US20110056658A1 - Heat pipe assembly and heat dissipation device having the same - Google Patents

Heat pipe assembly and heat dissipation device having the same Download PDF

Info

Publication number
US20110056658A1
US20110056658A1 US12/554,865 US55486509A US2011056658A1 US 20110056658 A1 US20110056658 A1 US 20110056658A1 US 55486509 A US55486509 A US 55486509A US 2011056658 A1 US2011056658 A1 US 2011056658A1
Authority
US
United States
Prior art keywords
heat
heat pipes
evaporating
sections
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/554,865
Inventor
Kuo-Len Lin
Chen-Hsiang Lin
Ken Hsu
Chih-Hung Cheng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CpuMate Inc
Golden Sun News Techniques Co Ltd
Original Assignee
CpuMate Inc
Golden Sun News Techniques Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CpuMate Inc, Golden Sun News Techniques Co Ltd filed Critical CpuMate Inc
Priority to US12/554,865 priority Critical patent/US20110056658A1/en
Assigned to GOLDEN SUN NEWS TECHNIQUES CO., LTD., CPUMATE INC. reassignment GOLDEN SUN NEWS TECHNIQUES CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, CHIH-HUNG, HSU, KEN, LIN, CHEN-HSIANG, LIN, KUO-LEN
Publication of US20110056658A1 publication Critical patent/US20110056658A1/en
Priority to US14/056,802 priority patent/US20140041838A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to heat dissipation devices, and particularly to a heat pipe assembly including a number of heat pipes and a fixing structure which enables evaporating sections of the heat pipes being parallel to and adjoining with each other, and a heat dissipation device including such a heat pipe assembly.
  • the heat dissipation device includes a heat pipe which uses a gas-liquid phase transition technology to dissipate the heat generated by the electronic elements.
  • a number of heat pipes are included in the heat dissipation device.
  • the heat pipes are secured to a base seat or a heat conducting seat of the heat dissipation device by welding method.
  • evaporation sections of the heat pipes may be embedded in the grooves defined on the base seat or the heat conducting seat of the heat dissipation device and secured to the base seat or the heat conducting seat.
  • the welding process is not easy to perform and the welded heat dissipation device has an unattractive appearance.
  • the evaporation sections of the heat pipes When the evaporation sections of the heat pipes are embedded in the groves of the base seat or a heat conducting seat, the evaporation sections must be spaced from each other and can not be tightly adjoin with each other, whereby the evaporating sections can not be gathered to thermally contact with a surface of a heat generating electronic element. As a result, outermost two of the heat pipes can not be sufficiently used, thereby the heat dissipation device having low heat dissipation efficiency.
  • the present invention provides a heat pipe assembly and a heat dissipation device including the heat pipe assembly.
  • the heat pipe assembly includes a number of evaporation sections and a molded fixing seat.
  • the fixing structure By the fixing structure, the evaporating sections of the heat pipe assembly are parallel to and adjoin with each other, whereby heat absorb surfaces of the evaporating sections are coplanar and adjoin with each other to thereby form a large-area heat absorbing surface to thermally contact with a heat generating electronic element.
  • the heat pipe assembly includes a number of heat pipes and a fixing seat engaging with evaporating sections of the heat pipes.
  • Each of the heat pipes includes an evaporating section and at least a condensing section.
  • a bottom of the evaporation section of each of the heat pipes is flat and has a flat heat absorbing surface.
  • the evaporating sections of the heat pipes are parallel to and adjoin with each other, whereby the heat absorbing surfaces thereof are coplanar and adjoin with each other.
  • a top surface of the evaporating section of each of the heat pipes has a top edge.
  • the fixing seat has an integral structure and combines with the top edges of the evaporating sections of the heat pipes, thereby facilitating the heat absorbing surfaces of the evaporating sections of the heat pipes being coplanar and adjoining with each other.
  • a heat dissipation device including above-described heat pipe assembly is provided.
  • the heat dissipation device further comprises a number of heat conducting fins disposed on the condensing sections of the heat pipes.
  • FIG. 1 is a schematic, isometric view of a heat pipe assembly, according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic, isometric view of the heat pipe assembly from a visual angle different from FIG. 1 .
  • FIG. 3 is a partially, cross-sectional view of FIG. 1 .
  • FIG. 4 is a partially, cross-sectional view of FIG. 2 .
  • FIG. 5 is a partially, cross-sectional view of a heat pipe assembly, according to a second embodiment of the present disclosure.
  • FIG. 6 is a partially, exploded view of a heat dissipation device of the present disclosure.
  • FIGS. 1 and 2 are schematic, isometric views of a heat pipe assembly of the present invention in different visual angles.
  • the heat pipe assembly includes a number of heat pipes 1 and a fixing seat 2 .
  • Each of the heat pipes 1 is heat conducting element and includes a vacuous tubular body, a capillary structure disposed inside the tubular body and a working fluid contained in the tubular body and soaking the capillary structure.
  • the tubular body of each of the heat pipes 1 is an integral structure and has a certain length.
  • the heat pipes 1 each include an evaporating section 10 and at least a condensing section 11 connected with the evaporating section 10 .
  • each of the heat pipes 1 has a U-shaped configuration, a bottom portion of the U-shaped configuration is the evaporating section 10 , and two lateral portions of the U-shaped configuration are two condensing sections 11 .
  • a curved section 12 is connected between the evaporation section 10 and each condensing section 11 .
  • the evaporation section 10 , two condensing sections 11 and two curved sections 12 cooperatively form each of the heat pipes 1 .
  • a bottom of the evaporation section 10 of each of the heat pipes 1 is flat and has a flat heat absorbing surface 100 .
  • Evaporating sections 10 of the heat pipes 1 are parallel to and adjoin with each other, whereby the heat absorb surfaces 100 of the evaporating sections 10 are coplanar and adjoin with each other to thereby form a large-area heat absorbing surface.
  • the fixing seat 2 has an integral configuration and is made of plastic materials, such as, PC, PP, PE, PU or the like.
  • the fixing seat 2 is made by integral molding process, e.g., injection molding, gel-casting molding, perfusion molding, die casting, dipping and so on.
  • the fixing seat 2 engages with the evaporating sections 10 of the heat pipes 1 .
  • the fixing seat 3 has a base 20 , a top surface the evaporation section 10 of each of the heat pipes 1 has a top edge 101 .
  • the base 20 has a bottom surface combining with the top edge 101 of the top surface of the evaporation section 10 of each of the heat pipes 1 , whereby the evaporation sections 10 of the heat pipes 1 can be secured to enable the heat absorbing surfaces 100 of the evaporation sections 10 of the heat pipes 1 being parallel to and adjoining with each other.
  • the heat absorbing surfaces 100 are coplanar and adjoin with each other to form a large-area surface, thereby facilitating thermally contacting with heat-generating sources (not shown).
  • the fixing seat 2 further includes two reinforcement portions 21 respectively extending outwardly from two lateral ends of the base 20 .
  • the reinforcement portion 21 located at right side of the base 20 of the fixing seat 2 encloses all of the curved sections 12 of the heat pipes 1 located at right side of the base 20 of the fixing seat 2 ; the reinforcement portion 21 located at left side of the base 20 of the fixing seat 2 encloses all of the curved sections 12 of the heat pipes 1 located at left side of the base 20 of the fixing seat 2 ; thereby enhancing a bonding strength between the fixing seat 2 and the heat pipes 1 .
  • each of the evaporation sections 10 has two vertical lateral walls 102 , and the lateral walls 102 of adjacent evaporation sections 10 tightly joint with each other.
  • the evaporation sections 10 of the heat pipes 1 can be gathered together to facilitate the evaporation sections 10 of the heat pipes 1 exchanging heat, whereby the heat pipes 1 can be evenly heated.
  • the curved sections 12 of the heat pipes 1 are radially arranged relative to an assembly of the evaporation sections 10 of the heat pipes, that is, adjacent curved sections 12 are angled with each other, whereby the condensing sections 11 of the heat pipes 1 are spaced from each other.
  • the condensing sections 11 of the heat pipes 1 are vertical to the evaporating sections 10 of the heat pipes 1 .
  • the fixing seat 2 includes two enclosing portions 200 extending downwardly from the base 20 to respectively enclose the lateral walls 102 of the two outermost heat pipes 1 , thereby enhancing the bonding strength among the evaporating sections 10 of the heat pipes 1 .
  • the enclosing portions 200 each include a bottom edge 201 not protrude downwardly relative to the heat absorbing surfaces 100 .
  • the bottom edges 201 of the enclosing portions 200 are coplanar with the heat absorbing surfaces 100 .
  • the heat sink includes a number of heat conducting fins 3 .
  • the heat conducting fins 3 are parallel to and equidistantly spaced from each other.
  • Two lateral portions of each of the heat conducting fins 3 defines a number of through holes 30 to allow the condensing sections 11 of the heat pipes 1 passing therethrough.
  • An annular protruded flange 31 extends upwardly from an circumference edge defining each of the through holes 30 to enable adjacent heat conducting fins 3 spaces a certain distance.
  • the heat conducting fins 3 define a number of airflow passages to increase heat dissipation efficiency.
  • the condensing sections 11 of the heat pipes 1 respectively extend the through holes 30 of the heat conducting fins 3 to enable an assembly of the heat conducting fins 3 locating over the evaporation sections 10 of the heat pipes 1 .
  • the heat pipes 1 and the fixing seat 2 cooperatively constitute the heat pipe assembly; the heat pipe assembly and the heat conducting fins 3 are construct the heat sink.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A heat pipe assembly includes a number of heat pipes and a fixing seat. Each of the heat pipes includes an evaporating section and at least a condensing section. A bottom of the evaporating section of each of the heat pipes is flat and has a flat heat absorbing surface. The evaporating sections of each of the heat pipes are parallel to and adjoin with each other, whereby the flat heat absorbing surfaces of the evaporating sections of the heat pipes being coplanar and adjoining with each other. A top surface of the evaporating section of each of the heat pipes has a top edge. The fixing seat has an integral structure and combines with the top edge of the evaporating section of each of the heat pipes, whereby the heat absorbing surfaces of the evaporating sections of the heat pipes are coplanar and adjoin with each other.

Description

    BACKGROUND
  • The present invention relates to heat dissipation devices, and particularly to a heat pipe assembly including a number of heat pipes and a fixing structure which enables evaporating sections of the heat pipes being parallel to and adjoining with each other, and a heat dissipation device including such a heat pipe assembly.
  • With the development of computer technologies, electronic elements run at high speed and therefore generate large amounts of heat. In order to keep the electronic elements operating at a normal temperature, the heat must be quickly and efficiently removed from the electronic elements by a heat dissipation device. Conventionally, the heat dissipation device includes a heat pipe which uses a gas-liquid phase transition technology to dissipate the heat generated by the electronic elements.
  • However, in order to increase the heat dissipation efficiency of the heat dissipation device, a number of heat pipes are included in the heat dissipation device. Currently, the heat pipes are secured to a base seat or a heat conducting seat of the heat dissipation device by welding method. Also, evaporation sections of the heat pipes may be embedded in the grooves defined on the base seat or the heat conducting seat of the heat dissipation device and secured to the base seat or the heat conducting seat. However, the welding process is not easy to perform and the welded heat dissipation device has an unattractive appearance. When the evaporation sections of the heat pipes are embedded in the groves of the base seat or a heat conducting seat, the evaporation sections must be spaced from each other and can not be tightly adjoin with each other, whereby the evaporating sections can not be gathered to thermally contact with a surface of a heat generating electronic element. As a result, outermost two of the heat pipes can not be sufficiently used, thereby the heat dissipation device having low heat dissipation efficiency.
  • Therefore, what is needed is a heat pipe assembly and a heat dissipation device including such a heat pipe assembly, thereby overcoming the above-described problems.
  • BRIEF SUMMARY
  • The present invention provides a heat pipe assembly and a heat dissipation device including the heat pipe assembly. The heat pipe assembly includes a number of evaporation sections and a molded fixing seat. By the fixing structure, the evaporating sections of the heat pipe assembly are parallel to and adjoin with each other, whereby heat absorb surfaces of the evaporating sections are coplanar and adjoin with each other to thereby form a large-area heat absorbing surface to thermally contact with a heat generating electronic element.
  • The heat pipe assembly includes a number of heat pipes and a fixing seat engaging with evaporating sections of the heat pipes. Each of the heat pipes includes an evaporating section and at least a condensing section. A bottom of the evaporation section of each of the heat pipes is flat and has a flat heat absorbing surface. The evaporating sections of the heat pipes are parallel to and adjoin with each other, whereby the heat absorbing surfaces thereof are coplanar and adjoin with each other. A top surface of the evaporating section of each of the heat pipes has a top edge. The fixing seat has an integral structure and combines with the top edges of the evaporating sections of the heat pipes, thereby facilitating the heat absorbing surfaces of the evaporating sections of the heat pipes being coplanar and adjoining with each other.
  • A heat dissipation device including above-described heat pipe assembly is provided. The heat dissipation device further comprises a number of heat conducting fins disposed on the condensing sections of the heat pipes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
  • FIG. 1 is a schematic, isometric view of a heat pipe assembly, according to a first embodiment of the present disclosure.
  • FIG. 2 is a schematic, isometric view of the heat pipe assembly from a visual angle different from FIG. 1.
  • FIG. 3 is a partially, cross-sectional view of FIG. 1.
  • FIG. 4 is a partially, cross-sectional view of FIG. 2.
  • FIG. 5 is a partially, cross-sectional view of a heat pipe assembly, according to a second embodiment of the present disclosure.
  • FIG. 6 is a partially, exploded view of a heat dissipation device of the present disclosure.
  • DETAILED DESCRIPTION
  • FIGS. 1 and 2 are schematic, isometric views of a heat pipe assembly of the present invention in different visual angles. The heat pipe assembly includes a number of heat pipes 1 and a fixing seat 2.
  • Each of the heat pipes 1 is heat conducting element and includes a vacuous tubular body, a capillary structure disposed inside the tubular body and a working fluid contained in the tubular body and soaking the capillary structure. The tubular body of each of the heat pipes 1 is an integral structure and has a certain length. The heat pipes 1 each include an evaporating section 10 and at least a condensing section 11 connected with the evaporating section 10. In the present embodiment, each of the heat pipes 1 has a U-shaped configuration, a bottom portion of the U-shaped configuration is the evaporating section 10, and two lateral portions of the U-shaped configuration are two condensing sections 11. A curved section 12 is connected between the evaporation section 10 and each condensing section 11. Thus, the evaporation section 10, two condensing sections 11 and two curved sections 12 cooperatively form each of the heat pipes 1. In addition, a bottom of the evaporation section 10 of each of the heat pipes 1 is flat and has a flat heat absorbing surface 100. Evaporating sections 10 of the heat pipes 1 are parallel to and adjoin with each other, whereby the heat absorb surfaces 100 of the evaporating sections 10 are coplanar and adjoin with each other to thereby form a large-area heat absorbing surface.
  • The fixing seat 2 has an integral configuration and is made of plastic materials, such as, PC, PP, PE, PU or the like. The fixing seat 2 is made by integral molding process, e.g., injection molding, gel-casting molding, perfusion molding, die casting, dipping and so on. The fixing seat 2 engages with the evaporating sections 10 of the heat pipes 1. Referring to FIGS. 3 and 4, the fixing seat 3 has a base 20, a top surface the evaporation section 10 of each of the heat pipes 1 has a top edge 101. The base 20 has a bottom surface combining with the top edge 101 of the top surface of the evaporation section 10 of each of the heat pipes 1, whereby the evaporation sections 10 of the heat pipes 1 can be secured to enable the heat absorbing surfaces 100 of the evaporation sections 10 of the heat pipes 1 being parallel to and adjoining with each other. As a result, the heat absorbing surfaces 100 are coplanar and adjoin with each other to form a large-area surface, thereby facilitating thermally contacting with heat-generating sources (not shown). In addition, in order to increase a contact area between the fixing seat 2 and the heat pipes 1, the fixing seat 2 further includes two reinforcement portions 21 respectively extending outwardly from two lateral ends of the base 20. The reinforcement portion 21 located at right side of the base 20 of the fixing seat 2 encloses all of the curved sections 12 of the heat pipes 1 located at right side of the base 20 of the fixing seat 2; the reinforcement portion 21 located at left side of the base 20 of the fixing seat 2 encloses all of the curved sections 12 of the heat pipes 1 located at left side of the base 20 of the fixing seat 2; thereby enhancing a bonding strength between the fixing seat 2 and the heat pipes 1.
  • In order to ensure the evaporation sections 10 of the heat pipes 1 being parallel to and adjoining with each other, a cross section of each of the evaporation sections 10 is square or rectangular, as shown in FIG. 4. Thus, each of the evaporation sections 10 has two vertical lateral walls 102, and the lateral walls 102 of adjacent evaporation sections 10 tightly joint with each other. As a result, the evaporation sections 10 of the heat pipes 1 can be gathered together to facilitate the evaporation sections 10 of the heat pipes 1 exchanging heat, whereby the heat pipes 1 can be evenly heated. Furthermore, as shown in FIG. 4, the curved sections 12 of the heat pipes 1 are radially arranged relative to an assembly of the evaporation sections 10 of the heat pipes, that is, adjacent curved sections 12 are angled with each other, whereby the condensing sections 11 of the heat pipes 1 are spaced from each other. In the illustrated embodiment, the condensing sections 11 of the heat pipes 1 are vertical to the evaporating sections 10 of the heat pipes 1.
  • Referring to FIG. 5, the fixing seat 2 includes two enclosing portions 200 extending downwardly from the base 20 to respectively enclose the lateral walls 102 of the two outermost heat pipes 1, thereby enhancing the bonding strength among the evaporating sections 10 of the heat pipes 1. The enclosing portions 200 each include a bottom edge 201 not protrude downwardly relative to the heat absorbing surfaces 100. In the present embodiment, the bottom edges 201 of the enclosing portions 200 are coplanar with the heat absorbing surfaces 100.
  • Referring to FIG. 6, a heat sink having the above-described heat pipe assembly of FIG. 1 is illustrated. The heat sink includes a number of heat conducting fins 3. The heat conducting fins 3 are parallel to and equidistantly spaced from each other. Two lateral portions of each of the heat conducting fins 3 defines a number of through holes 30 to allow the condensing sections 11 of the heat pipes 1 passing therethrough. An annular protruded flange 31 extends upwardly from an circumference edge defining each of the through holes 30 to enable adjacent heat conducting fins 3 spaces a certain distance. Thus, the heat conducting fins 3 define a number of airflow passages to increase heat dissipation efficiency. In assembly, the condensing sections 11 of the heat pipes 1 respectively extend the through holes 30 of the heat conducting fins 3 to enable an assembly of the heat conducting fins 3 locating over the evaporation sections 10 of the heat pipes 1.
  • Therefore, the heat pipes 1 and the fixing seat 2 cooperatively constitute the heat pipe assembly; the heat pipe assembly and the heat conducting fins 3 are construct the heat sink.
  • The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including configurations ways of the recessed portions and materials and/or designs of the attaching structures. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.

Claims (20)

1. A heat pipe assembly, comprising:
a plurality of heat pipes, each having an evaporating section and a condensing section, a bottom of the evaporating section of each of the heat pipes being flat and having a flat heat absorbing surface, evaporating sections of the heat pipes being parallel to and adjoining with each other, whereby the flat heat absorbing surfaces of the evaporating sections of the heat pipes being coplanar and adjoining with each other, a top surface of the evaporating section of each of the heat pipes having a top edge; and
a fixing seat having an integral structure and combing with the top edge of the evaporating section of each of the heat pipes, whereby the heat absorbing surfaces of the evaporating sections of the heat pipes are coplanar and adjoin with each other.
2. The heat pipe assembly as claimed in claim 1, wherein each of the heat pipes has a U-shaped configuration, a bottom portion of the U-shaped configuration is the evaporating section, and two lateral portions of the U-shaped configuration are condensing sections.
3. The heat pipe assembly as claimed in claim 1, wherein each of the heat pipes further comprises a curved section connected between the evaporating section and the condensing section thereof.
4. The heat pipe assembly as claimed in claim 3, wherein the curved sections of the heat pipes are radially arranged and angled with each other, whereby the condensing sections of the heat pipes are spaced from each other.
5. The heat pipe assembly as claimed in claim 3, wherein the fixing seat further comprises a reinforcement portion enclosing the curved section of each of the heat pipes.
6. The heat pipe assembly as claimed in claim 1, wherein the evaporating section of each of the heat pipes has two vertical lateral walls to enable the vertical lateral walls of the heat pipes tightly joint each other.
7. The heat pipe assembly as claimed in claim 6, wherein the fixing seat further comprises an enclosing portion enclosing the lateral walls of the two outermost heat pipes.
8. The heat pipe assembly as claimed in claim 7, wherein the enclosing portion of the fixing seat has a bottom edge coplanar with the heat absorbing surfaces of the evaporating sections of the heat pipes.
9. A heat dissipation device, comprising:
a plurality of heat pipes, each having an evaporating section and a condensing section, a bottom of the evaporating section of each of the heat pipes being flat and having a flat heat absorbing surface, evaporating sections of the heat pipes being parallel to and adjoining with each other, whereby the flat heat absorbing surfaces of the evaporating sections of the heat pipes being coplanar and adjoining with each other, a top surface of the evaporating section of each of the heat pipes having a top edge;
a plurality of heat conducting fins disposed on the condensing sections of the heat pipes; and
a fixing seat having an integral structure and combing with the top edge of the evaporating section of each of the heat pipes, whereby the heat absorbing surfaces of the evaporating sections of the heat pipes are coplanar and adjoin with each other.
10. The heat dissipation device as claimed in claim 9, wherein each of the heat pipes has a U-shaped configuration, a bottom portion of the U-shaped configuration is the evaporating section, and two lateral portions of the U-shaped configuration are condensing sections.
11. The heat dissipation device as claimed in claim 9, wherein each of the heat pipes further comprises a curved section connected between the evaporating section and the condensing section thereof.
12. The heat dissipation device as claimed in claim 11, wherein the curved sections of the heat pipes are radially arranged and angled with each other, whereby the condensing sections of the heat pipes are spaced from each other.
13. The heat dissipation device as claimed in claim 11, wherein the fixing seat further comprises a reinforcement portion enclosing the curved section of each of the heat pipes.
14. The heat dissipation device as claimed in claim 9, wherein the evaporating section of each of the heat pipes has two vertical lateral walls to enable the vertical lateral walls of the heat pipes tightly joint with each other.
15. The heat dissipation device as claimed in claim 14, wherein the fixing seat further comprises an enclosing portion enclosing the lateral walls of the two outermost heat pipes.
16. The heat dissipation device as claimed in claim 15, wherein the enclosing portion of the fixing seat has a bottom edge coplanar with the heat absorbing surfaces of the evaporating sections of the heat pipes.
17. The heat dissipation device as claimed in claim 9, wherein each of the heat conducting fins defines a through hole to allow the condensing section of each of the heat pipes pass therethrough.
18. The heat dissipation device as claimed in claim 17, wherein an annular flange extends upwardly from a circumference edge defining the through hole of each of the heat conducting fins.
19. A heat pipe assembly, comprising:
a plurality of U-shaped heat pipes, each having an evaporating section, two condensing sections extending upwardly from two ends of the evaporating section and two curved connection sections connected between each of the condensing sections and one end of the evaporating section, the evaporating sections being parallel to and adjoining with each other, bottom surfaces of the evaporating sections of the heat pipes being coplanar and adjoining with each other, a top surface of the evaporating section of each of the heat pipes having a top edge; and
a fixing seat comprising a base and two enclosing portions extending outwardly from two opposite ends of the base, the base having a bottom surface combing with the top edge of the evaporating section of each of the heat pipes, each of the two enclosing portions enclosing the curved connections of the heat pipes located at a corresponding side of the base of the fixing seat.
20. The heat pipe assembly as claimed in claim 19, wherein the fixing seat further comprises an enclosing portion enclosing the lateral walls of the outermost two of the heat pipes.
US12/554,865 2009-09-04 2009-09-04 Heat pipe assembly and heat dissipation device having the same Abandoned US20110056658A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/554,865 US20110056658A1 (en) 2009-09-04 2009-09-04 Heat pipe assembly and heat dissipation device having the same
US14/056,802 US20140041838A1 (en) 2009-09-04 2013-10-17 Heat pipe assembly and heat dissipation device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/554,865 US20110056658A1 (en) 2009-09-04 2009-09-04 Heat pipe assembly and heat dissipation device having the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/056,802 Continuation-In-Part US20140041838A1 (en) 2009-09-04 2013-10-17 Heat pipe assembly and heat dissipation device having the same

Publications (1)

Publication Number Publication Date
US20110056658A1 true US20110056658A1 (en) 2011-03-10

Family

ID=43646770

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/554,865 Abandoned US20110056658A1 (en) 2009-09-04 2009-09-04 Heat pipe assembly and heat dissipation device having the same

Country Status (1)

Country Link
US (1) US20110056658A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2298490A1 (en) * 2009-09-18 2011-03-23 Cpumate Inc. Heat conducting structure with coplanar heated portion, manufacturing method thereof, and heat sink therewith
US8291590B2 (en) * 2009-01-20 2012-10-23 Cpumate Inc. Method for assembling fins-type heat sink
US20130032313A1 (en) * 2011-08-05 2013-02-07 Chun-Ming Wu Heat-dissipation unit and method of manufacturing same
US20130098584A1 (en) * 2009-09-18 2013-04-25 Golden Sun News Techniques Co., Ltd. Heat conducting structure with coplanar heated portion, manufacturing method thereof, and heat sink therewith
WO2017020390A1 (en) * 2015-03-30 2017-02-09 特能传热科技(中山)有限公司 Heat dissipation device
US20230100966A1 (en) * 2019-12-03 2023-03-30 Hewlett-Packard Development Company, L.P. Processor cooling with phase change material filled shell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144710A1 (en) * 2005-12-22 2007-06-28 Golden Sun News Techniques Co., Ltd. Method for manufacturing heat pipe cooling device
US20070151711A1 (en) * 2006-01-05 2007-07-05 Kuo-Hsin Chen Heat sink and method for manufacturing the same
US20070267181A1 (en) * 2006-05-16 2007-11-22 Kuo-Len Lin Juxtaposing Structure For Heated Ends Of Heat Pipes
US20080121372A1 (en) * 2006-11-24 2008-05-29 Foxconn Technology Co., Ltd. Heat dissipation device
US7443676B1 (en) * 2007-08-09 2008-10-28 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US20090266522A1 (en) * 2008-04-28 2009-10-29 Kuo-Len Lin Method of flatting evaporating section of heat pipe embedded in heat dissipation device and heat dissipation device with heat pipe
US20100236754A1 (en) * 2009-03-17 2010-09-23 Tai-Sol Electronics Co., Ltd. Airflow guider for use in heat sink
US20110048677A1 (en) * 2009-08-31 2011-03-03 Kuo-Len Lin Heat-conducting assembly for heat pipes of different diameters and heat sink having the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070144710A1 (en) * 2005-12-22 2007-06-28 Golden Sun News Techniques Co., Ltd. Method for manufacturing heat pipe cooling device
US20070151711A1 (en) * 2006-01-05 2007-07-05 Kuo-Hsin Chen Heat sink and method for manufacturing the same
US20070267181A1 (en) * 2006-05-16 2007-11-22 Kuo-Len Lin Juxtaposing Structure For Heated Ends Of Heat Pipes
US20080121372A1 (en) * 2006-11-24 2008-05-29 Foxconn Technology Co., Ltd. Heat dissipation device
US7443676B1 (en) * 2007-08-09 2008-10-28 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat dissipation device
US20090266522A1 (en) * 2008-04-28 2009-10-29 Kuo-Len Lin Method of flatting evaporating section of heat pipe embedded in heat dissipation device and heat dissipation device with heat pipe
US20100236754A1 (en) * 2009-03-17 2010-09-23 Tai-Sol Electronics Co., Ltd. Airflow guider for use in heat sink
US20110048677A1 (en) * 2009-08-31 2011-03-03 Kuo-Len Lin Heat-conducting assembly for heat pipes of different diameters and heat sink having the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8291590B2 (en) * 2009-01-20 2012-10-23 Cpumate Inc. Method for assembling fins-type heat sink
EP2298490A1 (en) * 2009-09-18 2011-03-23 Cpumate Inc. Heat conducting structure with coplanar heated portion, manufacturing method thereof, and heat sink therewith
US20130098584A1 (en) * 2009-09-18 2013-04-25 Golden Sun News Techniques Co., Ltd. Heat conducting structure with coplanar heated portion, manufacturing method thereof, and heat sink therewith
US8978742B2 (en) * 2009-09-18 2015-03-17 Cpumate Inc. Heat conducting structure with coplanar heated portion, manufacturing method thereof, and heat sink therewith
US20130032313A1 (en) * 2011-08-05 2013-02-07 Chun-Ming Wu Heat-dissipation unit and method of manufacturing same
US20140165400A1 (en) * 2011-08-05 2014-06-19 Asia Vital Components Co., Ltd. Heat-dissipation unit and method of manufacturing same
WO2017020390A1 (en) * 2015-03-30 2017-02-09 特能传热科技(中山)有限公司 Heat dissipation device
US20230100966A1 (en) * 2019-12-03 2023-03-30 Hewlett-Packard Development Company, L.P. Processor cooling with phase change material filled shell

Similar Documents

Publication Publication Date Title
US20140041838A1 (en) Heat pipe assembly and heat dissipation device having the same
US20110056658A1 (en) Heat pipe assembly and heat dissipation device having the same
KR101247391B1 (en) Heat pipe mounting method and heat pipe assembly thereof
US20060144565A1 (en) Heat dissipation devices and fabrication methods thereof
KR200466266Y1 (en) Heat pipe assembly
CN103759563B (en) A kind of microchannel heat sink utilizing phase-change circulation of working medium motion heat transfer
US20170343297A1 (en) Heat dissipation device
US20100139894A1 (en) Heat sink with vapor chamber
US20080093052A1 (en) Heat dissipation device with heat pipes
US20090205812A1 (en) Isothermal vapor chamber and support structure thereof
JP6062516B1 (en) heatsink
US20080035310A1 (en) Isothermal Plate Module
KR101023823B1 (en) Heat pipe type dissipating device
KR100895694B1 (en) Heat pipe type dissipating device
KR20100010756U (en) Heat sink with radially arranged radiation fins
US20090279256A1 (en) Heat-dissipating structure
US20100101763A1 (en) Thin heat dissipating apparatus
EP2312626B1 (en) Heat pipe assembly
US8985196B2 (en) Heat dissipation device with mounting structure
US20130168055A1 (en) Thermal module
US20090242169A1 (en) Heat-dissipating device with curved vapor chamber
KR101880533B1 (en) Sintered flat panel heat dissipation structure comprising Aluminum powder
US20100188809A1 (en) Radiator For Computer Memory
WO2013161240A1 (en) Finned tube heat exchanger
JP2014115054A (en) Self-excited vibration type heat pipe

Legal Events

Date Code Title Description
AS Assignment

Owner name: GOLDEN SUN NEWS TECHNIQUES CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, KUO-LEN;LIN, CHEN-HSIANG;HSU, KEN;AND OTHERS;REEL/FRAME:023198/0805

Effective date: 20090730

Owner name: CPUMATE INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, KUO-LEN;LIN, CHEN-HSIANG;HSU, KEN;AND OTHERS;REEL/FRAME:023198/0805

Effective date: 20090730

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION