular Brain Research, 2004, vol. 132 (1), pp. 13-17.
Yokoyama H., et al., "Clobenpropit (Vuf-9153), a New Histamine H3 Receptor Antagonist, Inhibits Electrically Induced Convulsions in Mice," European Journal of Pharmacology, 1994, vol. 260 (1), pp. 23-28.
Yokoyama H., et al., "Effect of Thioperamide, a Histamine H3 Receptor Antagonist, on Electrically Induced Convulsions in Mice," Journal of Pharmacology, 1993, vol. 234 (1), pp. 129-133.
Yokoyama H., et al., "Histamine And Seizures Implcations For The Treatment Of Epilepsy," CNS Drugs, 1996, vol. 5 (5), pp. 321-330.
Zhang X., et al., "Trans-1-[(2-Phenylcyclopropyl)methyl]-4-arylpiperazines: Mixed Dopamine D(2)/D(4) Receptor Antagonists as Potential Antipsychotic Agents," Journal of Medicinal Chemistry, 2000, vol. 43 (21), pp. 3923-3932.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10285998B1 (en) 2018-04-04 2019-05-14 The Menopause Method, Inc. Composition and method to aid in hormone replacement therapy

Also Published As

Publication number Publication date
WO2012037258A1 (en) 2012-03-22
US20120071651A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
US8853390B2 (en) Processes for preparing 1,2-substituted cyclopropyl derivatives
US20230303489A1 (en) Compounds, compositions and methods of use
KR102085557B1 (en) Prodrugs of fumarates and their use in treating various diseases
AU2023202086A1 (en) Antagonists of the muscarinic acetylcholine receptor M4
EP3153167B1 (en) Substituted 2-(4-heterocyclylbenzyl)isoindolin-1-one analogs as positive allosteric modulators of the muscarinic acetylcholine receptor m1
ES2902806T3 (en) Compositions Containing Substituted [1,2,4]triazolo[1,5-a]pyrimidin-7-yl Compounds as PDE2 Inhibitors
US9309199B2 (en) Inhibitors of catechol O-methyl transferase and their use in the treatment of psychotic disorders
AU2017245125A1 (en) Heterocyclic compound
JP5562866B2 (en) Mineralocorticoid receptor antagonists and methods of use
WO2013103931A1 (en) Substituted 1-benzylindolin-2-one analogs as positive allosteric modulators of muscarinic acetylcholine m1 receptors
US20080280879A1 (en) Substituted heterocyclic derivatives and their pharmaceutical use and compositions
WO2008029825A1 (en) Imidazole derivative
JP2020507582A (en) Aminotriazolopyridines as kinase inhibitors
JP2012524798A (en) 2-alkylpiperidine MGLUR5 receptor modulator
CA2878006C (en) Carbamate/urea derivatives
US10246414B2 (en) Allosteric modulators of CB1 cannabinoid receptors
WO2010059922A1 (en) Pyrrolidine carboxamide compounds
WO2011163280A1 (en) Indole compounds as positive allosteric modulators of the muscarinic receptor
US9029563B2 (en) Substituted 1-benzylindolin-2-one analogs as positive allosteric modulators of muscarinic acetylcholine M1 receptors
AU2021261002A1 (en) Condensed substituted hydropyrroles as antagonists of the muscarinic acetylcholine receptor m4
CA2755335C (en) Process for the preparation of histamine h3 receptor modulators
US9073864B2 (en) Aromatic ring compound
WO1993020053A1 (en) Pyridylserine derivative
TW201206901A (en) Substituted N-heteroaryl bipyrrolidine carboxamides, preparation and therapeutic use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: ABBOTT LABORATORIES, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KU, YI-YIN;GRIEME, TIMOTHY A.;KALLEMEYN, JEFFREY M.;AND OTHERS;REEL/FRAME:027072/0677

Effective date: 20111012

AS Assignment

Owner name: ABBVIE INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABBOTT LABORATORIES;REEL/FRAME:030137/0222

Effective date: 20120801

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20221007