US20120061056A1 - Recovery of heat from wastewater - Google Patents
Recovery of heat from wastewater Download PDFInfo
- Publication number
- US20120061056A1 US20120061056A1 US13/321,911 US201013321911A US2012061056A1 US 20120061056 A1 US20120061056 A1 US 20120061056A1 US 201013321911 A US201013321911 A US 201013321911A US 2012061056 A1 US2012061056 A1 US 2012061056A1
- Authority
- US
- United States
- Prior art keywords
- wastewater
- tank
- hot
- heat
- recovering heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 54
- 238000011084 recovery Methods 0.000 title description 6
- 238000013517 stratification Methods 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 238000000926 separation method Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 4
- 229920003023 plastic Polymers 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229920005830 Polyurethane Foam Polymers 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000011496 polyurethane foam Substances 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
- F24D17/0005—Domestic hot-water supply systems using recuperation of waste heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D17/00—Domestic hot-water supply systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0012—Recuperative heat exchangers the heat being recuperated from waste water or from condensates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/16—Waste heat
- F24D2200/20—Sewage water
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
- F28D20/0039—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/30—Relating to industrial water supply, e.g. used for cooling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/18—Domestic hot-water supply systems using recuperated or waste heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/56—Heat recovery units
Definitions
- the invention relates to a device for recovering heat, particularly suitable for recovering the heat from wastewater. It also relates to a method for recovering heat from wastewater.
- the wastewater originating from one or more buildings includes water originating from showers, baths, washbasins, dishwashers, washing machines, etc. This water may be hot or cold and there are devices for recovering its heat, notably for the purpose of preheating the domestic hot water designed to resupply this or these buildings.
- the existing devices for recovering heat are placed at different locations that are more or less far from the source of wastewater: they may be either directly at its outlet, at a shower or a bathtub, or more distant, at the main drains.
- a current solution of the prior art consists in causing all the wastewater to flow into a heat exchanger for the purpose of recovering its heat.
- the drawback of this solution is that it is not optimized because, when cold water is present in the wastewater, its efficiency falls very markedly.
- a particular feature of the management of wastewater arises from the fact that it can receive water at different temperatures, from cold temperatures close to the temperature of the water to be preheated.
- a general object of the invention is to propose a solution for recovering heat from wastewater with an efficiency that is improved relative to the solutions of the prior art.
- the invention is based on a device for recovering heat originating from wastewater, characterized in that it comprises a tank comprising at least two portions, a bottom portion, designed to store the cold wastewater, separated by a stratification plate from a top portion, designed to store the hot wastewater, being separated by stratification, in that it comprises a duct for orienting the wastewater to the bottom portion of the tank and in that it comprises a heat exchanger placed in the top portion.
- This stratification plate may be made of metal with a thickness of between 0.8 and 1.2 millimetres.
- the bottom portion of the tank may comprise a volume of between 20 n and 30 n litres and the top portion may comprise a volume of between 40 n and 60 n litres, where n is the number of inhabitants planned for the building.
- the device for recovering heat may comprise an inlet for the wastewater, a duct for orienting the wastewater to the bottom portion of the tank and an outlet for draining the wastewater.
- the tank may be mainly made of plastic such as PVC.
- the wall of the tank may comprise an insulator equivalent to a polyurethane foam that is 100 millimetres thick.
- the heat exchanger may comprise a copper coil. It may comprise an inlet for the domestic hot water circuit and an outlet to the domestic hot water circuit in order to transmit the preheated domestic water to the domestic hot water circuit.
- the invention also relates to a method for recovering heat originating from wastewater, characterized in that it comprises the following steps:
- the first step may consist in separating and storing the hot and cold water in two distinct portions of one and the same tank, and the second step may consist in recovering the heat from the hot water by means of a heat exchanger placed in the hot portion.
- the first step may comprise a preliminary step of feeding the hot and cold wastewater into the same bottom portion of one and the same tank before obtaining their separation as mentioned above.
- the invention is based on the concept of separating the hot and cold wastewater in order to allow the optimized recovery of the heat from the hot wastewater.
- FIG. 1 The embodiment described with reference to FIG. 1 is based on a storage and heat-recovery tank 1 which comprises mainly two zones, one zone in which the hot portion of the wastewater is stored and one zone in which the cold portion is stored.
- the wastewater arrives through an inlet 2 positioned in its top portion and is guided through a duct 3 then a directional pipe 4 to a bottom portion 5 of the storage volume of the tank 1 .
- This bottom portion is also called a buffer zone 5 . It allows the separation of the hot and cold water by stratification.
- the hot water rises and is stored in the top portion 6 of the tank 1 , the said water being separated from the buffer zone 5 by a separation or stratification plate 7 .
- Above the latter there is a roof having two downward slopes in order to prevent waste being held in the top portion 6 of the tank.
- the storage volume of the tank is closed by insulated walls 8 limiting the heat losses.
- the tank is fitted with an inspection manhole cover 9 for its maintenance and notably its cleaning.
- a recirculation channel 11 is positioned between the storage volume and the drain 10 in order to limit the clogging of the tank.
- a filter may be provided upstream of the tank in order to prevent waste entering.
- a drainage valve may be provided for draining the tank during maintenance operations.
- the top portion 6 of the tank is therefore the hot portion of the tank. It makes it possible to conserve the hot wastewater.
- an exchanger 12 is arranged, in which the domestic hot water enters through an inlet 13 and exits through an outlet 14 in order to receive the heat transmitted by the hot wastewater. This exchanger 12 therefore makes it possible to preheat the domestic hot water.
- This top portion 6 of the tank remains at a high and not very variable temperature, which ensures the optimal and stable recovery of heat for the preheating.
- the volume of the tank has dimensions in order to optimize its efficiency.
- the function of the buffer zone 5 is to store the cold wastewater: it must have sufficient volume to ensure the correct separation of the hot and cold water but must not be too big so as not to increase the bulk and the cost of the assembly. In the event of the arrival of cold wastewater this water must be able to flow away without disrupting the hot zone of the tank.
- a volume of 100 litres is ideal for a house of four occupants. More generally, a volume of between 80 and 120 litres could be appropriate in such an example.
- the volume of the hot zone is important: it must represent a good compromise in order to allow the storage of a sufficient quantity of hot water without generating too much heat loss.
- a volume of 200 litres would be ideal for a house of four occupants. More generally, a volume of between 160 and 240 litres could be appropriate in this example.
- the tank could have a volume of its buffer zone 5 of between 20 n and 30 n and/or a volume of the hot zone 6 of between 40 n and 60 n.
- This device for recovering heat may be placed in a basement of the building involved or outside.
- the tank may be made of plastic, such as PVC for example, insulated by a polyurethane foam jacket 100 millimetres thick, or, as a variant, by any equivalent insulator.
- the exchanger may comprise a portion of the copper coil type.
- the various couplings may be made of plastic, such as PVC.
- the stratification plate may be made of metal, the thickness of which is approximately one millimetre, that is to say between 0.8 and 1.2 millimetres.
- the tank may have a cylindrical shape, being of circular section, the stratification plate then also having a circular shape.
- the tank has been described in an embodiment comprising two distinct zones separated by a separation plate. As a variant, it is possible for these two zones not to be separated. Moreover, it is possible to conceive of more than two zones for applications requiring several levels of hot temperature.
- the invention has been illustrated in the context of the recovery of heat from wastewater in order to preheat the domestic hot water. However, this heat recovery could be used for any other heating requirement.
- the invention also relates to the method for recovering heat from the wastewater of a building, characterized in that it comprises the following steps:
- the top portion of the tank comprises the hot wastewater not influenced by a flow of cold wastewater, which allows it to be kept at a high temperature which optimizes the heat transfer to the domestic water to be heated.
- the heat of the wastewater is not lost in a mixture with the cold wastewater but recovered optimally. This makes it possible to recover approximately 75% of the calories lost in the wastewater.
- the device is not very bulky and not very costly and is suitable for easy installation in any building.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Details Of Fluid Heaters (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0902563A FR2946127B1 (fr) | 2009-05-26 | 2009-05-26 | Recuperation de la chaleur des eaux usees |
FR0902563 | 2009-05-26 | ||
PCT/EP2010/057165 WO2010136456A2 (fr) | 2009-05-26 | 2010-05-25 | Recuperation de la chaleur des eaux usees |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120061056A1 true US20120061056A1 (en) | 2012-03-15 |
Family
ID=41445699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/321,911 Abandoned US20120061056A1 (en) | 2009-05-26 | 2010-05-25 | Recovery of heat from wastewater |
Country Status (9)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160169538A1 (en) * | 2013-08-06 | 2016-06-16 | Henrik Hagman | System for energy recovery and cleaning of heat exchangers in shower applications |
CZ309988B6 (cs) * | 2023-04-20 | 2024-04-10 | Aqua Golem s.r.o. | Zařízení pro zpětné získávání tepla z odpadní vody stavebního objektu |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111609459A (zh) * | 2020-06-03 | 2020-09-01 | 江苏恒信诺金科技股份有限公司 | 楼房生活废水的热回收和中水双重利用方法及其系统 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1783950A (en) * | 1928-06-14 | 1930-12-09 | Fred S Boltz | Catch basin for soil-water-heat reclaimers |
US4300247A (en) * | 1980-05-07 | 1981-11-17 | Berg Charles A | Energy conservation in shower bathing |
DE3316704A1 (de) * | 1982-05-28 | 1983-12-01 | Peter 1000 Berlin Fischer | Verfahren und vorrichtung zur rueckgewinnung von waerme aus brauchabwasser |
US4422932A (en) * | 1981-02-16 | 1983-12-27 | Felix Kalberer | Device for the removal of heat from waste water |
US4448347A (en) * | 1981-12-09 | 1984-05-15 | Dunstan Phillip E | Heat pump system using wastewater heat |
US4542546A (en) * | 1983-06-30 | 1985-09-24 | Arthur Desgagnes | Heat recuperator adapted to a shower-cabin |
US5143149A (en) * | 1991-06-21 | 1992-09-01 | Kronberg James W | Wastewater heat recovery apparatus |
US5148858A (en) * | 1988-04-29 | 1992-09-22 | Telavag Energiteknikk A/S | Heat exchanger connected to a waste water discharge conduit |
DE4135560A1 (de) * | 1991-08-26 | 1993-03-04 | Christian Brenner | Drucklos arbeitender warm-abwasser-/kalt-frischwasser-waermetauscher |
US20010004009A1 (en) * | 1999-01-25 | 2001-06-21 | Mackelvie Winston | Drainwater heat recovery system |
US20020162650A1 (en) * | 1999-01-25 | 2002-11-07 | Mackelvie Winston | Drainwater heat exchanger |
US20100132403A1 (en) * | 2008-12-01 | 2010-06-03 | Mackelvie Winston | Drainpipe heat exchanger with heat storage |
US7849530B2 (en) * | 2005-10-25 | 2010-12-14 | Craig Hendricks | Waste-water heat recovery system |
US7996933B2 (en) * | 2004-10-15 | 2011-08-16 | Mcgregor Garth Kennedy | Wastewater heat recovery device and method |
US20110203303A1 (en) * | 2008-09-05 | 2011-08-25 | Alain Moure | Heating system with optimized recovery of waste water heat |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2538168C3 (de) * | 1975-08-27 | 1979-11-08 | Hugo Peter 1000 Berlin Scholz | Wärmetauscher zur Aufheizung von Kaltwasser |
DE2906096A1 (de) * | 1979-02-17 | 1980-08-28 | Philips Patentverwaltung | Abwasserspeicher |
US5192022A (en) * | 1992-05-26 | 1993-03-09 | Consolidated Natural Gas Service Company, Inc. | Fuel-fired heat pump system |
GB2402204A (en) * | 2003-05-21 | 2004-12-01 | Villers Pierre De | A heat exchanger for waste water |
JP2005106339A (ja) * | 2003-09-29 | 2005-04-21 | Calsonic Kansei Corp | 熱交換器、および、熱交換器を用いたヒートポンプ式空調装置 |
JP4926620B2 (ja) * | 2006-03-31 | 2012-05-09 | 大阪瓦斯株式会社 | 大気開放型蓄熱槽 |
CN201173589Y (zh) * | 2007-11-30 | 2008-12-31 | 华南理工大学 | 一种带蓄热模箱的热泵用蓄热水箱 |
JP2010236791A (ja) * | 2009-03-31 | 2010-10-21 | Toshiba Corp | 蒸気発生器 |
-
2009
- 2009-05-26 FR FR0902563A patent/FR2946127B1/fr not_active Expired - Fee Related
-
2010
- 2010-05-25 CN CN2010800233529A patent/CN102449404A/zh active Pending
- 2010-05-25 KR KR1020117029228A patent/KR20120019473A/ko not_active Withdrawn
- 2010-05-25 EP EP10724003.8A patent/EP2435763B1/fr not_active Not-in-force
- 2010-05-25 BR BRPI1012065A patent/BRPI1012065A2/pt not_active IP Right Cessation
- 2010-05-25 US US13/321,911 patent/US20120061056A1/en not_active Abandoned
- 2010-05-25 JP JP2012512343A patent/JP2012528292A/ja not_active Ceased
- 2010-05-25 MX MX2011012624A patent/MX2011012624A/es not_active Application Discontinuation
- 2010-05-25 WO PCT/EP2010/057165 patent/WO2010136456A2/fr active Application Filing
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1783950A (en) * | 1928-06-14 | 1930-12-09 | Fred S Boltz | Catch basin for soil-water-heat reclaimers |
US4300247A (en) * | 1980-05-07 | 1981-11-17 | Berg Charles A | Energy conservation in shower bathing |
US4422932A (en) * | 1981-02-16 | 1983-12-27 | Felix Kalberer | Device for the removal of heat from waste water |
US4448347A (en) * | 1981-12-09 | 1984-05-15 | Dunstan Phillip E | Heat pump system using wastewater heat |
DE3316704A1 (de) * | 1982-05-28 | 1983-12-01 | Peter 1000 Berlin Fischer | Verfahren und vorrichtung zur rueckgewinnung von waerme aus brauchabwasser |
US4542546A (en) * | 1983-06-30 | 1985-09-24 | Arthur Desgagnes | Heat recuperator adapted to a shower-cabin |
US5148858A (en) * | 1988-04-29 | 1992-09-22 | Telavag Energiteknikk A/S | Heat exchanger connected to a waste water discharge conduit |
US5143149A (en) * | 1991-06-21 | 1992-09-01 | Kronberg James W | Wastewater heat recovery apparatus |
DE4135560A1 (de) * | 1991-08-26 | 1993-03-04 | Christian Brenner | Drucklos arbeitender warm-abwasser-/kalt-frischwasser-waermetauscher |
US20010004009A1 (en) * | 1999-01-25 | 2001-06-21 | Mackelvie Winston | Drainwater heat recovery system |
US20020162650A1 (en) * | 1999-01-25 | 2002-11-07 | Mackelvie Winston | Drainwater heat exchanger |
US7996933B2 (en) * | 2004-10-15 | 2011-08-16 | Mcgregor Garth Kennedy | Wastewater heat recovery device and method |
US7849530B2 (en) * | 2005-10-25 | 2010-12-14 | Craig Hendricks | Waste-water heat recovery system |
US20110203303A1 (en) * | 2008-09-05 | 2011-08-25 | Alain Moure | Heating system with optimized recovery of waste water heat |
US20100132403A1 (en) * | 2008-12-01 | 2010-06-03 | Mackelvie Winston | Drainpipe heat exchanger with heat storage |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160169538A1 (en) * | 2013-08-06 | 2016-06-16 | Henrik Hagman | System for energy recovery and cleaning of heat exchangers in shower applications |
US9777932B2 (en) * | 2013-08-06 | 2017-10-03 | Henrik Hagman | System for energy recovery and cleaning of heat exchangers in shower applications |
CZ309988B6 (cs) * | 2023-04-20 | 2024-04-10 | Aqua Golem s.r.o. | Zařízení pro zpětné získávání tepla z odpadní vody stavebního objektu |
WO2024217608A1 (en) * | 2023-04-20 | 2024-10-24 | Aqua Golem s.r.o. | Device for heat recovery from waste water of a building |
Also Published As
Publication number | Publication date |
---|---|
FR2946127B1 (fr) | 2013-06-28 |
WO2010136456A2 (fr) | 2010-12-02 |
CN102449404A (zh) | 2012-05-09 |
EP2435763A2 (fr) | 2012-04-04 |
WO2010136456A3 (fr) | 2011-03-24 |
EP2435763B1 (fr) | 2016-04-27 |
FR2946127A1 (fr) | 2010-12-03 |
KR20120019473A (ko) | 2012-03-06 |
MX2011012624A (es) | 2012-03-06 |
BRPI1012065A2 (pt) | 2016-03-15 |
JP2012528292A (ja) | 2012-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150292805A1 (en) | Waste water heat recovery system | |
US20130228309A1 (en) | Process and Apparatus for Recovering Energy from Wastewater | |
US20130056191A1 (en) | Method for extracting heat from an effluent flowing in a duct, heat exchanger and system for carrying out such a method | |
US20130306290A1 (en) | Hybrid vertical drainpipe heat exchanger | |
US20120061056A1 (en) | Recovery of heat from wastewater | |
EP3571456B1 (en) | Waste-liquid heat recovery | |
WO2013150525A1 (en) | Integral domestic water heating system | |
US20090139688A1 (en) | Waste water drain heat exchanger preheating cold water supply to a thermostatic control valve | |
WO2016094971A1 (en) | Hot drain water heat recovery installation of vertical heat exchanger type | |
DK178002B1 (da) | Varmeveksler - for genvinding af restvarme i spildevand fra brusebad | |
EP2827031B1 (en) | Residual water evacuation network | |
PL230648B1 (pl) | Odwodnienie liniowe z odzyskiem ciepla | |
KR101406437B1 (ko) | 폐열회수기 | |
EP2463609A2 (en) | Modular waste water heat exchanger | |
Perackova et al. | Utilization of heat from sewage | |
EP4506624A1 (en) | Energy recovery system | |
KR101418072B1 (ko) | 욕실 폐열 회수시스템 | |
CN106642813A (zh) | 一种自供式污水源热泵系统 | |
Vaičiūnas et al. | Analysis of drain water heat exchangers system in wellness center | |
CN105890400A (zh) | 一种高效浴室废水余热回收系统 | |
WO2011073921A2 (en) | Split system for heating and storing water for solar heating plants, and relative method to control operation of the system | |
US20170254595A1 (en) | Waste water heat recovery system | |
CZ308327B6 (cs) | Způsob využití tepelné energie komunálních odpadních vod z obytných domů a kondominií a zařízení k provádění způsobu | |
JP4273090B2 (ja) | 複数汚水槽の運転制御システム | |
Vaičiūnas et al. | Analysis of drain water heat exchangers and their perspectives in Lithuania |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CLAUDON, FABRICE;REEL/FRAME:027269/0353 Effective date: 20111107 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |