US20110267909A1 - Fuse circuit and semiconductor memory device including the same - Google Patents

Fuse circuit and semiconductor memory device including the same Download PDF

Info

Publication number
US20110267909A1
US20110267909A1 US13/179,327 US201113179327A US2011267909A1 US 20110267909 A1 US20110267909 A1 US 20110267909A1 US 201113179327 A US201113179327 A US 201113179327A US 2011267909 A1 US2011267909 A1 US 2011267909A1
Authority
US
United States
Prior art keywords
signal
program
fuse
sensing
programmed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/179,327
Other versions
US8305822B2 (en
Inventor
You-Chul Jeong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to US13/179,327 priority Critical patent/US8305822B2/en
Publication of US20110267909A1 publication Critical patent/US20110267909A1/en
Application granted granted Critical
Publication of US8305822B2 publication Critical patent/US8305822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2229/00Indexing scheme relating to checking stores for correct operation, subsequent repair or testing stores during standby or offline operation
    • G11C2229/70Indexing scheme relating to G11C29/70, for implementation aspects of redundancy repair
    • G11C2229/76Storage technology used for the repair
    • G11C2229/763E-fuses, e.g. electric fuses or antifuses, floating gate transistors

Definitions

  • Example embodiments relate to a fuse circuit. More particularly, embodiments relate to a fuse circuit having improved reliability and a semiconductor memory device including the fuse circuit.
  • a capacity of the semiconductor memory is increasing rapidly. Increasing capacity includes increasing a number of memory cells in a chip. As the number of memory cells increases, a number of defective memory cells also increases. Since an existence of a single defective memory cell causes a critical problem in the semiconductor memory device, redundant memory cells are provided to compensate for the defective memory cells. Based on fuse information, redundant memory cells may replace defective memory cells. When an address of the defective memory cell is input, a normal path is cut off and a redundancy path to the redundant cell is activated according to programmed/unprogrammed state of the fuse.
  • a laser fuse which is one of the widely used fuses, is programmed by cutting the fuse formed with a metal line using laser beam.
  • the laser fuse has an advantage of being simply embodied, since an additional circuit to control cutting of the fuse is unnecessary.
  • the laser fuse however, has disadvantages, including limiting integration density regardless of the development of the semiconductor memory manufacturing process technology, e.g., metal oxide semiconductor (MOS) process, since a predetermined interval between the fuses has to be secured to prevent damages due to laser fusing. Furthermore, the laser fuse cannot be reprogrammed after the memory chip including the fuse circuit is packaged.
  • MOS metal oxide semiconductor
  • an electrical fuse and an anti-fuse programmed using an electrical signal have been proposed.
  • Such fuses have advantages that they can be reprogrammed even after the memory chip is packaged since they are activated or deactivated by the electrical signal.
  • the size of the fuse circuit may be reduced as the scale of the manufacturing process is reduced.
  • a conventional fuse circuit includes a program unit including an electrical fuse, a reference voltage generator, and a comparator.
  • the electrical fuse included in the program unit has a sufficiently smaller resistance than a resistance of the reference voltage generator before being programmed in a program mode, but has a larger resistance than the resistance of the reference voltage generator when the electrical fuse is cut by being programmed in the program mode, since the electrical fuse operates as an open circuit.
  • the program unit and the reference voltage generator output respective voltages that are, in proportion to each resistance, pulled down from a power supply voltage.
  • the comparator compares an output voltage of the program unit with an output voltage of the reference voltage generator and generates an output signal which indicates whether or not the electrical fuse is programmed, i.e., whether or not the electrical fuse is cut.
  • Another conventional fuse circuit includes a program unit including an anti-fuse, a reference voltage generator, and a comparator.
  • the anti-fuse of the program unit has a sufficiently larger resistance than a resistance of the reference voltage generator before being programmed in a program mode, but has a smaller resistance than the resistance of the reference voltage generator when the program unit is programmed in the program mode, since the anti-fuse is electrically shorted.
  • the program unit and the reference voltage generator output respective voltages that are, in proportion to each resistance, pulled down from a power supply voltage.
  • the comparator compares an output voltage of the program unit with an output voltage of the reference voltage generator and generates an output signal which indicates whether or not the anti-fuse is programmed, i.e., whether or not the anti-fuse is electrically shorted.
  • the resistance of the program unit including the electrical fuse increases when the program unit is programmed and the output voltage of the program unit decreases.
  • the resistance of the program unit including the anti-fuse decreases when the program unit is programmed and the output voltage of the program unit increases.
  • the output voltages of the program units change after being programmed.
  • the comparators compare the reference voltage of the reference voltage generators with the output voltages of the program units, and determine whether or not the program units are programmed based on the comparison results.
  • the reference voltage generators output a fixed reference voltage
  • the comparators compare the fixed reference voltage with the output voltage of the program units including the electrical fuse or the anti-fuse and determine whether or not the program units are programmed.
  • residues remain around the cutting area.
  • the resistance of the program unit may not increase sufficiently.
  • Such residues form an electrical path having a finite resistance.
  • an electrical short may be incomplete.
  • the resistance of the program unit may not decrease sufficiently.
  • the electrical fuse is programmed (i.e. cut) by applying a relatively high current through the electrical fuse in response to a control signal.
  • the electrical fuse can be cut by externally applying the control signal even after the fuse circuit is packaged.
  • the electrical fuse however, requires a large control driver for applying a high current through the electrical fuse. Thus, the size of the fuse circuit is relatively large.
  • the anti-fuse is programmed (i.e., electrically shorted) by applying a relatively high voltage to the anti-fuse in response to a control signal.
  • the anti-fuse is a capacitor having both ends electrically connected when dielectric material in the capacitor is damaged by the applied high voltage.
  • the anti-fuse can be programmed by externally applying the control signal even after the fuse circuit is packaged.
  • the reliability of the anti-fuse is determined according to a level of the applied voltage. Thus, the anti-fuse needs high voltage for reliability.
  • the electrical fuse and the anti-fuse have advantages, but also have a common disadvantage that their reliability is lower than the laser fuse, since electrical characteristic of such fuses may be varied according to the change of manufacturing process.
  • various methods are proposed, but conventional methods can not guarantee the reliability of the fuses.
  • Embodiments are therefore directed to a fuse circuit and a semiconductor device including the same, which substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • a fuse circuit may include a first program unit, a second program unit, and a sensing circuit.
  • the first program unit may be programmed in a program mode in response to a program signal and may output a first signal in a sensing mode, such that the first signal increases when the first program unit is programmed.
  • the second program unit may be programmed in the program mode in response to the program signal and may output a second signal in the sensing mode, such that the second signal decreases when the second program unit is programmed.
  • the sensing circuit may generate a sensing output signal in response to the first and second signals, where the sensing output signal indicates whether or not the program units are programmed.
  • a resistance of the first program unit may increase when the first program unit is programmed, and a resistance of the second program unit may decrease when the second program unit is programmed.
  • the first program unit may include an electrical fuse which is connected between a first voltage terminal and an output node of the first signal
  • the second program unit may include a reference resistor and an anti-fuse which are connected in parallel between a second voltage terminal and an output node of the second signal.
  • a common voltage may be applied to the first and second voltage terminals.
  • the first program unit may include an electrical fuse connected between a first voltage terminal and an output node of the first signal, and a first program transistor connected between the output node of the first signal and a ground voltage, and a gate of the first program transistor receives the program signal.
  • the second program unit may include a reference resistor connected between a second voltage terminal and an output node of the second signal, an anti-fuse having a first end coupled to the second voltage terminal, a switching transistor connected between a second end of the anti-fuse and the output node of the second signal, and a second program transistor connected between the second end of the anti-fuse and the ground voltage.
  • a gate of the switching transistor receives an inversion signal of the program signal and a gate of the second program transistor receives the program signal.
  • the first and second program units may include an anti-fuse, respectively
  • the first program unit may include a sensing transistor which is connected between a first voltage terminal and an output node of the first signal, and a first anti-fuse for electrically connecting a gate of the sensing transistor with the first voltage terminal when the first program unit is programmed.
  • the second program unit may include a reference resistor and a second anti-fuse which are connected between a second voltage terminal and an output node of the second signal in parallel.
  • a common voltage may be applied to the first and second voltage terminals.
  • the first program unit may include a sensing transistor connected between a first voltage terminal and an output node of the first signal, a first anti-fuse having a first end coupled to the first voltage terminal, a first switching transistor connected between a second end of the first anti-fuse and a gate of the sensing transistor, a second switching transistor which is connected between the gate of the sensing transistor and a ground voltage, a third switching transistor which is connected between the gate of the sensing transistor and the ground voltage, and a first program transistor which is connected between the second end of the first anti-fuse and the ground voltage.
  • a gate of the first switching transistor receives a sensing enable signal
  • a gate of the second switching transistor receives an inversion signal of the sensing output signal
  • a gate of the third switching transistor receives an inversion signal of a power-up signal
  • a gate of the first program transistor receives the program signal.
  • the second program unit may include a reference resistor which is connected between a second voltage terminal and an output node of the second signal, a second anti-fuse having a first end coupled to the second voltage terminal, a fourth switching transistor connected between a second end of the second anti-fuse and the output node of the second signal, and a second program transistor connected between the second end of the second anti-fuse and the ground voltage.
  • a gate of the fourth switching transistor receives an inversion signal of the program signal, and a gate of the second program transistor receives the program signal.
  • the first program unit may include a first anti-fuse connected between a first voltage terminal and an output node of the first signal
  • the second program unit may include a second anti-fuse connected between a second voltage terminal and an output node of the second signal.
  • a ground voltage may be applied to the first voltage terminal, and a power supply voltage is applied to the second voltage terminal.
  • the first program unit may include a first anti-fuse having a first end is coupled to a first voltage terminal, a first switching transistor connected between a second end of the first anti-fuse and an output node of the first signal, and a first program transistor connected between the second end of the first anti-fuse and a ground voltage.
  • a gate of the first switching transistor receives a sensing enable signal, and a gate of the first program transistor receives the program signal.
  • the second program unit may include a second anti-fuse having a first end coupled to a second voltage terminal, a second switching transistor connected between a second end of the second anti-fuse and an output node of the second signal, and a second program transistor connected between the second end of the second anti-fuse and the ground voltage.
  • a gate of the second switching transistor receives the sensing enable signal, and a gate of the second program transistor receives the program signal.
  • the sensing circuit may include a latch circuit or a comparator.
  • a semiconductor memory device includes a memory cell array, a repair circuit and an address decoder.
  • the memory cell array includes normal memory cells and redundant memory cells.
  • the repair circuit is programmed in a program mode to indicate the normal memory cell corresponding to the address signal is a defective cell and outputs the sensing output signal in a sensing mode.
  • the address decoder accesses the normal memory cells or the redundant memory cells in response to an address signal and a sensing output signal.
  • the repair circuit includes a plurality of fuse circuits.
  • Each fuse circuit includes a first program unit which is programmed in the program mode in response to a program signal and outputs a first signal in the sensing mode, such that the first signal increases when the first program unit is programmed, a second program unit programmed in the program mode in response to the program signal and outputs a second signal in the sensing mode, such that the second signal decreasing when the second program unit is programmed, and a sensing circuit that generates the sensing output signal in response to the first and second signals, where the sensing output signal indicates whether or not the program units are programmed.
  • the first program unit may include an electrical fuse connected between a first voltage terminal and an output node of the first signal
  • the second program unit may include a reference resistor and an anti-fuse connected in parallel between a second voltage terminal and an output node of the second signal.
  • the first program unit may include a sensing transistor connected between a first voltage terminal and an output node of the first signal, and a first anti-fuse for electrically connecting a gate of the sensing transistor with the first voltage terminal when the first program unit is programmed.
  • the second program unit may include a reference resistor and a second anti-fuse connected in parallel between a second voltage terminal and an output node of the second signal.
  • the first program unit may include a first anti-fuse connected between a first voltage terminal and an output node of the first signal.
  • the second program unit may include a second anti-fuse connected between a second voltage terminal and an output node of the second signal.
  • a ground voltage may be applied to the first voltage terminal and a power supply voltage may be applied to the second voltage terminal.
  • the first and second program units may be programmed respectively, and the sensing circuit may compare the first signal with the second signal, which are complementarily changing by the programming operation, to determine whether or not the program units are programmed.
  • Fuse circuits according to embodiments may determine whether or not the program units are programmed, even if one of the program units is incompletely programmed.
  • Fuse circuits according to embodiments using only the anti-fuses are compatible with the MOS manufacturing process.
  • the semiconductor memory device including fuse circuits according to embodiments may reliably repair the defective cells.
  • FIG. 1 illustrates a block diagram of a fuse circuit according to an example embodiment
  • FIG. 2 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment
  • FIGS. 3 and 4 illustrate circuit diagrams of sensing circuits in a fuse circuit according to an example embodiment
  • FIG. 5 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment
  • FIG. 6 illustrates a circuit diagram of a circuit of generating a sensing enable signal that is applied to the fuse circuit of FIG. 5 ;
  • FIG. 7 illustrates a timing diagram of operations of the fuse circuit of FIG. 5 .
  • FIG. 8 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment
  • FIG. 9 illustrates a block diagram of a semiconductor memory device according to an example embodiment.
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • FIG. 1 illustrates a block diagram of a fuse circuit according to an example embodiment.
  • the fuse circuit 100 may include a first program unit 120 , a second program unit 140 , and a sensing circuit 160 .
  • the first program unit 120 may be programmed in a program mode in response to a program signal and may output a first signal CS 1 in a sensing mode such that the first signal CS 1 increases when the first program unit is programmed.
  • the second program unit 140 may be programmed in the program mode in response to the program signal and may output a second signal CS 2 in the sensing mode such that the second signal CS 2 decreases when the second program unit is programmed.
  • the sensing circuit 160 may generate a sensing output signal SOUT in response to the first and second signals CS 1 and CS 2 .
  • the sensing output signal SOUT indicates whether or not the program units are programmed.
  • the fuse circuit 100 may include first and second program units 120 and 140 that are simultaneously programmed.
  • the first and second signals CS 1 and CS 2 respectively output from the first and second program units 120 and 140 may complementarily change when the program units are programmed.
  • the first signal CS 1 may increase when the first program unit 120 is programmed whereas the second signal CS 2 may decrease when the second program unit 140 is programmed.
  • the first and second signals CS 1 and CS 2 may be current signals or voltage signals. In other words, increasing or decreasing the first and second signals CS 1 and CS 2 may represent that an amount of the current or voltage signals increases or decreases.
  • a resistance of the first program unit 120 may increase when the first program unit is programmed 120 whereas a resistance of the second program unit 140 may decrease when the second program unit 140 is programmed.
  • the first program unit 120 may include an electrical fuse which is connected between a first voltage terminal and an output node of the first signal CS 1
  • the second program unit 140 may include a reference resistor and an anti-fuse that are connected in parallel between a second voltage terminal and an output node of the second signal CS 2 .
  • increasing of the resistance of the program unit by the programming operation may be embodied by the anti-fuse instead of the electrical fuse.
  • the first program unit 120 may include a sensing transistor connected between a first voltage terminal and an output node of the first signal CS 1 and a first anti-fuse for electrically connecting a gate of the sensing transistor with the first voltage terminal when the first program unit 120 is programmed.
  • the second program unit 140 may include a reference resistor and a second anti-fuse that are connected in parallel between a second voltage terminal and an output node of the second signal CS 2 in parallel.
  • the resistances of the first and second program units 120 and 140 may increase simultaneously when program units are programmed.
  • the first program unit 120 may include a first anti-fuse that is connected between a first voltage terminal and an output node of the first signal CS 1
  • the second program unit 140 may include a second anti-fuse that is connected between a second voltage terminal and an output node of the second signal CS 2 .
  • a ground voltage may be applied to the first voltage terminal whereas a power supply voltage may be applied to the second voltage terminal in the sensing mode.
  • FIG. 2 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment.
  • the fuse circuit 200 may include a first program unit 220 , a second program unit 240 , and a sensing circuit 260 .
  • the first program unit 220 may include an electrical fuse EF connected between a first voltage terminal VN 1 and an output node N 1 of a first signal CS 1 .
  • the second program unit 240 may include an anti-fuse AF and a reference resistor RF connected in parallel between a second voltage terminal VN 2 and an output node N 2 of a second signal CS 2 .
  • the first program unit 220 may include the electrical fuse EF and a first program transistor TP 1 .
  • the electrical fuse EF may be connected between the first voltage terminal VN 1 and the output node N 1 of the first signal CS 1 .
  • the first program transistor TP 1 may be connected between the output node N 1 of the first signal CS 1 and a ground voltage.
  • a gate of the first program transistor TP 1 may receive a program signal PGM.
  • the second program unit 240 may include the reference resistor RF, the anti-fuse AF, a switching transistor TS, and a second program transistor TP 2 .
  • the reference resistor RF may be connected between the second voltage terminal VN 2 and the output node N 2 of the second signal CS 2 .
  • a first end of the anti-fuse AF may be coupled to the second voltage terminal VN 2 .
  • the switching transistor TS may be connected between a second end of the anti-fuse AF and the output node N 2 of the second signal CS 2 .
  • a gate of the switching transistor TS may receive an inverted program signal /PGM.
  • the second program transistor TP 2 may be connected between the second end of the anti-fuse AF and the ground voltage.
  • a gate of the second program transistor TP 2 may receive the program signal PGM.
  • the program signal PGM may be activated when the first and second program units 220 and 240 are required to be programmed in a program mode.
  • the first and second program transistors TP 1 and TP 2 may be turned on.
  • a high voltage may be applied to the first voltage terminal VN 1 to cause a current for cutting the electrical fuse EF and a high voltage may be applied to the second voltage terminal VN 2 to electrically short the anti-fuse AF.
  • the first and second voltage terminal VN 1 and VN 2 may be electrically connected.
  • a common voltage may be applied to the first and second voltage terminal VN 1 and VN 2 .
  • a resistance of the electrical fuse EF is sufficiently smaller than a resistance of the reference resistor RF.
  • the electrical fuse EF is cut and the resistance of the first program unit 220 increases to infinity.
  • the anti-fuse AF is electrically shorted and the switching transistor TS is turned on so that the reference resistor RF may be coupled to the shorted anti-fuse AF in parallel.
  • a resistance of the second program unit 240 decreases to zero.
  • the first signal CS 1 is larger than the second signal CS 2 before being programmed.
  • the first signal CS 1 increases and the second signal CS 2 decreases.
  • the first signal CS 1 may be smaller than the second signal CS 2 after being programmed.
  • the sensing circuit 260 may compare the first signal CS 1 with the second signal CS 2 complementarily changing by the programming operation and may output a sensing output signal SOUT in a sensing mode, which indicates whether or not the program units are programmed.
  • the fuse circuit 200 has highest sensitivity when both of the electrical fuse EF and the anti fuse AF are successfully programmed.
  • the sensitivity of the fuse circuit 200 may be improved when the reliability of the electrical fuse EF and the anti-fuse AF is guaranteed.
  • the programmed or unprogrammed state of the fuse circuit 200 may be sensed as long as only one of the program units is successfully programmed. As a result, the reliability of the fuse circuit 200 may be improved.
  • FIGS. 3 and 4 illustrate circuit diagrams of sensing circuits in a fuse circuit according to an example embodiment.
  • a sensing circuit 260 a in FIG. 3 is an example embodiment including a latch circuit.
  • a sensing circuit 260 b in FIG. 4 is an example embodiment including a comparator COM.
  • the sensing circuit 260 a may be implemented with the latch circuit including a first inverter INV 1 and a second inverter INV 2 , where inputs and outputs of the inverters INV 1 and INV 2 are cross-coupled.
  • the first inverter INV 1 may operate based on the first signal CS 1 generated from the first program unit 220 .
  • the second inverter INV 2 may operate based on the second signal CS 2 generated from the second program unit 240 .
  • the signals CS 1 and CS 2 may be used as a voltage source or a current source.
  • the logic level of a first latch node NO 1 may be opposite to the logic level of a second latch node NO 2 .
  • the first signal CS 1 Before being programmed, the first signal CS 1 may be larger than the second signal CS 2 . Thus, a voltage of the first latch node NO 1 is pulled up and a voltage of the second latch node NO 2 is pulled down.
  • the second signal CS 2 After being programmed, the second signal CS 2 is larger than the first signal CS 1 . Thus, the voltage of the first latch node NO 1 is pulled down and the voltage of the second latch node NO 2 is pulled up.
  • the logic level of the sensing output signal SOUT may be logical low when the program units are not programmed and may be logical high when the program units are programmed. Thus, the sensing output signal SOUT may indicate whether or not the program units are programmed.
  • FIG. 3 illustrates an example embodiment using the first and second signals CS 1 and CS 2 as a voltage source or a current source as illustrated in an embodiment of FIG. 5 .
  • the first signal CS 1 may be applied to the first latch node NO 1 and the second signal CS 2 may be applied to the second latch node NO 2 , as illustrated in an embodiment of FIG. 8 .
  • the sensing circuit 260 b may include the comparator COM as illustrated in FIG. 4 .
  • the comparator COM may be variously configured.
  • the comparator COM may include a metal oxide semiconductor (MOS) differential pair to which the first and second signal CS 1 and CS 2 are applied to each gate of transistors forming the MOS differential pair.
  • MOS metal oxide semiconductor
  • FIG. 5 illustrates a circuit diagram of an example configuration of a fuse circuit 300 according to an example embodiment.
  • the fuse circuit 300 may include a first program unit 320 , a second program unit 340 , and a sensing circuit 360 .
  • FIG. 5 illustrates an example embodiment, in which the first program unit 320 includes a sensing transistor TSN electrically connected between a first voltage terminal VN 1 and an output node N 1 of a first signal CS, and a first anti-fuse AF 1 electrically connected between a gate of the sensing transistor TSN and the first voltage terminal VN 1 when the first program unit is programmed.
  • the second program unit 340 may include a reference resistor RF and a second anti-fuse AF 2 connected in parallel between a second voltage terminal VN 2 and an output node N 2 of a second signal CS 2 .
  • the first program unit 320 may include the sensing transistor TSN, the first anti-fuse AF 1 , a first switching transistor TS 1 , a second switching transistor TS 2 , a third switching transistor TS 3 , and a first program transistor TP 1 .
  • the sensing transistor TSN may be connected between the first voltage terminal VN 1 and the output node N 1 of the first signal CS 1 .
  • a first end of the first anti-fuse AF 1 may be coupled to the first voltage terminal VN 1 .
  • the first switching transistor TS 1 may be connected between a second end of the first anti-fuse AF 1 and a gate of the sensing transistor TSN.
  • a gate of the first switching transistor TS 1 may receive a sensing enable signal SEN.
  • the second switching transistor TS 2 may be connected between the gate of the sensing transistor TSN and a ground voltage. A gate of the second switching transistor TS 2 may receive an inverted sensing output signal SOUT.
  • the third switching transistor TS 3 may be connected between the gate of the sensing transistor TSN and the ground voltage. A gate of the third switching transistor TS 3 may receive an inverted power-up signal PVCCHB.
  • the first program transistor TP 1 may be connected between the second end of the first anti-fuse AF 1 and the ground voltage. A gate of the first program transistor TP 1 may receive the program signal PGM. As illustrated in FIG. 5 , the gate of the second switching transistor TS 2 may be coupled to a first latch node NO 1 that is an inversion node of a second latch node NO 2 outputting the sensing output signal SOUT.
  • the second program unit 340 may include the reference resistor RF, the second anti-fuse AF 2 , a fourth switching transistor TS 4 , and a second program transistor TP 2 .
  • the reference resistor RF may be connected between the second voltage terminal VN 2 and the output node of the second signal CS 2 .
  • a first end of the second anti-fuse AF 2 may be coupled to the second voltage terminal VN 2 .
  • the fourth switching transistor TS 4 may be connected between a second end of the second anti-fuse AF 2 and the output node of the second signal CS 2 .
  • a gate of the fourth switching transistor TS 4 may receive an inverted program signal /PGM.
  • the second program transistor TP 2 may be connected between the second end of the second anti-fuse AF 2 and the ground voltage.
  • a gate of the second program transistor TP 2 may receive the program signal PGM.
  • the first program unit 320 in FIG. 5 includes the first anti-fuse AF 1 instead of the electrical fuse EF.
  • the first program unit 320 may operate similarly to the first program unit 220 in FIG. 2 .
  • the program units 320 and 340 include only anti-fuses AF 1 and AF 2 .
  • the fuse circuit 300 in FIG. 5 has an advantage of a smaller fuse circuit.
  • the sensing circuit 360 may include a first p-type metal oxide semiconductor transistor (PMOS) PM 1 , a second PMOS transistor PM 2 , a first n-type metal oxide semiconductor transistor (NMOS) NM 1 , a second NMOS transistor NM 2 , a first setting transistor ST 1 , and a second setting transistor ST 2 .
  • the first PMOS transistor PM 1 and the first NMOS transistor NM 1 form one inverter
  • the second PMOS transistor PM 2 and the second NMOS transistor NM 2 form another inverter.
  • Inputs and outputs of the inverters may be cross-coupled to form a latch.
  • the first setting transistor may initialize a voltage of the first latch node NO 1 in response to the setting signal SET.
  • the second setting transistor ST 2 may initialize a voltage of the second latch node NO 2 in response to the setting signal SET. Operations of the fuse circuit 300 in FIG. 5 will be described later with reference to FIG. 7 .
  • FIG. 6 illustrates a circuit diagram of a circuit of generating a sensing enable signal that is applied to the fuse circuit of FIG. 5 .
  • the sensing enable signal SEN may be generated based on the program signal PGM and the power-up signal PVCCH using a NOR logic gate 324 .
  • the NOR logic gate 324 may output the sensing enable signal by performing a NOR operation on the program signal PGM and the inverted power-up signal PVCCHB.
  • the power-up signal PVCCH is generated to prevent indefinite logic level of latch nodes in internal circuits, e.g., the fuse circuits, when the internal circuits are powered up.
  • the power-up signal PVCCH may transition to logic high level when the source voltage approaches a predetermined level for definitely defining the logical levels of latch nodes.
  • the program signal PGM may be activated (e.g., logic high level) in a program mode when the program units need to be programmed and may be deactivated (e.g., logic low level) in a sensing mode.
  • the inverted power-up signal PVCCHB may maintain a logic low level after the power supply voltage is stabilized, thus activating the sensing enable signal SEN (e.g., logic high level) in the sensing mode.
  • the sensing enable signal SEN is related to control a turn-on timing of the first switching transistor TS 1 in FIG. 5 .
  • FIG. 7 illustrates a timing diagram of operation of the fuse circuit of FIG. 5 .
  • FIG. 7 illustrates a sensing output signal SOUT 1 corresponding to an unprogrammed state of the program units and a sensing output signal SOUT 2 corresponding to a programmed state of the program units.
  • the program signal PGM maintains deactivated logic low level ‘L’ and the fourth switching transistor TS 4 is turned on.
  • the setting signal SET is activated to initialize voltages of the first and second latch node NO 1 and NO 2 to the same level.
  • the power supply voltage VDD begins to increase.
  • the power-up signal PVCCH transitions to logic high level and the inverted power-up signal PVCCHB transitions to logic low level when the power supply voltage VDD approaches a predetermined level.
  • the sensing enable signal SEN is activated at a time t 1 in response to the program signal PGM and the power-up signal PVCCH.
  • the first switching transistor TS 1 is turned on.
  • the third switching transistor TS 3 As the third switching transistor TS 3 is turned on from power-up starting time to the time t 1 , the ground voltage is applied to the gate of the sensing transistor TSN. Thus, the sensing transistor TSN is turned on. Since a turn-on resistance of the sensing transistor TSN is sufficiently smaller than a resistance of the reference resistor RF, the first latch node NO 1 transitions to logic high level and the second latch node NO 2 transitions to logic low level at the time t 1 .
  • the first latch node NO 1 is logic high level at the time t 1 and the second switching transistor TS 2 is turned on. Although the first switching transistor TS 1 is turned on, the gate of the sensing transistor TSN is electrically disconnected from the first voltage terminal VN 1 due to the first anti-fuse AF 1 . Thus, the sensing transistor TSN is still turned on. At a time t 2 , the voltage of the first and second latch node NO 1 and NO 2 is stable, and the sensing output signal SOUT 1 maintains logic low level ‘L’.
  • the first switching transistor TS 1 When the anti-fuse AF 1 is programmed, the first switching transistor TS 1 is turned on at the time t 1 , and the first voltage terminal VN 1 is electrically coupled to the gate of the sensing transistor TSN and a gate voltage of the sensing transistor TSN is pulled up. Thus, the sensing transistor TSN is turned off and the first signal CS 1 begins to decrease.
  • the second anti-fuse AF 2 When the second anti-fuse AF 2 is programmed, simultaneously with the programming of the anti-fuse AF 1 , a resistance of the second program unit 320 decreases, increasing the second signal CS 2 . Thus, the first latch node NO 1 transitions to logic low level and the second latch node NO 2 transitions to logic high level.
  • the second switching transistor TS 2 is turned off as the first latch node NO 1 transitions to logic low level. At the time t 2 , the voltage of the first and second latch node NO 1 and NO 2 is stable, and the sensing output signal SOUT 2 maintains in logic high level.
  • the sensing circuit 360 outputs the sensing output signal SOUT 1 having logic low level when the program units are unprogrammed and outputs the sensing output signal SOUT 2 having logic high level when the program units are programmed. Based on the logic level of the sensing output signal, the sensing circuit 360 determines whether or not the program units are programmed.
  • FIG. 8 illustrates a circuit diagram of an example configuration of a fuse circuit 400 according to an example embodiment.
  • the fuse circuit 400 may include a first program unit 420 , a second program unit 440 , and a sensing circuit 460 .
  • the first program unit 420 may include a first anti-fuse AF 11 connected between a first voltage terminal VN 11 and an output node N 1 of a first signal CS 1 .
  • the second program unit 440 may include a second anti-fuse AF 12 connected between a second voltage terminal VN 12 and an output node N 2 of the second signal CS 2 .
  • the first program unit 420 may include the first anti-fuse AF 11 , a first switching transistor TS 11 , and a first program transistor TP 1 .
  • a first end of the first anti-fuse AF 11 may be coupled to the first voltage terminal VN 11 .
  • the first switching transistor TS 11 may be connected between a second end of the first anti-fuse AF 11 and an output node N 1 of the first signal CS 1 .
  • a gate of the first switching transistor TS 11 may receive a sensing enable signal SEN.
  • the first program transistor TP 1 may be connected between the second end of the first anti-fuse AF 11 and a ground voltage.
  • a gate of the first program transistor TP 1 may receive the program signal PGM.
  • the second program unit 440 may include the second anti-fuse AF 12 , a second switching transistor TS 12 , and a second program transistor TP 2 .
  • a first end of the second anti-fuse AF 12 may be coupled to the second voltage terminal VN 12 .
  • the second switching transistor TS 12 may be connected between a second end of the second anti-fuse AF 12 and an output node N 2 of the second signal CS 2 .
  • a gate of the second switching transistor TS 12 may receive the sensing enable signal SEN.
  • the second program transistor TP 2 may be connected between the second end of the second anti-fuse AF 12 and a ground voltage.
  • a gate of the second program transistor TP 2 may receive the program signal PGM.
  • the sensing circuit 460 may include a first PMOS transistor PM 11 , a second PMOS transistor PM 12 , a third PMOS transistor PM 13 , a first NMOS transistor NM 11 , a second NMOS transistor NM 12 , and an inverter INV.
  • the third PMOS transistor PM 13 and the second NMOS transistor NM 12 may operate as an inverter.
  • the sensing circuit 460 has a latch configuration where two inverters are cross-coupled.
  • the second PMOS transistor PM 12 and the first NMOS transistor NM are provided for setting an initial condition of the latch nodes NO 1 and NO 2 .
  • a voltage for pulling down a voltage of the first latch node NO 1 may be applied to the first voltage terminal VN 11 and a voltage for pulling up a voltage of the second latch node NO 2 may be applied to the second voltage terminal VN 12 in the sensing mode.
  • the ground voltage may be applied to the first voltage terminal VN 11 and the power supply voltage may be applied to the second voltage terminal VN 12 in the sensing mode.
  • the second PMOS transistor PM 12 is turned on and the first NMOS transistor NM 11 is turned off before the power-up signal PVCCH is activated in logic high level.
  • the first latch node NO 1 is set to logic high level and the second latch node NO 2 is set to logic low level.
  • the switching transistors TS 11 and TS 12 are turned on by activating the sensing enable signal SEN, electrical connection between the voltage terminals VN 11 and VN 12 and the latch nodes NO 1 and NO 2 is cut off.
  • the second latch node NO 2 is stable in logic low level and the sensing output signal SOUT maintains logic low level.
  • the switching transistors TS 11 and TS 12 are turned on by activating the sensing enable signal SEN.
  • the voltage terminals VN 11 and VN 12 and the latch nodes NO 1 and NO 2 are electrically connected.
  • a relatively low pulling-down voltage may be applied to the first voltage terminal VN 11 and a relatively high pulling-up voltage may be applied to the second voltage terminal VN 12 .
  • the voltage of the first latch node NO 1 changes to logic low level
  • the voltage of the second latch node NO 2 changes to logic high level.
  • the second latch node NO 2 is stable in logic high level and the sensing output signal SOUT maintains logic high level.
  • the sensing output signal SOUT of the sensing circuit 460 is output in logic low level when the program units are unprogrammed and is output in logic high level when the program units are programmed.
  • the sensing output signal SOUT indicates whether or not the program units are programmed.
  • FIG. 9 illustrates a block diagram of a semiconductor memory device 500 according to an example embodiment.
  • the semiconductor memory device 500 may include a memory cell array 510 , an address decoder 520 , and a repair circuit 530 .
  • the memory cell array 510 may include a normal memory cell array 512 including normal memory cells and a redundant memory cell array 514 including redundant memory cells.
  • the redundant memory cell array 514 may include a plurality of memory blocks scattered in memory cell array 510 .
  • Fuse circuits in the repair circuit 530 may be programmed when normal memory cells have defects, i.e., when the repair circuit 530 outputs a sensing output signal indicating whether or not the program units are programmed.
  • the address decoder 520 may selectively output a normal address signal NADD or a redundant address signal RADD in response to an address signal ADD and the sensing output signal to thereby access the normal memory cells or the redundant memory cells, respectively.
  • the address decoder 520 may be a row decoder to select a word line, may be a column decoder to select a bit line, or may include both row and column decoders.
  • the repair circuit 530 may repair the defective memory cell in a row unit or in a column unit.
  • the repair circuit 530 may include a plurality of fuse circuits. As described with reference to FIGS. 1 through 8 , each fuse circuit may include a first program unit, a second program unit, and a sensing circuit.
  • the first program unit may be programmed in a program mode in response to a program signal and may output a first signal in a sensing mode such that the first signal increases when the first program unit is programmed.
  • the second program unit may be programmed in the program mode in response to the program signal and may output a second signal in a sensing mode such that the second signal decreases when the second program unit is programmed.
  • the sensing circuit may generate a sensing output signal in response to the first and second signals, the sensing output signal indicating whether or not the program units are programmed.
  • the semiconductor memory device may be considered to be defective. However, if a relatively small number of memory cells are malfunctioning, it may not be efficient to treat the entire semiconductor memory device as being defective. Therefore, one or more redundancy memory cells may be included within the semiconductor memory device so that the redundancy memory cells may functionally replace defective memory cells within the semiconductor memory device. Accordingly, the semiconductor memory device, by replacing the defective memory cell with the redundancy memory cells, may be treated as a non-defective or normal semiconductor memory device, thereby increasing a yield of semiconductor memory devices. A repairing process using the redundancy memory cells may include replacing the defective memory cell with the redundancy memory cell by switching corresponding addresses.
  • Fuse circuits may be used to perform the above-mentioned repairing process. If the reliability of fuse circuits used is low, possibility of malfunction of the semiconductor memory device is high. Therefore, performance of the semiconductor memory device may be enhanced by using fuse circuits having improved reliability.
  • signals that are complementarily changed by the programming operation are compared to determine whether or not the program units are programmed.
  • reliability of fuse circuits may be improved.
  • the above described embodiments may be applied to arbitrary devices requiring the fuse circuit, such as the semiconductor memory device.

Landscapes

  • Read Only Memory (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

The fuse circuit includes a first program unit, a second program unit and a sensing circuit. The first and second program units are programmed simultaneously. The first program unit is programmed in a program mode in response to a fuse program signal and outputs a first signal in a sensing mode, such that the first signal increases when the first program unit is programmed. The second program unit is programmed in the program mode in response to the program signal and outputs a second signal in the sensing mode, such that the second signal decreases when the second program unit is programmed. The sensing circuit generates a sensing output signal in response to the first and second signals, such that the sensing output signal indicates whether or not the program units are programmed.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This is a continuation application based on pending application Ser. No. 12/320,629, filed Jan. 30, 2009, the entire contents of which is hereby incorporated by reference.
  • BACKGROUND
  • 1. Field
  • Example embodiments relate to a fuse circuit. More particularly, embodiments relate to a fuse circuit having improved reliability and a semiconductor memory device including the fuse circuit.
  • 2. Description of the Related Art
  • As the integration degree of a semiconductor memory increases, a capacity of the semiconductor memory is increasing rapidly. Increasing capacity includes increasing a number of memory cells in a chip. As the number of memory cells increases, a number of defective memory cells also increases. Since an existence of a single defective memory cell causes a critical problem in the semiconductor memory device, redundant memory cells are provided to compensate for the defective memory cells. Based on fuse information, redundant memory cells may replace defective memory cells. When an address of the defective memory cell is input, a normal path is cut off and a redundancy path to the redundant cell is activated according to programmed/unprogrammed state of the fuse.
  • A laser fuse, which is one of the widely used fuses, is programmed by cutting the fuse formed with a metal line using laser beam. The laser fuse has an advantage of being simply embodied, since an additional circuit to control cutting of the fuse is unnecessary. The laser fuse, however, has disadvantages, including limiting integration density regardless of the development of the semiconductor memory manufacturing process technology, e.g., metal oxide semiconductor (MOS) process, since a predetermined interval between the fuses has to be secured to prevent damages due to laser fusing. Furthermore, the laser fuse cannot be reprogrammed after the memory chip including the fuse circuit is packaged.
  • To overcome these disadvantages, an electrical fuse and an anti-fuse programmed using an electrical signal have been proposed. Such fuses have advantages that they can be reprogrammed even after the memory chip is packaged since they are activated or deactivated by the electrical signal. In addition, the size of the fuse circuit may be reduced as the scale of the manufacturing process is reduced.
  • A conventional fuse circuit includes a program unit including an electrical fuse, a reference voltage generator, and a comparator. The electrical fuse included in the program unit has a sufficiently smaller resistance than a resistance of the reference voltage generator before being programmed in a program mode, but has a larger resistance than the resistance of the reference voltage generator when the electrical fuse is cut by being programmed in the program mode, since the electrical fuse operates as an open circuit. The program unit and the reference voltage generator output respective voltages that are, in proportion to each resistance, pulled down from a power supply voltage. The comparator compares an output voltage of the program unit with an output voltage of the reference voltage generator and generates an output signal which indicates whether or not the electrical fuse is programmed, i.e., whether or not the electrical fuse is cut.
  • Another conventional fuse circuit includes a program unit including an anti-fuse, a reference voltage generator, and a comparator. The anti-fuse of the program unit has a sufficiently larger resistance than a resistance of the reference voltage generator before being programmed in a program mode, but has a smaller resistance than the resistance of the reference voltage generator when the program unit is programmed in the program mode, since the anti-fuse is electrically shorted. The program unit and the reference voltage generator output respective voltages that are, in proportion to each resistance, pulled down from a power supply voltage. The comparator compares an output voltage of the program unit with an output voltage of the reference voltage generator and generates an output signal which indicates whether or not the anti-fuse is programmed, i.e., whether or not the anti-fuse is electrically shorted.
  • The resistance of the program unit including the electrical fuse increases when the program unit is programmed and the output voltage of the program unit decreases. In contrast, the resistance of the program unit including the anti-fuse decreases when the program unit is programmed and the output voltage of the program unit increases. The output voltages of the program units change after being programmed. The comparators compare the reference voltage of the reference voltage generators with the output voltages of the program units, and determine whether or not the program units are programmed based on the comparison results.
  • As such, in the conventional fuse circuit, the reference voltage generators output a fixed reference voltage, and the comparators compare the fixed reference voltage with the output voltage of the program units including the electrical fuse or the anti-fuse and determine whether or not the program units are programmed. In the electrical fuse implementation, residues remain around the cutting area. Thus, the resistance of the program unit may not increase sufficiently. Such residues form an electrical path having a finite resistance. In the anti-fuse implementation, an electrical short may be incomplete. Thus, the resistance of the program unit may not decrease sufficiently. When the change of the resistance of the program units is insufficient, programming is incomplete and whether or not the program unit is programmed is indefinite, thereby degrading the reliability of the fuse circuit.
  • The electrical fuse is programmed (i.e. cut) by applying a relatively high current through the electrical fuse in response to a control signal. The electrical fuse can be cut by externally applying the control signal even after the fuse circuit is packaged. The electrical fuse, however, requires a large control driver for applying a high current through the electrical fuse. Thus, the size of the fuse circuit is relatively large.
  • The anti-fuse is programmed (i.e., electrically shorted) by applying a relatively high voltage to the anti-fuse in response to a control signal. Generally, the anti-fuse is a capacitor having both ends electrically connected when dielectric material in the capacitor is damaged by the applied high voltage. The anti-fuse can be programmed by externally applying the control signal even after the fuse circuit is packaged. The reliability of the anti-fuse is determined according to a level of the applied voltage. Thus, the anti-fuse needs high voltage for reliability.
  • As such, the electrical fuse and the anti-fuse have advantages, but also have a common disadvantage that their reliability is lower than the laser fuse, since electrical characteristic of such fuses may be varied according to the change of manufacturing process. To increase the reliability of the electrical fuse and the anti-fuse, various methods are proposed, but conventional methods can not guarantee the reliability of the fuses.
  • SUMMARY
  • Embodiments are therefore directed to a fuse circuit and a semiconductor device including the same, which substantially obviate one or more problems due to limitations and disadvantages of the related art.
  • It is a feature of an embodiment to provide a fuse circuit having an improved reliability and a semiconductor memory device including such a fuse circuit.
  • It is a feature of an embodiment to provide a fuse circuit comparing complementarily changing signals by a programming operation to determine whether or not program units are programmed and a semiconductor memory device including such a fuse circuit.
  • In some example embodiments, a fuse circuit may include a first program unit, a second program unit, and a sensing circuit.
  • The first program unit may be programmed in a program mode in response to a program signal and may output a first signal in a sensing mode, such that the first signal increases when the first program unit is programmed. The second program unit may be programmed in the program mode in response to the program signal and may output a second signal in the sensing mode, such that the second signal decreases when the second program unit is programmed. The sensing circuit may generate a sensing output signal in response to the first and second signals, where the sensing output signal indicates whether or not the program units are programmed.
  • In an example embodiment, a resistance of the first program unit may increase when the first program unit is programmed, and a resistance of the second program unit may decrease when the second program unit is programmed.
  • In an example embodiment, the first program unit may include an electrical fuse which is connected between a first voltage terminal and an output node of the first signal, and the second program unit may include a reference resistor and an anti-fuse which are connected in parallel between a second voltage terminal and an output node of the second signal.
  • In the sensing mode, a common voltage may be applied to the first and second voltage terminals.
  • In an example embodiment, the first program unit may include an electrical fuse connected between a first voltage terminal and an output node of the first signal, and a first program transistor connected between the output node of the first signal and a ground voltage, and a gate of the first program transistor receives the program signal.
  • The second program unit may include a reference resistor connected between a second voltage terminal and an output node of the second signal, an anti-fuse having a first end coupled to the second voltage terminal, a switching transistor connected between a second end of the anti-fuse and the output node of the second signal, and a second program transistor connected between the second end of the anti-fuse and the ground voltage. A gate of the switching transistor receives an inversion signal of the program signal and a gate of the second program transistor receives the program signal.
  • In some example embodiments, the first and second program units may include an anti-fuse, respectively
  • In an example embodiment, the first program unit may include a sensing transistor which is connected between a first voltage terminal and an output node of the first signal, and a first anti-fuse for electrically connecting a gate of the sensing transistor with the first voltage terminal when the first program unit is programmed. The second program unit may include a reference resistor and a second anti-fuse which are connected between a second voltage terminal and an output node of the second signal in parallel.
  • In the sensing mode, a common voltage may be applied to the first and second voltage terminals.
  • In an example embodiment, the first program unit may include a sensing transistor connected between a first voltage terminal and an output node of the first signal, a first anti-fuse having a first end coupled to the first voltage terminal, a first switching transistor connected between a second end of the first anti-fuse and a gate of the sensing transistor, a second switching transistor which is connected between the gate of the sensing transistor and a ground voltage, a third switching transistor which is connected between the gate of the sensing transistor and the ground voltage, and a first program transistor which is connected between the second end of the first anti-fuse and the ground voltage. A gate of the first switching transistor receives a sensing enable signal, a gate of the second switching transistor receives an inversion signal of the sensing output signal, a gate of the third switching transistor receives an inversion signal of a power-up signal, and a gate of the first program transistor receives the program signal.
  • The second program unit may include a reference resistor which is connected between a second voltage terminal and an output node of the second signal, a second anti-fuse having a first end coupled to the second voltage terminal, a fourth switching transistor connected between a second end of the second anti-fuse and the output node of the second signal, and a second program transistor connected between the second end of the second anti-fuse and the ground voltage. A gate of the fourth switching transistor receives an inversion signal of the program signal, and a gate of the second program transistor receives the program signal.
  • In an example embodiment, the first program unit may include a first anti-fuse connected between a first voltage terminal and an output node of the first signal, and the second program unit may include a second anti-fuse connected between a second voltage terminal and an output node of the second signal.
  • In the sensing mode, a ground voltage may be applied to the first voltage terminal, and a power supply voltage is applied to the second voltage terminal.
  • In an example embodiment, the first program unit may include a first anti-fuse having a first end is coupled to a first voltage terminal, a first switching transistor connected between a second end of the first anti-fuse and an output node of the first signal, and a first program transistor connected between the second end of the first anti-fuse and a ground voltage. A gate of the first switching transistor receives a sensing enable signal, and a gate of the first program transistor receives the program signal.
  • The second program unit may include a second anti-fuse having a first end coupled to a second voltage terminal, a second switching transistor connected between a second end of the second anti-fuse and an output node of the second signal, and a second program transistor connected between the second end of the second anti-fuse and the ground voltage. A gate of the second switching transistor receives the sensing enable signal, and a gate of the second program transistor receives the program signal.
  • The sensing circuit may include a latch circuit or a comparator.
  • In an example embodiment, a semiconductor memory device includes a memory cell array, a repair circuit and an address decoder. The memory cell array includes normal memory cells and redundant memory cells. The repair circuit is programmed in a program mode to indicate the normal memory cell corresponding to the address signal is a defective cell and outputs the sensing output signal in a sensing mode. The address decoder accesses the normal memory cells or the redundant memory cells in response to an address signal and a sensing output signal.
  • The repair circuit includes a plurality of fuse circuits. Each fuse circuit includes a first program unit which is programmed in the program mode in response to a program signal and outputs a first signal in the sensing mode, such that the first signal increases when the first program unit is programmed, a second program unit programmed in the program mode in response to the program signal and outputs a second signal in the sensing mode, such that the second signal decreasing when the second program unit is programmed, and a sensing circuit that generates the sensing output signal in response to the first and second signals, where the sensing output signal indicates whether or not the program units are programmed.
  • In an example embodiment, the first program unit may include an electrical fuse connected between a first voltage terminal and an output node of the first signal, and the second program unit may include a reference resistor and an anti-fuse connected in parallel between a second voltage terminal and an output node of the second signal.
  • In another example embodiment, the first program unit may include a sensing transistor connected between a first voltage terminal and an output node of the first signal, and a first anti-fuse for electrically connecting a gate of the sensing transistor with the first voltage terminal when the first program unit is programmed. The second program unit may include a reference resistor and a second anti-fuse connected in parallel between a second voltage terminal and an output node of the second signal.
  • In still another example embodiment, the first program unit may include a first anti-fuse connected between a first voltage terminal and an output node of the first signal. The second program unit may include a second anti-fuse connected between a second voltage terminal and an output node of the second signal. In the sensing mode, a ground voltage may be applied to the first voltage terminal and a power supply voltage may be applied to the second voltage terminal.
  • In accordance with fuse circuits according to embodiments, the first and second program units may be programmed respectively, and the sensing circuit may compare the first signal with the second signal, which are complementarily changing by the programming operation, to determine whether or not the program units are programmed. Fuse circuits according to embodiments may determine whether or not the program units are programmed, even if one of the program units is incompletely programmed. Fuse circuits according to embodiments using only the anti-fuses are compatible with the MOS manufacturing process. The semiconductor memory device including fuse circuits according to embodiments may reliably repair the defective cells.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other features and advantages will become more apparent to those of ordinary skill in the art by describing in detail exemplary embodiments with reference to the attached drawings, in which:
  • FIG. 1 illustrates a block diagram of a fuse circuit according to an example embodiment;
  • FIG. 2 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment;
  • FIGS. 3 and 4 illustrate circuit diagrams of sensing circuits in a fuse circuit according to an example embodiment;
  • FIG. 5 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment;
  • FIG. 6 illustrates a circuit diagram of a circuit of generating a sensing enable signal that is applied to the fuse circuit of FIG. 5;
  • FIG. 7 illustrates a timing diagram of operations of the fuse circuit of FIG. 5.
  • FIG. 8 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment; and
  • FIG. 9 illustrates a block diagram of a semiconductor memory device according to an example embodiment.
  • DETAILED DESCRIPTION
  • Korean Patent Application No. 2008-0010768, filed on Feb. 1, 2008, in the Korean Intellectual Property Office, and entitled: “Fuse Circuit and Semiconductor Memory Device Including the Same,” is incorporated by reference herein in its entirety.
  • Example embodiments will now be described more fully hereinafter with reference to the accompanying drawings; however, they may be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
  • It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.).
  • The terminology used herein is for the purpose of describing particular embodiments and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other
  • Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • FIG. 1 illustrates a block diagram of a fuse circuit according to an example embodiment. Referring to FIG. 1, the fuse circuit 100 may include a first program unit 120, a second program unit 140, and a sensing circuit 160.
  • The first program unit 120 may be programmed in a program mode in response to a program signal and may output a first signal CS1 in a sensing mode such that the first signal CS1 increases when the first program unit is programmed. The second program unit 140 may be programmed in the program mode in response to the program signal and may output a second signal CS2 in the sensing mode such that the second signal CS2 decreases when the second program unit is programmed. The sensing circuit 160 may generate a sensing output signal SOUT in response to the first and second signals CS1 and CS2. The sensing output signal SOUT indicates whether or not the program units are programmed.
  • In comparison with conventional fuse circuits, the fuse circuit 100 according to an example embodiment may include first and second program units 120 and 140 that are simultaneously programmed. The first and second signals CS1 and CS2 respectively output from the first and second program units 120 and 140 may complementarily change when the program units are programmed. For example, the first signal CS1 may increase when the first program unit 120 is programmed whereas the second signal CS2 may decrease when the second program unit 140 is programmed. The first and second signals CS1 and CS2 may be current signals or voltage signals. In other words, increasing or decreasing the first and second signals CS1 and CS2 may represent that an amount of the current or voltage signals increases or decreases.
  • To induce such complementary change of the first and second signals CS1 and CS2 by the programming operation, a resistance of the first program unit 120 may increase when the first program unit is programmed 120 whereas a resistance of the second program unit 140 may decrease when the second program unit 140 is programmed.
  • For example, as discussed in detail below with reference to FIG. 2, the first program unit 120 may include an electrical fuse which is connected between a first voltage terminal and an output node of the first signal CS1, and the second program unit 140 may include a reference resistor and an anti-fuse that are connected in parallel between a second voltage terminal and an output node of the second signal CS2. In another example embodiment, increasing of the resistance of the program unit by the programming operation may be embodied by the anti-fuse instead of the electrical fuse.
  • Alternatively, as discussed in detail below with reference to FIG. 5, the first program unit 120 may include a sensing transistor connected between a first voltage terminal and an output node of the first signal CS1 and a first anti-fuse for electrically connecting a gate of the sensing transistor with the first voltage terminal when the first program unit 120 is programmed. The second program unit 140 may include a reference resistor and a second anti-fuse that are connected in parallel between a second voltage terminal and an output node of the second signal CS2 in parallel. When the resistance of the first program unit 120 increases and the resistance of the second program unit 140 decreases by the programming operation, a common voltage is applied to the first and second voltage terminals in the sensing mode for sensing whether or not the program units are programmed.
  • As a further alternative, in some embodiments, the resistances of the first and second program units 120 and 140 may increase simultaneously when program units are programmed. For example, as discussed in detail below with reference to FIG. 8, the first program unit 120 may include a first anti-fuse that is connected between a first voltage terminal and an output node of the first signal CS1, and the second program unit 140 may include a second anti-fuse that is connected between a second voltage terminal and an output node of the second signal CS2. In this case, to induce complementarily change of the first and second signals CS1 and CS2 by the programming operation, a ground voltage may be applied to the first voltage terminal whereas a power supply voltage may be applied to the second voltage terminal in the sensing mode.
  • FIG. 2 illustrates a circuit diagram of an example configuration of a fuse circuit according to an example embodiment. Referring to FIG. 2, the fuse circuit 200 may include a first program unit 220, a second program unit 240, and a sensing circuit 260.
  • The first program unit 220 may include an electrical fuse EF connected between a first voltage terminal VN1 and an output node N1 of a first signal CS1. The second program unit 240 may include an anti-fuse AF and a reference resistor RF connected in parallel between a second voltage terminal VN2 and an output node N2 of a second signal CS2.
  • The first program unit 220 may include the electrical fuse EF and a first program transistor TP1. The electrical fuse EF may be connected between the first voltage terminal VN1 and the output node N1 of the first signal CS1. The first program transistor TP1 may be connected between the output node N1 of the first signal CS1 and a ground voltage. A gate of the first program transistor TP1 may receive a program signal PGM.
  • The second program unit 240 may include the reference resistor RF, the anti-fuse AF, a switching transistor TS, and a second program transistor TP2. The reference resistor RF may be connected between the second voltage terminal VN2 and the output node N2 of the second signal CS2. A first end of the anti-fuse AF may be coupled to the second voltage terminal VN2. The switching transistor TS may be connected between a second end of the anti-fuse AF and the output node N2 of the second signal CS2. A gate of the switching transistor TS may receive an inverted program signal /PGM. The second program transistor TP2 may be connected between the second end of the anti-fuse AF and the ground voltage. A gate of the second program transistor TP2 may receive the program signal PGM.
  • The program signal PGM may be activated when the first and second program units 220 and 240 are required to be programmed in a program mode. When the program signal PGM is activated, the first and second program transistors TP1 and TP2 may be turned on. In the program mode, a high voltage may be applied to the first voltage terminal VN1 to cause a current for cutting the electrical fuse EF and a high voltage may be applied to the second voltage terminal VN2 to electrically short the anti-fuse AF. In the program mode or the sensing mode, the first and second voltage terminal VN1 and VN2 may be electrically connected. Thus, a common voltage may be applied to the first and second voltage terminal VN1 and VN2.
  • Before being programmed, a resistance of the electrical fuse EF is sufficiently smaller than a resistance of the reference resistor RF. After being programmed, the electrical fuse EF is cut and the resistance of the first program unit 220 increases to infinity. After being programmed, the anti-fuse AF is electrically shorted and the switching transistor TS is turned on so that the reference resistor RF may be coupled to the shorted anti-fuse AF in parallel. Thus, a resistance of the second program unit 240 decreases to zero. The first signal CS1 is larger than the second signal CS2 before being programmed. However, after the programming operation, the first signal CS1 increases and the second signal CS2 decreases. Thus, the first signal CS1 may be smaller than the second signal CS2 after being programmed. The sensing circuit 260 may compare the first signal CS1 with the second signal CS2 complementarily changing by the programming operation and may output a sensing output signal SOUT in a sensing mode, which indicates whether or not the program units are programmed.
  • In an example embodiment in FIG. 2, the fuse circuit 200 has highest sensitivity when both of the electrical fuse EF and the anti fuse AF are successfully programmed. Thus, the sensitivity of the fuse circuit 200 may be improved when the reliability of the electrical fuse EF and the anti-fuse AF is guaranteed. Although the reliability of one of the electrical fuse EF and the anti fuse AF is not guaranteed, the programmed or unprogrammed state of the fuse circuit 200 may be sensed as long as only one of the program units is successfully programmed. As a result, the reliability of the fuse circuit 200 may be improved.
  • FIGS. 3 and 4 illustrate circuit diagrams of sensing circuits in a fuse circuit according to an example embodiment. A sensing circuit 260 a in FIG. 3 is an example embodiment including a latch circuit. A sensing circuit 260 b in FIG. 4 is an example embodiment including a comparator COM.
  • Referring to FIG. 3, the sensing circuit 260 a may be implemented with the latch circuit including a first inverter INV1 and a second inverter INV2, where inputs and outputs of the inverters INV1 and INV2 are cross-coupled. The first inverter INV1 may operate based on the first signal CS1 generated from the first program unit 220. The second inverter INV2 may operate based on the second signal CS2 generated from the second program unit 240. The signals CS1 and CS2 may be used as a voltage source or a current source. The logic level of a first latch node NO1 may be opposite to the logic level of a second latch node NO2. Before being programmed, the first signal CS1 may be larger than the second signal CS2. Thus, a voltage of the first latch node NO1 is pulled up and a voltage of the second latch node NO2 is pulled down. After being programmed, the second signal CS2 is larger than the first signal CS1. Thus, the voltage of the first latch node NO1 is pulled down and the voltage of the second latch node NO2 is pulled up. The logic level of the sensing output signal SOUT may be logical low when the program units are not programmed and may be logical high when the program units are programmed. Thus, the sensing output signal SOUT may indicate whether or not the program units are programmed.
  • FIG. 3 illustrates an example embodiment using the first and second signals CS1 and CS2 as a voltage source or a current source as illustrated in an embodiment of FIG. 5. In other embodiments, the first signal CS1 may be applied to the first latch node NO1 and the second signal CS2 may be applied to the second latch node NO2, as illustrated in an embodiment of FIG. 8.
  • Alternatively, the sensing circuit 260 b may include the comparator COM as illustrated in FIG. 4. The comparator COM may be variously configured. For example, the comparator COM may include a metal oxide semiconductor (MOS) differential pair to which the first and second signal CS1 and CS2 are applied to each gate of transistors forming the MOS differential pair.
  • FIG. 5 illustrates a circuit diagram of an example configuration of a fuse circuit 300 according to an example embodiment. Referring to FIG. 5, the fuse circuit 300 may include a first program unit 320, a second program unit 340, and a sensing circuit 360.
  • FIG. 5 illustrates an example embodiment, in which the first program unit 320 includes a sensing transistor TSN electrically connected between a first voltage terminal VN1 and an output node N1 of a first signal CS, and a first anti-fuse AF1 electrically connected between a gate of the sensing transistor TSN and the first voltage terminal VN1 when the first program unit is programmed. The second program unit 340 may include a reference resistor RF and a second anti-fuse AF2 connected in parallel between a second voltage terminal VN2 and an output node N2 of a second signal CS2.
  • In more detail, the first program unit 320 may include the sensing transistor TSN, the first anti-fuse AF1, a first switching transistor TS1, a second switching transistor TS2, a third switching transistor TS3, and a first program transistor TP1. The sensing transistor TSN may be connected between the first voltage terminal VN1 and the output node N1 of the first signal CS1. A first end of the first anti-fuse AF1 may be coupled to the first voltage terminal VN1. The first switching transistor TS1 may be connected between a second end of the first anti-fuse AF1 and a gate of the sensing transistor TSN. A gate of the first switching transistor TS1 may receive a sensing enable signal SEN. The second switching transistor TS2 may be connected between the gate of the sensing transistor TSN and a ground voltage. A gate of the second switching transistor TS2 may receive an inverted sensing output signal SOUT. The third switching transistor TS3 may be connected between the gate of the sensing transistor TSN and the ground voltage. A gate of the third switching transistor TS3 may receive an inverted power-up signal PVCCHB. The first program transistor TP1 may be connected between the second end of the first anti-fuse AF1 and the ground voltage. A gate of the first program transistor TP1 may receive the program signal PGM. As illustrated in FIG. 5, the gate of the second switching transistor TS2 may be coupled to a first latch node NO1 that is an inversion node of a second latch node NO2 outputting the sensing output signal SOUT.
  • The second program unit 340 may include the reference resistor RF, the second anti-fuse AF2, a fourth switching transistor TS4, and a second program transistor TP2. The reference resistor RF may be connected between the second voltage terminal VN2 and the output node of the second signal CS2. A first end of the second anti-fuse AF2 may be coupled to the second voltage terminal VN2. The fourth switching transistor TS4 may be connected between a second end of the second anti-fuse AF2 and the output node of the second signal CS2. A gate of the fourth switching transistor TS4 may receive an inverted program signal /PGM. The second program transistor TP2 may be connected between the second end of the second anti-fuse AF2 and the ground voltage. A gate of the second program transistor TP2 may receive the program signal PGM.
  • In comparison with the first program unit 220 in FIG. 2, the first program unit 320 in FIG. 5 includes the first anti-fuse AF1 instead of the electrical fuse EF. The first program unit 320 may operate similarly to the first program unit 220 in FIG. 2. In this embodiment, the program units 320 and 340 include only anti-fuses AF1 and AF2. Thus, the fuse circuit 300 in FIG. 5 has an advantage of a smaller fuse circuit.
  • The sensing circuit 360 may include a first p-type metal oxide semiconductor transistor (PMOS) PM1, a second PMOS transistor PM2, a first n-type metal oxide semiconductor transistor (NMOS) NM1, a second NMOS transistor NM2, a first setting transistor ST1, and a second setting transistor ST2. The first PMOS transistor PM1 and the first NMOS transistor NM1 form one inverter, and the second PMOS transistor PM2 and the second NMOS transistor NM2 form another inverter. Inputs and outputs of the inverters may be cross-coupled to form a latch. The first setting transistor may initialize a voltage of the first latch node NO1 in response to the setting signal SET. The second setting transistor ST2 may initialize a voltage of the second latch node NO2 in response to the setting signal SET. Operations of the fuse circuit 300 in FIG. 5 will be described later with reference to FIG. 7.
  • FIG. 6 illustrates a circuit diagram of a circuit of generating a sensing enable signal that is applied to the fuse circuit of FIG. 5. Referring to FIG. 6, the sensing enable signal SEN may be generated based on the program signal PGM and the power-up signal PVCCH using a NOR logic gate 324.
  • In detail, the NOR logic gate 324 may output the sensing enable signal by performing a NOR operation on the program signal PGM and the inverted power-up signal PVCCHB. Generally, the power-up signal PVCCH is generated to prevent indefinite logic level of latch nodes in internal circuits, e.g., the fuse circuits, when the internal circuits are powered up. The power-up signal PVCCH may transition to logic high level when the source voltage approaches a predetermined level for definitely defining the logical levels of latch nodes. The program signal PGM may be activated (e.g., logic high level) in a program mode when the program units need to be programmed and may be deactivated (e.g., logic low level) in a sensing mode. The inverted power-up signal PVCCHB may maintain a logic low level after the power supply voltage is stabilized, thus activating the sensing enable signal SEN (e.g., logic high level) in the sensing mode. The sensing enable signal SEN is related to control a turn-on timing of the first switching transistor TS1 in FIG. 5.
  • Hereinafter, operation of the fuse circuit according to an example embodiment is described with reference to FIGS. 5, 6, and 7. FIG. 7 illustrates a timing diagram of operation of the fuse circuit of FIG. 5. FIG. 7 illustrates a sensing output signal SOUT1 corresponding to an unprogrammed state of the program units and a sensing output signal SOUT2 corresponding to a programmed state of the program units.
  • In the sensing mode, the program signal PGM maintains deactivated logic low level ‘L’ and the fourth switching transistor TS4 is turned on. Before the sensing mode, the setting signal SET is activated to initialize voltages of the first and second latch node NO1 and NO2 to the same level. When the fuse circuit 300 is powered up, the power supply voltage VDD begins to increase. The power-up signal PVCCH transitions to logic high level and the inverted power-up signal PVCCHB transitions to logic low level when the power supply voltage VDD approaches a predetermined level. The sensing enable signal SEN is activated at a time t1 in response to the program signal PGM and the power-up signal PVCCH. Thus, the first switching transistor TS1 is turned on.
  • As the third switching transistor TS3 is turned on from power-up starting time to the time t1, the ground voltage is applied to the gate of the sensing transistor TSN. Thus, the sensing transistor TSN is turned on. Since a turn-on resistance of the sensing transistor TSN is sufficiently smaller than a resistance of the reference resistor RF, the first latch node NO1 transitions to logic high level and the second latch node NO2 transitions to logic low level at the time t1.
  • When the anti-fuses AF1 and AF2 are unprogrammed, the first latch node NO1 is logic high level at the time t1 and the second switching transistor TS2 is turned on. Although the first switching transistor TS1 is turned on, the gate of the sensing transistor TSN is electrically disconnected from the first voltage terminal VN1 due to the first anti-fuse AF1. Thus, the sensing transistor TSN is still turned on. At a time t2, the voltage of the first and second latch node NO1 and NO2 is stable, and the sensing output signal SOUT1 maintains logic low level ‘L’.
  • When the anti-fuse AF1 is programmed, the first switching transistor TS1 is turned on at the time t1, and the first voltage terminal VN1 is electrically coupled to the gate of the sensing transistor TSN and a gate voltage of the sensing transistor TSN is pulled up. Thus, the sensing transistor TSN is turned off and the first signal CS1 begins to decrease. When the second anti-fuse AF2 is programmed, simultaneously with the programming of the anti-fuse AF1, a resistance of the second program unit 320 decreases, increasing the second signal CS2. Thus, the first latch node NO1 transitions to logic low level and the second latch node NO2 transitions to logic high level. The second switching transistor TS2 is turned off as the first latch node NO1 transitions to logic low level. At the time t2, the voltage of the first and second latch node NO1 and NO2 is stable, and the sensing output signal SOUT2 maintains in logic high level.
  • As such, the sensing circuit 360 outputs the sensing output signal SOUT1 having logic low level when the program units are unprogrammed and outputs the sensing output signal SOUT2 having logic high level when the program units are programmed. Based on the logic level of the sensing output signal, the sensing circuit 360 determines whether or not the program units are programmed.
  • FIG. 8 illustrates a circuit diagram of an example configuration of a fuse circuit 400 according to an example embodiment. Referring to FIG. 8, the fuse circuit 400 may include a first program unit 420, a second program unit 440, and a sensing circuit 460.
  • The first program unit 420 may include a first anti-fuse AF11 connected between a first voltage terminal VN11 and an output node N1 of a first signal CS1. The second program unit 440 may include a second anti-fuse AF12 connected between a second voltage terminal VN12 and an output node N2 of the second signal CS2.
  • In more detail, the first program unit 420 may include the first anti-fuse AF11, a first switching transistor TS11, and a first program transistor TP1. A first end of the first anti-fuse AF11 may be coupled to the first voltage terminal VN11. The first switching transistor TS11 may be connected between a second end of the first anti-fuse AF11 and an output node N1 of the first signal CS1. A gate of the first switching transistor TS11 may receive a sensing enable signal SEN. The first program transistor TP1 may be connected between the second end of the first anti-fuse AF11 and a ground voltage. A gate of the first program transistor TP1 may receive the program signal PGM.
  • The second program unit 440 may include the second anti-fuse AF12, a second switching transistor TS12, and a second program transistor TP2. A first end of the second anti-fuse AF12 may be coupled to the second voltage terminal VN12. The second switching transistor TS12 may be connected between a second end of the second anti-fuse AF12 and an output node N2 of the second signal CS2. A gate of the second switching transistor TS12 may receive the sensing enable signal SEN. The second program transistor TP2 may be connected between the second end of the second anti-fuse AF12 and a ground voltage. A gate of the second program transistor TP2 may receive the program signal PGM.
  • The sensing circuit 460 may include a first PMOS transistor PM11, a second PMOS transistor PM12, a third PMOS transistor PM13, a first NMOS transistor NM11, a second NMOS transistor NM12, and an inverter INV. The third PMOS transistor PM13 and the second NMOS transistor NM12 may operate as an inverter. Thus the sensing circuit 460 has a latch configuration where two inverters are cross-coupled. The second PMOS transistor PM12 and the first NMOS transistor NM are provided for setting an initial condition of the latch nodes NO1 and NO2.
  • A voltage for pulling down a voltage of the first latch node NO1 may be applied to the first voltage terminal VN11 and a voltage for pulling up a voltage of the second latch node NO2 may be applied to the second voltage terminal VN12 in the sensing mode. For example, the ground voltage may be applied to the first voltage terminal VN11 and the power supply voltage may be applied to the second voltage terminal VN12 in the sensing mode.
  • The second PMOS transistor PM12 is turned on and the first NMOS transistor NM11 is turned off before the power-up signal PVCCH is activated in logic high level. Thus, the first latch node NO1 is set to logic high level and the second latch node NO2 is set to logic low level.
  • When the anti-fuses AF11 and AF12 are unprogrammed, although the switching transistors TS11 and TS12 are turned on by activating the sensing enable signal SEN, electrical connection between the voltage terminals VN11 and VN12 and the latch nodes NO1 and NO2 is cut off. Thus, the second latch node NO2 is stable in logic low level and the sensing output signal SOUT maintains logic low level.
  • When the anti-fuses AF11 and AF12 are programmed, the switching transistors TS11 and TS12 are turned on by activating the sensing enable signal SEN. Thus, the voltage terminals VN11 and VN12 and the latch nodes NO1 and NO2 are electrically connected. A relatively low pulling-down voltage may be applied to the first voltage terminal VN11 and a relatively high pulling-up voltage may be applied to the second voltage terminal VN12. Thus, the voltage of the first latch node NO1 changes to logic low level and the voltage of the second latch node NO2 changes to logic high level. Thus, the second latch node NO2 is stable in logic high level and the sensing output signal SOUT maintains logic high level.
  • As such, the sensing output signal SOUT of the sensing circuit 460 is output in logic low level when the program units are unprogrammed and is output in logic high level when the program units are programmed. Thus, the sensing output signal SOUT indicates whether or not the program units are programmed.
  • FIG. 9 illustrates a block diagram of a semiconductor memory device 500 according to an example embodiment. Referring to FIG. 9, the semiconductor memory device 500 may include a memory cell array 510, an address decoder 520, and a repair circuit 530.
  • The memory cell array 510 may include a normal memory cell array 512 including normal memory cells and a redundant memory cell array 514 including redundant memory cells. The redundant memory cell array 514 may include a plurality of memory blocks scattered in memory cell array 510. Fuse circuits in the repair circuit 530 may be programmed when normal memory cells have defects, i.e., when the repair circuit 530 outputs a sensing output signal indicating whether or not the program units are programmed. The address decoder 520 may selectively output a normal address signal NADD or a redundant address signal RADD in response to an address signal ADD and the sensing output signal to thereby access the normal memory cells or the redundant memory cells, respectively. The address decoder 520 may be a row decoder to select a word line, may be a column decoder to select a bit line, or may include both row and column decoders. The repair circuit 530 may repair the defective memory cell in a row unit or in a column unit.
  • The repair circuit 530 may include a plurality of fuse circuits. As described with reference to FIGS. 1 through 8, each fuse circuit may include a first program unit, a second program unit, and a sensing circuit. The first program unit may be programmed in a program mode in response to a program signal and may output a first signal in a sensing mode such that the first signal increases when the first program unit is programmed. The second program unit may be programmed in the program mode in response to the program signal and may output a second signal in a sensing mode such that the second signal decreases when the second program unit is programmed. The sensing circuit may generate a sensing output signal in response to the first and second signals, the sensing output signal indicating whether or not the program units are programmed.
  • If even a single memory cell within a semiconductor memory device functions improperly, the semiconductor memory device may be considered to be defective. However, if a relatively small number of memory cells are malfunctioning, it may not be efficient to treat the entire semiconductor memory device as being defective. Therefore, one or more redundancy memory cells may be included within the semiconductor memory device so that the redundancy memory cells may functionally replace defective memory cells within the semiconductor memory device. Accordingly, the semiconductor memory device, by replacing the defective memory cell with the redundancy memory cells, may be treated as a non-defective or normal semiconductor memory device, thereby increasing a yield of semiconductor memory devices. A repairing process using the redundancy memory cells may include replacing the defective memory cell with the redundancy memory cell by switching corresponding addresses. For example, if the defective memory cell is detected by a test after wafer processing, a corresponding address of the defective memory cell may be switched to an address of the redundancy memory cell. Therefore, an address of the defective memory cell may be mapped to an address of the redundancy memory cell instead. Fuse circuits may be used to perform the above-mentioned repairing process. If the reliability of fuse circuits used is low, possibility of malfunction of the semiconductor memory device is high. Therefore, performance of the semiconductor memory device may be enhanced by using fuse circuits having improved reliability.
  • In accordance with the above described embodiments, signals that are complementarily changed by the programming operation are compared to determine whether or not the program units are programmed. Thus, reliability of fuse circuits may be improved. The above described embodiments may be applied to arbitrary devices requiring the fuse circuit, such as the semiconductor memory device.
  • Exemplary embodiments of the present invention have been disclosed herein, and although specific terms are employed, they are used and are to be interpreted in a generic and descriptive sense only and not for purpose of limitation. Accordingly, it will be understood by those of ordinary skill in the art that various changes in form and details may be made without departing from the spirit and scope of the present invention as set forth in the following claims.

Claims (3)

1. A fuse circuit comprising:
a first program unit configured to be programmed in a program mode in response to a program signal and configured to output a first signal in a sensing mode, the first signal increasing when the first program unit is programmed;
a second program unit configured to be programmed in the program mode in response to the program signal and configured to output a second signal in the sensing mode, the second signal decreasing when the second program unit is programmed; and
a sensing circuit configured to generate a sensing output signal in response to the first and second signals, the sensing output signal indicating whether or not the first and second program units are programmed.
2.-20. (canceled)
21. A method of operating a fuse circuit including a first program unit and a second program unit, the method comprising:
programming the first program unit in a program mode in response to a program signal;
outputting a first signal in a sensing mode, the first signal increasing when the first program unit is programmed;
programming the second program unit in the program mode in response to the program signal;
outputting a second signal in the sensing mode, the second signal decreasing when the second program unit is programmed; and
generating a sensing output signal in response to the first and second signals, the sensing output signal indicating whether or not the first and second program units are programmed.
US13/179,327 2008-02-01 2011-07-08 Fuse circuit and semiconductor memory device including the same Expired - Fee Related US8305822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/179,327 US8305822B2 (en) 2008-02-01 2011-07-08 Fuse circuit and semiconductor memory device including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2008-0010768 2008-02-01
KR1020080010768A KR20090084531A (en) 2008-02-01 2008-02-01 Fuse circuit and semiconductor memory device including the same
US12/320,629 US7978549B2 (en) 2008-02-01 2009-01-30 Fuse circuit and semiconductor memory device including the same
US13/179,327 US8305822B2 (en) 2008-02-01 2011-07-08 Fuse circuit and semiconductor memory device including the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/320,629 Continuation US7978549B2 (en) 2008-02-01 2009-01-30 Fuse circuit and semiconductor memory device including the same

Publications (2)

Publication Number Publication Date
US20110267909A1 true US20110267909A1 (en) 2011-11-03
US8305822B2 US8305822B2 (en) 2012-11-06

Family

ID=40931560

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/320,629 Expired - Fee Related US7978549B2 (en) 2008-02-01 2009-01-30 Fuse circuit and semiconductor memory device including the same
US13/179,327 Expired - Fee Related US8305822B2 (en) 2008-02-01 2011-07-08 Fuse circuit and semiconductor memory device including the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/320,629 Expired - Fee Related US7978549B2 (en) 2008-02-01 2009-01-30 Fuse circuit and semiconductor memory device including the same

Country Status (2)

Country Link
US (2) US7978549B2 (en)
KR (1) KR20090084531A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008226389A (en) * 2007-03-15 2008-09-25 Elpida Memory Inc Semiconductor storage device
KR20090084531A (en) * 2008-02-01 2009-08-05 삼성전자주식회사 Fuse circuit and semiconductor memory device including the same
JP2011060359A (en) * 2009-09-08 2011-03-24 Elpida Memory Inc Semiconductor device
US8242831B2 (en) * 2009-12-31 2012-08-14 Intel Corporation Tamper resistant fuse design
US8990478B2 (en) 2012-07-23 2015-03-24 International Business Machines Corporation Protection of one-time programmable (OTP) memory
KR20150055933A (en) * 2013-11-14 2015-05-22 에스케이하이닉스 주식회사 Semiconductor memory device and operating method thereof
ITUA20162371A1 (en) * 2016-04-07 2017-10-07 St Microelectronics Srl ANTI-FUSE CELL, CIRCUIT, ELECTRONIC DEVICE AND CORRESPONDENT PROCEDURE
EP3229237A1 (en) * 2016-04-07 2017-10-11 STMicroelectronics Srl An antifuse cell, and corresponding circuit, electronic device, and method
IT201600082302A1 (en) * 2016-08-04 2018-02-04 St Microelectronics Srl ANTI-FUSE CELL, CIRCUIT, ELECTRONIC DEVICE AND CORRESPONDENT PROCEDURE
US9922722B2 (en) 2016-04-07 2018-03-20 Stmicroelectronics S.R.L. Antifuse cell with capacitor and transistors
CN108074615B (en) * 2016-11-11 2021-04-13 北京兆易创新科技股份有限公司 Method and device for improving NOR type FLASH stability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159042A1 (en) * 2005-05-09 2008-07-03 Bertin Claude L Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US7978549B2 (en) * 2008-02-01 2011-07-12 Samsung Electronics Co., Ltd. Fuse circuit and semiconductor memory device including the same
US8154942B1 (en) * 2008-11-17 2012-04-10 Altera Corporation Integrated circuits with fuse programming and sensing circuitry

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437461B1 (en) * 2002-01-12 2004-06-23 삼성전자주식회사 Nand-type flash memory device and erase, program, and copy-back program methods thereof
US6735108B2 (en) * 2002-07-08 2004-05-11 Micron Technology, Inc. ROM embedded DRAM with anti-fuse programming
JP2006059429A (en) 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Semiconductor memory device
JP3923982B2 (en) 2005-01-12 2007-06-06 株式会社東芝 Semiconductor integrated circuit
KR100687042B1 (en) 2005-05-31 2007-02-26 삼성전자주식회사 Anti-fuse circuit and method of anti-fusing
EP1811564B1 (en) * 2006-01-20 2010-03-10 STMicroelectronics S.r.l. Electrical fuse device based on a phase-change memory element and corresponding programming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159042A1 (en) * 2005-05-09 2008-07-03 Bertin Claude L Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements
US7978549B2 (en) * 2008-02-01 2011-07-12 Samsung Electronics Co., Ltd. Fuse circuit and semiconductor memory device including the same
US8154942B1 (en) * 2008-11-17 2012-04-10 Altera Corporation Integrated circuits with fuse programming and sensing circuitry

Also Published As

Publication number Publication date
US8305822B2 (en) 2012-11-06
KR20090084531A (en) 2009-08-05
US7978549B2 (en) 2011-07-12
US20090196113A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
US8305822B2 (en) Fuse circuit and semiconductor memory device including the same
JP4624516B2 (en) Fuse detection circuit and integrated circuit memory thereof
US7307911B1 (en) Apparatus and method for improving sensing margin of electrically programmable fuses
US8248871B2 (en) Redundancy circuits and semiconductor memory devices
US20030094995A1 (en) Fuse circuit
US8174862B2 (en) Fuse circuit and redundancy circuit
US8193851B2 (en) Fuse circuit of semiconductor device and method for monitoring fuse state thereof
US7924646B2 (en) Fuse monitoring circuit for semiconductor memory device
US7924647B2 (en) Fuse circuit and driving method thereof
US8599635B2 (en) Fuse circuit and semiconductor memory device including the same
US7317651B2 (en) Anti-fuse circuit and anti-fusing method
US6456546B2 (en) Repair circuit using antifuse
US8213256B2 (en) Anti-fuse circuit and semiconductor integrated circuit including the same
US6949986B2 (en) Semiconductor device unlikely to make incorrect determination of fuse blow
US20080062738A1 (en) Storage element and method for operating a storage element
US7495472B2 (en) Circuits/methods for electrically isolating fuses in integrated circuits
US7983105B2 (en) Antifuse replacement determination circuit and method of semiconductor memory device
US7330384B2 (en) Verifying circuit and method of repairing semiconductor device
US7379358B2 (en) Repair I/O fuse circuit of semiconductor memory device
US6654300B2 (en) Semiconductor memory device having internal circuit screening function
US8184496B2 (en) Semiconductor device and method for operating the same
US20060133169A1 (en) Address comparator of semiconductor memory device
KR100543192B1 (en) Programable fuse circuit
TWI281671B (en) An option fuse circuit using standard CMOS manufacturing process
KR20120063393A (en) Anti fuse circuit

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20161106