US20110244407A1 - Combustion controlling device - Google Patents

Combustion controlling device Download PDF

Info

Publication number
US20110244407A1
US20110244407A1 US13/051,072 US201113051072A US2011244407A1 US 20110244407 A1 US20110244407 A1 US 20110244407A1 US 201113051072 A US201113051072 A US 201113051072A US 2011244407 A1 US2011244407 A1 US 2011244407A1
Authority
US
United States
Prior art keywords
combustion
controlling
controlling device
safety
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/051,072
Inventor
Akira Yamada
Yuuichi Kumazawa
Tomoya Nakata
Katsumi Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Assigned to YAMATAKE CORPORATION reassignment YAMATAKE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAMADA, AKIRA, KUMAZAWA, YUUICHI, MORIKAWA, KATSUMI, Nakata, Tomoya
Publication of US20110244407A1 publication Critical patent/US20110244407A1/en
Assigned to AZBIL CORPORATION reassignment AZBIL CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: YAMATAKE CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/10Fail safe for component failures

Definitions

  • the present invention relates to a combustion controlling device for controlling the combustion of a combustion furnace.
  • a gas flow path shutoff valve, a gas flow path flow rate controlling damper, an air flow path air supply damper, an air flow rate controlling damper, and the like are controlled based on the gas pressure within the gas flow path, the flow rate of the air within the air flow path, the temperature within the combustion furnace, and the like, in order to control the combustion within the combustion furnace while maintaining a desirable air/fuel ratio (See, for example, Japanese Unexamined Patent Application Publication 2001-235146).
  • control and monitoring of all of the structural elements have been performed by a single combustion controlling device, and thus there has been the risk that it may become impossible to stop the combustion safely if a fault were to occur within the combustion controlling device itself.
  • control and monitoring has been performed for a plurality of devices by a single combustion controlling device, wherein there has been a. relationship such as, for example, between a. blower and an air pressure switch for measuring the result of the operation of the blower, that is, a relationship between a controlled device (the blower) and a. sensor instrument (the air pressure switch) wherein a measured value is changed by the operation of the controlled device.
  • a blower and an air pressure switch for measuring the result of the operation of the blower
  • the object of the present invention is to provide a combustion controlling device able to control combustion more safely.
  • the combustion controlling device has a first controlling portion for outputting, to a first device that controls the combustion in a combustion furnace, a control signal for controlling the operation of the first device; and a second controlling portion for not only checking the operation of the first device, but also for controlling a second device for stopping the combustion; wherein: the first controlling portion outputs a control signal to the second controlling portion; the second controlling portion outputs, to the first controlling portion, an operation check result for the first device; and the first controlling portion and the second controlling portion perform a process to stop the combustion when it is confirmed, based on the control signal and on the operation check result, that there is a fault in the first device.
  • the second controlling portion may stop the combustion through controlling the second device.
  • the first controlling portion may stop the combustion through controlling the first device.
  • the provision of two controlling portions namely a first controlling portion, for outputting, to a first device for controlling the combustion of the combustion furnace, a control signal for controlling the operation of the first device, and a second controlling portion for not only checking the operation of the first device, but also for controlling a second device for stopping the combustion, enables the combustion to be controlled more safely because if a fault were to occur in one of the controlling portions, a process can be performed by the other controlling portion to stop the combustion.
  • the controlling portion for controlling the first device and the controlling portion for checking the operation of the first device are separate, even if a fault were to occur in either the device or the controlling portion it would still be possible to detect the fault reliably, enabling the control of the combustion to be performed more safely.
  • FIG. 1 is a diagram illustrating schematically a structure for a combustion furnace system according to the present invention.
  • FIG. 2 is a diagram for explaining an operating sequence if operating properly.
  • FIG. 3 is a diagram for explaining an operating sequence if a fault has occurred.
  • FIG. 4 is a diagram for explaining a sequence that illustrates one example from actuation to stopping.
  • the boiler system has a combustion device 1 for producing hot water within a tank 11 ; a fuel flow path 2 for providing fuel to the combustion device 1 ; an air flow path 3 for providing air from a blower 31 to a main burner 12 of the combustion device 1 ; a combustion controlling device 4 ; and a safety controlling device 5 .
  • the combustion device 1 has a tank 11 for storing water; a main burner 12 for heating the tank 11 ; a pilot burner 13 for igniting the main burner 12 ; an ignition transformer 14 for igniting the pilot burner 13 ; a flame detecting device 15 for detecting the ignition status of the main burner 12 ; a pump 16 for supplying water to the tank 11 ; and a temperature sensor 17 for detecting the temperature of the water in the tank 11 .
  • the fuel flow path 2 comprises: a main flow path 2 a for supplying fuel from the outside, and a first flow path 2 b and a second flow path 2 c that branch from the main flow path 2 a , where the first flow path 2 b is connected to the main burner 12 and the second flow path 2 c is connected to the pilot burner 13 .
  • the fuel that is supplied to the main flow path 2 a is sent to the main burner 12 and the pilot burner 13 .
  • the main flow path 2 a is provided with a gas pressure switch 21
  • the first flow path 2 b is provided with first and second safety shutoff valves 22 and 23
  • the second flow path 2 c is provided with third and fourth safety shutoff valves 24 and 25 .
  • the air flow path 3 is connected on one end to a blower 31 , and connected on the other end to the first flow path 2 b , where the air that is expelled by the blower 31 is supplied through the first flow path 2 b to be supplied to the main burner 12 together with the fuel.
  • This type of air flow path 3 is provided with an air pressure switch 32 and a damper 33 .
  • the combustion controlling device 4 is structured from an electric circuit such as a programmable logic controller (PLC), and controls structural elements for controlling the combustion in the combustion device 1 , such as the pump 16 , the blower 31 , and the damper 33 .
  • PLC programmable logic controller
  • This type of combustion controlling device 4 is provided with a communication portion 41 and a combustion controlling portion 42 .
  • the communication portion 41 not only inputs the respective detection results from the temperature sensors 17 , hut also outputs control signals to the pump 16 , the blower 31 , and the damper 33 . Additionally, the communication portion 41 not only outputs the control signals to the safety controlling device 5 , but also inputs control signals and detection results, described below, from the safety controlling device 5 .
  • the combustion controlling portion 42 controls various types of operations of the boiler system, including the combustion sequence, described below. Specifically, it controls the sequence of various operations of the boiler system, such as starting and stopping the main burner 12 and adjusting the power of the main burner 12 , by generating control signals to the blower 31 , the damper 33 , and the safety controlling device 5 , based on the detection results of the temperature sensors 17 and on various types of information from the safety controlling device 5 , and the like.
  • the safety controlling device 5 is structured from electric circuits such as a burner controlling module and an interlock module, and checks the operations of the structural elements controlled by the combustion controlling device 4 .
  • the interlock module sends, to the burner controlling module, commands such as for starting and stopping the main burner 12 and for adjusting the power of the main burner 12 , based on the control signals from the combustion controlling portion 42 .
  • the interlock module also ensures safety by checking the status of the combustion, based on signals from the flame detecting device 15 , and stopping the fuel supply if there is an irregular event such as incomplete combustion. Additionally, the burner controlling module follows the instructions from the interlock module to ignite the pilot burner 13 and ignite the main burner 12 .
  • This type of safety controlling device 5 comprises a communication portion 51 and a safety checking portion 52 .
  • the communication portion 51 not only inputs the detection results from the flame detecting device 15 , the gas pressure switch 21 , and the air pressure switch 32 , along with the control signals from the combustion controlling device 4 , but also outputs control signals to the ignition transformer 14 and the first through fourth safety shutoff valves 22 through 25 . Moreover, the communication portion 51 not only outputs the control signals and the detection results to the combustion controlling device 4 , but also inputs the aforementioned control signals from the combustion controlling device 4 .
  • the safety checking portion 52 based on the detection results from the flame detecting device 15 , the gas pressure switch 21 , and the air pressure switch 32 , and on the control signals generated by the combustion controlling device 4 , checks whether or not the various operations can be performed safely by the combustion controlling device 4 that performs one or more steps of the various steps that structure the combustion sequence, described below. If safe performance is confirmed, then the safety checking portion 52 allows the deployment of the various combustion operations, such as causing the process corresponding to the next step to be performed by the combustion controlling device 4 . On the other hand, if it is confirmed that there can be no safe operation, the safety checking portion 52 stops the various combustion operations, for example not allowing the combustion controlling device 4 to advance to the next process.
  • the combustion sequence by the combustion controlling device 4 will be explained in reference to FIG. 2 and FIG. 3 .
  • the startup sequence for starting up the boiler system is explained as an example. This startup sequence is structured from a plurality of processes; however, the explanation will be for a case wherein there is a transition from an initial process 1 to the next process 2 .
  • the safety checking portion 52 of the safety controlling device 5 checks whether or not the signal from the air pressure switch 32 is OFF, and outputs the check result to the combustion controlling device 4 .
  • the combustion controlling portion 42 does not output a control signal, to the blower 31 , requesting driving. Consequently, if the combustion controlling device 4 , the safety controlling device 5 , the blower 31 , and the air pressure switch 32 are all operating properly, then the blower 31 is stopped, and thus no air is supplied into the air flow path 3 , and so the air pressure switch 32 that is provided in the air flow path 3 should be in the OFF state. However, if a fault were to occur in the combustion controlling device 4 , the safety controlling device 5 , the blower 31 , or the air pressure switch 32 , then the signal from the air pressure switch 32 may turn ON, or the check result may not be outputted to the combustion controlling device 4 . For example, as illustrated in FIG. 3 , if a fault were to occur in the combustion controlling device 4 so as to output, to the blower 31 , a control signal requesting driving, then the signal for the air pressure switch 32 would go ON.
  • the safety checking portion 52 determines that a fault has occurred in the combustion controlling device 4 , the blower 31 , or the air pressure switch 32 . Given this, the safety checking portion 52 outputs control signals for stopping the combustion, such as not only preventing the actuation of the ignition transformer 14 , but also maintaining the first through fourth safety shutoff valves 22 through 25 in the closed state.
  • the combustion controlling portion 42 determines that a fault has occurred in the safety controlling device 5 , and outputs a control signal so as to stop the combustion, such as shutting the damper 33 .
  • the safety checking portion 52 of the safety controlling device 5 checks whether or not the signal from the air pressure switch 32 is ON, and outputs the check result to the combustion controlling device 4 .
  • the safety checking portion 52 determines that a fault has occurred in the combustion controlling device 4 , the blower 31 , or the air pressure switch 32 . Given this, the safety checking portion 52 outputs control signals for stopping the combustion, such as not only preventing the actuation of the ignition transformer 14 , but also maintaining the first through fourth safety shutoff valves 22 through 25 in the closed state.
  • the combustion controlling portion 42 determines that a fault has occurred in the safety controlling device 5 , and outputs a control signal so as to stop the combustion, such as shutting the damper 33 .
  • the provision of two controlling devices namely the combustion controlling device 4 for controlling the combustion of the combustion furnace and the safety controlling device 5 for not only checking the operation of the device is controlled by the combustion controlling device 4 enables the combustion to be controlled more safely because if a fault were to occur in either the combustion controlling device 4 or the safety controlling device 5 , a process can be performed by the other device to stop the combustion.
  • the controlling device for controlling the structural elements that control the combustion in the boiler system (the combustion controlling device 4 ) and the controlling device for operational checks of the outputs from those structural elements (the safety controlling device 5 ) are separate, if there is a failure in any of the structural elements or controlling devices, that failure can be detected reliably, enabling safer control of the combustion.
  • the combustion controlling device 4 when starting up the boiler system, first the combustion controlling device 4 outputs a control signal to the safety controlling device 5 that the boiler system is to be started up (Step S 1 ).
  • the safety controlling device 5 checks the signal from the air pressure switch 32 (Step S 2 ). If it is confirmed that the signal from the air pressure switch 32 is OFF, then the safety controlling device 5 outputs to the combustion controlling device 4 a control signal indicating that the air pressure switch 32 is in the OFF state (Step S 3 ).
  • the combustion controlling device 4 When the control signal indicating that the air pressure. switch 32 is in the OFF state is inputted, the combustion controlling device 4 outputs, to the blower 31 , a control signal for causing the blower 31 to be driven (Step S 4 ).
  • Step S 5 The inputting of the control signal requesting that the blower 31 be driven causes the blower 31 to be driven (Step S 5 ), and when the air pressure switch 32 detects that there is an airflow in the airflow path 3 (Step S 6 ), the safety controlling device 5 outputs, to the combustion controlling device 4 , a control signal indicating that there is air flowing in the airflow path 3 (Step S 7 ).
  • Step S 8 When the control signal indicating that air is flowing in the airflow path 3 is inputted, the combustion controlling device 4 outputs, to the damper 33 , a control signal indicating that it is to go to the fully open state (Step S 8 ).
  • the damper 33 has a low limit switch and a high limit switch.
  • the damper 33 is in the closed state until inputting the control signal directing the damper 33 to go to the fully open state. Consequently, the low limit switch, which detects whether or not the damper 33 is in the closed state, is in the ON state, that the damper 33 is in the closed state, until the inputting of this control signal 33 (Step S 9 ).
  • the damper 33 puts the damper to the fully open state (Step S 10 ).
  • the high limit switch which detects whether or not the damper 33 is in the fully open state, goes to the ON state, that the damper 33 is in the fully open state (Step S 11 ).
  • the low limit switch goes to the OFF state because the damper 33 is in the fully open state.
  • Step S 12 When the damper 33 being in the fully open state is confirmed (Step S 12 ), the safety controlling device 5 , in order to maintain the pre-purge, maintains, for a specific amount of time (the pre-purge time) the driving of the blower 31 and the fully open state of the damper 33 (Step S 13 ). Once this specific amount of time has elapsed, then the safety controlling device 5 outputs, to the combustion controlling device 4 , a control signal indicating that the specific amount of time has elapsed (Step S 14 ).
  • the combustion controlling device 4 When the control signal indicating that the specific amount of time has elapsed has been inputted, the combustion controlling device 4 outputs, to the damper 33 , a control signal indicating that the damper 33 is to be closed (Step S 15 ).
  • the damper 33 puts the damper into the closed state.
  • the damper 33 goes to the closed state, the high limit switch goes into the OFF state and the low limit switch goes into the ON state (Step S 16 ).
  • the safety controlling device 5 outputs control signals to open the third and fourth safety shutoff valves 24 and 25 (Step S 18 ) and outputs a control signal to start up the ignition transformer 14 (Step S 19 ).
  • the third and fourth safety shutoff valves 24 and 25 go to the open state (Step S 20 ), and when it is confirmed, by the gas pressure switch 21 , that gas is flowing in the fuel flow path 2 (Step S 21 ) and confirmed by the flame detecting device 15 that the pilot burner 13 has been ignited (Step S 22 ), the safety controlling device 5 outputs a control signal to stop the ignition transformer 14 (Step S 23 ), When this control signal is inputted, the ignition transformer 14 stops its operation.
  • Step S 24 when the control signal indicating that the pilot burner 13 has ignited is inputted from the safety controlling device 5 (Step S 24 ), the combustion controlling device 4 outputs, to the safety controlling device 5 , a control signal indicating that the main burner 12 is to be ignited (Step S 25 ). When this is done, the safety controlling device 5 outputs control signals to place the first and second safety shutoff valves 22 and 23 into the open state (Step S 26 ).
  • Step S 27 When the first and second safety shutoff valves 22 and 23 go to the open state (Step S 27 ) and the ignition of the main burner 12 is confirmed by the flame detecting device 15 , then the safety controlling device 5 outputs a control signal indicating that the third and fourth safety shutoff valves 24 and 25 are to be put into the closed state (Step S 28 ), to close the third and fourth safety shutoff valves 24 and 25 .
  • the boiler system is started up through these processes.
  • Step S 30 when a control signal indicating that the boiler system is to be shut down is received from the combustion controlling device 4 (Step S 30 ), the safety controlling device 5 outputs a control signal indicating that the first and second safety shutoff valves 22 and 23 are to be closed (Step S 31 ), to place the first and second safety shutoff valves 22 and 23 into the closed state.
  • Step S 21 the gas pressure switch 21 that there is no flow of gas in the fuel flow path 2
  • Step S 21 the flame detecting device 15 that there is no flame in the main burner 12
  • the safety controlling device 5 stops operating.
  • the present invention can be applied to combustion controlling devices for controlling combustion in combustion furnaces that are used in boiler systems, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

Two controlling devices, namely a combustion controlling device controlling the combustion of a combustion furnace, and a safety controlling device checking the operation of the devices wherein the operations are controlled by the combustion controlling device. This enables safer control of combustion because if there is a fault in either the combustion controlling device or the safety controlling device, a process can be performed by the other device to stop the combustion. Additionally, because the controlling device for controlling the structural elements that control the combustion in the boiler system and the controlling device for operational checks of the outputs from those structural elements are separate, if there is a failure in any of the structural elements or controlling devices, that failure can be detected reliably, enabling safer control of the combustion.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority under 35 U.S.C. §119 to Japanese Patent Application No. 2010-079498, filed Mar. 30, 2010, which is incorporated herein by reference.
  • FIELD OF TECHNOLOGY
  • The present invention relates to a combustion controlling device for controlling the combustion of a combustion furnace.
  • BACKGROUND OF THE INVENTION
  • Conventionally, in a combustion controlling device a gas flow path shutoff valve, a gas flow path flow rate controlling damper, an air flow path air supply damper, an air flow rate controlling damper, and the like are controlled based on the gas pressure within the gas flow path, the flow rate of the air within the air flow path, the temperature within the combustion furnace, and the like, in order to control the combustion within the combustion furnace while maintaining a desirable air/fuel ratio (See, for example, Japanese Unexamined Patent Application Publication 2001-235146).
  • However, conventionally control and monitoring of all of the structural elements have been performed by a single combustion controlling device, and thus there has been the risk that it may become impossible to stop the combustion safely if a fault were to occur within the combustion controlling device itself. Typically control and monitoring has been performed for a plurality of devices by a single combustion controlling device, wherein there has been a. relationship such as, for example, between a. blower and an air pressure switch for measuring the result of the operation of the blower, that is, a relationship between a controlled device (the blower) and a. sensor instrument (the air pressure switch) wherein a measured value is changed by the operation of the controlled device. For convenience, in the below the explanation uses a blower and an air pressure switch as an example. As described above, when a fault occurs in the combustion controlling device in the control system, it becomes impossible to control the blower properly, or impossible to detect the output of the air pressure switch properly, and, as a result, there has been the risk that it may become impossible to stop the combustion.
  • Given this, the object of the present invention is to provide a combustion controlling device able to control combustion more safely.
  • SUMMARY OF THE INVENTION
  • In order to solve the problem set forth above, the combustion controlling device according to the present invention has a first controlling portion for outputting, to a first device that controls the combustion in a combustion furnace, a control signal for controlling the operation of the first device; and a second controlling portion for not only checking the operation of the first device, but also for controlling a second device for stopping the combustion; wherein: the first controlling portion outputs a control signal to the second controlling portion; the second controlling portion outputs, to the first controlling portion, an operation check result for the first device; and the first controlling portion and the second controlling portion perform a process to stop the combustion when it is confirmed, based on the control signal and on the operation check result, that there is a fault in the first device.
  • In the combustion controlling device set forth above, the second controlling portion may stop the combustion through controlling the second device. Moreover, in the combustion controlling device set forth above, the first controlling portion may stop the combustion through controlling the first device.
  • Given the present example, the provision of two controlling portions, namely a first controlling portion, for outputting, to a first device for controlling the combustion of the combustion furnace, a control signal for controlling the operation of the first device, and a second controlling portion for not only checking the operation of the first device, but also for controlling a second device for stopping the combustion, enables the combustion to be controlled more safely because if a fault were to occur in one of the controlling portions, a process can be performed by the other controlling portion to stop the combustion. Furthermore, because the controlling portion for controlling the first device and the controlling portion for checking the operation of the first device are separate, even if a fault were to occur in either the device or the controlling portion it would still be possible to detect the fault reliably, enabling the control of the combustion to be performed more safely.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram illustrating schematically a structure for a combustion furnace system according to the present invention.
  • FIG. 2 is a diagram for explaining an operating sequence if operating properly.
  • FIG. 3 is a diagram for explaining an operating sequence if a fault has occurred.
  • FIG. 4 is a diagram for explaining a sequence that illustrates one example from actuation to stopping.
  • DETAILED DESCRIPTION OF THE INVENTION
  • An example according to the present invention will be explained in detail below in reference to the drawings. Note that in the below the explanation is an example applied to a boiler system, as a system that uses the combustion controlling device according to the present example.
  • As illustrated in FIG. 1, the boiler system according to the present example has a combustion device 1 for producing hot water within a tank 11; a fuel flow path 2 for providing fuel to the combustion device 1; an air flow path 3 for providing air from a blower 31 to a main burner 12 of the combustion device 1; a combustion controlling device 4; and a safety controlling device 5.
  • The combustion device 1 has a tank 11 for storing water; a main burner 12 for heating the tank 11; a pilot burner 13 for igniting the main burner 12; an ignition transformer 14 for igniting the pilot burner 13; a flame detecting device 15 for detecting the ignition status of the main burner 12; a pump 16 for supplying water to the tank 11; and a temperature sensor 17 for detecting the temperature of the water in the tank 11.
  • The fuel flow path 2 comprises: a main flow path 2 a for supplying fuel from the outside, and a first flow path 2 b and a second flow path 2 c that branch from the main flow path 2 a, where the first flow path 2 b is connected to the main burner 12 and the second flow path 2 c is connected to the pilot burner 13. As a result, the fuel that is supplied to the main flow path 2 a is sent to the main burner 12 and the pilot burner 13. Here the main flow path 2 a is provided with a gas pressure switch 21, the first flow path 2 b is provided with first and second safety shutoff valves 22 and 23, and the second flow path 2 c is provided with third and fourth safety shutoff valves 24 and 25.
  • The air flow path 3 is connected on one end to a blower 31, and connected on the other end to the first flow path 2 b, where the air that is expelled by the blower 31 is supplied through the first flow path 2 b to be supplied to the main burner 12 together with the fuel. This type of air flow path 3 is provided with an air pressure switch 32 and a damper 33.
  • The combustion controlling device 4 is structured from an electric circuit such as a programmable logic controller (PLC), and controls structural elements for controlling the combustion in the combustion device 1, such as the pump 16, the blower 31, and the damper 33. This type of combustion controlling device 4 is provided with a communication portion 41 and a combustion controlling portion 42.
  • Here the communication portion 41 not only inputs the respective detection results from the temperature sensors 17, hut also outputs control signals to the pump 16, the blower 31, and the damper 33. Additionally, the communication portion 41 not only outputs the control signals to the safety controlling device 5, but also inputs control signals and detection results, described below, from the safety controlling device 5.
  • Additionally, the combustion controlling portion 42 controls various types of operations of the boiler system, including the combustion sequence, described below. Specifically, it controls the sequence of various operations of the boiler system, such as starting and stopping the main burner 12 and adjusting the power of the main burner 12, by generating control signals to the blower 31, the damper 33, and the safety controlling device 5, based on the detection results of the temperature sensors 17 and on various types of information from the safety controlling device 5, and the like.
  • The safety controlling device 5 is structured from electric circuits such as a burner controlling module and an interlock module, and checks the operations of the structural elements controlled by the combustion controlling device 4. Here the interlock module sends, to the burner controlling module, commands such as for starting and stopping the main burner 12 and for adjusting the power of the main burner 12, based on the control signals from the combustion controlling portion 42. The interlock module also ensures safety by checking the status of the combustion, based on signals from the flame detecting device 15, and stopping the fuel supply if there is an irregular event such as incomplete combustion. Additionally, the burner controlling module follows the instructions from the interlock module to ignite the pilot burner 13 and ignite the main burner 12. Moreover, although not illustrated, a plurality of main burners 12 may be provided, and a plurality of burner controlling modules may be provided corresponding thereto, while, additionally, the structure may be one wherein the plurality of burner controlling modules, and the like, is controlled by a single interlock module. This type of safety controlling device 5 comprises a communication portion 51 and a safety checking portion 52.
  • Here the communication portion 51 not only inputs the detection results from the flame detecting device 15, the gas pressure switch 21, and the air pressure switch 32, along with the control signals from the combustion controlling device 4, but also outputs control signals to the ignition transformer 14 and the first through fourth safety shutoff valves 22 through 25. Moreover, the communication portion 51 not only outputs the control signals and the detection results to the combustion controlling device 4, but also inputs the aforementioned control signals from the combustion controlling device 4.
  • The safety checking portion 52, based on the detection results from the flame detecting device 15, the gas pressure switch 21, and the air pressure switch 32, and on the control signals generated by the combustion controlling device 4, checks whether or not the various operations can be performed safely by the combustion controlling device 4 that performs one or more steps of the various steps that structure the combustion sequence, described below. If safe performance is confirmed, then the safety checking portion 52 allows the deployment of the various combustion operations, such as causing the process corresponding to the next step to be performed by the combustion controlling device 4. On the other hand, if it is confirmed that there can be no safe operation, the safety checking portion 52 stops the various combustion operations, for example not allowing the combustion controlling device 4 to advance to the next process.
  • Startup Sequence
  • The combustion sequence by the combustion controlling device 4 will be explained in reference to FIG. 2 and FIG. 3. In the below, the startup sequence for starting up the boiler system is explained as an example. This startup sequence is structured from a plurality of processes; however, the explanation will be for a case wherein there is a transition from an initial process 1 to the next process 2.
  • In the case of starting up a boiler system, the following operations are performed as a process 1. First the ignition controlling portion 42 of the combustion controlling device 4 outputs a control signal to the safety controlling device 5 indicating that the boiler system is to be started up.
  • When the control signal indicating that the boiler system is to be started up is received from the combustion controlling device 4, the safety checking portion 52 of the safety controlling device 5 checks whether or not the signal from the air pressure switch 32 is OFF, and outputs the check result to the combustion controlling device 4.
  • In this step, the combustion controlling portion 42 does not output a control signal, to the blower 31, requesting driving. Consequently, if the combustion controlling device 4, the safety controlling device 5, the blower 31, and the air pressure switch 32 are all operating properly, then the blower 31 is stopped, and thus no air is supplied into the air flow path 3, and so the air pressure switch 32 that is provided in the air flow path 3 should be in the OFF state. However, if a fault were to occur in the combustion controlling device 4, the safety controlling device 5, the blower 31, or the air pressure switch 32, then the signal from the air pressure switch 32 may turn ON, or the check result may not be outputted to the combustion controlling device 4. For example, as illustrated in FIG. 3, if a fault were to occur in the combustion controlling device 4 so as to output, to the blower 31, a control signal requesting driving, then the signal for the air pressure switch 32 would go ON.
  • If the signal from the air pressure switch 32 is ON without the control signal indicating the actuation of the boiler system being inputted from the combustion controlling device 4, the safety checking portion 52 determines that a fault has occurred in the combustion controlling device 4, the blower 31, or the air pressure switch 32. Given this, the safety checking portion 52 outputs control signals for stopping the combustion, such as not only preventing the actuation of the ignition transformer 14, but also maintaining the first through fourth safety shutoff valves 22 through 25 in the closed state.
  • If the checking result of the air pressure switch 32 is not inputted into the combustion controlling device 4, or if a checking result that indicates that the signal from the air pressure switch 32 is ON is inputted, then the combustion controlling portion 42 determines that a fault has occurred in the safety controlling device 5, and outputs a control signal so as to stop the combustion, such as shutting the damper 33.
  • This can prevent the hazards in the boiler system, because the combustion operation will not be performed in the boiler system.
  • On the other hand, if, after the control signal indicating that the boiler system is to be started up is outputted, a check result indicating that the signal for the air pressure switch 32 is OFF is inputted, then the combustion controlling portion 42 would not only output a control signal, to the blower 31, requesting driving, but would also output this control signal to the safety controlling device 5 as well.
  • When the control signal indicating that the blower 31 is being driven is received from the combustion controlling device 4, the safety checking portion 52 of the safety controlling device 5 checks whether or not the signal from the air pressure switch 32 is ON, and outputs the check result to the combustion controlling device 4.
  • In this step, if the combustion controlling device 4, the safety controlling device 5, the blower 31, and the air pressure switch 32 are all operating properly, then the blower 31 is driven, and thus air will be supplied into the air flow path 3, and so the air pressure switch 32 that is provided in the air flow path 3 should be in the ON state. However, if there is a fault in any of these structural elements, then the signal from the wind pressure switch may be OFF, or the check result for the air pressure switch 32 may not be inputted into the combustion controlling device 4.
  • If the signal from the air pressure switch 32 is OFF despite the control signal indicating the driving of the blower 31 being inputted from the combustion controlling device 4, the safety checking portion 52 determines that a fault has occurred in the combustion controlling device 4, the blower 31, or the air pressure switch 32. Given this, the safety checking portion 52 outputs control signals for stopping the combustion, such as not only preventing the actuation of the ignition transformer 14, but also maintaining the first through fourth safety shutoff valves 22 through 25 in the closed state.
  • If the checking result of the air pressure switch 32 is not inputted into the combustion controlling device 4, or if a checking result that indicates that the signal from the air pressure switch 32 is OFF is inputted, then the combustion controlling portion 42 determines that a fault has occurred in the safety controlling device 5, and outputs a control signal so as to stop the combustion, such as shutting the damper 33.
  • This can prevent the hazards in the boiler system, because the combustion operation will not be performed in the boiler system.
  • When it is confirmed that the air pressure switch 32 signal indicates as ON, then the combustion controlling portion 42 of the combustion controlling device 4 advances to the next process 2 in the boiler system startup sequence.
  • As explained above, in the present example the provision of two controlling devices, namely the combustion controlling device 4 for controlling the combustion of the combustion furnace and the safety controlling device 5 for not only checking the operation of the device is controlled by the combustion controlling device 4 enables the combustion to be controlled more safely because if a fault were to occur in either the combustion controlling device 4 or the safety controlling device 5, a process can be performed by the other device to stop the combustion. Additionally, because the controlling device for controlling the structural elements that control the combustion in the boiler system (the combustion controlling device 4) and the controlling device for operational checks of the outputs from those structural elements (the safety controlling device 5) are separate, if there is a failure in any of the structural elements or controlling devices, that failure can be detected reliably, enabling safer control of the combustion.
  • Note that in the present example, a case was explained wherein the occurrence of a fault was confirmed within structural elements having the relationship of a blower 31 and an air pressure switch 32 that checks the output from the blower 31, that for which the check is performed is not limited to the blower 31 and the air pressure switch 32, insofar as it is among structural elements having a relationship of a structural element that performs some sort of operation and a structural element that can confirm an output that derives from the operation of that structural element, and can be set freely as appropriate between the various structural elements that are included in the various sequences, such as checking for the occurrence of a fault in, for example, a damper 33 and a sensor for detecting the position of the damper 33. Given this, with reference to FIG. 4, the entirety of the sequence from startup to shut down in a case wherein the system is operating properly is explained.
  • As described above, when starting up the boiler system, first the combustion controlling device 4 outputs a control signal to the safety controlling device 5 that the boiler system is to be started up (Step S1). When the control signal for starting up the boiler system is received, the safety controlling device 5 checks the signal from the air pressure switch 32 (Step S2). If it is confirmed that the signal from the air pressure switch 32 is OFF, then the safety controlling device 5 outputs to the combustion controlling device 4 a control signal indicating that the air pressure switch 32 is in the OFF state (Step S3). When the control signal indicating that the air pressure. switch 32 is in the OFF state is inputted, the combustion controlling device 4 outputs, to the blower 31, a control signal for causing the blower 31 to be driven (Step S4).
  • The inputting of the control signal requesting that the blower 31 be driven causes the blower 31 to be driven (Step S5), and when the air pressure switch 32 detects that there is an airflow in the airflow path 3 (Step S6), the safety controlling device 5 outputs, to the combustion controlling device 4, a control signal indicating that there is air flowing in the airflow path 3 (Step S7).
  • When the control signal indicating that air is flowing in the airflow path 3 is inputted, the combustion controlling device 4 outputs, to the damper 33, a control signal indicating that it is to go to the fully open state (Step S8). Here let us assume that the damper 33 has a low limit switch and a high limit switch.
  • The damper 33 is in the closed state until inputting the control signal directing the damper 33 to go to the fully open state. Consequently, the low limit switch, which detects whether or not the damper 33 is in the closed state, is in the ON state, that the damper 33 is in the closed state, until the inputting of this control signal 33 (Step S9).
  • When the control signal instructing the fully open state is inputted, the damper 33 puts the damper to the fully open state (Step S10). As a result, the high limit switch, which detects whether or not the damper 33 is in the fully open state, goes to the ON state, that the damper 33 is in the fully open state (Step S11). At this time, the low limit switch goes to the OFF state because the damper 33 is in the fully open state.
  • When the damper 33 being in the fully open state is confirmed (Step S12), the safety controlling device 5, in order to maintain the pre-purge, maintains, for a specific amount of time (the pre-purge time) the driving of the blower 31 and the fully open state of the damper 33 (Step S13). Once this specific amount of time has elapsed, then the safety controlling device 5 outputs, to the combustion controlling device 4, a control signal indicating that the specific amount of time has elapsed (Step S14).
  • When the control signal indicating that the specific amount of time has elapsed has been inputted, the combustion controlling device 4 outputs, to the damper 33, a control signal indicating that the damper 33 is to be closed (Step S15).
  • When the control signal instructing the closed state is received, the damper 33 puts the damper into the closed state. When the damper 33 goes to the closed state, the high limit switch goes into the OFF state and the low limit switch goes into the ON state (Step S16). When the low limit switch is confirmed to be in the ON state (Step S17), the safety controlling device 5 outputs control signals to open the third and fourth safety shutoff valves 24 and 25 (Step S18) and outputs a control signal to start up the ignition transformer 14 (Step S19).
  • The third and fourth safety shutoff valves 24 and 25 go to the open state (Step S20), and when it is confirmed, by the gas pressure switch 21, that gas is flowing in the fuel flow path 2 (Step S21) and confirmed by the flame detecting device 15 that the pilot burner 13 has been ignited (Step S22), the safety controlling device 5 outputs a control signal to stop the ignition transformer 14 (Step S23), When this control signal is inputted, the ignition transformer 14 stops its operation.
  • Additionally, when the control signal indicating that the pilot burner 13 has ignited is inputted from the safety controlling device 5 (Step S24), the combustion controlling device 4 outputs, to the safety controlling device 5, a control signal indicating that the main burner 12 is to be ignited (Step S25). When this is done, the safety controlling device 5 outputs control signals to place the first and second safety shutoff valves 22 and 23 into the open state (Step S26). When the first and second safety shutoff valves 22 and 23 go to the open state (Step S27) and the ignition of the main burner 12 is confirmed by the flame detecting device 15, then the safety controlling device 5 outputs a control signal indicating that the third and fourth safety shutoff valves 24 and 25 are to be put into the closed state (Step S28), to close the third and fourth safety shutoff valves 24 and 25. The boiler system is started up through these processes.
  • In stopping the boiler system from the state wherein the boiler system has been started up in this way, when a control signal indicating that the boiler system is to be shut down is received from the combustion controlling device 4 (Step S30), the safety controlling device 5 outputs a control signal indicating that the first and second safety shutoff valves 22 and 23 are to be closed (Step S31), to place the first and second safety shutoff valves 22 and 23 into the closed state. When it is confirmed by the gas pressure switch 21 that there is no flow of gas in the fuel flow path 2 (Step S21) and confirmed by the flame detecting device 15 that there is no flame in the main burner 12, the safety controlling device 5 then stops operating.
  • In the sequence from startup to shutdown in this way, it is possible to check for the occurrence of faults among the low limit switch and the high limit switch and the damper 33, among the ignition transformer 14 and the flame detecting device 15, among the first through fourth safety shutoff valves 22 and 25 and the gas pressure switches, and the like, to check for faults between structural elements wherein there is a relationship between structural elements that perform some type of operation and structural elements that check an output that is derived from the operation of those structural elements.
  • The present invention can be applied to combustion controlling devices for controlling combustion in combustion furnaces that are used in boiler systems, and the like.

Claims (3)

1. A combustion controlling device comprising:
a first controller outputting, to a first device controlling the combustion in a combustion furnace, a control signal controlling the operation of the first device; and
a second controller checking the operation of the first device, and controlling a second device that stops the combustion;
wherein the first controller outputs a control signal to the second control;
wherein the second controller outputs, to the first controller, an operation check result for the first device; and
wherein the first controller and the second controller perform a process to stop the combustion when it is confirmed, based on the control signal and on the operation check result, that there is a fault in the first device.
2. A combustion controlling device as set forth in claim 1, wherein the second controller stops the combustion by controlling the second device.
3. A combustion controlling device as set forth in claim 1, wherein the first controller stops the combustion by controlling the first device.
US13/051,072 2010-03-30 2011-03-18 Combustion controlling device Abandoned US20110244407A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010079498A JP2011208921A (en) 2010-03-30 2010-03-30 Combustion control device
JP2010-079498 2010-03-30

Publications (1)

Publication Number Publication Date
US20110244407A1 true US20110244407A1 (en) 2011-10-06

Family

ID=44202853

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/051,072 Abandoned US20110244407A1 (en) 2010-03-30 2011-03-18 Combustion controlling device

Country Status (4)

Country Link
US (1) US20110244407A1 (en)
EP (1) EP2372247A3 (en)
JP (1) JP2011208921A (en)
CN (1) CN102207291A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150260397A1 (en) * 2014-03-17 2015-09-17 Honeywell International Inc. Integrated smoke monitoring and control system for flaring operations
US20160305658A1 (en) * 2015-04-17 2016-10-20 Azbil Corporation Combustion Controlling Device and Combustion System
US10161627B2 (en) 2014-06-04 2018-12-25 Lochinvar, Llc Modulating burner with venturi damper

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120540B2 (en) * 2012-11-30 2017-04-26 アズビル株式会社 Valve leak detection method and combustion equipment
JP6480287B2 (en) * 2015-08-13 2019-03-06 中外炉工業株式会社 Industrial furnace and method for igniting industrial furnace
JP2017138018A (en) 2016-02-01 2017-08-10 アズビル株式会社 Combustion system
JP2017180862A (en) * 2016-03-28 2017-10-05 アズビル株式会社 Combustion control system
JP6663268B2 (en) * 2016-03-28 2020-03-11 アズビル株式会社 Combustion control system
JP6682314B2 (en) 2016-03-28 2020-04-15 アズビル株式会社 Combustion control device
JP6981798B2 (en) * 2017-07-14 2021-12-17 アズビル株式会社 Combustion system and malfunction determination device
JP6879849B2 (en) * 2017-07-14 2021-06-02 アズビル株式会社 Combustion system and malfunction determination device
JP6843722B2 (en) * 2017-09-27 2021-03-17 アズビル株式会社 Combustion system
JP6850232B2 (en) * 2017-09-27 2021-03-31 アズビル株式会社 Combustion system
JP6927830B2 (en) * 2017-09-27 2021-09-01 アズビル株式会社 Combustion system and malfunction judgment device
JP6518830B1 (en) * 2018-08-31 2019-05-22 Primetals Technologies Japan株式会社 Control device for combustion equipment, combustion equipment system provided with the same, and operation method of combustion equipment

Citations (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042007A (en) * 1958-07-28 1962-07-03 Beckman Instruments Inc Boiler controller
US3216661A (en) * 1961-10-10 1965-11-09 George K Mckenzie Combustion control apparatus
US3908897A (en) * 1972-12-21 1975-09-30 Shell Oil Co Off-line integration of bridge and boiler controls
US4133629A (en) * 1977-08-02 1979-01-09 Phillips Petroleum Company Combustion system control
US4330261A (en) * 1979-09-17 1982-05-18 Atlantic Richfield Company Heater damper controller
US4362499A (en) * 1980-12-29 1982-12-07 Fisher Controls Company, Inc. Combustion control system and method
US4396369A (en) * 1979-12-17 1983-08-02 Servo-Instrument Furnace air volume control apparatus
US4424023A (en) * 1981-03-09 1984-01-03 Sumitomo Heavy Industries, Ltd. Method and apparatus for temperature control in heating furnaces
US4445638A (en) * 1982-09-20 1984-05-01 Honeywell Inc. Hydronic antitrust operating system
US4547150A (en) * 1984-05-10 1985-10-15 Midland-Ross Corporation Control system for oxygen enriched air burner
US4576570A (en) * 1984-06-08 1986-03-18 Republic Steel Corporation Automatic combustion control apparatus and method
US4585161A (en) * 1984-04-27 1986-04-29 Tokyo Gas Company Ltd. Air fuel ratio control system for furnace
US4586893A (en) * 1981-12-08 1986-05-06 Somerville Michael J Control apparatus
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
US4676734A (en) * 1986-05-05 1987-06-30 Foley Patrick J Means and method of optimizing efficiency of furnaces, boilers, combustion ovens and stoves, and the like
US4730256A (en) * 1984-07-04 1988-03-08 Nippondenso Co., Ltd. Electronic control apparatus including microcomputers for controlling some of the systems found in a vehicle
US4749122A (en) * 1986-05-19 1988-06-07 The Foxboro Company Combustion control system
US4768469A (en) * 1985-07-31 1988-09-06 Kabushiki Kaisha Toshiba Operation control apparatus for recovery boilers
US5085576A (en) * 1990-07-10 1992-02-04 Honeywell Inc. Apparatus and method for detecting leaks in a system for delivering gaseous fuel
US5236328A (en) * 1992-09-21 1993-08-17 Honeywell Inc. Optical flame detector performance tester
US5248083A (en) * 1992-11-09 1993-09-28 Honeywell Inc. Adaptive furnace control using analog temperature sensing
US5307990A (en) * 1992-11-09 1994-05-03 Honeywell, Inc. Adaptive forced warm air furnace using analog temperature and pressure sensors
US5452687A (en) * 1994-05-23 1995-09-26 Century Controls, Inc. Microprocessor-based boiler sequencer
US5496450A (en) * 1994-04-13 1996-03-05 Blumenthal; Robert N. Multiple on-line sensor systems and methods
US5513979A (en) * 1993-03-05 1996-05-07 Landis & Gyr Business Support A.G. Control or regulating system for automatic gas furnaces of heating plants
US5546306A (en) * 1992-10-27 1996-08-13 Honda Giken Kogyo Kabushiki Kaisha Multiple processor throttle control apparatus for an internal combustion engine
US5590642A (en) * 1995-01-26 1997-01-07 Gas Research Institute Control methods and apparatus for gas-fired combustors
US5628294A (en) * 1993-09-21 1997-05-13 Gentec B.V. System and method for metering the fuel supply to a combustion installation operating on more than one type of fuel
US5653180A (en) * 1994-07-25 1997-08-05 Kinsei Sangyo Co., Ltd. Apparatus for incinerating waste material by dry distillation & gasification
US5660542A (en) * 1993-10-22 1997-08-26 Maumee Research & Engineering Incorporated Cupola burner
US5689398A (en) * 1996-01-03 1997-11-18 Allen-Bradley Company, Inc. Redundant control relay circuits
US5713515A (en) * 1995-12-05 1998-02-03 Pvi Industries, Inc. Method and system in a fluid heating apparatus for efficiently controlling combustion
US5819721A (en) * 1995-01-26 1998-10-13 Tridelta Industries, Inc. Flow control system
US5836511A (en) * 1995-04-07 1998-11-17 Sola-Kleen Pty., Ltd. Solar hot water heating system
US5887583A (en) * 1996-07-31 1999-03-30 Hauck Manufacturing Company Mass flow control system and method for asphalt plant
US5997280A (en) * 1997-11-07 1999-12-07 Maxon Corporation Intelligent burner control system
US6019593A (en) * 1998-10-28 2000-02-01 Glasstech, Inc. Integrated gas burner assembly
US6048193A (en) * 1999-01-22 2000-04-11 Honeywell Inc. Modulated burner combustion system that prevents the use of non-commissioned components and verifies proper operation of commissioned components
US6213758B1 (en) * 1999-11-09 2001-04-10 Megtec Systems, Inc. Burner air/fuel ratio regulation method and apparatus
US6278932B1 (en) * 1997-12-18 2001-08-21 Temic Telefunken Microelectronic Gmbh Method for controlling an internal combustion engine
US6332408B2 (en) * 2000-01-13 2001-12-25 Michael Howlett Pressure feedback signal to optimise combustion air control
US20020167419A1 (en) * 1999-11-30 2002-11-14 Michael Haimerl Method for synchronizing at least two control devices
US20030059730A1 (en) * 2001-09-10 2003-03-27 Sigafus Paul E. Variable output heating and cooling control
US6694242B2 (en) * 2002-03-20 2004-02-17 Clean Air Power, Inc. Dual fuel engine having multiple dedicated controllers connected by a broadband communications link
US6799146B1 (en) * 1998-03-24 2004-09-28 Exergetic Systems Llc Method for remote on-line advisory diagnostics and dynamic heat rate when used for input/loss performance monitoring of a power plant
US6802299B2 (en) * 2001-02-10 2004-10-12 Robert Bosch Gmbh Method and device for controlling the operation of an internal combustion engine
US6848623B2 (en) * 2000-08-04 2005-02-01 Tjernlund Products, Inc. Method and apparatus for centrally controlling environmental characteristics of multiple air systems
US6909816B2 (en) * 1999-12-14 2005-06-21 Combustion Specialists, Inc. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers
US6937933B1 (en) * 1999-09-30 2005-08-30 Robert Bosch Gmbh Device and method of controlling a drive unit
US6978597B2 (en) * 2002-03-20 2005-12-27 Ebara Corporation Flame detecting apparatus for gas turbine
US20060116811A1 (en) * 2004-11-26 2006-06-01 Lysanda Limited System
US7073320B2 (en) * 2003-05-09 2006-07-11 Denso Corporation Fault detecting apparatus designed to detect different types of faults of gas sensor
US7090140B2 (en) * 2001-03-26 2006-08-15 Siemens Building Technologies Ag Method and device for monitoring burners
US7160104B2 (en) * 2003-08-08 2007-01-09 Nec Corporation Portable electronic equipment with integrated lighter
US7242196B2 (en) * 2004-09-28 2007-07-10 Panasonic Ev Energy Co., Ltd. Power supply controller apparatus for detecting welding of contactors
US7277789B1 (en) * 2006-07-06 2007-10-02 Ford Global Technologies, Llc System for transmitting signals between an engine control unit and a valve control unit
US20090142717A1 (en) * 2007-12-04 2009-06-04 Preferred Utilities Manufacturing Corporation Metering combustion control
US20100077998A1 (en) * 2008-10-01 2010-04-01 Kansas State University Research Foundation Turbocharger booster system
US7798125B2 (en) * 2006-09-28 2010-09-21 Woodward Governor Company Method and system for closed loop combustion control of a lean-burn reciprocating engine using ionization detection
US20100302696A1 (en) * 2009-05-28 2010-12-02 Yamatake Corporation Relay failure detecting device
US20100307387A1 (en) * 2009-06-09 2010-12-09 Yamatake Corporation Combustion furnace control apparatus
US7865290B2 (en) * 2007-10-09 2011-01-04 Ford Global Technologies, Llc Valve control synchronization and error detection in an electronic valve actuation engine system
US20110061575A1 (en) * 2009-09-15 2011-03-17 General Electric Company Combustion control system and method using spatial feedback and acoustic forcings of jets
US8007274B2 (en) * 2008-10-10 2011-08-30 General Electric Company Fuel nozzle assembly
US20110212404A1 (en) * 2008-11-25 2011-09-01 Utc Fire & Security Corporation Automated setup process for metered combustion control systems
US8099179B2 (en) * 2004-09-10 2012-01-17 GM Global Technology Operations LLC Fault tolerant control system
US20120130553A1 (en) * 2010-11-19 2012-05-24 General Electric Company Safety instrumented system (sis) for a turbine system
US8294893B2 (en) * 2008-11-28 2012-10-23 Shimadzu Corporation Flame atomic absorption spectrophotometer
US20120270162A1 (en) * 2009-09-21 2012-10-25 Kailash & Stefan Pty Ltd Combustion control system
US8333584B2 (en) * 2005-10-28 2012-12-18 Beckett Gas, Inc. Burner control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4942832A (en) * 1989-05-04 1990-07-24 Bloom Engineering Company, Inc. Method and device for controlling NOx emissions by vitiation
GB2251499A (en) * 1991-01-05 1992-07-08 Delco Electronics Corp Electronic control module.
US5682826A (en) * 1993-02-22 1997-11-04 General Electric Company Systems and methods for controlling a draft inducer for a furnace
JP3474977B2 (en) * 1995-09-08 2003-12-08 リンナイ株式会社 Blower
JP3586831B2 (en) 2000-02-22 2004-11-10 株式会社山武 Combustion control device
JP3937922B2 (en) * 2002-05-22 2007-06-27 三浦工業株式会社 Safety control system for combustion equipment
JP3906917B2 (en) * 2002-09-27 2007-04-18 株式会社ノーリツ Connected water heater
JP2004170015A (en) * 2002-11-21 2004-06-17 Matsushita Electric Ind Co Ltd Gas combustion heat detecting control device
JP4198073B2 (en) * 2004-02-06 2008-12-17 株式会社日立製作所 Control device for internal combustion engine
EP1571395A1 (en) * 2004-03-02 2005-09-07 Riello S.p.a. Burner flame control unit
EP2177413B1 (en) * 2004-07-15 2015-02-25 Hitachi, Ltd. Vehicle control system
JP5353152B2 (en) 2008-09-25 2013-11-27 カシオ計算機株式会社 Formula arithmetic processing apparatus and formula arithmetic processing program

Patent Citations (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3042007A (en) * 1958-07-28 1962-07-03 Beckman Instruments Inc Boiler controller
US3216661A (en) * 1961-10-10 1965-11-09 George K Mckenzie Combustion control apparatus
US3908897A (en) * 1972-12-21 1975-09-30 Shell Oil Co Off-line integration of bridge and boiler controls
US4133629A (en) * 1977-08-02 1979-01-09 Phillips Petroleum Company Combustion system control
US4330261A (en) * 1979-09-17 1982-05-18 Atlantic Richfield Company Heater damper controller
US4396369A (en) * 1979-12-17 1983-08-02 Servo-Instrument Furnace air volume control apparatus
US4362499A (en) * 1980-12-29 1982-12-07 Fisher Controls Company, Inc. Combustion control system and method
US4424023A (en) * 1981-03-09 1984-01-03 Sumitomo Heavy Industries, Ltd. Method and apparatus for temperature control in heating furnaces
US4586893A (en) * 1981-12-08 1986-05-06 Somerville Michael J Control apparatus
US4445638A (en) * 1982-09-20 1984-05-01 Honeywell Inc. Hydronic antitrust operating system
US4585161A (en) * 1984-04-27 1986-04-29 Tokyo Gas Company Ltd. Air fuel ratio control system for furnace
US4547150A (en) * 1984-05-10 1985-10-15 Midland-Ross Corporation Control system for oxygen enriched air burner
US4576570A (en) * 1984-06-08 1986-03-18 Republic Steel Corporation Automatic combustion control apparatus and method
US4730256A (en) * 1984-07-04 1988-03-08 Nippondenso Co., Ltd. Electronic control apparatus including microcomputers for controlling some of the systems found in a vehicle
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
US4768469A (en) * 1985-07-31 1988-09-06 Kabushiki Kaisha Toshiba Operation control apparatus for recovery boilers
US4676734A (en) * 1986-05-05 1987-06-30 Foley Patrick J Means and method of optimizing efficiency of furnaces, boilers, combustion ovens and stoves, and the like
US4749122A (en) * 1986-05-19 1988-06-07 The Foxboro Company Combustion control system
US5085576A (en) * 1990-07-10 1992-02-04 Honeywell Inc. Apparatus and method for detecting leaks in a system for delivering gaseous fuel
US5236328A (en) * 1992-09-21 1993-08-17 Honeywell Inc. Optical flame detector performance tester
US5546306A (en) * 1992-10-27 1996-08-13 Honda Giken Kogyo Kabushiki Kaisha Multiple processor throttle control apparatus for an internal combustion engine
US5248083A (en) * 1992-11-09 1993-09-28 Honeywell Inc. Adaptive furnace control using analog temperature sensing
US5307990A (en) * 1992-11-09 1994-05-03 Honeywell, Inc. Adaptive forced warm air furnace using analog temperature and pressure sensors
US5513979A (en) * 1993-03-05 1996-05-07 Landis & Gyr Business Support A.G. Control or regulating system for automatic gas furnaces of heating plants
US5628294A (en) * 1993-09-21 1997-05-13 Gentec B.V. System and method for metering the fuel supply to a combustion installation operating on more than one type of fuel
US5660542A (en) * 1993-10-22 1997-08-26 Maumee Research & Engineering Incorporated Cupola burner
US5496450A (en) * 1994-04-13 1996-03-05 Blumenthal; Robert N. Multiple on-line sensor systems and methods
US5452687A (en) * 1994-05-23 1995-09-26 Century Controls, Inc. Microprocessor-based boiler sequencer
US5653180A (en) * 1994-07-25 1997-08-05 Kinsei Sangyo Co., Ltd. Apparatus for incinerating waste material by dry distillation & gasification
US5819721A (en) * 1995-01-26 1998-10-13 Tridelta Industries, Inc. Flow control system
US5590642A (en) * 1995-01-26 1997-01-07 Gas Research Institute Control methods and apparatus for gas-fired combustors
US5836511A (en) * 1995-04-07 1998-11-17 Sola-Kleen Pty., Ltd. Solar hot water heating system
US5713515A (en) * 1995-12-05 1998-02-03 Pvi Industries, Inc. Method and system in a fluid heating apparatus for efficiently controlling combustion
US5689398A (en) * 1996-01-03 1997-11-18 Allen-Bradley Company, Inc. Redundant control relay circuits
US5887583A (en) * 1996-07-31 1999-03-30 Hauck Manufacturing Company Mass flow control system and method for asphalt plant
US5997280A (en) * 1997-11-07 1999-12-07 Maxon Corporation Intelligent burner control system
US6247919B1 (en) * 1997-11-07 2001-06-19 Maxon Corporation Intelligent burner control system
US6278932B1 (en) * 1997-12-18 2001-08-21 Temic Telefunken Microelectronic Gmbh Method for controlling an internal combustion engine
US6799146B1 (en) * 1998-03-24 2004-09-28 Exergetic Systems Llc Method for remote on-line advisory diagnostics and dynamic heat rate when used for input/loss performance monitoring of a power plant
US6019593A (en) * 1998-10-28 2000-02-01 Glasstech, Inc. Integrated gas burner assembly
US6048193A (en) * 1999-01-22 2000-04-11 Honeywell Inc. Modulated burner combustion system that prevents the use of non-commissioned components and verifies proper operation of commissioned components
US6937933B1 (en) * 1999-09-30 2005-08-30 Robert Bosch Gmbh Device and method of controlling a drive unit
US6213758B1 (en) * 1999-11-09 2001-04-10 Megtec Systems, Inc. Burner air/fuel ratio regulation method and apparatus
US20020167419A1 (en) * 1999-11-30 2002-11-14 Michael Haimerl Method for synchronizing at least two control devices
US6909816B2 (en) * 1999-12-14 2005-06-21 Combustion Specialists, Inc. Sensing system for detection and control of deposition on pendant tubes in recovery and power boilers
US6332408B2 (en) * 2000-01-13 2001-12-25 Michael Howlett Pressure feedback signal to optimise combustion air control
US6848623B2 (en) * 2000-08-04 2005-02-01 Tjernlund Products, Inc. Method and apparatus for centrally controlling environmental characteristics of multiple air systems
US6802299B2 (en) * 2001-02-10 2004-10-12 Robert Bosch Gmbh Method and device for controlling the operation of an internal combustion engine
US7090140B2 (en) * 2001-03-26 2006-08-15 Siemens Building Technologies Ag Method and device for monitoring burners
US20030059730A1 (en) * 2001-09-10 2003-03-27 Sigafus Paul E. Variable output heating and cooling control
US7293718B2 (en) * 2001-09-10 2007-11-13 Varidigm Corporation Variable output heating and cooling control
US6866202B2 (en) * 2001-09-10 2005-03-15 Varidigm Corporation Variable output heating and cooling control
US6694242B2 (en) * 2002-03-20 2004-02-17 Clean Air Power, Inc. Dual fuel engine having multiple dedicated controllers connected by a broadband communications link
US6978597B2 (en) * 2002-03-20 2005-12-27 Ebara Corporation Flame detecting apparatus for gas turbine
US7073320B2 (en) * 2003-05-09 2006-07-11 Denso Corporation Fault detecting apparatus designed to detect different types of faults of gas sensor
US7160104B2 (en) * 2003-08-08 2007-01-09 Nec Corporation Portable electronic equipment with integrated lighter
US8099179B2 (en) * 2004-09-10 2012-01-17 GM Global Technology Operations LLC Fault tolerant control system
US7242196B2 (en) * 2004-09-28 2007-07-10 Panasonic Ev Energy Co., Ltd. Power supply controller apparatus for detecting welding of contactors
US20060116811A1 (en) * 2004-11-26 2006-06-01 Lysanda Limited System
US8333584B2 (en) * 2005-10-28 2012-12-18 Beckett Gas, Inc. Burner control
US7277789B1 (en) * 2006-07-06 2007-10-02 Ford Global Technologies, Llc System for transmitting signals between an engine control unit and a valve control unit
US7798125B2 (en) * 2006-09-28 2010-09-21 Woodward Governor Company Method and system for closed loop combustion control of a lean-burn reciprocating engine using ionization detection
US7865290B2 (en) * 2007-10-09 2011-01-04 Ford Global Technologies, Llc Valve control synchronization and error detection in an electronic valve actuation engine system
US20090142717A1 (en) * 2007-12-04 2009-06-04 Preferred Utilities Manufacturing Corporation Metering combustion control
US20100077998A1 (en) * 2008-10-01 2010-04-01 Kansas State University Research Foundation Turbocharger booster system
US8007274B2 (en) * 2008-10-10 2011-08-30 General Electric Company Fuel nozzle assembly
US20110212404A1 (en) * 2008-11-25 2011-09-01 Utc Fire & Security Corporation Automated setup process for metered combustion control systems
US8294893B2 (en) * 2008-11-28 2012-10-23 Shimadzu Corporation Flame atomic absorption spectrophotometer
US20100302696A1 (en) * 2009-05-28 2010-12-02 Yamatake Corporation Relay failure detecting device
US20100307387A1 (en) * 2009-06-09 2010-12-09 Yamatake Corporation Combustion furnace control apparatus
US20110061575A1 (en) * 2009-09-15 2011-03-17 General Electric Company Combustion control system and method using spatial feedback and acoustic forcings of jets
US20120270162A1 (en) * 2009-09-21 2012-10-25 Kailash & Stefan Pty Ltd Combustion control system
US20120130553A1 (en) * 2010-11-19 2012-05-24 General Electric Company Safety instrumented system (sis) for a turbine system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150260397A1 (en) * 2014-03-17 2015-09-17 Honeywell International Inc. Integrated smoke monitoring and control system for flaring operations
US10161627B2 (en) 2014-06-04 2018-12-25 Lochinvar, Llc Modulating burner with venturi damper
US20160305658A1 (en) * 2015-04-17 2016-10-20 Azbil Corporation Combustion Controlling Device and Combustion System
US10247415B2 (en) 2015-04-17 2019-04-02 Azbil Corporation Combustion controlling device and combustion system

Also Published As

Publication number Publication date
EP2372247A2 (en) 2011-10-05
CN102207291A (en) 2011-10-05
EP2372247A3 (en) 2014-03-12
JP2011208921A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
US20110244407A1 (en) Combustion controlling device
JP4877604B2 (en) Combustion control device
US8109759B2 (en) Assured compliance mode of operating a combustion system
EP2738468B1 (en) Valve leak detecting method and combustion equipment
JPH0211818B2 (en)
US10274196B2 (en) Combustion controlling system
US20140272737A1 (en) Staged Combustion Method and Apparatus
JP4230462B2 (en) Combustion control device
US10139107B2 (en) Combustion controlling system
JP5251428B2 (en) Combustion device and hot water supply device
JP6104186B2 (en) Combustion control device
JP6188585B2 (en) Combustion control device
JP2016109355A (en) boiler
JP6879849B2 (en) Combustion system and malfunction determination device
JP6981798B2 (en) Combustion system and malfunction determination device
JP6120554B2 (en) Valve leak detection method and combustion equipment
JP2006349312A (en) Safety confirmation method and combustion system for combustion facility
JP3120009B2 (en) Combustion control device
JP2023105355A (en) Combustion control system
JP2017150747A (en) Fuel valve monitoring device
JP2003336838A (en) Method for determining trouble of wind pressure sensor
JP2021068606A (en) Gas consumption system
JP2002013731A (en) Ignition control method for combustion equipment
JPH0414246B2 (en)
JPS63156922A (en) Method of detecting abnormality of combustion controller

Legal Events

Date Code Title Description
AS Assignment

Owner name: YAMATAKE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMADA, AKIRA;KUMAZAWA, YUUICHI;NAKATA, TOMOYA;AND OTHERS;SIGNING DATES FROM 20110311 TO 20110317;REEL/FRAME:025986/0137

AS Assignment

Owner name: AZBIL CORPORATION, JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:YAMATAKE CORPORATION;REEL/FRAME:028187/0739

Effective date: 20120401

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION