US20110239894A1 - Cable transport device with shock-absorbing means - Google Patents

Cable transport device with shock-absorbing means Download PDF

Info

Publication number
US20110239894A1
US20110239894A1 US13/133,394 US200913133394A US2011239894A1 US 20110239894 A1 US20110239894 A1 US 20110239894A1 US 200913133394 A US200913133394 A US 200913133394A US 2011239894 A1 US2011239894 A1 US 2011239894A1
Authority
US
United States
Prior art keywords
shock
vehicle
absorbing means
absorbing
absorbing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/133,394
Inventor
Alain Croses
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innova Patent GmbH
Original Assignee
Innova Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innova Patent GmbH filed Critical Innova Patent GmbH
Publication of US20110239894A1 publication Critical patent/US20110239894A1/en
Assigned to INNOVA PATENT GMBH reassignment INNOVA PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CROSES, ALAIN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/002Cabins; Ski-lift seats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/04Devices for damping vibrations

Definitions

  • the present invention relates to a cable transport device provided with shock-absorbing means.
  • the vehicles travel at a high speed of 6 to 10 meters per second.
  • the vehicles are subject to significant swaying, in particular longitudinal swaying, while they pass through a station and/or while they pass the pylons supporting the cables.
  • This phenomenon is produced by accelerations, decelerations, malfunctions or emergency braking operations. It can be amplified or even caused by wind and in particular by longitudinal wind.
  • an impact may cause injuries to passengers or bring about significant material damage.
  • the present invention includes shock-absorbing means located on the transport vehicle.
  • the shock-absorbing means comprise an elastically deformable means and/or a plastically deformable means in order to absorb the shock wave.
  • the device includes, according to one embodiment, additional shock-absorbing means on the fixed structures of the device, which may consist of obstacles in the path of the vehicle.
  • These fixed structures are, for example, the arrival stations, the departure stations, intermediate stations, the pylons supporting the cable, etc.
  • shock-absorbing means and additional shock-absorbing means which are advantageously able to cooperate during impacts, the shock waves are absorbed even better and the fixed structures and vehicles are protected.
  • the present invention relates to a cable transport device including at least one vehicle suspended on at least one cable, characterized in that at least one vehicle is provided with shock-absorbing means for absorbing the shock of impacts with obstacles consisting of fixed structures.
  • the device is such that
  • FIG. 1 is a side view of a cable transport device according to a first embodiment of the invention, showing a vehicle 1 and a fixed structure 5 provided respectively with a shock-absorbing means 2 and additional shock-absorbing means 6 .
  • FIG. 2 is a side view of a cable transport device according to a second embodiment of the invention, showing a vehicle 1 and a fixed structure provided respectively with a shock-absorbing means 2 , positioned in the upper part of the cabin, and additional shock-absorbing means 6 .
  • the present invention relates to a transport device including at least one vehicle 1 suspended in a fixed manner on at least one hauling cable by attachment means of the clip type or else by rolling means such that the vehicle rolls along at least one cable.
  • the term suspended includes these different embodiments.
  • the devices and the description present a device provided with a single vehicle 1 .
  • the device according to the invention can include a plurality of vehicles 1 .
  • the vehicle 1 can be a cable car cabin or a chairlift chair, or the like.
  • the vehicle includes shock-absorbing means 2 for absorbing the shock of impacts.
  • shock-absorbing means 2 are intended to damp impacts in the event of contact between the vehicle 1 and any fixed structures 5 located in the surroundings of the vehicle 1 or other vehicles of the device. These shock-absorbing means 2 thus stop the passengers or goods being transported from suffering the consequences of the impacts.
  • Fixed structures 5 are understood as meaning structures which are fixed in relation to the movement of at least one vehicle 1 .
  • these are arrival stations, departure stations, intermediate stations, pylons supporting the cable.
  • fixed structure does not include the suspension means of the vehicle 1 .
  • the shock-absorbing means 2 are preferably located on at least one side wall 3 of the vehicle 1 .
  • the side walls are understood to mean the walls of the vehicle 1 that are oriented substantially in the direction of movement of the vehicle 1 .
  • the shock-absorbing means 2 are at least located on that side wall 3 of the vehicle 1 that faces the fixed structures 5 .
  • the shock-absorbing means 2 are located preferably in a longitudinal direction corresponding to the direction of movement of the vehicle 1 , as shown in FIG. 1 .
  • the shock-absorbing means 2 can also be located on the other walls of the vehicle 1 , so as also to damp other impacts.
  • the shock-absorbing means 2 are located at the corners formed by the intersection of the roof and the vertical walls of the cabin of the vehicle 1 .
  • the shock-absorbing means 2 comprise an elastically deformable means.
  • the elastically deformable means includes at least one elastically deformable material. Specifically, this type of material absorbs the energy generated by the shock wave on account of its elastic deformation.
  • this type of material absorbs the energy generated by the shock wave on account of its elastic deformation.
  • elastomers of the rubber, silicone, polyurethane type By way of example, use will be made as material of elastomers of the rubber, silicone, polyurethane type.
  • the elastically deformable material includes an elastically deformable structure.
  • an elastically deformable structure By way of example, use will be made of a spring structure or, as is described hereinbelow, a hollow semicircular flange.
  • an elastically deformable structure can be combined with at least one elastically deformable material.
  • the structure can include a spring system, in particular a compression spring system, gas dampers, etc.
  • Elastically deformable is understood to mean a reversible deformation.
  • the shock-absorbing means 2 comprise a plastically deformable means.
  • the plastically deformable means includes at least one plastically deformable material.
  • the plastically deformable means includes a plastically deformable structure. This type of material or structure absorbs the energy generated by an impact by deforming in an irreversible manner.
  • a plastically deformable structure can be combined with at least one plastically deformable material.
  • the shock-absorbing means 2 are preferably in the form of a semicircular flange, although other shapes of the parallelepipedal type or the like can be provided.
  • the shock-absorbing means 2 of the flange type have a solid or hollow structure, as desired.
  • the shock-absorbing means 2 have a convex shape.
  • the outer surface of the shock-absorbing means 2 is for example either curvilinear or formed of successive rectilinear segments as shown in FIG. 1 .
  • This latter variant has the advantage of having a possible bearing surface during impacts with the fixed structures 5 , said bearing surface being larger than when the outer surface is curvilinear.
  • This larger bearing surface between the shock-absorbing means 2 and the fixed structures 5 enables better distribution of the bearing forces and thus better damping of the shock wave.
  • the structure of the shock-absorbing means 2 according to the embodiment in which the outer surface is formed by a plurality of successive rectilinear segments provides a certain rigidity which is necessary in order that the shock-absorbing means 2 do not deform excessively during less violent impacts or contacts.
  • the shock-absorbing means 2 include a rigid element mounted on the dampers 8 .
  • an element of the plate type which is advantageously rigid and mounted on the dampers, can be provided.
  • the dampers absorb the energy of the impacts.
  • the dampers are for example gas struts, hydraulic cylinders, pneumatic cylinders or else springs or an element made of elastically deformable material such as the elastomers cited hereinabove.
  • the shock-absorbing means 2 are preferably located on the vehicle 1 such that, in the event of impacts, they are the first elements of the vehicle 1 to come into contact with the fixed structures 5 in the vicinity.
  • the shock-absorbing means 2 are located on the upper part of the vehicle.
  • the upper part of the vehicle is understood to mean that part of the vehicle 1 that is situated above the longitudinal plane 4 passing through the center of gravity of the vehicle 1 .
  • the center of gravity is advantageously determined when the vehicle 1 is unloaded. This positioning of the shock-absorbing means 2 makes it possible to damp impacts without there being a risk of the shock-absorbing elements 2 coming into contact with the rails situated in the stations or preventing the passengers from embarking or disembarking.
  • the shock-absorbing means 2 are situated on the longitudinal plane 4 passing through the center of gravity of the vehicle 1 .
  • the shock-absorbing means 2 are located in the lower part of the vehicle 1 .
  • the lower part of the vehicle 1 is understood to mean that part of the vehicle 1 that is situated below the longitudinal plane 4 passing through the center of gravity of the vehicle 1 .
  • This latter embodiment can be advantageous for damping impacts even when the swaying of the vehicle 1 is weak.
  • the fixed structures 5 include additional shock-absorbing means 6 .
  • Fixed structures 5 are understood to mean the obstacles which the vehicle 1 could encounter as it moves along the cable, such as the arrival station, departure station, intermediate stations or else the pylons supporting the cables.
  • the additional shock-absorbing means 6 positioned on the fixed structure 5 can perform the major part of the damping of a possible impact with the vehicle 1 .
  • the additional shock-absorbing means 6 include, in a first embodiment, an elastically deformable means.
  • this elastically deformable means includes at least one elastically deformable material and according to a second option, it includes an elastically deformable structure.
  • the additional shock-absorbing means 6 include plastically deformable means.
  • This plastically deformable means includes either at least one plastically deformable material or a plastically deformable structure.
  • the elastically or plastically deformable means that can be used for producing the additional shock-absorbing means 6 are identical to the elastically or plastically deformable means that are cited for producing the shock-absorbing means 2 .
  • the additional shock-absorbing means 6 include a rigid element mounted on damper 8 which absorb the energy of the impact.
  • a rigid plate 7 mounted on dampers 8 fixed to the fixed structure 5 as shown in FIG. 1 .
  • the dampers 8 located between the plate 7 and the fixed structure 5 are of the type of hydraulic cylinders, gas struts, pneumatic cylinders, springs or some other elastically and/or plastically deformable means.
  • the plate 7 is advantageously sufficiently rigid to distribute over its entire surface the bearing forces exerted during impacts.
  • the plate 7 is produced from a material such as flexible plastics.
  • the plate 7 of the additional shock-absorbing means 6 is preferably located approximately parallel to the longitudinal axis of the fixed structure 5 .
  • the dampers 8 are for their part located approximately perpendicular to the longitudinal plane of the plate 7 .
  • the shock-absorbing means 2 and/or additional shock-absorbing means 6 will absorb the impact by elastic deformation without being damaged and without needing to be changed.
  • plastic deformation takes over and makes it possible to continue absorbing the impacts.
  • the shock-absorbing means 2 and/or additional shock-absorbing means 6 must be replaced in order to play their part upon the next impact.
  • the additional shock-absorbing means 6 are preferably located on the fixed structure 5 over one entire surface with which the vehicle 1 may come into contact. Thus, by way of example, at the pylon supporting the cable, the additional shock-absorbing means 6 surround more or less all of the pylon at the height of the vehicle 1 .
  • These means cover more or less all the parts of the pylon that are situated above the path of the vehicles; by way of example, the lower face of the supporting shoes of a peripheral.
  • the additional shock-absorbing means 6 are thus rounded so as to be convex.
  • the additional shock-absorbing means 6 have a role guiding the vehicle 1 at the fixed structures 5 .
  • the additional shock-absorbing means 6 can form a guide rail in the stations of the device. If the additional shock-absorbing means 6 have a guiding role, it is preferable to provided that they are of the rigid element type mounted on dampers.
  • the shock-absorbing means 2 and the additional shock-absorbing means 6 are located respectively on the vehicle 1 and on the fixed structure 5 such that they cooperate during impacts.
  • the term “cooperate” is understood to mean that the shock-absorbing means 2 and the additional shock-absorbing means 6 come into contact during any impacts.
  • the additional shock-absorbing means 6 are of the typed formed from an elastically and/or plastically deformable material when the shock-absorbing means 2 are of the rigid element type mounted on dampers.
  • the additional shock-absorbing means 6 are preferably of the plate and damper type when the shock-absorbing means 2 are of the type formed from elastically and/or plastically deformable materials.

Abstract

A cable transport device includes at least one vehicle that is suspended from at least one cable. The at least one vehicle is provided with a shock-absorbing device. The system is suitable for any type of cable transport device with rolling or suspended vehicles, such as cable cars, gondolas or chairlifts, either for passengers or for materials transport.

Description

  • The present invention relates to a cable transport device provided with shock-absorbing means.
  • It can be applied to any type of cable transport devices, in which the vehicles are on wheels or are suspended, such as cable cars, gondola lifts or chair lifts, for passengers or materials.
  • Installations for transporting people or goods, such as cable cars or gondola lifts, which are used in particular in winter sports resorts, are known.
  • In this type of installation, the vehicles travel at a high speed of 6 to 10 meters per second. Thus, the vehicles are subject to significant swaying, in particular longitudinal swaying, while they pass through a station and/or while they pass the pylons supporting the cables.
  • This phenomenon is produced by accelerations, decelerations, malfunctions or emergency braking operations. It can be amplified or even caused by wind and in particular by longitudinal wind.
  • The main risk of such an installation lies in the fact that the vehicle can come into contact with fixed structures in the vicinity.
  • Specifically, with conventional installations, an impact may cause injuries to passengers or bring about significant material damage.
  • There is thus a need to provide a cable transport device in which the safety of the passengers is improved and the risks of damage are reduced.
  • To this end, the present invention includes shock-absorbing means located on the transport vehicle.
  • Thus, when the vehicle sways and comes into contact with surrounding obstacles, the impacts are damped by the shock-absorbing means. Any people being transported feel the impacts only weakly and the risks of damage to the vehicle and the surrounding obstacles are very considerably reduced.
  • Preferably, the shock-absorbing means comprise an elastically deformable means and/or a plastically deformable means in order to absorb the shock wave.
  • Moreover, the device includes, according to one embodiment, additional shock-absorbing means on the fixed structures of the device, which may consist of obstacles in the path of the vehicle. These fixed structures are, for example, the arrival stations, the departure stations, intermediate stations, the pylons supporting the cable, etc. On account of the provision of shock-absorbing means and additional shock-absorbing means which are advantageously able to cooperate during impacts, the shock waves are absorbed even better and the fixed structures and vehicles are protected.
  • Further aims and advantages will become apparent in the course of the following description of a preferred embodiment of the invention, which is, however, not limited thereby.
  • The present invention relates to a cable transport device including at least one vehicle suspended on at least one cable, characterized in that at least one vehicle is provided with shock-absorbing means for absorbing the shock of impacts with obstacles consisting of fixed structures.
  • According to preferred, but nonlimiting variants of the invention, the device is such that
      • the shock-absorbing means are located on at least one side wall of the vehicle,
      • the shock-absorbing means comprise an elastically deformable means,
      • the elastically deformable means comprises at least one elastically deformable material and/or an elastically deformable structure,
      • the shock-absorbing means comprise a plastically deformable means,
      • the plastically deformable means comprises at least one plastically deformable material and/or a plastically deformable structure,
      • the shock-absorbing means comprise an elastically deformable means and a plastically deformable means,
      • the shock-absorbing means are located above the longitudinal plane passing through the center of gravity of the vehicle,
      • the shock-absorbing means are located in the upper part of the vehicle,
      • the shock-absorbing means have a convex shape,
      • the shock-absorbing means have a curvilinear outer surface,
      • the shock-absorbing means have an outer surface formed by successive rectilinear segments,
      • it includes a fixed structure provided with additional shock-absorbing means,
      • the additional shock-absorbing means are located on the fixed structure in such a way that during impacts they cooperate with the shock-absorbing means situated on the vehicle,
      • the additional shock-absorbing means comprise an elastically deformable means,
      • the elastically deformable means comprises at least one elastically deformable material and/or an elastically deformable structure,
      • the additional shock-absorbing means comprise a plastically deformable means,
      • the plastically deformable means comprises at least one plastically deformable material and/or a plastically deformable structure,
      • the additional shock-absorbing means comprise an elastically deformable means and a plastically deformable means,
      • the additional shock-absorbing means comprise a rigid plate mounted on dampers.
  • The appended figures are given by way of examples and do not limit the invention. They show merely one embodiment of the invention and make it easy to understand.
  • FIG. 1 is a side view of a cable transport device according to a first embodiment of the invention, showing a vehicle 1 and a fixed structure 5 provided respectively with a shock-absorbing means 2 and additional shock-absorbing means 6.
  • FIG. 2 is a side view of a cable transport device according to a second embodiment of the invention, showing a vehicle 1 and a fixed structure provided respectively with a shock-absorbing means 2, positioned in the upper part of the cabin, and additional shock-absorbing means 6.
  • The present invention relates to a transport device including at least one vehicle 1 suspended in a fixed manner on at least one hauling cable by attachment means of the clip type or else by rolling means such that the vehicle rolls along at least one cable. The term suspended includes these different embodiments.
  • The figures and the description present a device provided with a single vehicle 1. Of course, the device according to the invention can include a plurality of vehicles 1. The vehicle 1 can be a cable car cabin or a chairlift chair, or the like.
  • The vehicle includes shock-absorbing means 2 for absorbing the shock of impacts. These shock-absorbing means 2 are intended to damp impacts in the event of contact between the vehicle 1 and any fixed structures 5 located in the surroundings of the vehicle 1 or other vehicles of the device. These shock-absorbing means 2 thus stop the passengers or goods being transported from suffering the consequences of the impacts.
  • Fixed structures 5, or surrounding obstacles, are understood as meaning structures which are fixed in relation to the movement of at least one vehicle 1. By way of example, these are arrival stations, departure stations, intermediate stations, pylons supporting the cable. Thus, fixed structure does not include the suspension means of the vehicle 1. The shock-absorbing means 2 are preferably located on at least one side wall 3 of the vehicle 1. The side walls are understood to mean the walls of the vehicle 1 that are oriented substantially in the direction of movement of the vehicle 1. Preferably, the shock-absorbing means 2 are at least located on that side wall 3 of the vehicle 1 that faces the fixed structures 5.
  • The shock-absorbing means 2 are located preferably in a longitudinal direction corresponding to the direction of movement of the vehicle 1, as shown in FIG. 1.
  • According to a first embodiment, the shock-absorbing means 2 can also be located on the other walls of the vehicle 1, so as also to damp other impacts.
  • As shown in FIG. 2, the shock-absorbing means 2 are located at the corners formed by the intersection of the roof and the vertical walls of the cabin of the vehicle 1.
  • According to a first embodiment, the shock-absorbing means 2 comprise an elastically deformable means. According to a first option, the elastically deformable means includes at least one elastically deformable material. Specifically, this type of material absorbs the energy generated by the shock wave on account of its elastic deformation. By way of example, use will be made as material of elastomers of the rubber, silicone, polyurethane type.
  • According to a second option, the elastically deformable material includes an elastically deformable structure. By way of example, use will be made of a spring structure or, as is described hereinbelow, a hollow semicircular flange.
  • According to a variant, an elastically deformable structure can be combined with at least one elastically deformable material.
  • The structure can include a spring system, in particular a compression spring system, gas dampers, etc. Elastically deformable is understood to mean a reversible deformation.
  • According to a second embodiment, the shock-absorbing means 2 comprise a plastically deformable means. According to a first option, the plastically deformable means includes at least one plastically deformable material. According to a second option, the plastically deformable means includes a plastically deformable structure. This type of material or structure absorbs the energy generated by an impact by deforming in an irreversible manner.
  • Examples of the structure are:
      • a member that can deform by crushing (of the bellows type) in the event of compression,
      • a metal tubular structure that can plastically deform by bending,
      • hollow plastic blocks that can plastically deform by rupturing.
  • According to one option, a plastically deformable structure can be combined with at least one plastically deformable material.
  • The shock-absorbing means 2 are preferably in the form of a semicircular flange, although other shapes of the parallelepipedal type or the like can be provided. The shock-absorbing means 2 of the flange type have a solid or hollow structure, as desired.
  • In order to be effective, the shock-absorbing means 2 have a convex shape. The outer surface of the shock-absorbing means 2 is for example either curvilinear or formed of successive rectilinear segments as shown in FIG. 1. This latter variant has the advantage of having a possible bearing surface during impacts with the fixed structures 5, said bearing surface being larger than when the outer surface is curvilinear. This larger bearing surface between the shock-absorbing means 2 and the fixed structures 5 enables better distribution of the bearing forces and thus better damping of the shock wave.
  • In addition, the structure of the shock-absorbing means 2 according to the embodiment in which the outer surface is formed by a plurality of successive rectilinear segments provides a certain rigidity which is necessary in order that the shock-absorbing means 2 do not deform excessively during less violent impacts or contacts.
  • According to another option, the shock-absorbing means 2 include a rigid element mounted on the dampers 8. By way of example, an element of the plate type, which is advantageously rigid and mounted on the dampers, can be provided. The dampers absorb the energy of the impacts. The dampers are for example gas struts, hydraulic cylinders, pneumatic cylinders or else springs or an element made of elastically deformable material such as the elastomers cited hereinabove.
  • The shock-absorbing means 2 are preferably located on the vehicle 1 such that, in the event of impacts, they are the first elements of the vehicle 1 to come into contact with the fixed structures 5 in the vicinity.
  • According to an advantageous embodiment, the shock-absorbing means 2 are located on the upper part of the vehicle. The upper part of the vehicle is understood to mean that part of the vehicle 1 that is situated above the longitudinal plane 4 passing through the center of gravity of the vehicle 1. The center of gravity is advantageously determined when the vehicle 1 is unloaded. This positioning of the shock-absorbing means 2 makes it possible to damp impacts without there being a risk of the shock-absorbing elements 2 coming into contact with the rails situated in the stations or preventing the passengers from embarking or disembarking.
  • According to another embodiment, the shock-absorbing means 2 are situated on the longitudinal plane 4 passing through the center of gravity of the vehicle 1.
  • According to yet another embodiment, the shock-absorbing means 2 are located in the lower part of the vehicle 1. The lower part of the vehicle 1 is understood to mean that part of the vehicle 1 that is situated below the longitudinal plane 4 passing through the center of gravity of the vehicle 1.
  • This latter embodiment can be advantageous for damping impacts even when the swaying of the vehicle 1 is weak.
  • According to a variant of the invention, the fixed structures 5 include additional shock-absorbing means 6. Fixed structures 5 are understood to mean the obstacles which the vehicle 1 could encounter as it moves along the cable, such as the arrival station, departure station, intermediate stations or else the pylons supporting the cables.
  • Although the term “additional” is used, the additional shock-absorbing means 6 positioned on the fixed structure 5 can perform the major part of the damping of a possible impact with the vehicle 1.
  • As for the shock-absorbing means 2, the additional shock-absorbing means 6 include, in a first embodiment, an elastically deformable means. According to a first option, this elastically deformable means includes at least one elastically deformable material and according to a second option, it includes an elastically deformable structure.
  • According to a second embodiment, the additional shock-absorbing means 6 include plastically deformable means. This plastically deformable means includes either at least one plastically deformable material or a plastically deformable structure.
  • The elastically or plastically deformable means that can be used for producing the additional shock-absorbing means 6 are identical to the elastically or plastically deformable means that are cited for producing the shock-absorbing means 2.
  • According to another option, the additional shock-absorbing means 6 include a rigid element mounted on damper 8 which absorb the energy of the impact. For example, use can be made of a rigid plate 7 mounted on dampers 8 fixed to the fixed structure 5, as shown in FIG. 1.
  • The dampers 8 located between the plate 7 and the fixed structure 5 are of the type of hydraulic cylinders, gas struts, pneumatic cylinders, springs or some other elastically and/or plastically deformable means.
  • Whether it be for the shock-absorbing means 2 or the additional shock-absorbing means 6, the plate 7 is advantageously sufficiently rigid to distribute over its entire surface the bearing forces exerted during impacts. By way of example, the plate 7 is produced from a material such as flexible plastics.
  • The plate 7 of the additional shock-absorbing means 6 is preferably located approximately parallel to the longitudinal axis of the fixed structure 5. The dampers 8 are for their part located approximately perpendicular to the longitudinal plane of the plate 7. Thus, the forces during the impact between the vehicle 1 and the fixed structure 5 will be absorbed by the entire surface of the plate 7 by distributing the forces of the impact as forces approximately parallel to the dampers 8. The dampers 8 thus work as effectively as possible.
  • It is advantageous to combine elastic and plastic deformation for the shock-absorbing means 2 and/or for the additional shock-absorbing means 6. To this end, use can be made of an elastically deformable means combined with a plastically deformable means, or else use can be made of a means designed to have an elastic deformation limit that corresponds to the type of device of the invention in order to have elastic deformation followed by plastic deformation.
  • According to these embodiments, during small impacts caused for example by minor operating incidents, the shock-absorbing means 2 and/or additional shock-absorbing means 6 will absorb the impact by elastic deformation without being damaged and without needing to be changed. However, during larger impacts, when the deformation of the shock-absorbing means 2 and/or additional shock-absorbing means 6 is too great, plastic deformation takes over and makes it possible to continue absorbing the impacts. In this case, the shock-absorbing means 2 and/or additional shock-absorbing means 6 must be replaced in order to play their part upon the next impact.
  • The additional shock-absorbing means 6 are preferably located on the fixed structure 5 over one entire surface with which the vehicle 1 may come into contact. Thus, by way of example, at the pylon supporting the cable, the additional shock-absorbing means 6 surround more or less all of the pylon at the height of the vehicle 1.
  • These means cover more or less all the parts of the pylon that are situated above the path of the vehicles; by way of example, the lower face of the supporting shoes of a peripheral.
  • The additional shock-absorbing means 6 are thus rounded so as to be convex.
  • According to another option, the additional shock-absorbing means 6 have a role guiding the vehicle 1 at the fixed structures 5. For example, the additional shock-absorbing means 6 can form a guide rail in the stations of the device. If the additional shock-absorbing means 6 have a guiding role, it is preferable to provided that they are of the rigid element type mounted on dampers.
  • Preferably, the shock-absorbing means 2 and the additional shock-absorbing means 6 are located respectively on the vehicle 1 and on the fixed structure 5 such that they cooperate during impacts. The term “cooperate” is understood to mean that the shock-absorbing means 2 and the additional shock-absorbing means 6 come into contact during any impacts.
  • It is preferable to provide that the additional shock-absorbing means 6 are of the typed formed from an elastically and/or plastically deformable material when the shock-absorbing means 2 are of the rigid element type mounted on dampers. Conversely, the additional shock-absorbing means 6 are preferably of the plate and damper type when the shock-absorbing means 2 are of the type formed from elastically and/or plastically deformable materials.
  • This makes it possible to limit friction between the different shock-absorbing means 2 and 6 while preserving effective damping.
  • REFERENCES
    • 1. Vehicle
    • 2. Shock-absorbing means
    • 3. Side walls
    • 4. Longitudinal plane passing through the center of gravity of the vehicle
    • 5. Fixed structure
    • 6. Additional shock-absorbing means
    • 7. Plate
    • 8. Damper

Claims (14)

1-13. (canceled)
14. A cable transport device, comprising:
at least one vehicle suspended on at least one cable, said vehicle having a center of gravity;
said at least one vehicle including a shock-absorbing device for absorbing a shock originating from an impact with a fixed structure obstacle; and
said shock-absorbing device being disposed above a longitudinal plane passing through the center of gravity of said at least one vehicle.
15. The device according to claim 14, wherein said shock-absorbing device is mounted to at least one side wall of said vehicle.
16. The device according to claim 14, wherein said shock-absorbing device is mounted to an upper part of said vehicle.
17. The device according to claim 14, wherein said shock-absorbing device comprises elastically deformable means.
18. The device according to claim 14, wherein said shock-absorbing device comprises plastically deformable means.
19. The device according to claim 14, wherein said shock-absorbing device has a convex shape.
20. The device according to claim 19, wherein said shock-absorbing device has a curvilinear outer surface.
21. The device according to claim 19, wherein said shock-absorbing device has an outer surface formed by successive rectilinear segments.
22. The device according to claim 14, including a fixed structure provided with an additional shock-absorbing device.
23. The device according to claim 22, wherein said additional shock-absorbing device is disposed on the fixed structure so as to cooperate with said shock-absorbing device disposed on said vehicle on occasion of an impact.
24. The device according to claim 22, wherein said additional shock-absorbing device comprises an elastically deformable means.
25. The device according to claim 22, wherein said additional shock-absorbing device comprises a plastically deformable means.
26. The device according to claim 22, wherein said additional shock-absorbing device comprises a rigid plate mounted on dampers.
US13/133,394 2008-12-08 2009-12-08 Cable transport device with shock-absorbing means Abandoned US20110239894A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0858360 2008-12-08
FR0858360A FR2939394B1 (en) 2008-12-08 2008-12-08 CABLE TRANSPORT DEVICE PROVIDED WITH DAMPING MEANS.
PCT/EP2009/066595 WO2010066712A1 (en) 2008-12-08 2009-12-08 Cable transport device with shock-absorbing means

Publications (1)

Publication Number Publication Date
US20110239894A1 true US20110239894A1 (en) 2011-10-06

Family

ID=40872425

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/133,394 Abandoned US20110239894A1 (en) 2008-12-08 2009-12-08 Cable transport device with shock-absorbing means

Country Status (6)

Country Link
US (1) US20110239894A1 (en)
EP (1) EP2356008B1 (en)
CN (1) CN102245457B (en)
FR (1) FR2939394B1 (en)
RU (1) RU2481213C2 (en)
WO (1) WO2010066712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619615A (en) * 2021-07-27 2021-11-09 董员兰 Mining protection equipment for mining mine investigation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900001097A1 (en) * 2019-01-24 2020-07-24 Leitner Spa ROPE TRANSPORT SYSTEM
CN111042012B (en) * 2019-12-27 2021-08-27 东南大学 Waiting platform suitable for bridge construction separated railway station house adopting shock insulation technology

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798916A (en) * 1971-11-15 1974-03-26 Lord Corp Articulated energy absorbing marine fender assembly
US20020149214A1 (en) * 2001-04-16 2002-10-17 Darin Evans Bumper system with face-mounted energy absorber
US6948440B2 (en) * 2002-07-26 2005-09-27 Aschenbach Karl L Fender with leaf spring
US7938463B2 (en) * 2007-12-18 2011-05-10 Hyundai Motor Company Bumper apparatus with multistage energy absorbing structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2197363A5 (en) * 1972-08-25 1974-03-22 Montaz Mautino
US4338863A (en) * 1980-04-29 1982-07-13 Pomagalski S.A. Pneumatic suspension system for ropeway cars
FR2554774B1 (en) * 1983-11-10 1986-03-14 Michel Max COMPETITIVE TELEPHERIC SYSTEM
AT385480B (en) * 1985-09-11 1988-04-11 Doppelmayr & Sohn UNDERCARRIAGE CARRIERS FOR CABLE CARS, IN PARTICULAR FOR ONE-ROPE CABLE CARS
FR2655934B3 (en) * 1989-12-19 1992-04-17 Transport Etudes CABIN FOR CABLE CARS OF WHICH THE CARRIER STRUCTURE AND THE TRIM STRUCTURE ARE INTEGRATED, COMPRISING, FOR THE DOORS, ONLY GUIDANCE AND LOCKING MEANS.
FR2694533B1 (en) * 1992-08-05 1994-11-10 Pomagalski Sa Cabin with seat in rotomolded box of an overhead cable installation.
AT410147B (en) * 1998-02-17 2003-02-25 Girak Garaventa Gmbh DRIVING EQUIPMENT FOR ROPE CONVEYING SYSTEMS, ESPECIALLY A CABLE CAR
CN100430279C (en) * 2001-08-11 2008-11-05 株洲时代新材料科技股份有限公司 Buffer non-skid safety protection device for platform of railway station
JP2005199962A (en) * 2004-01-19 2005-07-28 Jfe Mechanical Co Ltd Cableway device having buffer function
RU44262U1 (en) * 2004-10-26 2005-03-10 Милешко Михаил Николаевич ROPE SLIDE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798916A (en) * 1971-11-15 1974-03-26 Lord Corp Articulated energy absorbing marine fender assembly
US20020149214A1 (en) * 2001-04-16 2002-10-17 Darin Evans Bumper system with face-mounted energy absorber
US6948440B2 (en) * 2002-07-26 2005-09-27 Aschenbach Karl L Fender with leaf spring
US7938463B2 (en) * 2007-12-18 2011-05-10 Hyundai Motor Company Bumper apparatus with multistage energy absorbing structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619615A (en) * 2021-07-27 2021-11-09 董员兰 Mining protection equipment for mining mine investigation

Also Published As

Publication number Publication date
RU2011128028A (en) 2013-01-20
CN102245457B (en) 2015-04-22
WO2010066712A1 (en) 2010-06-17
FR2939394B1 (en) 2015-05-22
CN102245457A (en) 2011-11-16
FR2939394A1 (en) 2010-06-11
EP2356008B1 (en) 2018-02-07
EP2356008A1 (en) 2011-08-17
RU2481213C2 (en) 2013-05-10

Similar Documents

Publication Publication Date Title
CN107090790B (en) Flexible honeycomb structure buffer stop
EP2733040B1 (en) Railcar bogie
US9457705B2 (en) Low profile wheel chocking system and chock construction
WO2017063315A1 (en) Anti-derailing device for rail vehicle bogie and rail vehicle bogie
US20070007780A1 (en) Kinetic energy absorber, particularly for large mobile objects
KR101822982B1 (en) Structural system of rear guard
JP2007302081A (en) Energy absorbing structure in transporting apparatus
US20110239894A1 (en) Cable transport device with shock-absorbing means
US20060162609A1 (en) Interstate highway train system
JP4612492B2 (en) Home shock absorption structure
CN101687513B (en) System of automatic transport of goods, by means of electric platforms on monorail, with side stabilizer
ATE446888T1 (en) PNEUMATIC OR HYDRAULIC TELESCOPIC SYSTEM FOR TOWERS AND STATIONS OF CHAIRLIFTS, GONDOLA CARS AND OTHERS
US3203361A (en) Resiliently suspended transport structure
AU2020101174A4 (en) Derailment blocking system for high-speed trains based on impact energy conversion
US11946213B1 (en) High-speed train derailment arresting system and structural design method therefor
CN205971348U (en) Rail vehicle bogie horizontal beam anticreep device and rail vehicle
KR102254175B1 (en) Cable car supporting system
CN205097863U (en) Automatic direct buffer that hangs of transport vechicle
CN203559522U (en) Energy dissipation anti-collision station building column
CN211390970U (en) Fixing device and new energy automobile battery
CN103603464A (en) Energy-dissipating anticollision station building column
CN217124806U (en) Parking device for railway vehicle
CN219637767U (en) Mine inclined drift driving safety guard rail
CN110004852B (en) Assembled road barrier structure with shock attenuation power consumption effect
CN205971347U (en) Bogie horizontal beam anticreep device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INNOVA PATENT GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CROSES, ALAIN;REEL/FRAME:030624/0104

Effective date: 20110606

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION