US20120021707A1 - Apparatus and method for adjustment of transmitter power in a system - Google Patents

Apparatus and method for adjustment of transmitter power in a system Download PDF

Info

Publication number
US20120021707A1
US20120021707A1 US13/190,228 US201113190228A US2012021707A1 US 20120021707 A1 US20120021707 A1 US 20120021707A1 US 201113190228 A US201113190228 A US 201113190228A US 2012021707 A1 US2012021707 A1 US 2012021707A1
Authority
US
United States
Prior art keywords
power level
transmitter
power
transmitter unit
time period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/190,228
Other languages
English (en)
Inventor
John A. Forrester
Paul Guckian
Lin Lu
Reza Shahadi
Amit Mahajan
Walid M. Hamdy
Francis M. Ngai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to US13/190,228 priority Critical patent/US20120021707A1/en
Priority to CN201180036375.8A priority patent/CN103026764B/zh
Priority to JP2013521908A priority patent/JP5752793B2/ja
Priority to EP11748792.6A priority patent/EP2599355A1/en
Priority to PCT/US2011/045368 priority patent/WO2012018625A1/en
Priority to KR1020137004686A priority patent/KR101540697B1/ko
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUCKIAN, PAUL, FORRESTER, JOHN A., HAMDY, WALID M., LU, LIN, NGAI, FRANCIS M., MAHAJAN, AMIT, SHAHIDI, REZA
Publication of US20120021707A1 publication Critical patent/US20120021707A1/en
Priority to US15/797,470 priority patent/US10595282B2/en
Assigned to QUALCOMM INCORPORATED reassignment QUALCOMM INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GUCKIAN, PAUL, FORRESTER, JOHN A., HAMDY, WALID M., LU, LIN, MAHAJAN, AMIT, NGAI, FRANCIS M., SHAHIDI, REZA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity

Definitions

  • Certain aspects of the present disclosure generally relate to transmission devices, and in particular, to methods and systems for devices comprising one or more transmitters.
  • Wireless communication systems are widely deployed to provide various types of communication such as voice, packet data, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources. Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, and orthogonal frequency division multiplexing (OFDM) systems. As conditions in the channel vary, it may be necessary to activate certain resources and deactivate others. Similarly, the user may depend on several resources simultaneously. Some devices allow multiple transmitters to operate simultaneously to accomplish these various goals.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • OFDM orthogonal frequency division multiplexing
  • Certain aspects of the present disclosure provide a method for wireless communications.
  • the method generally includes identifying a power level for a first transmitter unit, selecting a power identifier for a second transmitter unit from one or more look-up tables based at least on the power level, wherein the first and the second transmitter units operate simultaneously using one or more transmit antennas, and adjusting transmit power of at least one of the first and the second transmitter units based on the power level and the power identifier, wherein the transmit power levels used by the first and the second transmitter units are less than or equal to an allowable power level which is determined to achieve a desired cumulative transmit power that can be referenced for compliance to an applicable radio frequency (RF) exposure limit.
  • RF radio frequency
  • Certain aspects of the present disclosure provide a method for wireless communications.
  • the method generally includes identifying a first power level for a first transmitter unit, and dynamically selecting at least one of a second power level or an active time period for a second transmitter unit based on the first power level, wherein a total power used by the first and the second transmitter units is less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit, and the first and the second transmitter units operate near simultaneously using one or more transmit antennas.
  • RF radio frequency
  • the method includes (1) identifying a first power level for a first transmitter unit; and (2) dynamically selecting at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit.
  • RF radio frequency
  • SAR measured specific absorption limit
  • the apparatus generally includes means for identifying a power level for a first transmitter unit, means for selecting a power identifier for a second transmitter unit from one or more look-up tables based at least on the power level, wherein the first and the second transmitter units operate near simultaneously using one or more transmit antennas, and means for adjusting transmit power levels of at least one of the first and the second transmitter units based on the power level and the power identifier, wherein the transmit power levels of the first and the second transmitter units are less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit.
  • RF radio frequency
  • the apparatus generally includes means for identifying a first power level for a first transmitter unit, and means for dynamically selecting at least one of a second power level or an active time period for a second transmitter unit based on the first power level, wherein a total power used by the first and the second transmitter units is less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit, and the first and the second transmitter units operate near simultaneously using one or more transmit antennas.
  • RF radio frequency
  • the apparatus generally includes means for identifying a first power level for a first transmitter unit, and means for dynamically selecting at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit.
  • RF radio frequency
  • SAR measured specific absorption limit
  • Certain aspects provide a computer-program product for wireless communications, comprising a computer-readable medium having instructions stored thereon, the instructions being executable by one or more processors.
  • the instructions generally include instructions for identifying a power level for a first transmitter unit, instructions for selecting a power identifier for a second transmitter unit from one or more look-up tables based at least on the power level, wherein the first and the second transmitter units operate near simultaneously using one or more transmit antennas, and instructions for adjusting transmit power levels of at least one of the first and the second transmitter units based on the power level and the power identifier, wherein the transmit power levels of the first and the second transmitter units are less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit.
  • RF radio frequency
  • Certain aspects provide a computer-program product for wireless communications, comprising a computer-readable medium having instructions stored thereon, the instructions being executable by one or more processors.
  • the instructions generally include instructions for identifying a first power level for a first transmitter unit, and instructions for dynamically selecting at least one of a second power level or an active time period for a second transmitter unit based on the first power level, wherein a total power used by the first and the second transmitter units is less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit, and the first and the second transmitter units operate near simultaneously using one or more transmit antennas.
  • RF radio frequency
  • Certain aspects provide a computer-program product for wireless communications, comprising a computer-readable medium having instructions stored thereon, the instructions being executable by one or more processors.
  • the instructions generally include instructions for identifying a first power level for a first transmitter unit, and instructions for dynamically selecting at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit.
  • RF radio frequency
  • SAR measured specific absorption limit
  • the apparatus generally includes at least one processor configured to identify a power level for a first transmitter unit, select a power identifier for a second transmitter unit from one or more look-up tables based at least on the power level, wherein the first and the second transmitter units operate near simultaneously using one or more transmit antennas, and adjust transmit power levels of at least one of the first and the second transmitter units based on the power level and the power identifier, wherein the transmit power levels of the first and the second transmitter units are less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit, and a memory coupled to the at least one processor.
  • RF radio frequency
  • the apparatus generally includes at least one processor configured to identify a first power level for a first transmitter unit, and dynamically select at least one of a second power level or an active time period for a second transmitter unit based on the first power level, wherein a total power used by the first and the second transmitter units is less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit, and the first and the second transmitter units operate near simultaneously using one or more transmit antennas, and a memory coupled to the at least one processor.
  • RF radio frequency
  • the apparatus generally includes at least one processor configured to identify a first power level for a first transmitter unit, and dynamically select at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit, and a memory coupled to the at least one processor.
  • RF radio frequency
  • SAR measured specific absorption limit
  • FIG. 1 illustrates an exemplary wireless communication network.
  • FIG. 2 is a block diagram illustrating a mobile device in a wireless communication network.
  • FIG. 3 illustrates a block diagram of a transmission system comprising two transmitters, in accordance with certain aspects of the present disclosure.
  • FIGS. 4A and 4B illustrate aspects of a power lookup table for a two-transmitter and a three-transmitter device, respectively, in accordance with certain aspects of the present disclosure.
  • FIG. 5 illustrates example operations for adjusting transmission power of a transmitter unit in a multi-transmitter wireless device, in accordance with certain aspects of the present disclosure.
  • FIG. 6 illustrates a functional block diagram of a wireless device, in accordance with certain aspects of the present disclosure.
  • FIG. 7 illustrates a block diagram of a transmission system in a mobile device 106 comprising two transmitters, in accordance with certain aspects of the present disclosure.
  • FIG. 8 illustrates example operations for adjusting transmit power of a transmitter unit in a multi-transmitter wireless device, in accordance with certain aspects of the present disclosure.
  • FIG. 9 illustrates an example compliance with specific absorption rate (SAR) for a device with two transmitters, in accordance with certain aspects of the present disclosure.
  • SAR specific absorption rate
  • FIG. 10 illustrates example operations for adjusting transmit power of a transmitter unit in a wireless device, in accordance with certain aspects of the present disclosure.
  • Wireless communication devices e.g., mobile cell phones, personal data assistants, laptops and the like
  • RF radio frequency
  • SAR Specific Absorption Rate
  • E(r) is the exogenous electric field at point r
  • rms stands for root mean square
  • ⁇ (r) and ⁇ (r) are the corresponding equivalent electrical conductivity and mass density, respectively.
  • SAR testing evaluates the amount of energy absorbed into the body from a device with a single or multiple transmitters. Under an alternate requirement, devices operating at distances beyond 20 centimeters may be evaluated through a maximum permissible exposure (MPE) calculation or measurement.
  • MPE maximum permissible exposure
  • Compliance with the SAR requirement may be a challenge for devices, for example, that allow multiple transmitters to transmit simultaneously or are operated close to or inside the human body.
  • co-located generally means “in close proximity to,” and applies to antennas or transmitters within the same device enclosure or separate devices that are in close proximity to each other. This may be true for handheld devices such as mobile phones subject to SAR testing, but may also be a concern for high-power transmitters, such as a wireless wide area network (WWAN) base station, co-located with other transmitters at an antenna site.
  • WWAN wireless wide area network
  • the device To certify a device, the device must comply with RF exposure requirements, for example, even while all the transmitters transmit simultaneously and operate at their maximum allowable transmitter power.
  • a system and method are provided so that the maximum transmit power for one or more transmitters are established to achieve compliance with the regulatory limit in a simultaneous transmitter configuration.
  • FIG. 1 illustrates an exemplary wireless communication network 100 .
  • the wireless communication network 100 comprises a base station 240 , a cell 104 , user equipment 106 (such as a wireless communication device or mobile device), and a wireless device 108 .
  • the wireless communication network 100 is configured to support communication between a number of users. Although the wireless communication network 100 is illustrated as containing only one cell 104 , the wireless communication network may comprise any number of cells. Communication coverage in cell 104 may be provided by the base station 240 .
  • the base station 240 may interact with a plurality of wireless communication devices, for example, wireless communication devices 106 and 108 .
  • Each of the wireless communication devices may communicate with base station 240 on a forward link (FL) and/or a reverse link (RL) at a given moment.
  • FL is a communication link from a base station to a wireless communication device.
  • a RL is a communication link from a wireless communication device to a base station.
  • the base station 240 may be interconnected to base stations in other cells (not shown in this figure), for example, by appropriate wired or wireless interfaces. Accordingly, the base station 240 may communicate with wireless communication devices in other cells (not shown in this figure).
  • the cell 104 may cover only a few blocks within a neighborhood or several square miles in a rural environment. Each cell may be further divided into one or more sectors (not shown in this figure). By including additional cells, the wireless communication network 100 may provide service over a large geographic region, as is well known in the art.
  • a wireless communication device may be a device (e.g., a mobile phone, router, personal computer, server, etc.) used by a user to send and receive voice or data over a communications network.
  • a wireless communication device may be referred to as an access terminal (AT), a user equipment (UE), a mobile station (MS), or a terminal device.
  • AT access terminal
  • UE user equipment
  • MS mobile station
  • terminal device e.g., a terminal device
  • wireless communication devices 106 and 108 may comprise mobile phones.
  • the wireless communication devices may comprise any suitable communication device.
  • a wireless device e.g., 106
  • the wireless device 106 may accomplish this by first communicating with the base station 240 via a wireless link. For example, the wireless device 106 may generate and transmit a message to the base station 240 . The base station 240 may then generate and transmit a message to another wireless device, such as the wireless device 108 .
  • FIG. 2 is a block diagram illustrating a mobile device in a wireless communication network 200 .
  • the wireless communication network 200 comprises four wireless devices (e.g., 106 , 210 , 220 , and 230 ), and a base station 240 .
  • the wireless communication network 200 may be configured to support communication between a multitude of devices, such as the wireless communications devices 106 , 210 , 220 , 230 and base station 240 .
  • the wireless devices may comprise, for example, personal computers, PDAs, music players, video players, multimedia players, televisions, electronic game systems, digital cameras, video camcorders, watches, remote controls, headsets, and the like.
  • Wireless device 106 may be simultaneously in communication with each of devices 210 , 220 , 230 , and 240 via one or more transmitters co-located on the device 106 .
  • the wireless device 106 may communicate with other wireless devices (e.g., 210 , 220 ) over a variety of communication channels.
  • the communication channels may comprise Ultra-Wide Band (UWB) channels, Bluetooth channels, Institute of Electrical and Electronic Engineers (IEEE) 802.11 channels (e.g., IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, and IEEE 802.11n), infrared (IR) channels, ZigBee (IEEE 802.15) channels, or a variety of other channels, as is well known in the art.
  • the channel may be a UWB channel conforming to the European Computer Manufacturers Association (ECMA)-368 standard. Other channels would be readily recognized as possible as well.
  • ECMA European Computer Manufacturers Association
  • the wireless communications network 200 may comprise a wireless local area network (WLAN) covering a physical area, such as a home, an office, or a group of buildings.
  • WLAN may use standards such as, the IEEE 802.11 standard (e.g., IEEE 802.11g), and/or other standards for wireless communications.
  • IEEE 802.11g e.g., IEEE 802.11g
  • a WLAN may use peer-to-peer communication in which the wireless communication devices directly communicate with each other.
  • the wireless communications network 200 may also comprise a wireless personal area network (WPAN), spanning, for example, an area of a few meters.
  • WPAN may use standards such as infrared, Bluetooth, a WiMedia based UWB standard (e.g., ECMA-368), and ZigBee standards, and/or other standards for wireless communications.
  • a WPAN may use peer-to-peer communication in which the wireless communication devices directly communicate with each other.
  • the mobile device 106 may connect to another network, such as a wireless communications network or the Internet, through network 200 .
  • the messages sent across the wireless communications network 200 may comprise information related to various types of communication (e.g., voice, data, multimedia services, and the like) and may be of varied degrees of importance to the user of mobile device 106 , as described in greater detail below.
  • the communication system 200 may further comprise any type of communication system including, but not limited to, a code division multiple access (CDMA) system, a global system for mobile communication system (GSM), a wideband code division multiple access (WCDMA), and an OFDM system.
  • CDMA code division multiple access
  • GSM global system for mobile communication system
  • WCDMA wideband code division multiple access
  • Certain aspects of the present disclosure propose methods for determining power level of one or more transmitters based on a power level of a primary transmitter when the transmitters are “co-located” meaning they are in close proximity of each other (e.g., on a single device or multiple neighboring devices).
  • the power levels may be determined such that a combined power, for example, of all the transmitters is compliant with regulatory radio frequency (RF) safety requirements.
  • power level of the lower priority transmitters may be determined based on the power level of the priority transmitter utilizing one or more look-up tables.
  • the look-up tables may include a plurality of predetermined power values or a plurality of predetermined power adjustment values.
  • the predetermined power adjustment values may correspond to a lower priority transmitter.
  • one or more look-up tables may correspond to one or more transmission frequencies.
  • power level of the lower priority transmitters may be calculated using an algorithm based on the power level of the priority transmitter.
  • the power level of lower priority transmitters and the time duration for which the transmitters are active may be selected dynamically so that the time averaged power of the transmitters for a defined period of time falls below the RF exposure limit.
  • priority of transmitters may be determined first and power level of the lower priority transmitter may be determined based on the power level of the higher priority transmitter.
  • FIG. 3 illustrates a block diagram of a transmission system in a mobile device 106 comprising two transmitters.
  • the mobile device 106 comprises two antennas 304 and 308 that are co-located on the mobile device 106 .
  • Antenna 304 is associated with a primary transmission module 302 .
  • Antenna 308 is associated with a secondary transmission module 306 .
  • These transmission modules transmit communication signals through the respective antennas.
  • transmission module 302 may comprise software and/or hardware (e.g., a transmitter circuit) responsible for voice communications, for which antenna 304 may be utilized.
  • Transmission module 306 in contrast, may comprise software and/or hardware which transfer data using antenna 308 .
  • transmitters Although only two transmitters are shown here, one skilled in the art would readily recognize that any number of transmitters may be used.
  • the transmitters may be located on a single device or multiple devices (not shown) who are in close proximity of each other, such as a base station, co-located with other transmitters at an antenna site.
  • transmission power levels may be adjusted for each of the antennas 304 and 308 to be in agreement with regulatory requirements using a “Power Lookup Table” 310 .
  • the power lookup table may be embodied in a storage module such as a memory device, as will be described in greater detail in FIGS. 4A and 4B .
  • the power levels of both the primary and lower priority transmitters must be such that their cumulative SAR remains within the regulatory requirements. Accordingly, in certain aspects, the power is first set for the primary transmitter, and then the corresponding power level is set for the remaining transmitters based on the power level of the primary transmitter, so that their combined SAR effect is within regulatory limits. In these aspects, the relationship between power level of the primary transmitter and the power levels for the other transmitters may be stored in the power look-up table, as illustrated in FIG. 4A .
  • the transmission modules 302 and 306 may monitor the transmit power of their respective transmitters.
  • the transmission module 306 may reduce maximum transmission power of antenna 308 by a fixed value based on the transmit power of the primary module using the lookup table 310 .
  • the mobile device may comprise multiple lookup tables to address different transmitter-frequency combinations.
  • FIGS. 4A and 4B provide example aspects of a power lookup table 310 , in accordance with certain aspects of the present disclosure.
  • the look-up table in FIG. 4A comprises two columns and four rows.
  • the table of FIG. 4A depicts the maximum power reduction imposed on a second transmitter (e.g., 700 MHz) based on the values of a Primary transmitter (e.g., 850 MHz), when the transmitters are co-located on the same device (e.g., mobile or fixed), or when they are placed in close proximity of each other on separate neighboring devices.
  • a second transmitter e.g. 700 MHz
  • Primary transmitter e.g., 850 MHz
  • threshold values may be defined for power of the primary transmitter, based on which transmission power of other transmitters may be adjusted. For example, as shown in the table, when greater than or equal to 22 decibel milliwatts (dBm) are generated by the primary transmitter 302 , a 6 dB back-off may be imposed on the second transmitter. If transmission power of the primary transmitter is greater than or equal to 20 and less than 22 dBm, a 4 dB back off may be imposed on the second transmitter. If transmission power of the primary transmitter is greater than or equal to 18 and less than 20 dB, a 2 dB back off may be imposed on the secondary transmitter. Similarly, if transmission power of the primary transmitter is below 18 dBm, back off may not be necessary for the secondary transmitter. In this example, the combined effects of the primary and secondary transmitter may not exceed the regulatory threshold.
  • dBm decibel milliwatts
  • the table of FIG. 4B illustrates an example power relationships between a highest priority transmitter (e.g., 850 MHz) co-located with a 700 MHz transmitter and a 2.4 GHz WLAN transmitter. Similar to the FIG. 4A , for certain aspects, transmission power values for the highest priority transmitter may dictate the back offs imposed for each of the second and third transmitters. Also as in FIG. 4A , the back offs imposed on the second and third transmitters may become further diminished with decreased values for the primary transmitter.
  • a highest priority transmitter e.g., 850 MHz
  • transmission power values for the highest priority transmitter may dictate the back offs imposed for each of the second and third transmitters. Also as in FIG. 4A , the back offs imposed on the second and third transmitters may become further diminished with decreased values for the primary transmitter.
  • the table 4 B shows that when the primary transmitter uses a power greater than or equal to 22 dBm, a 6 dB back off may be imposed on the secondary transmitter, and a 3 dB back off on the third transmitter. If transmission power of the primary transmitter is greater than or equal to 20 and less than 22 dB, a 4 dB back off may be imposed on the secondary transmitter, and a 3 dB back off on the third transmitter. If transmission power of the primary transmitter is greater than or equal to 18 and less than 20 dB, a 2 dB back off may be imposed on the secondary transmitter, and the third transmitter may remain unchanged. Finally, if the primary transmitter drops below 18 dB, the second and third transmitters may remain unchanged.
  • FIGS. 4A and 4B are mere examples and they may have any fixed or variable values.
  • any number of transmitters e.g., two or more that are working under different frequencies may be located on a single or multiple neighboring devices, all of which fall within the scope of the present disclosure.
  • the values in tables 4 A and 4 B may be generated by a two-step process.
  • a “scaling factor” for each transmitter power level may be determined, where the transmitters are ordered in levels of descending relative priority.
  • these “scaling factors” may be used to determine the back-off magnitude entries of lower priority transmitters based on power value of the highest priority transmitter.
  • the entries for each lower priority transmitter may be determined (e.g., the respective rows of FIGS. 4A and 4B ) based on the scaling factors and possible power range of the highest priority transmitter.
  • the cumulative absorption rate effect (SAR(r) Total ) of N transmitters at a given point r may be written as follows:
  • Measured SAR for transmitter t in a given frequency band at maximum transmit power may be depicted by SAR t (r).
  • the scaling factor ⁇ t may represent the maximum transmit power scaling factor for transmitter t which may be a number between zero and one.
  • Equation (2) shows how each transmitter may be scaled to achieve a target SAR value for a given transmitter combination.
  • the target SAR Value SAR(r) Total may be equal to the SAR limit minus a desired margin.
  • FIG. 5 illustrates example operations 500 for adjusting transmission power of a transmitter unit in a multi-transmitter wireless device, in accordance with certain aspects of the present disclosure.
  • the device identifies a power level for a first transmitter unit.
  • the device selects a power identifier for a second transmitter unit from one or more look-up tables based at least on the power level, wherein the first and the second transmitter units operate near simultaneously using one or more transmit antennas.
  • the distance between the transmit antennas may be less than or equal to a threshold (e.g., 20 centimeters).
  • the device adjusts transmit power levels of at least one of the first and the second transmitter units based on the power level and the power identifier, wherein the transmit power levels of the first and the second transmitter units are less than or equal to an allowable power level which is determined based on a radio frequency (RF) exposure limit.
  • the device may continue adjusting transmit power of the remaining transmitters by repeating the above operations.
  • the transmit system may monitor the transmit power of a primary transmitter and may reduce co-located simultaneous or near-simultaneous transmitters by a value that may be calculated utilizing a power adjustment algorithm (e.g., instead of using a look-up table).
  • the power adjustment algorithm may take into account transmit power of the primary transmitter, the regulatory RF exposure limit, a target margin to the RF exposure limit, and/or measured SAR values for each transmitter.
  • the algorithm may adjust transmit power for one or more transmitters based on the transmit power of the primary transmitters to reduce the SAR contribution from all the transmitters (e.g., N).
  • One or more scaling factors e.g., one for each transmitter unit
  • the process of calculating the transmit power of each of the transmitters based on the transmit power of a primary transmitter may be repeated for each frequency combination of the transmitters.
  • FIG. 6 illustrates a functional block diagram 600 of a wireless device in accordance with certain aspects of the present disclosure.
  • the wireless device may include a plurality of transmitter units (e.g., TX unit 1 602 1 , . . . , TX unit N 602 N ) that may be connected to a plurality of transmit antennas antenna 1 622 1 , . . . , antennaM 622 M .
  • TX unit 1 602 1 , . . . , TX unit N 602 N may be connected to a plurality of transmit antennas antenna 1 622 1 , . . . , antennaM 622 M .
  • one or more transmitter units may be connected to each transmit antenna.
  • the wireless device may include a TX power identifying component 604 that identifies transmit power of a primary transmitter (e.g., with highest priority).
  • the wireless device may include a TX power determining component 606 that may either select a transmit power for a lower priority transmitter from a look up table based on the transmit power of the primary transmitter or calculate the transmit power utilizing an algorithm such that combination of transmit powers of all the TX units is less than regulatory limits.
  • a memory 608 may store one or more look-up tables (e.g., 610 1 , . . . , 610 L ). The look-up tables may store the relationship between the transmit power of the primary transmitters and the lower priority transmitters.
  • the memory may also store code or software for a TX power determining algorithm 612 that determines the transmit powers of lower priority transmitters based on the transmit power of the highest priority transmitter.
  • the wireless device may also include a duty cycle determining component 614 for determining duty cycle for the transmission of the lower priority transmitter units (as discussed in further detail below).
  • a TX power adjusting component 616 may be utilized to adjust the transmission power used by each of the transmission units.
  • a duty cycle adjusting component 618 may also be used to adjust the duty cycle of the transmissions by each of the TX units (e.g., 602 2 ).
  • a TX unit priority determining component 620 may determine priority of the transmissions by each of the TX units.
  • a controller 624 may control flow of the signals in the wireless device.
  • FIG. 7 illustrates a block diagram of a transmission system in a mobile device 106 comprising two transmitters.
  • the transmission system is similar to the one illustrated in FIG. 3 , with a difference that power adjustment may be performed using a power reduction algorithm 702 .
  • the power reduction algorithm may determine the power reduction value for each lower priority transmitter based on the power of a priority transmitter utilizing one or more of the following parameters: the regulatory RF exposure limit, target margin to the RF exposure limit, and measured SAR for each of the transmitters.
  • a critical parameter for RF exposure evaluation may be the average power, since there is a direct relationship between average power and resulting RF exposure value for a transmitter.
  • transmit power and duty cycle e.g., the time duration that each transmitter is active or is turned off
  • maximum transmitter power and duty cycle of each of the transmitters may be adjusted to modify the effective average power of each individual transmitter and adjust the total RF exposure level of the device.
  • maximum transmit power and/or duty cycle of the transmitter may be adjusted to reduce the overall RF exposure performance of the device.
  • the maximum transmit power can be adjusted to reduce the SAR contribution from the respective transmitter and/or the duty cycle of a transmitter may be reduced to lower the contribution from the respective transmitter.
  • the transmitter parameters may be adjusted dynamically during transmission (if allowed by the respective regulator), so that the time averaged SAR for a defined period of time is less than the SAR limit. Therefore, a transmitter may transmit with a power that is higher than the SAR limit for a short period of time, but transmits with lower power values (or is off) the rest of the time so that the average power of the transmitter is lower than the SAR limit during the defined time period. It should be noted that either the primary transmitter or one or more other lower priority transmitters may utilize the time-averaging concept to adjust their transmit power values over the defined time period.
  • a device can analyze the transmission parameters for all transmitters and adjust the respective duty cycle and/or maximum transmit power may thus be dynamically adjusted to provide the optimum connection performance while maintaining compliance with the required RF exposure limit.
  • the decision process as to how to modify the transmitter performance may be dependent on device design, the requirements for the wireless connections, and the applicability of the time limit for SAR. It should also be noted that technologies such as CDMA2000 and UMTS inherently have a time duplex feature. Therefore, changing the duty cycle may require either a standard change or device specific implementation that controls how long the transmitter is active.
  • the proposed technique can be used to address compliance for both MPE and SAR.
  • An example implementation where the maximum transmit power and transmitter duty cycles are adjusted to achieve SAR compliance is followed.
  • the relationship between average SAR over a period of time “T” may be written as follows:
  • ⁇ n may represent transmit power scaling factor for transmitter n at maximum transmitter power vs. time
  • ⁇ n represents transmit power duty cycle scaling factor for transmitter n versus time
  • SAR Target represents desired SAR based on regulatory exposure limit and margin.
  • FIG. 8 illustrates example operations 800 for adjusting transmit power of a transmitter unit in a multi-transmitter wireless device, in accordance with certain aspects of the present disclosure.
  • the wireless device may identify a first power level for a first transmitter unit.
  • the wireless device may dynamically select at least one of a second power level or an active time period (e.g., duty cycle) for a second transmitter unit based on the first power level, wherein a total power used by the first and the second transmitter units is less than or equal to an allowable power level which is determined based on an RF exposure limit.
  • the first and the second transmitter units operate virtually simultaneously using one or more transmit antennas.
  • a distance between the transmit antennas is less than or equal to a threshold.
  • FIG. 9 illustrates an example SAR compliance for a device with two transmitters.
  • the individual SARs are compliant with the Federal Communications Commission (FCC) limit of 1.6 mW/g but the combined SAR value (e.g., total SAR summation 902 ) exceeds the SAR limit.
  • FCC Federal Communications Commission
  • the table shows how SAR compliance can be achieved by reducing the duty cycle of one transmitter by a factor of 25%, reducing one of the transmitters by 4.8 dBm, or by a combination of reducing transmit power and duty cycles for both transmitters.
  • the transmitters on a device may be prioritized before determining maximum transmit power or time domain duty cycle of the transmitters in the device.
  • certain transmitters may be given more flexibility in their power demands than other transmitters in the device.
  • priority transmitters may receive the highest power compared to the other transmitters in the device, and the power level of the priority transmitter may be used when determining the power level for lower priority transmitters.
  • the primary 850 MHz transmitter had higher priority than the 700 Mhz transmitter, which in turn was given higher priority than the 2.4 GHz WLAN transmitter. This determination may affect the relationship between the power level restrictions in the lookup table.
  • the relative priority of transmitters may be hardcoded in the system, whereas in other aspects, the priority may be dynamically adjusted during use.
  • a UE with co-located simultaneous transmitters may determine priority of its transmitters based on a plurality of parameters such as the previously determined relative priority of one or more other transmitters, available antennas, MIMO, frequency bands, transmitters, data priorities, load of the network, RF conditions (e.g., receive quality, frequency band, and the like), available technologies, cost of data connection (e.g., WWAN vs. free WLAN or WPAN, USB connection), and the like.
  • RF conditions e.g., receive quality, frequency band, and the like
  • available technologies e.g., WWAN vs. free WLAN or WPAN, USB connection
  • the device may limit performance of some transmitters while assigning maximum possible power to the highest priority transmitters.
  • the device may consider the type of service for which the transmitter is presently employed.
  • voice communication services may generally be given higher priority than internet access, or a text messaging service.
  • Different voice services may additionally be prioritized differently—for example, when the user roams outside their “home” network, into that of another service provider, the transmitter may be given lower priority to minimize excess fees.
  • a service being used for an emergency communication may be given a higher priority than any other service regardless of their previous relationship.
  • FIG. 10 illustrates example operations 1000 for adjusting transmit power of a transmitter unit in a wireless device, in accordance with certain aspects of the present disclosure.
  • the wireless device may identify a first power level for a first transmitter unit.
  • the wireless device may dynamically select at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit.
  • RF radio frequency
  • SAR measured specific absorption limit
  • transmitter units are located on a single device for ease of explanation, the transmit units may also be located on separate devices that are in close proximity of each other.
  • the transmitter units may operate simultaneously or near simultaneously (e.g., start or finish operating with a small delay).
  • power level of one or more transmitter units may be determined based on the power level of the primary transmitter unit.
  • means for identifying a power level may be a circuit or device capable of identifying the power level, such as the TX power identifying component 604 .
  • Means for selecting a power identifier may be a circuit or device capable of selecting the power level, such as the TX power determining component 606 .
  • Means for adjusting transmit power may be a circuit or device capable of adjusting the power level, such as the TX power adjusting component 616 .
  • Means for selecting duty cycle may be a circuit or device capable of selecting duty cycle, such as the duty cycle determining component 614 .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array signal
  • PLD programmable logic device
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in any form of storage medium that is known in the art. Some examples of storage media that may be used include random access memory (RAM), read only memory (ROM), flash memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM and so forth.
  • RAM random access memory
  • ROM read only memory
  • flash memory EPROM memory
  • EEPROM memory EEPROM memory
  • registers a hard disk, a removable disk, a CD-ROM and so forth.
  • a software module may comprise a single instruction, or many instructions, and may be distributed over several different code segments, among different programs, and across multiple storage media.
  • a storage medium may be coupled to a processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor.
  • the methods disclosed herein comprise one or more steps or actions for achieving the described method.
  • the method steps and/or actions may be interchanged with one another without departing from the scope of the claims.
  • the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • Disk and disc include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk, and Blu-ray® disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers.
  • Software or instructions may also be transmitted over a transmission medium.
  • a transmission medium For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of transmission medium.
  • DSL digital subscriber line
  • modules and/or other appropriate means for performing the methods and techniques described herein can be downloaded and/or otherwise obtained by a user terminal and/or base station as applicable.
  • a user terminal and/or base station can be coupled to a server to facilitate the transfer of means for performing the methods described herein.
  • various methods described herein can be provided via storage means (e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.), such that a user terminal and/or base station can obtain the various methods upon coupling or providing the storage means to the device.
  • storage means e.g., RAM, ROM, a physical storage medium such as a compact disc (CD) or floppy disk, etc.
  • CD compact disc
  • floppy disk etc.
  • any other suitable technique for providing the methods and techniques described herein to a device can be utilized.
  • the method includes (1) identifying a first power level for a first transmitter unit; and (2) dynamically selecting at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit.
  • RF radio frequency
  • SAR measured specific absorption limit
  • the apparatus includes a module adapted to (1) identify a first power level for a first transmitter unit; and (2) dynamically select at least one of a second power level or an active time period for the first transmitter unit based on the first power level, wherein an average power used by the first transmitter unit for a period of time is less than or equal to an allowable power level which is determined based on at least one of a radio frequency (RF) exposure limit, a target margin to the RF exposure limit or a measured specific absorption limit (SAR) value for the first transmitter unit.
  • RF radio frequency
  • SAR measured specific absorption limit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)
US13/190,228 2010-07-26 2011-07-25 Apparatus and method for adjustment of transmitter power in a system Abandoned US20120021707A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/190,228 US20120021707A1 (en) 2010-07-26 2011-07-25 Apparatus and method for adjustment of transmitter power in a system
CN201180036375.8A CN103026764B (zh) 2010-07-26 2011-07-26 用于调整无线系统中的发射机功率的装置和方法
JP2013521908A JP5752793B2 (ja) 2010-07-26 2011-07-26 システムにおける送信機電力の調整のための装置および方法
EP11748792.6A EP2599355A1 (en) 2010-07-26 2011-07-26 Apparatus and method for adjustment of transmitter power in a wireless system
PCT/US2011/045368 WO2012018625A1 (en) 2010-07-26 2011-07-26 Apparatus and method for adjustment of transmitter power in a wireless system
KR1020137004686A KR101540697B1 (ko) 2010-07-26 2011-07-26 무선 시스템에서의 송신기 전력의 조정을 위한 장치 및 방법
US15/797,470 US10595282B2 (en) 2010-07-26 2017-10-30 Apparatus and method for adjustment of transmitter power in a system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US36776710P 2010-07-26 2010-07-26
US201161448110P 2011-03-01 2011-03-01
US13/190,228 US20120021707A1 (en) 2010-07-26 2011-07-25 Apparatus and method for adjustment of transmitter power in a system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/797,470 Division US10595282B2 (en) 2010-07-26 2017-10-30 Apparatus and method for adjustment of transmitter power in a system

Publications (1)

Publication Number Publication Date
US20120021707A1 true US20120021707A1 (en) 2012-01-26

Family

ID=45494030

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/190,228 Abandoned US20120021707A1 (en) 2010-07-26 2011-07-25 Apparatus and method for adjustment of transmitter power in a system
US15/797,470 Active US10595282B2 (en) 2010-07-26 2017-10-30 Apparatus and method for adjustment of transmitter power in a system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/797,470 Active US10595282B2 (en) 2010-07-26 2017-10-30 Apparatus and method for adjustment of transmitter power in a system

Country Status (6)

Country Link
US (2) US20120021707A1 (ja)
EP (1) EP2599355A1 (ja)
JP (1) JP5752793B2 (ja)
KR (1) KR101540697B1 (ja)
CN (1) CN103026764B (ja)
WO (1) WO2012018625A1 (ja)

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110002410A1 (en) * 2004-04-02 2011-01-06 Antonio Forenza System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US20130176876A1 (en) * 2012-01-06 2013-07-11 Fujitsu Mobile Communications Limited Radio communication terminal device and radio communication terminal device control method
CN103401572A (zh) * 2013-08-06 2013-11-20 成都博高科技有限责任公司 无线通信模块及其发射功率的方法
WO2014039679A1 (en) * 2012-09-05 2014-03-13 Qualcomm Incorporated Duty cycled transmissions
US20140087663A1 (en) * 2012-09-26 2014-03-27 Apple Inc. Transmission power modulation to facilitate in-device coexistence between wireless communication technologies
WO2014047364A1 (en) * 2012-09-19 2014-03-27 Qualcomm Incorporated Methods and apparatuses for preemptive battery voltage management in multi-sim mobile devices
US20140205042A1 (en) * 2011-08-23 2014-07-24 Google Inc. Method and system for use of quadrature hybrids for closed and open loop beam forming transmit diversity
US20140213192A1 (en) * 2013-01-31 2014-07-31 Hewlett-Packard Development Company, L.P. Specific absorption rate reduction
US20140241545A1 (en) * 2013-02-28 2014-08-28 Peter Siegumfeldt Audio system for audio streaming and associated method
US20140315592A1 (en) * 2013-04-18 2014-10-23 Apple Inc. Wireless Device With Dynamically Adjusted Maximum Transmit Powers
US20150072721A1 (en) * 2012-05-23 2015-03-12 Isaac Lagnado Adjusting a duty cycle of wireless transmissions
US9031607B1 (en) * 2013-02-28 2015-05-12 Sprint Communications Company L.P. Utilizing signal powers associated with multiple channels of a mobile device to facilitate network selection
US20150222312A1 (en) * 2011-02-17 2015-08-06 Futurewei Technologies, Inc. Adaptive Maximum Power Limiting Using Capacitive Sensing in a Wireless Device
US9197166B2 (en) 2012-09-26 2015-11-24 Apple Inc. Increasing power amplifier linearity to facilitate in-device coexistence between wireless communication technologies
US20150341869A1 (en) * 2014-05-20 2015-11-26 Apple Inc. Controlling radio transmission power in a multi-radio wireless communication device
US20160057707A1 (en) * 2014-05-30 2016-02-25 Apple Inc. Traffic shaping to mitigate brownout conditions
US20160087450A1 (en) * 2013-06-25 2016-03-24 Canon Kabushiki Kaisha Power transmitting apparatus, power receiving apparatus, control methods therefor, programs, and storage medium
CN105657656A (zh) * 2016-01-06 2016-06-08 广东欧珀移动通信有限公司 一种发射功率调整方法及用户设备
US9380541B1 (en) * 2015-06-02 2016-06-28 Qualcomm Incorporated Managing specific absorption rate distribution to maximize transmit power of a wireless device
US20160234790A1 (en) * 2013-11-15 2016-08-11 Intel Corporation System and method for improved transmit power adaptation for wireless platform
US20160262110A1 (en) * 2015-03-06 2016-09-08 Apple Inc. Radio frequency system power back off systems and methods
US9538284B2 (en) 2013-02-28 2017-01-03 Gn Resound A/S Audio system for audio streaming and associated method
US9563316B2 (en) 2014-01-10 2017-02-07 Microsoft Technology Licensing, Llc Radiofrequency-wave-transparent capacitive sensor pad
US9769769B2 (en) 2014-06-30 2017-09-19 Microsoft Technology Licensing, Llc Detecting proximity using antenna feedback
US9781683B2 (en) 2014-12-16 2017-10-03 Qualcomm Incorporated Determining transmit power limits using a combined specific absorption measurement for multiple transmitters
US9785174B2 (en) 2014-10-03 2017-10-10 Microsoft Technology Licensing, Llc Predictive transmission power control for back-off
US9791490B2 (en) 2014-06-09 2017-10-17 Apple Inc. Electronic device having coupler for tapping antenna signals
US9807705B2 (en) * 2013-11-07 2017-10-31 Xi'an Zhongxing New Software Co. Ltd Method and device for controlling transmitting power
US9813997B2 (en) 2014-01-10 2017-11-07 Microsoft Technology Licensing, Llc Antenna coupling for sensing and dynamic transmission
US20170353697A1 (en) * 2015-05-29 2017-12-07 Panasonic Intellectual Property Corporation Of America Terminal apparatus and communication method
US9871544B2 (en) 2013-05-29 2018-01-16 Microsoft Technology Licensing, Llc Specific absorption rate mitigation
US9871545B2 (en) 2014-12-05 2018-01-16 Microsoft Technology Licensing, Llc Selective specific absorption rate adjustment
US20180167897A1 (en) * 2016-12-12 2018-06-14 Qualcomm Incorporated Reporting power limit and corresponding constraint
US20180182694A1 (en) * 2016-03-22 2018-06-28 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US10013038B2 (en) 2016-01-05 2018-07-03 Microsoft Technology Licensing, Llc Dynamic antenna power control for multi-context device
US10044095B2 (en) 2014-01-10 2018-08-07 Microsoft Technology Licensing, Llc Radiating structure with integrated proximity sensing
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10224974B2 (en) 2017-03-31 2019-03-05 Microsoft Technology Licensing, Llc Proximity-independent SAR mitigation
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10251137B2 (en) 2016-07-15 2019-04-02 Samsung Electronics Co., Ltd. Methods of controlling transmission power level based on remaining power level in immediately preceding time period
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US10337886B2 (en) 2017-01-23 2019-07-02 Microsoft Technology Licensing, Llc Active proximity sensor with adaptive electric field control
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
WO2019194714A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Controlling transmitter output in a wireless communications network based on regulatory rf exposure limits
US10461406B2 (en) 2017-01-23 2019-10-29 Microsoft Technology Licensing, Llc Loop antenna with integrated proximity sensing
EP3567940A1 (en) * 2018-05-11 2019-11-13 Intel IP Corporation Techniques for controlling specific absorption rate of radio energy transmission
US10492148B2 (en) * 2013-08-08 2019-11-26 The Procter & Gamble Company Sensor systems for absorbent articles comprising sensor gates
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US10595282B2 (en) 2010-07-26 2020-03-17 Qualcomm Incorporated Apparatus and method for adjustment of transmitter power in a system
US20200107274A1 (en) * 2018-09-28 2020-04-02 Apple Inc. Granular adjustment of antenna power in multi-radio systems
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10820280B2 (en) 2015-09-29 2020-10-27 Huawei Technologies Co., Ltd. Method for controlling transmit power of wireless communications terminal, and wireless communications terminal
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10893488B2 (en) 2013-06-14 2021-01-12 Microsoft Technology Licensing, Llc Radio frequency (RF) power back-off optimization for specific absorption rate (SAR) compliance
US20210080523A1 (en) * 2019-09-18 2021-03-18 Rohde & Schwarz Gmbh & Co. Kg SAR measurement for a combined 5G and LTE RF device
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
WO2021091073A1 (ko) * 2019-11-08 2021-05-14 삼성전자 주식회사 송신 안테나 선택 방법 및 전자 장치
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11071067B2 (en) * 2017-10-19 2021-07-20 Samsung Electronics Co., Ltd. Method for controlling power and electronic device thereof
EP3846547A4 (en) * 2018-09-25 2021-08-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION PROCESS AND TERMINAL DEVICE
CN113545137A (zh) * 2019-04-30 2021-10-22 索尼集团公司 对终端请求的功率降低的控制
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
WO2022016019A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Reductions in transmit power based on spatial distributions of radio frequency exposure in multi-transmitter scenarios
US20220022177A1 (en) * 2019-04-04 2022-01-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method, network device, and terminal device
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
WO2022077023A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Allocation of transmit power in compliance with rf exposure requirements
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
RU2774297C1 (ru) * 2018-09-25 2022-06-17 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ беспроводной связи и терминальное устройство
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11412462B2 (en) * 2017-04-14 2022-08-09 Intel Corporation Enhanced power management for wireless communications
US11431112B2 (en) * 2015-01-05 2022-08-30 Ossia Inc. Techniques for reducing human exposure to wireless energy in wireless power delivery environments
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11457416B2 (en) * 2018-07-05 2022-09-27 Qualcomm Incorporated Evaluating radio frequency (RF) exposure in real time
US20220369245A1 (en) * 2021-05-17 2022-11-17 Qualcomm Incorporated Dynamic power aggregation
US20230012055A1 (en) * 2021-07-09 2023-01-12 Facebook Technologies, Llc Systems and methods of exposure control with wireless links

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881543B2 (ja) * 2012-06-25 2016-03-09 京セラ株式会社 無線通信端末、送信電力制御方法、およびプログラム
KR102194839B1 (ko) * 2014-04-10 2020-12-24 삼성전자주식회사 송신 전력 크기 조절 방법 및 전자 장치
US10034297B2 (en) * 2016-04-20 2018-07-24 Rakuram Ghandi System and method for reducing exposure of human to radio frequency radiation
EP3264619B1 (en) * 2016-07-01 2019-09-04 Intel IP Corporation Method and device for mitigating interference in collocated transceivers
CN111869045B (zh) * 2018-03-08 2024-04-16 利奇电力公司 用于无线功率输送的方法和系统
CN110493871B (zh) * 2018-05-14 2020-12-15 Oppo广东移动通信有限公司 一种降低sar值的方法及装置、计算机存储介质
CN109889214B (zh) * 2019-02-25 2021-10-19 维沃移动通信有限公司 一种降低sar值的方法及移动终端
US11924819B2 (en) * 2019-05-24 2024-03-05 Qualcomm Incorporated Power limits based on signal type for managing maximum permissible exposure
US11601897B2 (en) * 2019-05-31 2023-03-07 Apple Inc. Dynamic adjustment of transmission parameters
CN112448732B (zh) * 2019-09-02 2023-06-02 华为技术有限公司 无线设备的射频暴露控制方法、装置及无线设备
WO2021126250A1 (en) * 2019-12-20 2021-06-24 Hewlett-Packard Development Company, L.P. Transmit power of wireless communication
EP4324071A1 (en) 2021-04-14 2024-02-21 Reach Power, Inc. System and method for wireless power networking
WO2022251774A1 (en) * 2021-05-26 2022-12-01 Qualcomm Incorporated Techniques for scaling a transmit power limit
CN114040490A (zh) * 2021-10-25 2022-02-11 荣耀终端有限公司 多发射机场景下确定发射机的最大发射功率的方法和产品
EP4181586A1 (en) * 2021-11-16 2023-05-17 INTEL Corporation Methods and devices of transmit power control for multiple transceivers in a single device or in a multiple device scenario
WO2024076150A1 (ko) * 2022-10-04 2024-04-11 삼성전자주식회사 Sar에 기반하여 백 오프를 수행하는 전자 장치 및 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239404A1 (en) * 2004-04-07 2005-10-27 Karabinis Peter D Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US20070135154A1 (en) * 2005-12-14 2007-06-14 Motorola, Inc. Method and system for controlling transmitter power using antenna loading on a multi-antenna system
US20090093219A1 (en) * 2006-04-28 2009-04-09 Mitsubishi Electric Corporation Wireless communication apparatus and wireless communication system
US20100291963A1 (en) * 2009-05-14 2010-11-18 Qualcomm Incorporated Transmission power management for a moblie device supporting simultaneous transmission on multiple air interfaces

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524275A (en) * 1993-12-17 1996-06-04 Ericsson Ge Mobile Communications Inc. Averaged RF exposure control
US6778612B1 (en) * 2000-08-18 2004-08-17 Lucent Technologies Inc. Space-time processing for wireless systems with multiple transmit and receive antennas
US7610027B2 (en) * 2002-06-05 2009-10-27 Meshnetworks, Inc. Method and apparatus to maintain specification absorption rate at a wireless node
US7072679B2 (en) * 2002-06-28 2006-07-04 Harris Corporation Automatic transmit power control disabling
AU2005202512B8 (en) * 2004-06-09 2008-06-05 Samsung Electronics Co., Ltd. Method and apparatus for data transmission in a mobile telecommunication system supporting enhanced uplink service
KR100696208B1 (ko) * 2004-12-08 2007-03-20 한국전자통신연구원 다중 안테나 송수신 시스템의 제어 방법, 송신기 및 수신기
US20070111681A1 (en) * 2005-11-14 2007-05-17 Alberth William P Jr Transmit power allocation in wireless communication devices
US8693950B2 (en) * 2006-03-23 2014-04-08 Broadcom Corporation Method and system for transmit power control techniques to reduce mutual interference between coexistent wireless networks device
JP4869888B2 (ja) 2006-11-29 2012-02-08 京セラ株式会社 無線通信端末装置
US20090047998A1 (en) 2007-08-16 2009-02-19 Motorola, Inc. Method and apparatus for controlling power transmission levels for a mobile station having transmit diversity
EP2403302B1 (en) * 2010-06-29 2017-01-04 Lg Electronics Inc. User equipment apparatus for transmitting a plurality of signals simultaneously using at least two wireless communication schemes and method thereof
US20120021707A1 (en) 2010-07-26 2012-01-26 Qualcomm Incorporated Apparatus and method for adjustment of transmitter power in a system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239404A1 (en) * 2004-04-07 2005-10-27 Karabinis Peter D Satellite/hands-free interlock systems and/or companion devices for radioterminals and related methods
US20070135154A1 (en) * 2005-12-14 2007-06-14 Motorola, Inc. Method and system for controlling transmitter power using antenna loading on a multi-antenna system
US20090093219A1 (en) * 2006-04-28 2009-04-09 Mitsubishi Electric Corporation Wireless communication apparatus and wireless communication system
US20100291963A1 (en) * 2009-05-14 2010-11-18 Qualcomm Incorporated Transmission power management for a moblie device supporting simultaneous transmission on multiple air interfaces

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10333604B2 (en) 2004-04-02 2019-06-25 Rearden, Llc System and method for distributed antenna wireless communications
US11646773B2 (en) 2004-04-02 2023-05-09 Rearden, Llc System and method for distributed antenna wireless communications
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US11190246B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US11196467B2 (en) 2004-04-02 2021-12-07 Rearden, Llc System and method for distributed antenna wireless communications
US10320455B2 (en) 2004-04-02 2019-06-11 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10349417B2 (en) 2004-04-02 2019-07-09 Rearden, Llc System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11923931B2 (en) 2004-04-02 2024-03-05 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US20110002410A1 (en) * 2004-04-02 2011-01-06 Antonio Forenza System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US10727907B2 (en) 2004-07-30 2020-07-28 Rearden, Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US10243623B2 (en) 2004-07-30 2019-03-26 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10595282B2 (en) 2010-07-26 2020-03-17 Qualcomm Incorporated Apparatus and method for adjustment of transmitter power in a system
US20150222312A1 (en) * 2011-02-17 2015-08-06 Futurewei Technologies, Inc. Adaptive Maximum Power Limiting Using Capacitive Sensing in a Wireless Device
US9866250B2 (en) * 2011-02-17 2018-01-09 Futurewei Technologies, Inc. Adaptive maximum power limiting using capacitive sensing in a wireless device
US9621211B2 (en) * 2011-02-17 2017-04-11 Futurewei Technologies, Inc. Adaptive maximum power limiting using capacitive sensing in a wireless device
US20170194996A1 (en) * 2011-02-17 2017-07-06 Futurewei Technologies, Inc. Adaptive Maximum Power Limiting Using Capacitive Sensing in a Wireless Device
US9071309B2 (en) * 2011-08-23 2015-06-30 Google Inc. Method and system for use of quadrature hybrids for closed and open loop beam forming transmit diversity
US20140205042A1 (en) * 2011-08-23 2014-07-24 Google Inc. Method and system for use of quadrature hybrids for closed and open loop beam forming transmit diversity
US20130176876A1 (en) * 2012-01-06 2013-07-11 Fujitsu Mobile Communications Limited Radio communication terminal device and radio communication terminal device control method
US9414330B2 (en) * 2012-05-23 2016-08-09 Hewlett-Packard Development Company, L.P. Adjusting a duty cycle of wireless transmissions
US20150072721A1 (en) * 2012-05-23 2015-03-12 Isaac Lagnado Adjusting a duty cycle of wireless transmissions
WO2014039679A1 (en) * 2012-09-05 2014-03-13 Qualcomm Incorporated Duty cycled transmissions
WO2014047364A1 (en) * 2012-09-19 2014-03-27 Qualcomm Incorporated Methods and apparatuses for preemptive battery voltage management in multi-sim mobile devices
US9107168B2 (en) 2012-09-19 2015-08-11 Qualcomm Incorporated Methods and apparatuses for preemptive battery voltage management in multi-SIM mobile devices
US20140087663A1 (en) * 2012-09-26 2014-03-27 Apple Inc. Transmission power modulation to facilitate in-device coexistence between wireless communication technologies
US8781519B2 (en) * 2012-09-26 2014-07-15 Apple Inc. Transmission power modulation to facilitate in-device coexistence between wireless communication technologies
US9197166B2 (en) 2012-09-26 2015-11-24 Apple Inc. Increasing power amplifier linearity to facilitate in-device coexistence between wireless communication technologies
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US20140213192A1 (en) * 2013-01-31 2014-07-31 Hewlett-Packard Development Company, L.P. Specific absorption rate reduction
US9031607B1 (en) * 2013-02-28 2015-05-12 Sprint Communications Company L.P. Utilizing signal powers associated with multiple channels of a mobile device to facilitate network selection
US9497541B2 (en) * 2013-02-28 2016-11-15 Gn Resound A/S Audio system for audio streaming and associated method
US20140241545A1 (en) * 2013-02-28 2014-08-28 Peter Siegumfeldt Audio system for audio streaming and associated method
US9538284B2 (en) 2013-02-28 2017-01-03 Gn Resound A/S Audio system for audio streaming and associated method
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10848225B2 (en) 2013-03-12 2020-11-24 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11901992B2 (en) 2013-03-12 2024-02-13 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11581924B2 (en) 2013-03-15 2023-02-14 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US9300342B2 (en) * 2013-04-18 2016-03-29 Apple Inc. Wireless device with dynamically adjusted maximum transmit powers
US20140315592A1 (en) * 2013-04-18 2014-10-23 Apple Inc. Wireless Device With Dynamically Adjusted Maximum Transmit Powers
US9871544B2 (en) 2013-05-29 2018-01-16 Microsoft Technology Licensing, Llc Specific absorption rate mitigation
US10893488B2 (en) 2013-06-14 2021-01-12 Microsoft Technology Licensing, Llc Radio frequency (RF) power back-off optimization for specific absorption rate (SAR) compliance
US20160087450A1 (en) * 2013-06-25 2016-03-24 Canon Kabushiki Kaisha Power transmitting apparatus, power receiving apparatus, control methods therefor, programs, and storage medium
US9887554B2 (en) * 2013-06-25 2018-02-06 Canon Kabushiki Kaisha Power transmitting apparatus, power receiving apparatus, control methods therefor, programs, and storage medium
CN103401572A (zh) * 2013-08-06 2013-11-20 成都博高科技有限责任公司 无线通信模块及其发射功率的方法
US10492148B2 (en) * 2013-08-08 2019-11-26 The Procter & Gamble Company Sensor systems for absorbent articles comprising sensor gates
US9807705B2 (en) * 2013-11-07 2017-10-31 Xi'an Zhongxing New Software Co. Ltd Method and device for controlling transmitting power
US9936464B2 (en) * 2013-11-15 2018-04-03 Intel Corporation System and method for improved transmit power adaptation for wireless platform
US20160234790A1 (en) * 2013-11-15 2016-08-11 Intel Corporation System and method for improved transmit power adaptation for wireless platform
US9563316B2 (en) 2014-01-10 2017-02-07 Microsoft Technology Licensing, Llc Radiofrequency-wave-transparent capacitive sensor pad
US10044095B2 (en) 2014-01-10 2018-08-07 Microsoft Technology Licensing, Llc Radiating structure with integrated proximity sensing
US9886156B2 (en) 2014-01-10 2018-02-06 Microsoft Technology Licensing, Llc Radiofrequency-wave-transparent capacitive sensor pad
US10168848B2 (en) 2014-01-10 2019-01-01 Microsoft Technology Licensing, Llc Radiofrequency-wave-transparent capacitive sensor pad
US9813997B2 (en) 2014-01-10 2017-11-07 Microsoft Technology Licensing, Llc Antenna coupling for sensing and dynamic transmission
US10276922B2 (en) 2014-01-10 2019-04-30 Microsoft Technology Licensing, Llc Radiating structure with integrated proximity sensing
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US9781687B2 (en) * 2014-05-20 2017-10-03 Apple Inc. Controlling radio transmission power in a multi-radio wireless communication device
US20150341869A1 (en) * 2014-05-20 2015-11-26 Apple Inc. Controlling radio transmission power in a multi-radio wireless communication device
US9980232B2 (en) * 2014-05-30 2018-05-22 Apple Inc. Traffic shaping to mitigate brownout conditions
US20160057707A1 (en) * 2014-05-30 2016-02-25 Apple Inc. Traffic shaping to mitigate brownout conditions
US9791490B2 (en) 2014-06-09 2017-10-17 Apple Inc. Electronic device having coupler for tapping antenna signals
US10571502B2 (en) 2014-06-09 2020-02-25 Apple Inc. Electronic device having coupler for tapping antenna signals
US9769769B2 (en) 2014-06-30 2017-09-19 Microsoft Technology Licensing, Llc Detecting proximity using antenna feedback
US9785174B2 (en) 2014-10-03 2017-10-10 Microsoft Technology Licensing, Llc Predictive transmission power control for back-off
US9871545B2 (en) 2014-12-05 2018-01-16 Microsoft Technology Licensing, Llc Selective specific absorption rate adjustment
US9781683B2 (en) 2014-12-16 2017-10-03 Qualcomm Incorporated Determining transmit power limits using a combined specific absorption measurement for multiple transmitters
US11431112B2 (en) * 2015-01-05 2022-08-30 Ossia Inc. Techniques for reducing human exposure to wireless energy in wireless power delivery environments
US20160262110A1 (en) * 2015-03-06 2016-09-08 Apple Inc. Radio frequency system power back off systems and methods
US9560601B2 (en) * 2015-03-06 2017-01-31 Apple Inc. Radio frequency system power back off systems and methods
US20170353697A1 (en) * 2015-05-29 2017-12-07 Panasonic Intellectual Property Corporation Of America Terminal apparatus and communication method
US10158830B2 (en) * 2015-05-29 2018-12-18 Panasonic Intellectual Property Corporation Of America Terminal apparatus and communication method
US10477153B2 (en) 2015-05-29 2019-11-12 Panasonic Intellectual Property Corporation Of America Terminal apparatus and communication method
US9380541B1 (en) * 2015-06-02 2016-06-28 Qualcomm Incorporated Managing specific absorption rate distribution to maximize transmit power of a wireless device
US10820280B2 (en) 2015-09-29 2020-10-27 Huawei Technologies Co., Ltd. Method for controlling transmit power of wireless communications terminal, and wireless communications terminal
US11265820B2 (en) * 2015-09-29 2022-03-01 Honor Device Co., Ltd. Method for controlling transmit power of wireless communications terminal, and wireless communications terminal
US10013038B2 (en) 2016-01-05 2018-07-03 Microsoft Technology Licensing, Llc Dynamic antenna power control for multi-context device
CN105657656A (zh) * 2016-01-06 2016-06-08 广东欧珀移动通信有限公司 一种发射功率调整方法及用户设备
US20180182694A1 (en) * 2016-03-22 2018-06-28 Fuji Electric Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US10251137B2 (en) 2016-07-15 2019-04-02 Samsung Electronics Co., Ltd. Methods of controlling transmission power level based on remaining power level in immediately preceding time period
US10582457B2 (en) 2016-07-15 2020-03-03 Samsung Electronics Co., Ltd. Wireless communication device for controlling transmission power based on remaining power level in preceding time period
US20180167897A1 (en) * 2016-12-12 2018-06-14 Qualcomm Incorporated Reporting power limit and corresponding constraint
TWI758373B (zh) * 2016-12-12 2022-03-21 美商高通公司 報告功率限制和對應的約束
US11368926B2 (en) * 2016-12-12 2022-06-21 Qualcomm Incorporated Reporting power limit and corresponding constraint
US10337886B2 (en) 2017-01-23 2019-07-02 Microsoft Technology Licensing, Llc Active proximity sensor with adaptive electric field control
US10461406B2 (en) 2017-01-23 2019-10-29 Microsoft Technology Licensing, Llc Loop antenna with integrated proximity sensing
US10224974B2 (en) 2017-03-31 2019-03-05 Microsoft Technology Licensing, Llc Proximity-independent SAR mitigation
US10924145B2 (en) 2017-03-31 2021-02-16 Microsoft Technology Licensing, Llc Proximity-independent SAR mitigation
US11412462B2 (en) * 2017-04-14 2022-08-09 Intel Corporation Enhanced power management for wireless communications
US20230030482A1 (en) * 2017-04-14 2023-02-02 Intel Corporation Enhanced power management for wireless communications
US11071067B2 (en) * 2017-10-19 2021-07-20 Samsung Electronics Co., Ltd. Method for controlling power and electronic device thereof
US11324014B2 (en) * 2017-12-22 2022-05-03 Qualcomm Incorporated Exposure detection in millimeter wave systems
US11412523B2 (en) 2018-04-06 2022-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Controlling transmitter output in a wireless communications network based on regulatory RF exposure limits
WO2019194714A1 (en) * 2018-04-06 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Controlling transmitter output in a wireless communications network based on regulatory rf exposure limits
EP4007383A1 (en) * 2018-05-11 2022-06-01 Apple Inc. Techniques for controlling specific absorption rate of radio energy transmission
EP3567940A1 (en) * 2018-05-11 2019-11-13 Intel IP Corporation Techniques for controlling specific absorption rate of radio energy transmission
US11689234B2 (en) * 2018-05-11 2023-06-27 Apple Inc. Techniques for controlling specific absorption rate of radio energy transmission
US20230361798A1 (en) * 2018-05-11 2023-11-09 Apple Inc. Techniques for controlling specific absorption rate of radio energy transmission
US10924146B2 (en) * 2018-05-11 2021-02-16 Apple Inc. Techniques for controlling specific absorption rate of radio energy transmission
US20240172126A1 (en) * 2018-07-05 2024-05-23 Qualcomm Incorporated Evaluating radio frequency (rf) exposure in real time
US11792740B2 (en) * 2018-07-05 2023-10-17 Qualcomm Incorporated Evaluating radio frequency (RF) exposure in real time
US11457416B2 (en) * 2018-07-05 2022-09-27 Qualcomm Incorporated Evaluating radio frequency (RF) exposure in real time
US20230012908A1 (en) * 2018-07-05 2023-01-19 Qualcomm Incorporated Evaluating radio frequency (rf) exposure in real time
EP4192126A1 (en) * 2018-09-25 2023-06-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
US12041539B2 (en) 2018-09-25 2024-07-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
US11147013B2 (en) 2018-09-25 2021-10-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
US11706708B2 (en) 2018-09-25 2023-07-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and terminal device
RU2774297C1 (ru) * 2018-09-25 2022-06-17 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ беспроводной связи и терминальное устройство
EP3846547A4 (en) * 2018-09-25 2021-08-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION PROCESS AND TERMINAL DEVICE
US10939387B2 (en) * 2018-09-28 2021-03-02 Apple Inc. Granular adjustment of antenna power in multi-radio systems
US20200107274A1 (en) * 2018-09-28 2020-04-02 Apple Inc. Granular adjustment of antenna power in multi-radio systems
US11825422B2 (en) 2018-09-28 2023-11-21 Apple Inc. Granular adjustment of antenna power in multi-radio systems
US20220022177A1 (en) * 2019-04-04 2022-01-20 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method, network device, and terminal device
US12035285B2 (en) * 2019-04-04 2024-07-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource configuration method, network device, and terminal device
US12004086B2 (en) 2019-04-30 2024-06-04 Sony Group Corporation Control of terminal-requested power reduction
CN113545137A (zh) * 2019-04-30 2021-10-22 索尼集团公司 对终端请求的功率降低的控制
US20210080523A1 (en) * 2019-09-18 2021-03-18 Rohde & Schwarz Gmbh & Co. Kg SAR measurement for a combined 5G and LTE RF device
US11990928B2 (en) * 2019-09-18 2024-05-21 Rohde & Schwarz Gmbh & Co. Kg SAR measurement for a combined 5G and LTE RF device
WO2021091073A1 (ko) * 2019-11-08 2021-05-14 삼성전자 주식회사 송신 안테나 선택 방법 및 전자 장치
WO2022016019A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Reductions in transmit power based on spatial distributions of radio frequency exposure in multi-transmitter scenarios
US20230291428A1 (en) * 2020-07-15 2023-09-14 Qualcomm Incorporated Reductions in transmit power based on spatial distributions of radio frequency exposure in multi-transmitter scenarios
US12063060B2 (en) * 2020-07-15 2024-08-13 Qualcomm Incorporated Reductions in transmit power based on spatial distributions of radio frequency exposure in multi-transmitter scenarios
US20220021409A1 (en) * 2020-07-15 2022-01-20 Qualcomm Incorporated Reductions in transmit power based on spatial distributions of radio frequency exposure in multi-transmitter scenarios
US11664841B2 (en) * 2020-07-15 2023-05-30 Qualcomm Incorporated Reductions in transmit power based on spatial distributions of radio frequency exposure in multi-transmitter scenarios
WO2022077023A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Allocation of transmit power in compliance with rf exposure requirements
US20220116949A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Allocation of transmit power in compliance with rf exposure requirements
US20220369245A1 (en) * 2021-05-17 2022-11-17 Qualcomm Incorporated Dynamic power aggregation
US11595072B2 (en) * 2021-07-09 2023-02-28 Meta Platforms Technologies, Llc Systems and methods of exposure control with wireless links
US11990929B2 (en) 2021-07-09 2024-05-21 Meta Platforms Technologies, Llc Systems and methods of exposure control with wireless links
US20230012055A1 (en) * 2021-07-09 2023-01-12 Facebook Technologies, Llc Systems and methods of exposure control with wireless links

Also Published As

Publication number Publication date
US10595282B2 (en) 2020-03-17
EP2599355A1 (en) 2013-06-05
JP2013537755A (ja) 2013-10-03
JP5752793B2 (ja) 2015-07-22
CN103026764B (zh) 2016-05-25
CN103026764A (zh) 2013-04-03
WO2012018625A1 (en) 2012-02-09
KR101540697B1 (ko) 2015-07-30
KR20130069741A (ko) 2013-06-26
US20180070320A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US10595282B2 (en) Apparatus and method for adjustment of transmitter power in a system
US11357015B2 (en) Sidelink signal measurement and resource selection in vehicle-to-everything communications
US9622187B2 (en) Real-time specific absorption rate implementation in wireless devices
US11490395B2 (en) Feedback-driven antenna array size adaptation
US11310751B2 (en) Maximum permissible exposure assisted uplink traffic grant allocation
CN111656709A (zh) 对于功率放大器表征化的调度和最大允许照射量测量
EP2707972B1 (en) Data driven adaptive receive chain diversity processing
US20140274179A1 (en) System and method for adjusting a power transmission level for a communication for a communication device
US20160174168A1 (en) Avoiding transmit power limitations due to specific absorption rate constraints
WO2010101808A1 (en) Method and apparatus for extending coverage for ul transmission over e-dch in idle mode and cell_fach state
EP3010290B1 (en) Uplink power control method and device thereof
EP3264619B1 (en) Method and device for mitigating interference in collocated transceivers
TWI753963B (zh) 上行傳輸方法、終端設備和網路設備
EP3335509B1 (en) Method used in radio node, radio node and computer program product
US9723570B2 (en) Power control method and apparatus
JP7030832B2 (ja) 通信方法および通信装置
US7181178B2 (en) Automatic gain control
EP3079415A1 (en) Method, device and system for suppressing uplink background noise in indoor distributed system
TW202209830A (zh) 多發射器場景中基於射頻暴露的空間分佈的傳輸功率減少
EP2749093B1 (en) Power controller, method, computer program and computer program product for controlling transmission power
Bhattarai et al. Co-existence of NB-IoT and radar in shared spectrum: An experimental study
US20230105877A1 (en) Simultaneous primary and secondary radio frequency link transmissions within radio frequency exposure limits
US20240284339A1 (en) Systems and methods for high-power transmission
US8626224B1 (en) Advanced transmit power correction
WO2023056066A1 (en) Method and apparatus for simultaneous primary and secondary radio frequency link transmissions within radio frequency exposure limits

Legal Events

Date Code Title Description
AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FORRESTER, JOHN A.;GUCKIAN, PAUL;LU, LIN;AND OTHERS;SIGNING DATES FROM 20110906 TO 20111007;REEL/FRAME:027033/0481

AS Assignment

Owner name: QUALCOMM INCORPORATED, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FORRESTER, JOHN A.;GUCKIAN, PAUL;LU, LIN;AND OTHERS;SIGNING DATES FROM 20110906 TO 20111007;REEL/FRAME:043987/0469

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION