US20110076176A1 - Cast compressor articles and methods of forming same - Google Patents
Cast compressor articles and methods of forming same Download PDFInfo
- Publication number
- US20110076176A1 US20110076176A1 US12/567,957 US56795709A US2011076176A1 US 20110076176 A1 US20110076176 A1 US 20110076176A1 US 56795709 A US56795709 A US 56795709A US 2011076176 A1 US2011076176 A1 US 2011076176A1
- Authority
- US
- United States
- Prior art keywords
- compressor
- approximately
- article
- based alloy
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/02—Hardening by precipitation
Definitions
- the invention relates generally to cast compressor articles. More particularly, the invention relates to cast airfoils, stators, blades, gas turbines, gas turbine shells, etc, and methods of forming the same.
- a first aspect of the disclosure provides a method of forming a compressor article comprising: preparing an iron-manganese-aluminum-silicon-carbon (Fe—Mn—Al—Si—C) based alloy; casting the Fe—Mn—Al—Si—C based alloy, wherein a cast has a shape of a compressor article; and performing post-casting finishing thereby forming the compressor article.
- Fe—Mn—Al—Si—C iron-manganese-aluminum-silicon-carbon
- a second aspect of the disclosure provides a method of forming a compressor article comprising: preparing an iron-manganese-aluminum-silicon-carbon (Fe—Mn—Al—Si—C) based alloy; casting the Fe—Mn—Al—Si—C based alloy, wherein a cast has a shape of a compressor article selected from the group consisting of an airfoil, a stator, a gas turbine, a blade, and a gas turbine shell, and performing post-casting finishing thereby forming the compressor article.
- Fe—Mn—Al—Si—C iron-manganese-aluminum-silicon-carbon
- a third aspect of the disclosure provides a compressor including a part made of an iron-manganese-aluminum-silicon-carbon (Fe—Mn—Al—Si—C) based alloy.
- FIG. 1 shows a flow diagram of an embodiment of a method of forming a compressor article, in accordance with the present invention.
- FIG. 2 shows a compressor blade in an embodiment of a compressor part, in accordance with the present invention.
- FIG. 1 an embodiment of a method of forming a compressor article is shown.
- the method comprises: a first step S 1 , preparing an iron-manganese-aluminum-silicon-carbon (Fe—Mn—Al—Si—C) based alloy; a second step S 2 , casting the Fe—Mn—Al—Si—C based alloy, wherein a cast has a shape of a compressor article; and a third step S 3 , performing post-casting finishing thereby forming the compressor article.
- a first step S 1 preparing an iron-manganese-aluminum-silicon-carbon (Fe—Mn—Al—Si—C) based alloy
- a second step S 2 casting the Fe—Mn—Al—Si—C based alloy, wherein a cast has a shape of a compressor article
- a third step S 3 performing post-casting finishing thereby forming the compressor article.
- the Fe—Mn—Al—Si—C based alloy comprises approximately 54.3%-76.4% Fe, approximately 12%-30% Mn, approximately 5%-12% Al, approximately 0.3%-2.5% Si, and approximately 0.3%-1.2% C.
- the Fe—Mn—Al—Si—C based alloy comprises approximately 59.5% Fe, approximately 29.4% Mn, approximately 8.8% Al, approximately 1.3% Si, and approximately 1% C.
- the Fe—Mn—Al—Si—C based alloy additionally comprises approximately 0.5%-1% Molybdenum (Mo).
- the Fe—Mn—Al—Si—C based alloy may be prepared by melting the components of the alloy in an argon atmosphere to minimize oxidation and to form a molten metal Fe—Mn—Al—Si—C based alloy.
- the process to provide the molten Fe—Mn—Al—Si—C based alloy, as described, is well known in the art and thus, for the sake of brevity, no further description is provided.
- the prepared Fe—Mn—Al—Si—C based alloy has casting characteristics similar to ductile iron with improved age hardening characteristics.
- the Fe—Mn—Al—Si—C based alloy possesses low density (6.5-7.2 g/cm 3 ), tensile strength (UTS) from 600 MPa to 2000 MPa, and excellent ductility as great as over 70% strain to failure when solution treated, elongation from 10% to 70%, and yield strength (YS) from 600 to 1000 MPa.
- the superior fluidity and the age-hardening ability characteristics of the Fe—Mn—Al—Si—C based alloy allow it to be used to produce compressor articles utilizing near-net shape casting processes. Examples of the casting processes are described infra.
- the Fe—Mn—Al—Si—C based alloy has two major matrix constituents (austenite and ferrite). The two constituents increase the dampening capability of compressor articles formed having the Fe—Mn—Al—Si—C based alloy.
- Table I compares properties of the Fe—Mn—Al—Si—C based alloy with other alloys typically used in forming processes for compressor articles.
- casting an Fe—Mn—Al—Si—C based alloy wherein the cast has a shape of a compressor article in an embodiment of the present invention casting is selected from the group consisting of sand casting, investment casting, permanent mold casting, and die casting.
- the aforementioned casting processes, as described, are well known in the art and thus, for the sake of brevity, no further description is provided.
- the aforementioned casting processes also are near-net shape processes requiring very little post process machining, if any.
- the Fe—Mn—Al—Si—C based alloy prepared in method step S 1 is poured into pre-made molds (permanent molds) in the shape of a compressor article.
- the molds have cavities that match the geometrical shape of the final compressor article.
- the molds also have a gating system that provides channels to the cavity of the mold.
- the cast is in a mold having a geometrical shape selected from the group consisting of an airfoil, a stator, a gas turbine, a blade, and a gas turbine shell.
- the Fe—Mn—Al—Si—C based alloy may be cast using a technique not specifically mentioned or later developed techniques appropriate for the alloy to be cast.
- post-casting finishing includes but is not limited to separating the article from the mold, heat treating the separated article, age hardening the separated article, and process machining.
- the cast article is separated from the gating system with saw cuts.
- the separated article is then solution heat treated to meet mechanical properties pre-selected for the article.
- Solution heat treatment may be performed at 1,000° C. or above in an atmosphere that prevents decarburization and oxidation.
- Age hardening may then be performed in a temperature range from approximately 500° C. to 650° C. at a period of time required to obtain a pre-selected mechanical property for the article.
- the post casting steps may be performed using a technique not specifically mentioned or later developed techniques appropriate for the post casting treatment of the cast Fe—Mn—Al—Si—C based alloy.
- the compressor article formed from S 3 includes but is not limited to an airfoil, a stator, a gas turbine, a blade, and a gas turbine shell.
- the formed article has the characteristics as described in Table I supra as well as comparable oxidation and weldability properties to 304SS (Stainless Steel).
- the formed article also is 12%-18% lighter than High Strength Lightweight Aluminum (HSLA) steels.
- the formed article also is less expensive than conventional stainless steel articles which require high chromium additions and expensive nickel additions.
- a compressor blade 1 is shown, in an embodiment of a compressor part/article, according to the present invention.
- the compressor includes a compressor blade 1 comprising an iron-manganese-aluminum-silicon-carbon (Fe—Mn—Al—Si—C) based alloy.
- Fe—Mn—Al—Si—C iron-manganese-aluminum-silicon-carbon
- the compressor blade 1 is formed via casting.
- the compressor part(s) is selected from the group consisting of an airfoil, a stator, a gas turbine, a blade, and a gas turbine shell.
- first,” “second,” and the like, herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
- the modifier “approximately” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context, (e.g., includes the degree of error associated with measurement of the particular quantity).
- the suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including one or more of that term (e.g., the metal(s) includes one or more metals).
- Ranges disclosed herein are inclusive and independently combinable (e.g., ranges of “up to about 25 wt %, or, more specifically, about 5 wt % to about 20 wt %”, is inclusive of the endpoints and all intermediate values of the ranges of “about 5 wt % to about 25 wt %,” etc).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/567,957 US20110076176A1 (en) | 2009-09-28 | 2009-09-28 | Cast compressor articles and methods of forming same |
EP10175726A EP2302088A1 (en) | 2009-09-28 | 2010-09-08 | Cast compressor articles and methods of forming same |
JP2010211479A JP2011067870A (ja) | 2009-09-28 | 2010-09-22 | 鋳造圧縮機物品及びそれを形成する方法 |
CN2010105039160A CN102031449A (zh) | 2009-09-28 | 2010-09-25 | 铸造压缩机用品及其形成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/567,957 US20110076176A1 (en) | 2009-09-28 | 2009-09-28 | Cast compressor articles and methods of forming same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110076176A1 true US20110076176A1 (en) | 2011-03-31 |
Family
ID=43423632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/567,957 Abandoned US20110076176A1 (en) | 2009-09-28 | 2009-09-28 | Cast compressor articles and methods of forming same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110076176A1 (zh) |
EP (1) | EP2302088A1 (zh) |
JP (1) | JP2011067870A (zh) |
CN (1) | CN102031449A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2625512C2 (ru) * | 2015-12-03 | 2017-07-14 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Конструкционная литейная аустенитная стареющая сталь с высокой удельной прочностью и способ ее обработки |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103643110B (zh) * | 2013-12-26 | 2015-12-30 | 北京科技大学 | 一种球磨机用轻质高锰钢衬板及其制备方法 |
CN106480366A (zh) * | 2015-08-31 | 2017-03-08 | 鞍钢股份有限公司 | 一种高等轴晶率高锰钢钢锭及其冶炼方法 |
CN107502818B (zh) * | 2017-08-08 | 2019-03-19 | 武钢集团昆明钢铁股份有限公司 | 一种高强低密度耐蚀特种锻件钢及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1892316A (en) * | 1929-12-26 | 1932-12-27 | Bonney Floyd Co | Noncorrosive steel alloy |
US4944814A (en) * | 1989-03-02 | 1990-07-31 | Ipsco Enterprises, Inc. | Aluminum-manganese-iron steel alloy |
US4975335A (en) * | 1988-07-08 | 1990-12-04 | Fancy Steel Corporation | Fe-Mn-Al-C based alloy articles and parts and their treatments |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB841366A (en) * | 1957-07-02 | 1960-07-13 | Langley Alloys Ltd | Improvements in iron aluminium alloys |
GB2220674A (en) * | 1988-06-29 | 1990-01-17 | Nat Science Council | Alloys useful at elevated temperatures |
DE102005057599A1 (de) * | 2005-12-02 | 2007-06-06 | Volkswagen Ag | Leichtbaustahl |
WO2010052052A1 (de) * | 2008-11-07 | 2010-05-14 | Siemens Aktiengesellschaft | Rotor für eine strömungsmaschine |
-
2009
- 2009-09-28 US US12/567,957 patent/US20110076176A1/en not_active Abandoned
-
2010
- 2010-09-08 EP EP10175726A patent/EP2302088A1/en not_active Withdrawn
- 2010-09-22 JP JP2010211479A patent/JP2011067870A/ja not_active Withdrawn
- 2010-09-25 CN CN2010105039160A patent/CN102031449A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1892316A (en) * | 1929-12-26 | 1932-12-27 | Bonney Floyd Co | Noncorrosive steel alloy |
US4975335A (en) * | 1988-07-08 | 1990-12-04 | Fancy Steel Corporation | Fe-Mn-Al-C based alloy articles and parts and their treatments |
US4944814A (en) * | 1989-03-02 | 1990-07-31 | Ipsco Enterprises, Inc. | Aluminum-manganese-iron steel alloy |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2625512C2 (ru) * | 2015-12-03 | 2017-07-14 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Конструкционная литейная аустенитная стареющая сталь с высокой удельной прочностью и способ ее обработки |
Also Published As
Publication number | Publication date |
---|---|
EP2302088A1 (en) | 2011-03-30 |
JP2011067870A (ja) | 2011-04-07 |
CN102031449A (zh) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6432070B2 (ja) | 高温熱伝導度に優れた長寿命ダイカスト用熱間金型鋼およびその製造方法 | |
EP2279276B1 (en) | Stainless steel product, use of the product and method of its manufacture | |
KR102037086B1 (ko) | 지열 발전 터빈 로터용 저합금강 및 지열 발전 터빈 로터용 저합금 물질, 및 이들의 제조 방법 | |
JP2003531731A (ja) | ろう付け方法およびそれから製造された製品 | |
JP5464214B2 (ja) | 超高強度ステンレス合金ストリップ、同ストリップの製造方法及びゴルフクラブヘッドを製造するために同ストリップを利用する方法 | |
US10737314B2 (en) | Method for producing forged TiAl components | |
JPH10265909A (ja) | 高靭性耐熱鋼、タービンロータ及びその製造方法 | |
US20110076176A1 (en) | Cast compressor articles and methods of forming same | |
EP3168319A1 (en) | Microalloyed steel for heat-forming high-resistance and high-yield-strength parts, and method for producing components made of said steel | |
US20040037731A1 (en) | Cast steel and casting mold | |
CN103805909A (zh) | 一种奥氏体热作模具钢的制备方法 | |
JP5437669B2 (ja) | 温熱間鍛造用金型 | |
EP2773786B1 (en) | Low nickel austenitic stainless steel | |
JP4432012B2 (ja) | ダイカスト金型の製造方法、およびダイカスト金型 | |
JP4488386B2 (ja) | 温熱間加工用金型および温熱間加工用金型材の製造方法 | |
JP3384515B2 (ja) | 高熱膨張鋼および高強度高熱膨張ボルト | |
US20060081309A1 (en) | Ultra-high strength weathering steel and method for making same | |
EP3550053A1 (en) | Maraging steel | |
JP2000273582A (ja) | 圧力容器用鋳鋼材及びそれを用いた圧力容器の製造方法 | |
WO2014203302A1 (ja) | 析出硬化型ステンレス鋼及びステンレス鋼部品 | |
JP2001049398A (ja) | 高靭性耐熱鋼およびタービンロータの製造方法 | |
KR20130064386A (ko) | 고경도 및 고인성 석출경화형 금형강 및 그 제조방법 | |
CN110343963B (zh) | 一种热作模具钢及其制备方法 | |
KR101986187B1 (ko) | 주조강 | |
JPH11181549A (ja) | 溶接性に優れた鋳物製冷間工具およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GENERAL ELECTRIC COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARK, JUNYOUNG (NMN);REEL/FRAME:023295/0366 Effective date: 20090923 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |