US20110106149A1 - Septal occluder and associated methods - Google Patents

Septal occluder and associated methods Download PDF

Info

Publication number
US20110106149A1
US20110106149A1 US12/987,111 US98711111A US2011106149A1 US 20110106149 A1 US20110106149 A1 US 20110106149A1 US 98711111 A US98711111 A US 98711111A US 2011106149 A1 US2011106149 A1 US 2011106149A1
Authority
US
United States
Prior art keywords
proximal
anchor member
distal anchor
distal
anchor members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/987,111
Inventor
Carol A. Ryan
Andrzej J. CHANDUSZKO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
NMT Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NMT Medical Inc filed Critical NMT Medical Inc
Priority to US12/987,111 priority Critical patent/US20110106149A1/en
Publication of US20110106149A1 publication Critical patent/US20110106149A1/en
Assigned to W.L. GORE & ASSOCIATES, INC. reassignment W.L. GORE & ASSOCIATES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NMT MEDICAL, INC. (BY AND THROUGH JOSEPH F. FINN, JR., AS ASSIGNEE FOR THE BENEFIT OF CREDITORS OF NMT MEDICAL, INC.)
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/68Circuit arrangements for preventing eavesdropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/71Substation extension arrangements
    • H04M1/715Substation extension arrangements using two or more extensions per line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • H04M1/72502Cordless telephones with one base station connected to a single line
    • H04M1/72505Radio link set-up procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/14WLL [Wireless Local Loop]; RLL [Radio Local Loop]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00606Implements H-shaped in cross-section, i.e. with occluders on both sides of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0475Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery using sutures having a slip knot

Definitions

  • a patent foramen ovale (PFO) as shown in FIG. 1 is a persistent, one-way, usually flap-like opening in the wall between the right atrium 10 and left atrium 12 of the heart. Since left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap typically stays closed. Under certain conditions, however, RA pressure can exceed LA pressure creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation. In utero, the foramen ovale serves as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale.
  • LA left atrial
  • RA right atrial
  • septum primum 14 This functional closure is subsequently followed by anatomical closure of the two over-lapping layers of tissue: septum primum 14 and septum secundum 16 .
  • a probe-patent foramen ovale has been shown to persist in up to 35% of adults in an autopsy series.
  • contrast echocardiography TEE
  • a PFO can be detected in approximately 25% of adults.
  • PFO has no therapeutic consequence in otherwise healthy adults.
  • patients suffering a stroke or TIA in the presence of a PFO and without another cause of ischemic stroke are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event.
  • These patients are commonly treated with oral anticoagulants, which have the potential for adverse side effects such as hemorrhaging, hematoma, and interactions with a variety of other drugs.
  • surgery may be used to close a PFO.
  • To suture a PFO closed requires attachment of septum secundum to septum primum with a continuous stitch, which is the common way a surgeon shuts the PFO under direct visualization.
  • Non-surgical closure of PFOs has become possible with the advent of umbrella-like devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASD). These devices allow patients to avoid the potential side effects often associated with anticoagulation therapies.
  • ASD atrial septal defects
  • the closure devices generally include a proximal anchor member, a distal anchor member, and a flexible center joint connecting the two anchor members.
  • the center joint can be a suture.
  • the center joint can be a flexible elastomeric layer, which can, e.g., be used to promote tissue ingrowth or for drug delivery.
  • the flexible material can also be covered with a biocompatible glue to promote adherence to tissue or growth factors to accelerate tissue ingrowth.
  • the closure device is formed of bioresorbable components such that substantially no permanent foreign body remains in the defect.
  • mechanisms are provided to collapse the closure device for facilitating device delivery, removal and/or repositioning.
  • FIG. 1 is a cross-sectional view of a portion of the heart illustrating a PFO
  • FIG. 2 illustrates a deployed PFO closure device with bioresorbable components in accordance with one or more embodiments of the invention
  • FIG. 3 illustrates the PFO closure device of FIG. 2 in a collapsed state for passage through a delivery catheter or sheath;
  • FIG. 4 illustrates a closure device deployed to close a PFO in accordance with one or more further embodiments of the invention
  • FIG. 5 illustrates a closure device deployed to close the PFO in accordance with one or more further embodiments of the invention
  • FIGS. 6A and 6B are front and side views, respectively, of a PFO closure device in accordance with one or more further embodiments of the invention.
  • FIGS. 7A and 7B are front and side views, respectively, of a PFO closure device in accordance with one or more further embodiments of the invention.
  • FIGS. 8A and 8B are side and front views, respectively, of the PFO closure device of FIG. 6 deployed to close a PFO;
  • FIG. 9A illustrates a closure device having a retrieval mechanism in accordance with one or more further embodiments of the invention in a collapsed state for passage through a catheter or sheath;
  • FIG. 9B is a front view of the FIG. 9A device
  • FIGS. 9C-E illustrate deployment of the FIG. 9A device
  • FIGS. 9F-H illustrate removal of the FIG. 9A device
  • FIG. 10A illustrates a closure device having a retrieval mechanism in accordance with one or more further embodiments of the invention in a collapsed state for passage through a catheter or sheath;
  • FIG. 10B is a front view of the FIG. 10A device
  • FIGS. 11A and 11B illustrate an anchor member with an elastic hinge in accordance with one or more further embodiments of the invention
  • FIG. 12 illustrates a PFO closure device made from a single material in accordance with one or more further embodiments of the invention.
  • FIG. 13 illustrates a PFO closure device having inflatable anchor members in accordance with one or more further embodiments of the invention
  • FIG. 14 illustrates a PFO closure device with a wire connecting the proximal and distal anchor members in accordance with one or more further embodiments of the invention
  • FIG. 15 illustrates a PFO closure device having a frame member in accordance with one or more further embodiments of the invention
  • FIG. 16 illustrates a PFO closure device having frame anchor members in accordance with one or more further embodiments of the invention
  • FIG. 17 illustrates a PFO closure device having frame anchor members in accordance with one or more further embodiments of the invention.
  • FIG. 18 illustrates the FIG. 17 device in a collapsed state for passage through a catheter or sheath
  • FIG. 19 illustrates a frame anchor member having metal and polymer components in accordance with one or more further embodiments of the invention.
  • FIGS. 20A and 20B illustrate a PFO closure device having anchor members formed from a rolled material in accordance with one or more further embodiments of the invention in rolled and unrolled positions, respectively;
  • FIGS. 21A and 21B illustrate an alternate PFO closure device having anchor members formed from a rolled material in accordance with one or more further embodiments of the invention in rolled and unrolled positions, respectively;
  • FIG. 22A illustrates a closure device having frame anchor members and a generally “X” shaped joint member in accordance with one or more further embodiments of the invention
  • FIG. 22B illustrates the proximal anchor member of the FIG. 22A device
  • FIG. 22C illustrates the FIG. 22A device in a deployed state
  • FIG. 23 illustrates a closure device having frame anchor members having a generally “+” shaped frame structure in accordance with one or more further embodiments of the invention.
  • FIG. 24 illustrates a closure device having frame anchor members having a generally “G” shaped frame structure in accordance with one or more further embodiments of the Invention.
  • Various embodiments of the present invention are directed to methods and devices for closing septal defects such as PFOs, primarily by eliciting a healing response at the defect.
  • a PFO closure device 18 in accordance with one or more embodiments of the present invention includes a distal anchor component or member 20 (which can be placed on the left atrial side of the PFO), a proximal anchor member 22 (to fix the device in place), a proximal attachment point 24 (for attachment and release from a catheter), and a central connecting member 26 (which can, e.g., be a simple suture in accordance with this embodiment).
  • the distal anchor, the proximal anchor, and the connecting member are bioresorbable. These components can be fabricated from either a single bioresorbable polymer or by a laminated composite of two or more materials to provide a unique mix of properties such as, e.g., anchor members having stiff centers and flexible edges, and blood contacting surfaces having controlled porosity or surface texture to promote fast and thorough endothelialization, while minimizing thrombosis.
  • the tissue contacting surface of the anchors can be designed to provide added stability by, e.g., being roughened.
  • the distal anchor 20 is an elongated, preferably generally cylindrical, thin bar-like member with rounded, arcuately shaped ends.
  • the tissue contacting surface of the anchor can be generally flattened to increase tissue surface contact.
  • the distal anchor component might, e.g., be 15-30 mm long and 2 mm in diameter with a circular cross-section.
  • the proximal anchor 22 can be of similar dimensions and shape, although it can be shorter in overall length.
  • anchors can be formed of a generally flat material rolled to form a cylindrical shape as described below with respect to the embodiments of FIGS. 20 and 21 .
  • the distal anchor 20 and proximal anchor 22 are positioned to be generally aligned in a longitudinal, end-to-end manner within a delivery sheath or catheter 28 as shown in FIG. 3 .
  • the catheter or delivery sheath is inserted between septum primum and septum secundum into the left atrium 18 , and the distal anchor component 20 is ejected.
  • the catheter or delivery sheath 28 is withdrawn into the right atrium, and the proximal anchor 22 is ejected.
  • the flexible central connecting member 26 extends between septum primum and septum secundum to join the distal anchor 20 and the proximal anchor 22 .
  • the distal anchor and proximal anchor generally self-orientate to be essentially perpendicular to the axis of the central connecting member and in generally parallel planes to one another. The exact orientation will be governed by the individual patient anatomy.
  • An alternate delivery method for this device can be to deploy it directly through the septum primum as opposed to through the PFO.
  • the method of attaching the central connecting member 26 to the anchor and stop mechanism 22 to permit the distal anchor and the proximal anchor to be drawn together could be, e.g., via a friction fit or via a slip knot on the central connecting member. If a slip knot is used, the free end of the suture proximal to the knot can be held remotely and released after the knot has been placed in the appropriate location.
  • the central connecting member 26 is mounted to permit free sliding movement of the proximal anchor 22 relative to the central connecting member 26 .
  • a biasing spring 30 which may be an expandable coil spring, can be formed at the outer end of the central connecting member 26 to bias the proximal anchor toward the distal anchor when both are deployed from the catheter or sheath.
  • a metallic component may be used as the central connecting member 26 in order to provide an appropriate stop and apply compression force to the proximal anchor 22 .
  • the metallic component could be a piece of shape memory wire that has one end molded or laminated into the distal anchor component 20 .
  • the proximal anchor 22 slides on the central connecting member 26 , and once it is deployed, the biasing spring 30 formed on the end of the shape memory wire expands to bias the proximal anchor 22 toward the distal anchor 20 .
  • a shape memory wire forms a hook type anchor 32 made from two wires that exit through the center of the proximate anchor and curve in opposite directions when expanded to draw the proximate anchor toward the distal anchor.
  • FIGS. 4 and 5 can leave a permanent foreign body when the bioresorbable components dissolve (if, e.g., a metallic component is used as the central connecting member 26 ), one advantage of these devices is that no thrombogenic tissue scaffold (usually a vascular material) is, placed on the left atrial side. Thrombus forming on the LA side of a PFO closure device can be released into the systemic circulation causing an embolic event within the coronary arteries, cerebral circulation, or distally in the vasculature, and most vascular graft materials utilized to close PFOs are highly thrombogenic.
  • a metallic component is used as the central connecting member 26
  • Thrombus forming on the LA side of a PFO closure device can be released into the systemic circulation causing an embolic event within the coronary arteries, cerebral circulation, or distally in the vasculature, and most vascular graft materials utilized to close PFOs are highly thrombogenic.
  • the PFO closure devices may need to be capable of x-ray visualization and use with radiopaque fillers or marker bands fabricated from noble metals such as platinum or gold. These markers can be attached using a variety of common methods such as, e.g., adhesive bonding, lamination between two layers of polymer, or vapor deposition.
  • FIGS. 6A and 6B illustrate a closure device 50 in accordance with one or more further embodiments of the invention.
  • the device 50 includes proximal and distal anchor members 52 , 54 connected with a flexible (and preferably stretchable elastomeric) center joint or connecting element 56 .
  • the anchor members 52 , 54 are preferably cylindrical in shape with rounded ends. In size, the distal anchor member 54 might, e.g., be about 15-30 mm long and about 2 mm in diameter with a circular cross-section.
  • the proximal anchor 52 can be of similar dimensions and shape, although it can be shorter in overall length.
  • the anchor members 52 , 54 are preferably made from a rigid (preferably bioresorbable) polymer (regular or shape memory), or biological tissue. Biocompatible metal can also be used.
  • anchors can be formed of a generally flat material rolled to form a cylindrical shape as described below with respect to the embodiments of FIGS. 20 and 21 .
  • the center joint 56 of the FIG. 6 device (as well as the center joints of the devices shown in FIGS. 7-10 , 12 - 18 , and 21 - 24 ) are preferably elastomeric and resilient and are made from thrombogenic or inflammatory materials including, e.g., polyester, biological tissue, bioresorbable polymer, small diameter springs (e.g., Nitinol), or spongy polymeric material.
  • the center joint can be made of multiple strands of material 58 such as, e.g., polymer fibers as shown in the closure device 60 of FIGS. 7A and 7B .
  • the center joint can be textured, porous or in a form of a single or double-sided hook material such as Velcro. These kinds of surfaces produce inflammatory responses and therefore, promote faster tissue ingrowth and faster defect closure.
  • the entire device or parts of it can be made from bioresorbable polymers.
  • FIGS. 8A and 8B are front and side views, respectively, of the device 50 in a PFO defect.
  • the proximal and distal anchor members 54 , 52 are longer than the defect width, thereby inhibiting the device from being embolized.
  • a closure device can include a delivery/removal mechanism to facilitate device delivery, removal or repositioning.
  • a device 70 shown in FIGS. 9A and 9B includes a removal string 72 and a delivery string 74 .
  • the removal string is movably secured and slides freely inside of the proximal anchor member 76 .
  • the string extends from one end of the proximal member 76 and is fixed to an opposite end of the distal anchor member 78 .
  • the strings can, e.g., be sutures or wires such as Nitinol wire.
  • FIGS. 9C-E illustrate device deployment using the delivery string 74 , which is preferably attached generally to the center of the proximal anchor member 76 .
  • the delivery sheath 79 containing the device 70 is first inserted between the septum primum and septum secundum into the left atrium as shown in FIG. 9C .
  • the distal anchor 78 is then ejected from the delivery catheter 79 .
  • Tension is then applied to the delivery string 74 , and the delivery sheath is withdrawn into the right atrium and the proximal anchor 76 is ejected.
  • FIGS. 9F-H illustrate removal of the device 70 .
  • tension is applied to the removal string, while the delivery sheath 79 is moved toward the device 70 .
  • the applied tension causes the proximal anchor 76 to be withdrawn into the delivery sheath as shown in FIG. 9G .
  • the distal anchor 78 is also withdrawn into the delivery sheath as further tension is applied to the removal string.
  • the device can then be redeployed if desired or removed.
  • the delivery string 74 can be omitted, and the removal string 72 be used for both device deployment and removal.
  • the delivery sheath 79 containing the closure device is first inserted between the septum primum and septum secundum into the left atrium in a similar manner to that shown in FIG. 9C .
  • the distal anchor 78 is then ejected from the delivery catheter 79 in a similar manner to that shown in FIG. 9D .
  • Tension is applied to the removal string 72 , and the delivery sheath is withdrawn into the right atrium, and the proximal anchor 76 is ejected.
  • strings 80 are attached to both ends of the proximal anchor member 82 of a closure device 84 .
  • Both anchor members are flexible and can fold as shown in FIG. 10A in order to be delivered to or removed from the defect.
  • each of the proximal and distal anchor members can include two elements 90 separated by an elastic hinge 92 .
  • the elastic hinge 92 can facilitate folding of the members as shown in FIG. 11B .
  • the hinge 92 can be molded or made from a material such as, e.g., Nitinol or other shape memory materials, which can be a different material from the elements 90 .
  • an entire closure device can be made from a single sheet of a material as shown, e.g., in the closure device 100 of FIG. 12 .
  • Two opposite ends of the sheet can be rolled to form the proximal and distal anchor members.
  • Glue or heat bonding can be used to maintain the rolled-up configuration of the anchor members 102 , 104 .
  • one or both anchor members 110 , 112 of a closure device 114 can be inflatable.
  • the anchor members can be inflated with, e.g., saline or other physiological fluid during or before the delivery of the device.
  • a tube 116 can communicate with cavities in the anchor members.
  • An inlet 118 can be provided at one of the members for introducing fluid therein.
  • a wire 120 such as, e.g., an S-shaped wire, can be provided to connect the proximal and distal anchor members 122 , 124 of a device 126 as shown in FIG. 14 .
  • the wire can be used to provide additional clamping force while the device is in a PFO defect.
  • Other wire shapes are also possible.
  • one or more frame structures can be used as the anchor members of a closure device.
  • FIG. 15 shows a closure device 130 having a frame structure 132 .
  • FIG. 16 shows a closure device 136 having frames 138 , 139 .
  • the frames can be, e.g., a metal (e.g., Nitinol wire) or polymer frame.
  • FIGS. 17-19 illustrate closure devices in accordance with some further embodiments of the invention.
  • a closure device 140 shown in FIG. 17 includes anchor members 142 , 144 having a frame structure.
  • the frame shape can be polygonal as shown in the figure or it can alternatively be a circular shape. Other frame shapes are also possible as, e.g., will be described below with respect to FIGS. 22-24 .
  • a recovery suture can be attached to opposite ends of the proximate anchor member 142 to collapse the anchors for delivery in a catheter 146 as shown in FIG. 18 or for retrieval or repositioning.
  • the anchor members can be made from a metal, preferably Nitinol, or polymers.
  • an anchor member 148 can include both metal and polymer components.
  • the distal and proximal anchors can be formed of a flat sheet-like member rolled to form a cylindrical shape as shown, e.g., in the device 170 of FIG. 20A .
  • the anchors 172 , 174 can unroll to form sheet-like members when deployed as shown generally in FIG. 20B .
  • the sheet-like member can be made of a material having shape memory properties such as, e.g., shape memory polymeric materials.
  • the sheet-like member can include metal struts made of shape memory metals such as, e.g., Nitinol or Nitinol alloys.
  • the shape memory materials allow the device to be delivered in a delivery sheath or catheter with the anchors in the rolled configuration of FIG. 20A .
  • the anchors attain the sheet-like geometry of FIG. 20B once deployed due to their shape memory properties.
  • the anchor members 172 , 174 can be connected to each other with a connecting member 176 , which can, e.g., be a suture similar to that used in the FIG. 2 device.
  • FIGS. 21A and 21B illustrate a closure device 180 having rolled anchor members 182 , 184 , which are similar to the anchor members 172 , 174 of the device of FIGS. 20A and 20B .
  • the anchors 182 , 184 are connected to each other by a connecting member or joint 186 , which can be a sheet of flexible material similar to the connecting members previously described with respect to FIGS. 6 and 7 .
  • FIG. 22A illustrates a closure device 200 in accordance with one or more further embodiments of the invention.
  • the device 200 includes distal and proximal anchor members 202 , 204 , each of which has a polygonal or circular frame structure.
  • the anchor members are connected by a connecting member 206 , which can be made from a flexible material similar to that previously described in connection with FIGS. 6 and 7 .
  • the connecting member 206 can be made of two sheets of flexible material connected at their centers, generally forming an “X” shape in the side view of the device.
  • the proximal anchor member 204 can include one or more recovery wires or sutures attached to the frame structure for use in device deployment of recovery.
  • FIG. 22C illustrates the device 200 as deployed.
  • FIGS. 23 and 24 illustrate closure devices 220 , 230 , respectively, in accordance with further embodiments of the invention.
  • Each device 220 , 230 includes distal and proximal anchor members having a frame structure. The anchor members are connected by a flexible joint 222 , which can be made from a flexible material similar to that previously described in connection with FIGS. 6 and 7 .
  • the FIG. 23 device 220 includes distal and proximal anchor members 224 , 226 generally having a “+” shape.
  • the FIG. 24 device 230 includes distal and proximal anchor members 232 , 234 generally having a “G” shape.
  • closure devices described herein can optionally be used along with suturing or stapling techniques where the anchors or flexible joints of the devices can be sewn or stapled to septum primum or secundum for better dislodgment resistance.
  • the flexible joint can, if desired, be covered with biocompatible glue to adhere to the tissue or can be loaded with drugs or growth factors to promote healing.
  • the glue and also certain drugs can also optionally be stored in any cavities in the anchor members (e.g., in the cylindrical members of FIGS. 6 and 7 ) and released after deployment.
  • Noble metal markers can also be attached to the closure devices for a better x-ray visualization.
  • the various closure devices described herein can include a number of advantageous features.
  • the closure devices preferably have an atraumatic shape to reduce trauma during deployment or removal.
  • the devices can be self-orienting for ease of deployment.
  • the devices because of the flexible center joint, the devices generally conform to the anatomy instead of the anatomy conforming to the devices, which is especially useful in long tunnel defects.
  • the devices can preferably be repositioned or/and removed during delivery.
  • the devices also generally have a relatively small profile after deployment.
  • the flexible center joint of the devices can encourage faster tissue ingrowth and therefore, faster defect closure.
  • the devices can also advantageously include bioresorbable components, which can disappear over time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

Devices are provided for closing septal defects such as PFOs. The devices generally include a proximal anchor member, a distal anchor member, and a flexible center joint connecting the two anchor members.

Description

    RELATED APPLICATION
  • The present application claims priority to and the benefit if U.S. patent application No. 11/326,535, filed on Dec. 19, 2002, to be issued as U.S. Pat. No. 7,867,250 on Jan. 11, 2011, which is based on and claims priority to U.S. Provisional Patent Application Ser. No. 60/340,858 filed on Dec. 19, 2001 and entitled PATENT FORAMEN OVALE (PFO) CLOSURE DEVICE WITH BIORESORBABLE COMPONENTS, each of which is incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • A patent foramen ovale (PFO) as shown in FIG. 1 is a persistent, one-way, usually flap-like opening in the wall between the right atrium 10 and left atrium 12 of the heart. Since left atrial (LA) pressure is normally higher than right atrial (RA) pressure, the flap typically stays closed. Under certain conditions, however, RA pressure can exceed LA pressure creating the possibility for right to left shunting that can allow blood clots to enter the systemic circulation. In utero, the foramen ovale serves as a physiologic conduit for right-to-left shunting. After birth, with the establishment of pulmonary circulation, the increased left atrial blood flow and pressure results in functional closure of the foramen ovale. This functional closure is subsequently followed by anatomical closure of the two over-lapping layers of tissue: septum primum 14 and septum secundum 16. However, a probe-patent foramen ovale has been shown to persist in up to 35% of adults in an autopsy series. Using contrast echocardiography (TEE), a PFO can be detected in approximately 25% of adults. These numbers are different because an autopsy allows direct visual inspection of the anatomy, whereas contrast echocardiography relies on the measurement of an indirect physiologic phenomenon.
  • The cause of ischemic stroke remains cryptogenic (of unknown origin) in approximately 40% of cases. Especially in young patients, paradoxical embolism via a PFO is considered in the diagnosis. While there is currently no proof for a cause-effect relationship, many studies have confirmed a strong association between the presence of a PFO and the risk for paradoxical embolism or stroke. In addition, there is good evidence that patients with PFO and paradoxical embolism are at increased risk for future, recurrent cerebrovascular events.
  • The presence of PFO has no therapeutic consequence in otherwise healthy adults. In contrast, patients suffering a stroke or TIA in the presence of a PFO and without another cause of ischemic stroke are considered for prophylactic medical therapy to reduce the risk of a recurrent embolic event. These patients are commonly treated with oral anticoagulants, which have the potential for adverse side effects such as hemorrhaging, hematoma, and interactions with a variety of other drugs. In certain cases, such as when anticoagulation is contraindicated, surgery may be used to close a PFO. To suture a PFO closed requires attachment of septum secundum to septum primum with a continuous stitch, which is the common way a surgeon shuts the PFO under direct visualization.
  • Non-surgical closure of PFOs has become possible with the advent of umbrella-like devices and a variety of other similar mechanical closure designs developed initially for percutaneous closure of atrial septal defects (ASD). These devices allow patients to avoid the potential side effects often associated with anticoagulation therapies.
  • BRIEF SUMMARY OF EMBODIMENTS OF THE INVENTION
  • Various embodiments of the present invention are directed to devices for closing septal defects such as PFOs. The closure devices generally include a proximal anchor member, a distal anchor member, and a flexible center joint connecting the two anchor members. The center joint can be a suture. Alternatively, the center joint can be a flexible elastomeric layer, which can, e.g., be used to promote tissue ingrowth or for drug delivery. The flexible material can also be covered with a biocompatible glue to promote adherence to tissue or growth factors to accelerate tissue ingrowth.
  • In accordance with some embodiments of the invention, the closure device is formed of bioresorbable components such that substantially no permanent foreign body remains in the defect.
  • In accordance with further embodiments of the invention, mechanisms are provided to collapse the closure device for facilitating device delivery, removal and/or repositioning.
  • These and other features will become readily apparent from the following detailed description wherein embodiments of the invention are shown and described by way of illustration. As will be realized, the invention is capable of other and different embodiments and its several details may be capable of modifications in various respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature and not in a restrictive or limiting sense.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of a portion of the heart illustrating a PFO;
  • FIG. 2 illustrates a deployed PFO closure device with bioresorbable components in accordance with one or more embodiments of the invention;
  • FIG. 3 illustrates the PFO closure device of FIG. 2 in a collapsed state for passage through a delivery catheter or sheath;
  • FIG. 4 illustrates a closure device deployed to close a PFO in accordance with one or more further embodiments of the invention;
  • FIG. 5 illustrates a closure device deployed to close the PFO in accordance with one or more further embodiments of the invention;
  • FIGS. 6A and 6B are front and side views, respectively, of a PFO closure device in accordance with one or more further embodiments of the invention;
  • FIGS. 7A and 7B are front and side views, respectively, of a PFO closure device in accordance with one or more further embodiments of the invention;
  • FIGS. 8A and 8B are side and front views, respectively, of the PFO closure device of FIG. 6 deployed to close a PFO;
  • FIG. 9A illustrates a closure device having a retrieval mechanism in accordance with one or more further embodiments of the invention in a collapsed state for passage through a catheter or sheath;
  • FIG. 9B is a front view of the FIG. 9A device;
  • FIGS. 9C-E illustrate deployment of the FIG. 9A device;
  • FIGS. 9F-H illustrate removal of the FIG. 9A device;
  • FIG. 10A illustrates a closure device having a retrieval mechanism in accordance with one or more further embodiments of the invention in a collapsed state for passage through a catheter or sheath;
  • FIG. 10B is a front view of the FIG. 10A device;
  • FIGS. 11A and 11B illustrate an anchor member with an elastic hinge in accordance with one or more further embodiments of the invention;
  • FIG. 12 illustrates a PFO closure device made from a single material in accordance with one or more further embodiments of the invention;
  • FIG. 13 illustrates a PFO closure device having inflatable anchor members in accordance with one or more further embodiments of the invention;
  • FIG. 14 illustrates a PFO closure device with a wire connecting the proximal and distal anchor members in accordance with one or more further embodiments of the invention;
  • FIG. 15 illustrates a PFO closure device having a frame member in accordance with one or more further embodiments of the invention;
  • FIG. 16 illustrates a PFO closure device having frame anchor members in accordance with one or more further embodiments of the invention;
  • FIG. 17 illustrates a PFO closure device having frame anchor members in accordance with one or more further embodiments of the invention;
  • FIG. 18 illustrates the FIG. 17 device in a collapsed state for passage through a catheter or sheath;
  • FIG. 19 illustrates a frame anchor member having metal and polymer components in accordance with one or more further embodiments of the invention;
  • FIGS. 20A and 20B illustrate a PFO closure device having anchor members formed from a rolled material in accordance with one or more further embodiments of the invention in rolled and unrolled positions, respectively;
  • FIGS. 21A and 21B illustrate an alternate PFO closure device having anchor members formed from a rolled material in accordance with one or more further embodiments of the invention in rolled and unrolled positions, respectively;
  • FIG. 22A illustrates a closure device having frame anchor members and a generally “X” shaped joint member in accordance with one or more further embodiments of the invention;
  • FIG. 22B illustrates the proximal anchor member of the FIG. 22A device;
  • FIG. 22C illustrates the FIG. 22A device in a deployed state;
  • FIG. 23 illustrates a closure device having frame anchor members having a generally “+” shaped frame structure in accordance with one or more further embodiments of the invention; and
  • FIG. 24 illustrates a closure device having frame anchor members having a generally “G” shaped frame structure in accordance with one or more further embodiments of the Invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS
  • Various embodiments of the present invention are directed to methods and devices for closing septal defects such as PFOs, primarily by eliciting a healing response at the defect.
  • As shown in FIG. 2, a PFO closure device 18 in accordance with one or more embodiments of the present invention includes a distal anchor component or member 20 (which can be placed on the left atrial side of the PFO), a proximal anchor member 22 (to fix the device in place), a proximal attachment point 24 (for attachment and release from a catheter), and a central connecting member 26 (which can, e.g., be a simple suture in accordance with this embodiment).
  • In some embodiments, the distal anchor, the proximal anchor, and the connecting member are bioresorbable. These components can be fabricated from either a single bioresorbable polymer or by a laminated composite of two or more materials to provide a unique mix of properties such as, e.g., anchor members having stiff centers and flexible edges, and blood contacting surfaces having controlled porosity or surface texture to promote fast and thorough endothelialization, while minimizing thrombosis. In addition, the tissue contacting surface of the anchors can be designed to provide added stability by, e.g., being roughened.
  • The distal anchor 20 is an elongated, preferably generally cylindrical, thin bar-like member with rounded, arcuately shaped ends. The tissue contacting surface of the anchor can be generally flattened to increase tissue surface contact. In size, the distal anchor component might, e.g., be 15-30 mm long and 2 mm in diameter with a circular cross-section. The proximal anchor 22 can be of similar dimensions and shape, although it can be shorter in overall length.
  • Other distal and proximal anchor structures are also possible. For example, the anchors can be formed of a generally flat material rolled to form a cylindrical shape as described below with respect to the embodiments of FIGS. 20 and 21.
  • For delivery and deployment, the distal anchor 20 and proximal anchor 22 are positioned to be generally aligned in a longitudinal, end-to-end manner within a delivery sheath or catheter 28 as shown in FIG. 3. These components, with the flexible connecting member 26 traverse the catheter or delivery sheath in this longitudinal orientation. The catheter or delivery sheath is inserted between septum primum and septum secundum into the left atrium 18, and the distal anchor component 20 is ejected. Then, the catheter or delivery sheath 28 is withdrawn into the right atrium, and the proximal anchor 22 is ejected. The flexible central connecting member 26 extends between septum primum and septum secundum to join the distal anchor 20 and the proximal anchor 22. Once ejected, the distal anchor and proximal anchor generally self-orientate to be essentially perpendicular to the axis of the central connecting member and in generally parallel planes to one another. The exact orientation will be governed by the individual patient anatomy.
  • An alternate delivery method for this device can be to deploy it directly through the septum primum as opposed to through the PFO.
  • The method of attaching the central connecting member 26 to the anchor and stop mechanism 22 to permit the distal anchor and the proximal anchor to be drawn together could be, e.g., via a friction fit or via a slip knot on the central connecting member. If a slip knot is used, the free end of the suture proximal to the knot can be held remotely and released after the knot has been placed in the appropriate location.
  • In one or more alternate embodiments of the invention shown in FIG. 4, the central connecting member 26 is mounted to permit free sliding movement of the proximal anchor 22 relative to the central connecting member 26. A biasing spring 30, which may be an expandable coil spring, can be formed at the outer end of the central connecting member 26 to bias the proximal anchor toward the distal anchor when both are deployed from the catheter or sheath.
  • In the embodiments illustrated in FIGS. 4 and 5, a metallic component may be used as the central connecting member 26 in order to provide an appropriate stop and apply compression force to the proximal anchor 22. The metallic component could be a piece of shape memory wire that has one end molded or laminated into the distal anchor component 20. In FIG. 4, the proximal anchor 22 slides on the central connecting member 26, and once it is deployed, the biasing spring 30 formed on the end of the shape memory wire expands to bias the proximal anchor 22 toward the distal anchor 20.
  • In the FIG. 5 embodiment, a shape memory wire forms a hook type anchor 32 made from two wires that exit through the center of the proximate anchor and curve in opposite directions when expanded to draw the proximate anchor toward the distal anchor.
  • While the embodiments of FIGS. 4 and 5 can leave a permanent foreign body when the bioresorbable components dissolve (if, e.g., a metallic component is used as the central connecting member 26), one advantage of these devices is that no thrombogenic tissue scaffold (usually a vascular material) is, placed on the left atrial side. Thrombus forming on the LA side of a PFO closure device can be released into the systemic circulation causing an embolic event within the coronary arteries, cerebral circulation, or distally in the vasculature, and most vascular graft materials utilized to close PFOs are highly thrombogenic.
  • The PFO closure devices may need to be capable of x-ray visualization and use with radiopaque fillers or marker bands fabricated from noble metals such as platinum or gold. These markers can be attached using a variety of common methods such as, e.g., adhesive bonding, lamination between two layers of polymer, or vapor deposition.
  • FIGS. 6A and 6B illustrate a closure device 50 in accordance with one or more further embodiments of the invention. The device 50 includes proximal and distal anchor members 52, 54 connected with a flexible (and preferably stretchable elastomeric) center joint or connecting element 56. The anchor members 52, 54 are preferably cylindrical in shape with rounded ends. In size, the distal anchor member 54 might, e.g., be about 15-30 mm long and about 2 mm in diameter with a circular cross-section. The proximal anchor 52 can be of similar dimensions and shape, although it can be shorter in overall length. The anchor members 52, 54 are preferably made from a rigid (preferably bioresorbable) polymer (regular or shape memory), or biological tissue. Biocompatible metal can also be used.
  • Other distal and proximal anchor structures are also possible. For example, the anchors can be formed of a generally flat material rolled to form a cylindrical shape as described below with respect to the embodiments of FIGS. 20 and 21.
  • The center joint 56 of the FIG. 6 device (as well as the center joints of the devices shown in FIGS. 7-10, 12-18, and 21-24) are preferably elastomeric and resilient and are made from thrombogenic or inflammatory materials including, e.g., polyester, biological tissue, bioresorbable polymer, small diameter springs (e.g., Nitinol), or spongy polymeric material. Alternatively, the center joint can be made of multiple strands of material 58 such as, e.g., polymer fibers as shown in the closure device 60 of FIGS. 7A and 7B. The center joint can be textured, porous or in a form of a single or double-sided hook material such as Velcro. These kinds of surfaces produce inflammatory responses and therefore, promote faster tissue ingrowth and faster defect closure. The entire device or parts of it can be made from bioresorbable polymers.
  • FIGS. 8A and 8B are front and side views, respectively, of the device 50 in a PFO defect. The proximal and distal anchor members 54, 52 are longer than the defect width, thereby inhibiting the device from being embolized.
  • In accordance with further embodiments of the invention, a closure device can include a delivery/removal mechanism to facilitate device delivery, removal or repositioning. A device 70 shown in FIGS. 9A and 9B includes a removal string 72 and a delivery string 74. The removal string is movably secured and slides freely inside of the proximal anchor member 76. The string extends from one end of the proximal member 76 and is fixed to an opposite end of the distal anchor member 78. By pulling on the free end of the removal string 72, the whole device 70 can be collapsed and pulled into the delivery sheath 79 as shown in FIG. 9A. The strings can, e.g., be sutures or wires such as Nitinol wire.
  • The delivery and removal strings are manipulated separately in order to deploy or remove the device. FIGS. 9C-E illustrate device deployment using the delivery string 74, which is preferably attached generally to the center of the proximal anchor member 76. The delivery sheath 79 containing the device 70 is first inserted between the septum primum and septum secundum into the left atrium as shown in FIG. 9C. As shown in FIG. 9D, the distal anchor 78 is then ejected from the delivery catheter 79. Tension is then applied to the delivery string 74, and the delivery sheath is withdrawn into the right atrium and the proximal anchor 76 is ejected. Applying tension to the delivery string enables the proximal anchor 76 to be properly deployed in the right atrium, and keeps the anchor 76 from being ejected into the left atrium. Upon successful deployment of the device 70, both strings are released and the delivery system is withdrawn. No tension is applied to the removal string during delivery.
  • FIGS. 9F-H illustrate removal of the device 70. As shown in FIG. 9F, tension is applied to the removal string, while the delivery sheath 79 is moved toward the device 70. The applied tension causes the proximal anchor 76 to be withdrawn into the delivery sheath as shown in FIG. 9G. The distal anchor 78 is also withdrawn into the delivery sheath as further tension is applied to the removal string. The device can then be redeployed if desired or removed.
  • Alternatively, the delivery string 74 can be omitted, and the removal string 72 be used for both device deployment and removal. The delivery sheath 79 containing the closure device is first inserted between the septum primum and septum secundum into the left atrium in a similar manner to that shown in FIG. 9C. The distal anchor 78 is then ejected from the delivery catheter 79 in a similar manner to that shown in FIG. 9D. Tension is applied to the removal string 72, and the delivery sheath is withdrawn into the right atrium, and the proximal anchor 76 is ejected. Applying tension to the removal string enables the proximal anchor 76 to be properly deployed in the right atrium, and keeps the proximal anchor 76 from being ejected into the left atrium. The elasticity of the center joint connecting the anchor members helps properly position the proximal anchor at the defect. Upon successful deployment of the closure device, the string 72 is released and the delivery system is withdrawn.
  • As shown in FIGS. 10A and 10B, in another embodiment, strings 80 (suture, Nitinol wire, etc.) are attached to both ends of the proximal anchor member 82 of a closure device 84. Both anchor members are flexible and can fold as shown in FIG. 10A in order to be delivered to or removed from the defect.
  • In accordance with a further embodiment of the invention, as shown in FIGS. 11A and 11B, each of the proximal and distal anchor members can include two elements 90 separated by an elastic hinge 92. The elastic hinge 92 can facilitate folding of the members as shown in FIG. 11B. The hinge 92 can be molded or made from a material such as, e.g., Nitinol or other shape memory materials, which can be a different material from the elements 90.
  • In accordance with some embodiments of the invention, an entire closure device can be made from a single sheet of a material as shown, e.g., in the closure device 100 of FIG. 12. Two opposite ends of the sheet can be rolled to form the proximal and distal anchor members. Glue or heat bonding can be used to maintain the rolled-up configuration of the anchor members 102, 104.
  • As shown in FIG. 13, in accordance with some further embodiments of the invention, one or both anchor members 110, 112 of a closure device 114 can be inflatable. The anchor members can be inflated with, e.g., saline or other physiological fluid during or before the delivery of the device. A tube 116 can communicate with cavities in the anchor members. An inlet 118 can be provided at one of the members for introducing fluid therein.
  • In accordance with some further embodiments of the invention, a wire 120 such as, e.g., an S-shaped wire, can be provided to connect the proximal and distal anchor members 122, 124 of a device 126 as shown in FIG. 14. The wire can be used to provide additional clamping force while the device is in a PFO defect. Other wire shapes are also possible.
  • In accordance with further embodiments of the invention, one or more frame structures can be used as the anchor members of a closure device. For example, FIG. 15 shows a closure device 130 having a frame structure 132. Also, FIG. 16 shows a closure device 136 having frames 138, 139. The frames can be, e.g., a metal (e.g., Nitinol wire) or polymer frame.
  • FIGS. 17-19 illustrate closure devices in accordance with some further embodiments of the invention. A closure device 140 shown in FIG. 17 includes anchor members 142, 144 having a frame structure. The frame shape can be polygonal as shown in the figure or it can alternatively be a circular shape. Other frame shapes are also possible as, e.g., will be described below with respect to FIGS. 22-24.
  • A recovery suture can be attached to opposite ends of the proximate anchor member 142 to collapse the anchors for delivery in a catheter 146 as shown in FIG. 18 or for retrieval or repositioning. The anchor members can be made from a metal, preferably Nitinol, or polymers. Alternatively, as shown in FIG. 19, an anchor member 148 can include both metal and polymer components.
  • In accordance with one or more further embodiments of the invention, the distal and proximal anchors can be formed of a flat sheet-like member rolled to form a cylindrical shape as shown, e.g., in the device 170 of FIG. 20A. The anchors 172, 174 can unroll to form sheet-like members when deployed as shown generally in FIG. 20B. The sheet-like member can be made of a material having shape memory properties such as, e.g., shape memory polymeric materials. Alternately, the sheet-like member can include metal struts made of shape memory metals such as, e.g., Nitinol or Nitinol alloys. The shape memory materials allow the device to be delivered in a delivery sheath or catheter with the anchors in the rolled configuration of FIG. 20A. The anchors attain the sheet-like geometry of FIG. 20B once deployed due to their shape memory properties. The anchor members 172, 174 can be connected to each other with a connecting member 176, which can, e.g., be a suture similar to that used in the FIG. 2 device.
  • FIGS. 21A and 21B illustrate a closure device 180 having rolled anchor members 182, 184, which are similar to the anchor members 172, 174 of the device of FIGS. 20A and 20B. The anchors 182, 184 are connected to each other by a connecting member or joint 186, which can be a sheet of flexible material similar to the connecting members previously described with respect to FIGS. 6 and 7.
  • FIG. 22A illustrates a closure device 200 in accordance with one or more further embodiments of the invention. The device 200 includes distal and proximal anchor members 202, 204, each of which has a polygonal or circular frame structure. The anchor members are connected by a connecting member 206, which can be made from a flexible material similar to that previously described in connection with FIGS. 6 and 7. The connecting member 206 can be made of two sheets of flexible material connected at their centers, generally forming an “X” shape in the side view of the device. As shown in FIG. 22B, the proximal anchor member 204 can include one or more recovery wires or sutures attached to the frame structure for use in device deployment of recovery. FIG. 22C illustrates the device 200 as deployed.
  • FIGS. 23 and 24 illustrate closure devices 220, 230, respectively, in accordance with further embodiments of the invention. Each device 220, 230 includes distal and proximal anchor members having a frame structure. The anchor members are connected by a flexible joint 222, which can be made from a flexible material similar to that previously described in connection with FIGS. 6 and 7. The FIG. 23 device 220 includes distal and proximal anchor members 224, 226 generally having a “+” shape. The FIG. 24 device 230 includes distal and proximal anchor members 232, 234 generally having a “G” shape.
  • The closure devices described herein can optionally be used along with suturing or stapling techniques where the anchors or flexible joints of the devices can be sewn or stapled to septum primum or secundum for better dislodgment resistance. Also, the flexible joint can, if desired, be covered with biocompatible glue to adhere to the tissue or can be loaded with drugs or growth factors to promote healing. The glue and also certain drugs can also optionally be stored in any cavities in the anchor members (e.g., in the cylindrical members of FIGS. 6 and 7) and released after deployment. Noble metal markers can also be attached to the closure devices for a better x-ray visualization.
  • The various closure devices described herein can include a number of advantageous features. The closure devices preferably have an atraumatic shape to reduce trauma during deployment or removal. In addition, the devices can be self-orienting for ease of deployment. Furthermore, because of the flexible center joint, the devices generally conform to the anatomy instead of the anatomy conforming to the devices, which is especially useful in long tunnel defects. In addition, the devices can preferably be repositioned or/and removed during delivery. The devices also generally have a relatively small profile after deployment. The flexible center joint of the devices can encourage faster tissue ingrowth and therefore, faster defect closure. Furthermore, there are generally no exposed thrombogenic components on the left and right atrial sides. The devices can also advantageously include bioresorbable components, which can disappear over time.
  • Other benefits of the devices can include possible use of a relatively small diameter delivery sheath, use of reduced or no metal mass in the device, ease of manufacturing, cost effectiveness, and overall design simplicity.
  • Having described preferred embodiments of the present invention, it should be apparent that modifications can be made without departing from the spirit and scope of the invention.

Claims (35)

1. A septal defect closure device, comprising: a proximal anchor member having a generally cylindrical shape for deployment proximate a first end of a septal defect; a distal anchor member having a generally cylindrical shape for deployment proximate a second end of said septal defect; and a suture connecting said proximal and distal anchor members.
2. The device of claim 1 wherein said suture is slidingly mounted on said proximal anchor member.
3. The device of claim 2 wherein said suture includes a biasing spring at one end thereof to bias the proximal and distal anchor members toward each other when the device is deployed.
4. The device of claim 1 wherein the suture comprises a shape memory wire.
5. The device of claim 1 wherein said suture comprises a resilient elastomeric material.
6. The device of claim 1 wherein a side of each anchor member for contacting a tissue surface is generally flattened to increase surface contact.
7. The device of claim 1 wherein said proximal and distal anchor members each comprise a cylindrical structure formed by rolling a layer of material.
8. The device of claim 1 wherein said proximal and distal anchor members are inflatable.
9. The device of claim 1 wherein said device is collapsible for passage through a catheter or sheath.
10. The device of claim 9 wherein said device can be collapsed with the proximal and distal anchor members being in a generally aligned, end to end arrangement for passage through a catheter or sheath.
11. The device of claim 1 wherein said proximal and distal anchor members are collapsible for deployment or removal.
12. The device of claim 11 wherein the proximal and distal anchor members are generally foldable.
13. The device of claim 12 wherein each anchor member includes two elements separated by an elastic hinge.
14. The device of claim 1 further comprising a removal string attached to the device to facilitate removal of the device from the septal defect.
15. The device of claim 14 wherein said removal string is slidingly mounted in said proximal anchor member and attached to said distal anchor member.
16. The device of claim 14 wherein said removal string is mounted to slide through said proximal anchor member.
17. The device of claim 14 further comprising a delivery string to facilitate deployment of the device at the septal defect.
18. The device of claim 1 further comprising a wire connecting said proximal and distal anchor members to provide clamping force to close the defect.
19. The device of claim 18 wherein said wire has a serpentine configuration.
20. A method of retrieving a deployed septal closure device having a proximal anchor member positioned proximate a first end of a septal defect, a distal anchor member for positioned proximate a second end of said septal defect, and a flexible connection member connecting said proximal and distal anchor members, said method comprising: moving a sheath toward the proximal anchor member; applying tension to the proximal anchor member to first withdraw the proximal anchor member into the sheath and then to withdraw the distal anchor member into the sheath; wherein the proximal and distal anchor members are generally in an end to end, aligned arrangement in said sheath.
21. The method of claim 20 further comprising moving the sheath toward the distal anchor member prior to withdrawing the distal anchor member into the sheath.
22. The method of claim 20 wherein applying tension to the proximal anchor member comprises pulling a string attached to the proximal member.
23. The method of claim 22 wherein said string is slidingly mounted in said proximal anchor member and is attached to said distal anchor member.
24. A septal defect closure device, comprising: a proximal anchor member having a frame structure for deployment proximate a first end of a septal defect; a distal anchor member having a frame structure for deployment proximate a second end of said septal defect; and a flexible joint connecting said proximal and distal anchor members.
25. The device of claim 24 wherein said flexible joint comprises a layer of thrombogenic or inflammatory material.
26. The device of claim 24 wherein said flexible joint comprises a plurality of fibers connecting said anchor members.
27. The device of claim 24 wherein said flexible joint is porous or textured.
28. The device of claim 24 wherein said flexible joint comprises a resilient elastomeric material.
29. The device of claim 24 wherein said flexible joint comprises two layers of flexible material joined to each other generally at centers thereof.
30. The device of claim 24 wherein said anchor members each have a frame structure having a polygonal or circular structure.
31. The device of claim 24 wherein said anchor members each have a frame structure having a generally “+” shaped structure.
32. The device of claim 24 wherein said anchor members each have a frame structure having a generally “G” shaped structure.
33. The device of claim 24 wherein said anchor members each have a collapsible frame structure to facilitate deployment of said device in a delivery catheter.
34. The device of claim 24 wherein each frame structure includes metal or polymer components.
35. A septal defect closure device, comprising: a proximal anchor member for deployment proximate a first end of a septal defect; a distal anchor member for deployment proximate a second end of said septal defect; and a connecting member connecting said proximal and distal anchor members, wherein the distal and proximal anchors each comprise a layer that is rolled to form a cylinder during device deployment, and generally flat after deployment.
US12/987,111 2001-12-19 2011-01-08 Septal occluder and associated methods Abandoned US20110106149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/987,111 US20110106149A1 (en) 2001-12-19 2011-01-08 Septal occluder and associated methods

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US34085801P 2001-12-19 2001-12-19
US10/326,535 US7867250B2 (en) 2001-12-19 2002-12-19 Septal occluder and associated methods
US12/987,111 US20110106149A1 (en) 2001-12-19 2011-01-08 Septal occluder and associated methods

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/326,535 Division US7289789B2 (en) 2000-09-18 2006-01-05 Wireless communications device and method for use with telephone network edge node providing privacy

Publications (1)

Publication Number Publication Date
US20110106149A1 true US20110106149A1 (en) 2011-05-05

Family

ID=23335225

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/326,535 Expired - Lifetime US7867250B2 (en) 2001-12-19 2002-12-19 Septal occluder and associated methods
US12/987,111 Abandoned US20110106149A1 (en) 2001-12-19 2011-01-08 Septal occluder and associated methods

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/326,535 Expired - Lifetime US7867250B2 (en) 2001-12-19 2002-12-19 Septal occluder and associated methods

Country Status (4)

Country Link
US (2) US7867250B2 (en)
EP (1) EP1467661A4 (en)
AU (1) AU2002360695A1 (en)
WO (1) WO2003053493A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110071623A1 (en) * 2006-11-07 2011-03-24 Dc Devices, Inc. Methods for deploying a prosthesis
US8460372B2 (en) 2006-11-07 2013-06-11 Dc Devices, Inc. Prosthesis for reducing intra-cardiac pressure having an embolic filter
US8882697B2 (en) 2006-11-07 2014-11-11 Dc Devices, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US8951223B2 (en) 2011-12-22 2015-02-10 Dc Devices, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9005155B2 (en) 2012-02-03 2015-04-14 Dc Devices, Inc. Devices and methods for treating heart failure
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US9277995B2 (en) 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
US9358371B2 (en) 2006-11-07 2016-06-07 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US9649480B2 (en) 2012-07-06 2017-05-16 Corvia Medical, Inc. Devices and methods of treating or ameliorating diastolic heart failure through pulmonary valve intervention
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9775636B2 (en) 2013-03-12 2017-10-03 Corvia Medical, Inc. Devices, systems, and methods for treating heart failure
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US10568751B2 (en) 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US10588611B2 (en) 2012-04-19 2020-03-17 Corvia Medical Inc. Implant retention attachment and method of use
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US20230285133A1 (en) * 2009-05-04 2023-09-14 V-Wave Ltd. Shunt for redistributing atrial blood volume
US11850138B2 (en) * 2009-05-04 2023-12-26 V-Wave Ltd. Shunt for redistributing atrial blood volume
US12115328B2 (en) 2020-05-04 2024-10-15 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4082497A (en) 1996-08-22 1998-03-06 Trustees Of Columbia University, The Endovascular flexible stapling device
US7942888B2 (en) * 1999-09-13 2011-05-17 Rex Medical, L.P. Vascular hole closure device
US6440152B1 (en) * 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US20050222489A1 (en) * 2003-10-01 2005-10-06 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of a bridge implant
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US20060052821A1 (en) 2001-09-06 2006-03-09 Ovalis, Inc. Systems and methods for treating septal defects
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US7867250B2 (en) 2001-12-19 2011-01-11 Nmt Medical, Inc. Septal occluder and associated methods
US7318833B2 (en) * 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US9155544B2 (en) * 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
WO2003082076A2 (en) 2002-03-25 2003-10-09 Nmt Medical, Inc. Patent foramen ovale (pfo) closure clips
US7976564B2 (en) 2002-05-06 2011-07-12 St. Jude Medical, Cardiology Division, Inc. PFO closure devices and related methods of use
EP1509144A4 (en) 2002-06-03 2008-09-03 Nmt Medical Inc Device with biological tissue scaffold for intracardiac defect closure
AU2003240549A1 (en) 2002-06-05 2003-12-22 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
WO2004037333A1 (en) 2002-10-25 2004-05-06 Nmt Medical, Inc. Expandable sheath tubing
EP2399526B1 (en) 2002-12-09 2014-11-26 W.L. Gore & Associates, Inc. Septal closure devices
US7780700B2 (en) * 2003-02-04 2010-08-24 ev3 Endovascular, Inc Patent foramen ovale closure system
US7658747B2 (en) 2003-03-12 2010-02-09 Nmt Medical, Inc. Medical device for manipulation of a medical implant
US6939348B2 (en) 2003-03-27 2005-09-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US8021362B2 (en) 2003-03-27 2011-09-20 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US7165552B2 (en) 2003-03-27 2007-01-23 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US7186251B2 (en) 2003-03-27 2007-03-06 Cierra, Inc. Energy based devices and methods for treatment of patent foramen ovale
US7972330B2 (en) 2003-03-27 2011-07-05 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
US7293562B2 (en) 2003-03-27 2007-11-13 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US20040267191A1 (en) 2003-03-27 2004-12-30 Cierra, Inc. Methods and apparatus for treatment of patent foramen ovale
US20040267306A1 (en) 2003-04-11 2004-12-30 Velocimed, L.L.C. Closure devices, related delivery methods, and related methods of use
US8372112B2 (en) 2003-04-11 2013-02-12 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods, and related methods of use
US7122043B2 (en) * 2003-05-19 2006-10-17 Stout Medical Group, L.P. Tissue distention device and related methods for therapeutic intervention
US9861346B2 (en) 2003-07-14 2018-01-09 W. L. Gore & Associates, Inc. Patent foramen ovale (PFO) closure device with linearly elongating petals
EP2481356B1 (en) 2003-07-14 2013-09-11 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
ATE413898T1 (en) 2003-08-19 2008-11-15 Nmt Medical Inc EXPANDABLE LOCK HOSE
US7658748B2 (en) * 2003-09-23 2010-02-09 Cardia, Inc. Right retrieval mechanism
CA2542089A1 (en) * 2003-10-10 2005-04-21 Proximare, Inc. Patent foramen ovale (pfo) closure devices, delivery apparatus and related methods and systems
US7056286B2 (en) 2003-11-12 2006-06-06 Adrian Ravenscroft Medical device anchor and delivery system
US20050273119A1 (en) 2003-12-09 2005-12-08 Nmt Medical, Inc. Double spiral patent foramen ovale closure clamp
US20050192626A1 (en) 2004-01-30 2005-09-01 Nmt Medical, Inc. Devices, systems, and methods for closure of cardiac openings
WO2005092203A1 (en) 2004-03-03 2005-10-06 Nmt Medical, Inc. Delivery/recovery system for septal occluder
US20050203550A1 (en) * 2004-03-11 2005-09-15 Laufer Michael D. Surgical fastener
US20050267524A1 (en) 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US8361110B2 (en) * 2004-04-26 2013-01-29 W.L. Gore & Associates, Inc. Heart-shaped PFO closure device
US7842053B2 (en) 2004-05-06 2010-11-30 Nmt Medical, Inc. Double coil occluder
US8308760B2 (en) * 2004-05-06 2012-11-13 W.L. Gore & Associates, Inc. Delivery systems and methods for PFO closure device with two anchors
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
WO2005110240A1 (en) 2004-05-07 2005-11-24 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US7367975B2 (en) 2004-06-21 2008-05-06 Cierra, Inc. Energy based devices and methods for treatment of anatomic tissue defects
US8764848B2 (en) 2004-09-24 2014-07-01 W.L. Gore & Associates, Inc. Occluder device double securement system for delivery/recovery of such occluder device
JP4418785B2 (en) * 2004-09-29 2010-02-24 テルモ株式会社 Patent application for patent foramen ovale and instrument for patent foramen ovale
US20060149312A1 (en) * 2004-12-30 2006-07-06 Edward Arguello Distal protection device with improved wall apposition
US20060241687A1 (en) * 2005-03-16 2006-10-26 Glaser Erik N Septal occluder with pivot arms and articulating joints
US20060217760A1 (en) * 2005-03-17 2006-09-28 Widomski David R Multi-strand septal occluder
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
US8372113B2 (en) * 2005-03-24 2013-02-12 W.L. Gore & Associates, Inc. Curved arm intracardiac occluder
EP1869424A4 (en) 2005-04-11 2015-01-14 Terumo Corp Methods and apparatus to achieve a closure of a layered tissue defect
ATE447891T1 (en) * 2005-06-02 2009-11-15 Cordis Corp DEVICE FOR CLOSING A PATENTED FORAMEN OVALE
US8579936B2 (en) 2005-07-05 2013-11-12 ProMed, Inc. Centering of delivery devices with respect to a septal defect
US7837619B2 (en) * 2005-08-19 2010-11-23 Boston Scientific Scimed, Inc. Transeptal apparatus, system, and method
US7998095B2 (en) * 2005-08-19 2011-08-16 Boston Scientific Scimed, Inc. Occlusion device
US8062309B2 (en) * 2005-08-19 2011-11-22 Boston Scientific Scimed, Inc. Defect occlusion apparatus, system, and method
US7824397B2 (en) * 2005-08-19 2010-11-02 Boston Scientific Scimed, Inc. Occlusion apparatus
US7766906B2 (en) * 2005-08-19 2010-08-03 Boston Scientific Scimed, Inc. Occlusion apparatus
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US20070185530A1 (en) 2005-09-01 2007-08-09 Chao Chin-Chen Patent foramen ovale closure method
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
US7797056B2 (en) 2005-09-06 2010-09-14 Nmt Medical, Inc. Removable intracardiac RF device
WO2007073566A1 (en) 2005-12-22 2007-06-28 Nmt Medical, Inc. Catch members for occluder devices
CN101049266B (en) * 2006-04-03 2010-11-17 孟坚 Medical use obstruction appliance, and manufacturing method
US8551135B2 (en) 2006-03-31 2013-10-08 W.L. Gore & Associates, Inc. Screw catch mechanism for PFO occluder and method of use
EP2004068B1 (en) 2006-03-31 2018-08-15 W.L. Gore & Associates, Inc. Deformable flap catch mechanism for occluder device
US8870913B2 (en) 2006-03-31 2014-10-28 W.L. Gore & Associates, Inc. Catch system with locking cap for patent foramen ovale (PFO) occluder
CN101049269B (en) * 2006-04-03 2010-12-29 孟坚 Medical use obstruction appliance
CN101049268B (en) * 2006-04-03 2011-09-14 孟坚 Medical use obstruction appliance
US8529597B2 (en) 2006-08-09 2013-09-10 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US8979941B2 (en) * 2006-08-09 2015-03-17 Coherex Medical, Inc. Devices for reducing the size of an internal tissue opening
US8167894B2 (en) 2006-08-09 2012-05-01 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
WO2008036384A2 (en) * 2006-09-21 2008-03-27 Synecor, Llc Stomach wall closure devices
EP2076183A4 (en) * 2006-10-04 2009-09-16 Ndo Surgical Inc Devices and methods for endoluminal gastric restriction tissue manipulation, and drug delivery
DE102006050385A1 (en) * 2006-10-05 2008-04-10 pfm Produkte für die Medizin AG Implantable mechanism for use in human and/or animal body for e.g. closing atrium septum defect, has partial piece that is folded back on another partial piece from primary form into secondary form of carrying structure
DE102006054218A1 (en) * 2006-11-15 2008-05-21 Karl Storz Medizinische Nähsysteme GmbH & Co. KG Surgical instrument e.g. endoscope, for occluding incision into human body, has occluder that is moved for occluding incision using guidance wire from guidance channel, which is work channel of endoscope
JP4246233B2 (en) * 2006-12-21 2009-04-02 オリンパスメディカルシステムズ株式会社 Visceral anastomosis marker and marker placement device
WO2008094706A2 (en) 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening
US8617205B2 (en) 2007-02-01 2013-12-31 Cook Medical Technologies Llc Closure device
WO2008094691A2 (en) * 2007-02-01 2008-08-07 Cook Incorporated Closure device and method for occluding a bodily passageway
US20080188892A1 (en) * 2007-02-01 2008-08-07 Cook Incorporated Vascular occlusion device
WO2008124603A1 (en) 2007-04-05 2008-10-16 Nmt Medical, Inc. Septal closure device with centering mechanism
US9138562B2 (en) 2007-04-18 2015-09-22 W.L. Gore & Associates, Inc. Flexible catheter system
US8025495B2 (en) * 2007-08-27 2011-09-27 Cook Medical Technologies Llc Apparatus and method for making a spider occlusion device
US8734483B2 (en) * 2007-08-27 2014-05-27 Cook Medical Technologies Llc Spider PFO closure device
US20090062838A1 (en) * 2007-08-27 2009-03-05 Cook Incorporated Spider device with occlusive barrier
US8308752B2 (en) * 2007-08-27 2012-11-13 Cook Medical Technologies Llc Barrel occlusion device
US20090118745A1 (en) * 2007-11-06 2009-05-07 Cook Incorporated Patent foramen ovale closure apparatus and method
US9226738B2 (en) 2008-02-15 2016-01-05 Rex Medical, L.P. Vascular hole closure delivery device
US8491629B2 (en) 2008-02-15 2013-07-23 Rex Medical Vascular hole closure delivery device
US8070772B2 (en) 2008-02-15 2011-12-06 Rex Medical, L.P. Vascular hole closure device
US20110029013A1 (en) 2008-02-15 2011-02-03 Mcguckin James F Vascular Hole Closure Device
US8920462B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US8920463B2 (en) 2008-02-15 2014-12-30 Rex Medical, L.P. Vascular hole closure device
US9119607B2 (en) 2008-03-07 2015-09-01 Gore Enterprise Holdings, Inc. Heart occlusion devices
US20130165967A1 (en) 2008-03-07 2013-06-27 W.L. Gore & Associates, Inc. Heart occlusion devices
US9138213B2 (en) * 2008-03-07 2015-09-22 W.L. Gore & Associates, Inc. Heart occlusion devices
WO2009121001A1 (en) * 2008-03-28 2009-10-01 Coherex Medical, Inc. Delivery systems for a medical device and related methods
US20120083832A1 (en) * 2009-06-03 2012-04-05 Symetis Sa Closure device and methods and systems for using same
EP2445416A1 (en) * 2009-06-21 2012-05-02 Aesthetics Point Ltd. An implanted medical device useful for cosmetic surgery
US20120029556A1 (en) 2009-06-22 2012-02-02 Masters Steven J Sealing device and delivery system
US8956389B2 (en) 2009-06-22 2015-02-17 W. L. Gore & Associates, Inc. Sealing device and delivery system
US10092427B2 (en) 2009-11-04 2018-10-09 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design and methods for use thereof
EP2624791B1 (en) 2010-10-08 2017-06-21 Confluent Medical Technologies, Inc. Alternating circumferential bridge stent design
WO2012051489A2 (en) 2010-10-15 2012-04-19 Cook Medical Technologies Llc Occlusion device for blocking fluid flow through bodily passages
US8591543B2 (en) * 2011-04-28 2013-11-26 Cardiotulip Llc Devices and methods for closure of a patent foramen ovale
US9770232B2 (en) 2011-08-12 2017-09-26 W. L. Gore & Associates, Inc. Heart occlusion devices
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
US10828019B2 (en) 2013-01-18 2020-11-10 W.L. Gore & Associates, Inc. Sealing device and delivery system
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
US9808230B2 (en) 2014-06-06 2017-11-07 W. L. Gore & Associates, Inc. Sealing device and delivery system
US11504105B2 (en) 2019-01-25 2022-11-22 Rex Medical L.P. Vascular hole closure device

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4235238A (en) * 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
US4852568A (en) * 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5269809A (en) * 1990-07-02 1993-12-14 American Cyanamid Company Locking mechanism for use with a slotted suture anchor
US5350399A (en) * 1991-09-23 1994-09-27 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5411520A (en) * 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5470337A (en) * 1994-05-17 1995-11-28 Moss; Gerald Surgical fastener
US5549617A (en) * 1993-08-20 1996-08-27 United States Surgical Corporation Apparatus and method for applying and adjusting an anchoring device
US5571138A (en) * 1991-03-06 1996-11-05 Stretchex Ab Surgical stretching device for the expansion of tissue
US5618314A (en) * 1993-12-13 1997-04-08 Harwin; Steven F. Suture anchor device
US5662681A (en) * 1996-04-23 1997-09-02 Kensey Nash Corporation Self locking closure for sealing percutaneous punctures
US5690674A (en) * 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US5702421A (en) * 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US6045551A (en) * 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
US6113611A (en) * 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US6206895B1 (en) * 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6440152B1 (en) * 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US6508828B1 (en) * 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US20030028213A1 (en) * 2001-08-01 2003-02-06 Microvena Corporation Tissue opening occluder
US20030050665A1 (en) * 2001-09-07 2003-03-13 Integrated Vascular Systems, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20030191495A1 (en) * 2001-12-19 2003-10-09 Nmt Medical, Inc. Septal occluder and associated methods
US6786915B2 (en) * 2000-04-19 2004-09-07 Radi Medical Systems Ab Reinforced absorbable medical sealing device
US20050273124A1 (en) * 2004-05-06 2005-12-08 Nmt Medical, Inc. Delivery systems and methods for PFO closure device with two anchors
US7033393B2 (en) * 2002-06-27 2006-04-25 Raymedica, Inc. Self-transitioning spinal disc anulus occulsion device and method of use
US7048754B2 (en) * 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7087072B2 (en) * 2003-01-22 2006-08-08 Cardia, Inc. Articulated center post
US20060217761A1 (en) * 2005-03-24 2006-09-28 Opolski Steven W Curved arm intracardiac occluder
US7361180B2 (en) * 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US7416554B2 (en) * 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds

Family Cites Families (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1445746A1 (en) 1964-01-04 1969-03-20 Bayer Ag Process for the production of asymmetrical thiol or thionothiolphosphoric acid esters
US3875648A (en) 1973-04-04 1975-04-08 Dennison Mfg Co Fastener attachment apparatus and method
US3824631A (en) 1973-05-11 1974-07-23 Sampson Corp Bone joint fusion prosthesis
US3924631A (en) 1973-12-06 1975-12-09 Altair Inc Magnetic clamp
US4006747A (en) 1975-04-23 1977-02-08 Ethicon, Inc. Surgical method
US4007743A (en) 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
CH598398A5 (en) 1976-07-21 1978-04-28 Jura Elektroapparate Fab
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
JPS6171065A (en) 1984-09-13 1986-04-11 テルモ株式会社 Catheter introducer
US4696300A (en) 1985-04-11 1987-09-29 Dennison Manufacturing Company Fastener for joining materials
US4626245A (en) 1985-08-30 1986-12-02 Cordis Corporation Hemostatis valve comprising an elastomeric partition having opposed intersecting slits
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
EP0253365B1 (en) 1986-07-16 1991-11-27 Sumitomo Chemical Company, Limited Rubber composition
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US5250430A (en) 1987-06-29 1993-10-05 Massachusetts Institute Of Technology Polyhydroxyalkanoate polymerase
US5245023A (en) 1987-06-29 1993-09-14 Massachusetts Institute Of Technology Method for producing novel polyester biopolymers
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
US4840623A (en) 1988-02-01 1989-06-20 Fbk International Corporation Medical catheter with splined internal wall
IT1216042B (en) 1988-03-09 1990-02-22 Carlo Rebuffat AUTOMATIC TOOL FOR TOBACCO BAG SUTURES FOR SURGICAL USE.
US4956178A (en) 1988-07-11 1990-09-11 Purdue Research Foundation Tissue graft composition
US4902508A (en) 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5245080A (en) 1989-02-20 1993-09-14 Jouveinal Sa (+)-1-[(3,4,5-trimethoxy)-benzyloxymethyl]-1-phenyl-N,N-dimethyl-N-propylamine, process for preparing it and its therapeutical use
US5620461A (en) 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US5149327A (en) 1989-09-05 1992-09-22 Terumo Kabushiki Kaisha Medical valve, catheter with valve, and catheter assembly
US5226879A (en) 1990-03-01 1993-07-13 William D. Ensminger Implantable access device
WO1991015155A1 (en) 1990-04-02 1991-10-17 Kanji Inoue Device for closing shunt opening by nonoperative method
US5078736A (en) 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
US5037433A (en) 1990-05-17 1991-08-06 Wilk Peter J Endoscopic suturing device and related method and suture
US20020032459A1 (en) 1990-06-20 2002-03-14 Danforth Biomedical, Inc. Radially-expandable tubular elements for use in the construction of medical devices
US5041129A (en) 1990-07-02 1991-08-20 Acufex Microsurgical, Inc. Slotted suture anchor and method of anchoring a suture
JP3256540B2 (en) 1990-10-09 2002-02-12 メッドトロニック・インコーポレイテッド Device or device for manipulating the target object
JPH04170966A (en) 1990-11-01 1992-06-18 Nippon Sherwood Kk Valvular body for catheter introducer blood stop valve
US5257637A (en) 1991-03-22 1993-11-02 El Gazayerli Mohamed M Method for suture knot placement and tying
CA2082090C (en) 1991-11-05 2004-04-27 Jack Fagan Improved occluder for repair of cardiac and vascular defects
DE69229539T2 (en) 1991-11-05 2000-02-17 Children's Medical Center Corp., Boston Occlusion device for repairing heart and vascular defects
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5222974A (en) 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
ES2296320T3 (en) 1992-01-21 2008-04-16 Regents Of The University Of Minnesota DEVICE FOR THE OCLUSION OF A DEFECT IN AN ANATOMICAL TABIQUE.
US5626599A (en) 1992-01-22 1997-05-06 C. R. Bard Method for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5316262A (en) 1992-01-31 1994-05-31 Suprex Corporation Fluid restrictor apparatus and method for making the same
US5167363A (en) 1992-02-10 1992-12-01 Adkinson Steven S Collapsible storage pen
US5411481A (en) 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
DE4215449C1 (en) 1992-05-11 1993-09-02 Ethicon Gmbh & Co Kg, 2000 Norderstedt, De
US5312341A (en) 1992-08-14 1994-05-17 Wayne State University Retaining apparatus and procedure for transseptal catheterization
US5304184A (en) 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
US5275826A (en) 1992-11-13 1994-01-04 Purdue Research Foundation Fluidized intestinal submucosa and its use as an injectable tissue graft
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5284488A (en) 1992-12-23 1994-02-08 Sideris Eleftherios B Adjustable devices for the occlusion of cardiac defects
US6346074B1 (en) 1993-02-22 2002-02-12 Heartport, Inc. Devices for less invasive intracardiac interventions
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5312435A (en) 1993-05-17 1994-05-17 Kensey Nash Corporation Fail predictable, reinforced anchor for hemostatic puncture closure
US5350363A (en) 1993-06-14 1994-09-27 Cordis Corporation Enhanced sheath valve
JPH09503913A (en) * 1993-09-20 1997-04-22 チバ−ガイギー アクチェンゲゼルシャフト Human metabotropic glutamate receptor subtypes (HMR4, HMR6, HMR7) and related DNA compounds
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
JP3185906B2 (en) 1993-11-26 2001-07-11 ニプロ株式会社 Prosthesis for atrial septal defect
US6334872B1 (en) 1994-02-18 2002-01-01 Organogenesis Inc. Method for treating diseased or damaged organs
AU2255195A (en) 1994-04-06 1995-10-30 William Cook Europe A/S A medical article for implantation into the vascular system of a patient
US5853420A (en) 1994-04-21 1998-12-29 B. Braun Celsa Assembly comprising a blood filter for temporary or definitive use and device for implanting it, corresponding filter and method of implanting such a filter
ATE219343T1 (en) 1994-04-29 2002-07-15 Scimed Life Systems Inc STENT WITH COLLAGEN
US6475232B1 (en) 1996-12-10 2002-11-05 Purdue Research Foundation Stent with reduced thrombogenicity
US5601571A (en) 1994-05-17 1997-02-11 Moss; Gerald Surgical fastener implantation device
US5453095A (en) 1994-06-07 1995-09-26 Cordis Corporation One piece self-aligning, self-lubricating catheter valve
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5433727A (en) 1994-08-16 1995-07-18 Sideris; Eleftherios B. Centering buttoned device for the occlusion of large defects for occluding
DE9413645U1 (en) 1994-08-24 1994-10-27 Schneidt, Bernhard, Ing.(grad.), 63571 Gelnhausen Device for closing a duct, in particular the ductus arteriosus
US5577299A (en) 1994-08-26 1996-11-26 Thompson; Carl W. Quick-release mechanical knot apparatus
US5618311A (en) 1994-09-28 1997-04-08 Gryskiewicz; Joseph M. Surgical subcuticular fastener system
US6171329B1 (en) 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5879366A (en) * 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US5480353A (en) 1995-02-02 1996-01-02 Garza, Jr.; Ponciano Shaker crank for a harvester
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
US5649959A (en) * 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5733337A (en) 1995-04-07 1998-03-31 Organogenesis, Inc. Tissue repair fabric
US5711969A (en) 1995-04-07 1998-01-27 Purdue Research Foundation Large area submucosal tissue graft constructs
US6322548B1 (en) 1995-05-10 2001-11-27 Eclipse Surgical Technologies Delivery catheter system for heart chamber
US6132438A (en) 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
IL124038A (en) 1995-10-13 2004-02-19 Transvascular Inc Apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
WO1997016119A1 (en) 1995-10-30 1997-05-09 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5717259A (en) 1996-01-11 1998-02-10 Schexnayder; J. Rodney Electromagnetic machine
DE19604817C2 (en) 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Device for closing defect openings in the human or animal body
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US5733294A (en) 1996-02-28 1998-03-31 B. Braun Medical, Inc. Self expanding cardiovascular occlusion device, method of using and method of making the same
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5755791A (en) 1996-04-05 1998-05-26 Purdue Research Foundation Perforated submucosal tissue graft constructs
AR001590A1 (en) 1996-04-10 1997-11-26 Jorge Alberto Baccaro Abnormal vascular communications occluder device and applicator cartridge of said device
US6488706B1 (en) 1996-05-08 2002-12-03 Carag Ag Device for plugging an opening such as in a wall of a hollow or tubular organ
EP0900051A1 (en) 1996-05-08 1999-03-10 Salviac Limited An occluder device
US5893856A (en) 1996-06-12 1999-04-13 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
US6143037A (en) 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US5800516A (en) 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
AU4082497A (en) 1996-08-22 1998-03-06 Trustees Of Columbia University, The Endovascular flexible stapling device
US5776183A (en) 1996-08-23 1998-07-07 Kanesaka; Nozomu Expandable stent
US5741297A (en) 1996-08-28 1998-04-21 Simon; Morris Daisy occluder and method for septal defect repair
US5810884A (en) * 1996-09-09 1998-09-22 Beth Israel Deaconess Medical Center Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject
US5861003A (en) 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
US5944691A (en) 1996-11-04 1999-08-31 Cordis Corporation Catheter having an expandable shaft
DE69730039T2 (en) 1996-11-05 2005-07-14 Purdue Research Foundation, West Lafayette HEART transplants
AU736572B2 (en) 1996-12-10 2001-08-02 Purdue Research Foundation Artificial vascular valves
ES2230627T3 (en) 1996-12-10 2005-05-01 Cook Biotech, Inc. TUBULAR GRAINTS FROM PURIFIED SUBMUCOSA.
US5776162A (en) 1997-01-03 1998-07-07 Nitinol Medical Technologies, Inc. Vessel implantable shape memory appliance with superelastic hinged joint
JP3134288B2 (en) 1997-01-30 2001-02-13 株式会社ニッショー Endocardial suture surgery tool
JP3134287B2 (en) 1997-01-30 2001-02-13 株式会社ニッショー Catheter assembly for endocardial suture surgery
US5993844A (en) 1997-05-08 1999-11-30 Organogenesis, Inc. Chemical treatment, without detergents or enzymes, of tissue to form an acellular, collagenous matrix
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6610764B1 (en) 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
AU7486798A (en) 1997-05-12 1998-12-08 Metabolix, Inc. Polyhydroxyalkanoates for (in vivo) applications
US6071292A (en) 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US6030007A (en) 1997-07-07 2000-02-29 Hughes Electronics Corporation Continually adjustable nonreturn knot
US5928260A (en) 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
JP3373841B2 (en) 1997-07-22 2003-02-04 メタボリックス,インコーポレイテッド Polyhydroxyalkanoate molding composition
US6828357B1 (en) 1997-07-31 2004-12-07 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6174330B1 (en) 1997-08-01 2001-01-16 Schneider (Usa) Inc Bioabsorbable marker having radiopaque constituents
US6077880A (en) 1997-08-08 2000-06-20 Cordis Corporation Highly radiopaque polyolefins and method for making the same
US6174322B1 (en) 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
ATE323152T1 (en) 1997-09-19 2006-04-15 Metabolix Inc BIOLOGICAL SYSTEMS FOR THE PRODUCTION OF POLYHYDROXYALKANOATE POLYMERS THAT CONTAIN 4-HYDROXY ACID
US5902319A (en) 1997-09-25 1999-05-11 Daley; Robert J. Bioabsorbable staples
US6106913A (en) 1997-10-10 2000-08-22 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
US5989268A (en) 1997-10-28 1999-11-23 Boston Scientific Corporation Endoscopic hemostatic clipping device
US5976174A (en) * 1997-12-15 1999-11-02 Ruiz; Carlos E. Medical hole closure device and methods of use
JP3799810B2 (en) 1998-03-30 2006-07-19 ニプロ株式会社 Transcatheter surgery closure plug and catheter assembly
US5993475A (en) 1998-04-22 1999-11-30 Bristol-Myers Squibb Co. Tissue repair device
US6113609A (en) * 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
US6265333B1 (en) 1998-06-02 2001-07-24 Board Of Regents, University Of Nebraska-Lincoln Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces
AU4679499A (en) 1998-06-10 1999-12-30 Advanced Bypass Technologies, Inc. Thermal securing anastomosis systems
US6328822B1 (en) 1998-06-26 2001-12-11 Kiyohito Ishida Functionally graded alloy, use thereof and method for producing same
US6165183A (en) 1998-07-15 2000-12-26 St. Jude Medical, Inc. Mitral and tricuspid valve repair
US5919200A (en) 1998-10-09 1999-07-06 Hearten Medical, Inc. Balloon catheter for abrading a patent foramen ovale and method of using the balloon catheter
US6183496B1 (en) 1998-11-02 2001-02-06 Datascope Investment Corp. Collapsible hemostatic plug
US7713282B2 (en) 1998-11-06 2010-05-11 Atritech, Inc. Detachable atrial appendage occlusion balloon
US7044134B2 (en) 1999-11-08 2006-05-16 Ev3 Sunnyvale, Inc Method of implanting a device in the left atrial appendage
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
JP3906475B2 (en) 1998-12-22 2007-04-18 ニプロ株式会社 Transcatheter surgery closure plug and catheter assembly
US6371904B1 (en) 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6356782B1 (en) 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6217590B1 (en) 1999-01-22 2001-04-17 Scion International, Inc. Surgical instrument for applying multiple staples and cutting blood vessels and organic structures and method therefor
US6228097B1 (en) 1999-01-22 2001-05-08 Scion International, Inc. Surgical instrument for clipping and cutting blood vessels and organic structures
CA2363262C (en) 1999-03-04 2010-09-28 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
AU778081B2 (en) 1999-03-25 2004-11-11 Tepha, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
EP1040843B1 (en) 1999-03-29 2005-09-28 William Cook Europe A/S A guidewire
US6277138B1 (en) 1999-08-17 2001-08-21 Scion Cardio-Vascular, Inc. Filter for embolic material mounted on expandable frame
US6277139B1 (en) 1999-04-01 2001-08-21 Scion Cardio-Vascular, Inc. Vascular protection and embolic material retriever
US6379342B1 (en) 1999-04-02 2002-04-30 Scion International, Inc. Ampoule for dispensing medication and method of use
JP2000300571A (en) 1999-04-19 2000-10-31 Nissho Corp Closure plug for transcatheter operation
US6206907B1 (en) 1999-05-07 2001-03-27 Cardia, Inc. Occlusion device with stranded wire support arms
US6379368B1 (en) 1999-05-13 2002-04-30 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US6426145B1 (en) 1999-05-20 2002-07-30 Scimed Life Systems, Inc. Radiopaque compositions for visualization of medical devices
US6488689B1 (en) 1999-05-20 2002-12-03 Aaron V. Kaplan Methods and apparatus for transpericardial left atrial appendage closure
US6165204A (en) 1999-06-11 2000-12-26 Scion International, Inc. Shaped suture clip, appliance and method therefor
US6494888B1 (en) * 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6398796B2 (en) 1999-07-13 2002-06-04 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6245080B1 (en) 1999-07-13 2001-06-12 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US7892246B2 (en) 1999-07-28 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting conduits and closing openings in tissue
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6551303B1 (en) 1999-10-27 2003-04-22 Atritech, Inc. Barrier device for ostium of left atrial appendage
US6387104B1 (en) 1999-11-12 2002-05-14 Scimed Life Systems, Inc. Method and apparatus for endoscopic repair of the lower esophageal sphincter
US6371971B1 (en) 1999-11-15 2002-04-16 Scimed Life Systems, Inc. Guidewire filter and methods of use
US7335426B2 (en) 1999-11-19 2008-02-26 Advanced Bio Prosthetic Surfaces, Ltd. High strength vacuum deposited nitinol alloy films and method of making same
US20010041914A1 (en) 1999-11-22 2001-11-15 Frazier Andrew G.C. Tissue patch deployment catheter
US6790218B2 (en) 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery
DE10000137A1 (en) 2000-01-04 2001-07-12 Pfm Prod Fuer Die Med Ag Implantate for closing defect apertures in human or animal bodies, bearing structure of which can be reversed from secondary to primary form by elastic force
US6780197B2 (en) 2000-01-05 2004-08-24 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a vascular closure device to a body lumen
US20010034567A1 (en) 2000-01-20 2001-10-25 Allen Marc L. Remote management of retail petroleum equipment
FR2804567B1 (en) 2000-01-31 2002-04-12 St Microelectronics Sa VIDEO PREAMPLIFIER
US6227139B1 (en) 2000-03-16 2001-05-08 The United States Of America As Represented By The Secretary Of The Navy Control tab assisted lift reducing system for underwater hydrofoil surface
US7056294B2 (en) 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
JP3844661B2 (en) 2000-04-19 2006-11-15 ラディ・メディカル・システムズ・アクチェボラーグ Intra-arterial embolus
US6551344B2 (en) 2000-04-26 2003-04-22 Ev3 Inc. Septal defect occluder
US6352552B1 (en) 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US6599448B1 (en) 2000-05-10 2003-07-29 Hydromer, Inc. Radio-opaque polymeric compositions
US6334864B1 (en) 2000-05-17 2002-01-01 Aga Medical Corp. Alignment member for delivering a non-symmetric device with a predefined orientation
KR20040014389A (en) 2000-07-21 2004-02-14 메타볼릭스 인코포레이티드 Production of polyhydroxyalkanoates from polyols
US6867249B2 (en) 2000-08-18 2005-03-15 Kin Man Amazon Lee Lightweight and porous construction materials containing rubber
AU2001285369A1 (en) 2000-09-01 2002-03-13 Advanced Vascular Technologies, Llc Endovascular fastener and grafting apparatus and method
US6364853B1 (en) 2000-09-11 2002-04-02 Scion International, Inc. Irrigation and suction valve and method therefor
JP2004508879A (en) 2000-09-21 2004-03-25 アトリテック, インコーポレイテッド Apparatus for implanting a device in the atrial appendage
JP3722682B2 (en) 2000-09-21 2005-11-30 富士通株式会社 Transmission device that automatically changes the type of transmission data within a specific band
US6699278B2 (en) 2000-09-22 2004-03-02 Cordis Corporation Stent with optimal strength and radiopacity characteristics
AU2001293109A1 (en) 2000-09-25 2002-04-02 Angiotech Pharmaceuticals (Us), Inc. Resorbable anastomosis stents and plugs
US6666861B1 (en) 2000-10-05 2003-12-23 James R. Grabek Atrial appendage remodeling device and method
US6375625B1 (en) 2000-10-18 2002-04-23 Scion Valley, Inc. In-line specimen trap and method therefor
US6629901B2 (en) 2000-11-09 2003-10-07 Ben Huang Composite grip for golf clubs
US6746404B2 (en) 2000-12-18 2004-06-08 Biosense, Inc. Method for anchoring a medical device between tissue
US20020128680A1 (en) 2001-01-25 2002-09-12 Pavlovic Jennifer L. Distal protection device with electrospun polymer fiber matrix
US6550480B2 (en) 2001-01-31 2003-04-22 Numed/Tech Llc Lumen occluders made from thermodynamic materials
US20020107531A1 (en) 2001-02-06 2002-08-08 Schreck Stefan G. Method and system for tissue repair using dual catheters
US6623518B2 (en) 2001-02-26 2003-09-23 Ev3 Peripheral, Inc. Implant delivery system with interlock
CN1529571A (en) 2001-03-08 2004-09-15 ̩ Atrial filter implants
US6726696B1 (en) 2001-04-24 2004-04-27 Advanced Catheter Engineering, Inc. Patches and collars for medical applications and methods of use
WO2002089863A1 (en) 2001-05-04 2002-11-14 Concentric Medical Bioactive polymer vaso-occlusive device
US6921410B2 (en) 2001-05-29 2005-07-26 Scimed Life Systems, Inc. Injection molded vaso-occlusive elements
US6537300B2 (en) 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US6941169B2 (en) 2001-06-04 2005-09-06 Albert Einstein Healthcare Network Cardiac stimulating apparatus having a blood clot filter and atrial pacer
US6585755B2 (en) 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
WO2003007825A1 (en) 2001-07-19 2003-01-30 Atritech, Inc. Individually customized device for covering the ostium of left atrial appendage
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US7318833B2 (en) 2001-12-19 2008-01-15 Nmt Medical, Inc. PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US20030139819A1 (en) 2002-01-18 2003-07-24 Beer Nicholas De Method and apparatus for closing septal defects
AU2003240549A1 (en) 2002-06-05 2003-12-22 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
WO2004037333A1 (en) 2002-10-25 2004-05-06 Nmt Medical, Inc. Expandable sheath tubing
AU2003287554A1 (en) 2002-11-06 2004-06-03 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
EP2399526B1 (en) 2002-12-09 2014-11-26 W.L. Gore & Associates, Inc. Septal closure devices
US20040234567A1 (en) 2003-05-22 2004-11-25 Dawson Richard A. Collapsible shield for smoking animal lure
JP2007528853A (en) 2003-07-08 2007-10-18 テファ, インコーポレイテッド Poly-4-hydroxybutyrate matrix for sustained release drug delivery
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
EP2481356B1 (en) 2003-07-14 2013-09-11 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
WO2005055834A1 (en) 2003-11-20 2005-06-23 Nmt Medical, Inc. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
EP1718213B1 (en) 2004-02-04 2007-07-11 Carag AG An implant for occluding a body passage
WO2005092203A1 (en) 2004-03-03 2005-10-06 Nmt Medical, Inc. Delivery/recovery system for septal occluder
WO2005110240A1 (en) 2004-05-07 2005-11-24 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US7704268B2 (en) 2004-05-07 2010-04-27 Nmt Medical, Inc. Closure device with hinges
US8764848B2 (en) 2004-09-24 2014-07-01 W.L. Gore & Associates, Inc. Occluder device double securement system for delivery/recovery of such occluder device
US8277480B2 (en) 2005-03-18 2012-10-02 W.L. Gore & Associates, Inc. Catch member for PFO occluder
WO2007073566A1 (en) 2005-12-22 2007-06-28 Nmt Medical, Inc. Catch members for occluder devices

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874388A (en) * 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4235238A (en) * 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
US4852568A (en) * 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
US5192301A (en) * 1989-01-17 1993-03-09 Nippon Zeon Co., Ltd. Closing plug of a defect for medical use and a closing plug device utilizing it
US5269809A (en) * 1990-07-02 1993-12-14 American Cyanamid Company Locking mechanism for use with a slotted suture anchor
US5108420A (en) * 1991-02-01 1992-04-28 Temple University Aperture occlusion device
US5571138A (en) * 1991-03-06 1996-11-05 Stretchex Ab Surgical stretching device for the expansion of tissue
US5350399A (en) * 1991-09-23 1994-09-27 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5411520A (en) * 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5549617A (en) * 1993-08-20 1996-08-27 United States Surgical Corporation Apparatus and method for applying and adjusting an anchoring device
US5618314A (en) * 1993-12-13 1997-04-08 Harwin; Steven F. Suture anchor device
US5470337A (en) * 1994-05-17 1995-11-28 Moss; Gerald Surgical fastener
US5702421A (en) * 1995-01-11 1997-12-30 Schneidt; Bernhard Closure device for closing a vascular opening, such as patent ductus arteriosus
US5662681A (en) * 1996-04-23 1997-09-02 Kensey Nash Corporation Self locking closure for sealing percutaneous punctures
US5690674A (en) * 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US6406420B1 (en) * 1997-01-02 2002-06-18 Myocor, Inc. Methods and devices for improving cardiac function in hearts
US6045551A (en) * 1998-02-06 2000-04-04 Bonutti; Peter M. Bone suture
US6113611A (en) * 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US6206895B1 (en) * 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6786915B2 (en) * 2000-04-19 2004-09-07 Radi Medical Systems Ab Reinforced absorbable medical sealing device
US6214029B1 (en) * 2000-04-26 2001-04-10 Microvena Corporation Septal defect occluder
US6440152B1 (en) * 2000-07-28 2002-08-27 Microvena Corporation Defect occluder release assembly and method
US6508828B1 (en) * 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
US20030028213A1 (en) * 2001-08-01 2003-02-06 Microvena Corporation Tissue opening occluder
US20030050665A1 (en) * 2001-09-07 2003-03-13 Integrated Vascular Systems, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US20030191495A1 (en) * 2001-12-19 2003-10-09 Nmt Medical, Inc. Septal occluder and associated methods
US7048754B2 (en) * 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7033393B2 (en) * 2002-06-27 2006-04-25 Raymedica, Inc. Self-transitioning spinal disc anulus occulsion device and method of use
US7416554B2 (en) * 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds
US7087072B2 (en) * 2003-01-22 2006-08-08 Cardia, Inc. Articulated center post
US20050273124A1 (en) * 2004-05-06 2005-12-08 Nmt Medical, Inc. Delivery systems and methods for PFO closure device with two anchors
US7361180B2 (en) * 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US20060217761A1 (en) * 2005-03-24 2006-09-28 Opolski Steven W Curved arm intracardiac occluder

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10045766B2 (en) 2006-11-07 2018-08-14 Corvia Medical, Inc. Intra-atrial implants to directionally shunt blood
US9358371B2 (en) 2006-11-07 2016-06-07 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US8740962B2 (en) 2006-11-07 2014-06-03 Dc Devices, Inc. Prosthesis for retrieval and deployment
US8745845B2 (en) 2006-11-07 2014-06-10 Dc Devices, Inc. Methods for mounting a prosthesis onto a delivery device
US8752258B2 (en) 2006-11-07 2014-06-17 Dc Devices, Inc. Mounting tool for loading a prosthesis
US8882697B2 (en) 2006-11-07 2014-11-11 Dc Devices, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US10188375B2 (en) 2006-11-07 2019-01-29 Corvia Medical, Inc. Devices, systems, and methods to treat heart failure having an improved flow-control mechanism
US11690609B2 (en) 2006-11-07 2023-07-04 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
US20110071623A1 (en) * 2006-11-07 2011-03-24 Dc Devices, Inc. Methods for deploying a prosthesis
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US11166705B2 (en) 2006-11-07 2021-11-09 Corvia Medical, Inc. Intra-atrial implants made of non-braided material
US10398421B2 (en) 2006-11-07 2019-09-03 DC Devices Pty. Ltd. Devices and methods for the treatment of heart failure
US9456812B2 (en) 2006-11-07 2016-10-04 Corvia Medical, Inc. Devices for retrieving a prosthesis
US10624621B2 (en) 2006-11-07 2020-04-21 Corvia Medical, Inc. Devices and methods for the treatment of heart failure
US10610210B2 (en) 2006-11-07 2020-04-07 Corvia Medical, Inc. Methods for deploying a prosthesis
US10292690B2 (en) 2006-11-07 2019-05-21 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US9937036B2 (en) 2006-11-07 2018-04-10 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
US10413286B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Intra-atrial implants having variable thicknesses to accommodate variable thickness in septum
US8460372B2 (en) 2006-11-07 2013-06-11 Dc Devices, Inc. Prosthesis for reducing intra-cardiac pressure having an embolic filter
US10568751B2 (en) 2006-11-07 2020-02-25 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US11850138B2 (en) * 2009-05-04 2023-12-26 V-Wave Ltd. Shunt for redistributing atrial blood volume
US20230285133A1 (en) * 2009-05-04 2023-09-14 V-Wave Ltd. Shunt for redistributing atrial blood volume
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US9277995B2 (en) 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
US11589854B2 (en) 2011-02-10 2023-02-28 Corvia Medical, Inc. Apparatus and methods to create and maintain an intra-atrial pressure relief opening
US11759339B2 (en) 2011-03-04 2023-09-19 Corvia Medical, Inc. Devices and methods for coronary sinus pressure relief
US9205236B2 (en) 2011-12-22 2015-12-08 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US8951223B2 (en) 2011-12-22 2015-02-10 Dc Devices, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US10376680B2 (en) 2011-12-22 2019-08-13 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
US9642993B2 (en) 2011-12-22 2017-05-09 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having selectable flow rates
US9005155B2 (en) 2012-02-03 2015-04-14 Dc Devices, Inc. Devices and methods for treating heart failure
US10588611B2 (en) 2012-04-19 2020-03-17 Corvia Medical Inc. Implant retention attachment and method of use
US9649480B2 (en) 2012-07-06 2017-05-16 Corvia Medical, Inc. Devices and methods of treating or ameliorating diastolic heart failure through pulmonary valve intervention
US9775636B2 (en) 2013-03-12 2017-10-03 Corvia Medical, Inc. Devices, systems, and methods for treating heart failure
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US10632292B2 (en) 2014-07-23 2020-04-28 Corvia Medical, Inc. Devices and methods for treating heart failure
US12115328B2 (en) 2020-05-04 2024-10-15 V-Wave Ltd. Devices with dimensions that can be reduced and increased in vivo, and methods of making and using the same

Also Published As

Publication number Publication date
WO2003053493A3 (en) 2003-11-06
US20030191495A1 (en) 2003-10-09
AU2002360695A8 (en) 2003-07-09
WO2003053493A2 (en) 2003-07-03
EP1467661A4 (en) 2008-11-05
EP1467661A2 (en) 2004-10-20
US7867250B2 (en) 2011-01-11
AU2002360695A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US7867250B2 (en) Septal occluder and associated methods
US8758403B2 (en) PFO closure device with flexible thrombogenic joint and improved dislodgement resistance
US8828049B2 (en) Split ends closure device and methods of use
US8308760B2 (en) Delivery systems and methods for PFO closure device with two anchors
JP5486561B2 (en) Septal defect occluder
US8430907B2 (en) Catch member for PFO occluder
US9326759B2 (en) Tubular patent foramen ovale (PFO) closure device with catch system
US7220265B2 (en) Patent foramen ovale (PFO) closure method and device
EP2001368B1 (en) Screw catch mechanism for pfo occluder
US20040220596A1 (en) Patent foramen ovale closure system
US20060122646A1 (en) Daisy design for occlusion device
WO2003103476A2 (en) Patent foramen ovale (pfo) closure device with radial and circumferential support
US20070166852A1 (en) Diode-pumped microlasers including resonator microchips and methods for producing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: W.L. GORE & ASSOCIATES, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NMT MEDICAL, INC. (BY AND THROUGH JOSEPH F. FINN, JR., AS ASSIGNEE FOR THE BENEFIT OF CREDITORS OF NMT MEDICAL, INC.);REEL/FRAME:026623/0542

Effective date: 20110616

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION