US20110010043A1 - Vehicle communication systems and methods for electric vehicle power management - Google Patents

Vehicle communication systems and methods for electric vehicle power management Download PDF

Info

Publication number
US20110010043A1
US20110010043A1 US12751862 US75186210A US2011010043A1 US 20110010043 A1 US20110010043 A1 US 20110010043A1 US 12751862 US12751862 US 12751862 US 75186210 A US75186210 A US 75186210A US 2011010043 A1 US2011010043 A1 US 2011010043A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
vehicle
module
communications
power
system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12751862
Inventor
Joby Lafky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GRIDPOINT Inc
Original Assignee
GRIDPOINT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • B60L11/1838Methods for the transfer of electrical energy or data between charging station and vehicle
    • B60L11/184Optimising energy costs, e.g. by charging depending on electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1816Charging electric vehicles by conductive energy transfer, e.g. connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • B60L11/1838Methods for the transfer of electrical energy or data between charging station and vehicle
    • B60L11/1842Energy stored in the vehicle is provided to the network, i.e. vehicle to grid (V2G) arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • B60L11/1838Methods for the transfer of electrical energy or data between charging station and vehicle
    • B60L11/1844Methods for the transfer of electrical energy or data between charging station and vehicle the charging being dependent on network capabilities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • B60L11/1838Methods for the transfer of electrical energy or data between charging station and vehicle
    • B60L11/1846Identification of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • B60L11/1809Charging electric vehicles
    • B60L11/1824Details of charging stations, e.g. vehicle recognition or billing
    • B60L11/1838Methods for the transfer of electrical energy or data between charging station and vehicle
    • B60L11/1848Methods related to measuring, billing or payment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0052Charge circuits only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2230/00Charging station details
    • B60L2230/10Parts thereof
    • B60L2230/16Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/70Systems integrating technologies related to power network operation and communication or information technologies mediating in the improvement of the carbon footprint of electrical power generation, transmission or distribution, i.e. smart grids as enabling technology in the energy generation sector
    • Y02E60/72Systems characterised by the monitored, controlled or operated power network elements or equipments
    • Y02E60/721Systems characterised by the monitored, controlled or operated power network elements or equipments the elements or equipments being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7088Charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7258Optimisation of vehicle performance
    • Y02T10/7291Optimisation of vehicle performance by route optimisation processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/121Electric charging stations by conductive energy transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/128Energy exchange control or determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/163Information or communication technologies related to charging of electric vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • Y02T90/169Aspects supporting the interoperability of electric or hybrid vehicles, e.g. recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/10Systems characterised by the monitored, controlled or operated power network elements or equipment
    • Y04S10/12Systems characterised by the monitored, controlled or operated power network elements or equipment the elements or equipment being or involving energy generation units, including distributed generation [DER] or load-side generation
    • Y04S10/126Systems characterised by the monitored, controlled or operated power network elements or equipment the elements or equipment being or involving energy generation units, including distributed generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T307/00Electrical transmission or interconnection systems
    • Y10T307/25Plural load circuit systems
    • Y10T307/406Control of current or power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T307/00Electrical transmission or interconnection systems
    • Y10T307/25Plural load circuit systems
    • Y10T307/461Selectively connected or controlled load circuits
    • Y10T307/477Code-controlled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T307/00Electrical transmission or interconnection systems
    • Y10T307/50Plural supply circuits or sources
    • Y10T307/642Sources distributed along load circuit

Abstract

A system and methods that enables enhanced vehicle communications for electric vehicle power management. In an embodiment, a system provides for communications in a power flow management system utilizing existing hardware including a smart charging module. In another embodiment, a communications module provides communication services to vehicle subsystems including a central processing unit in a vehicle and a CAN-bus transceiver. In yet another embodiment, an interface enables the installation of a charge controller for a control extensibility system including a physical interface to a vehicle's CAN-bus comprising an electrical contact plug. In an embodiment, an interface enables an electric vehicle to communicate with an electric power supply device without specific hardware by modulating the power transfer between the electrical load and an electric power supply. In another embodiment, a system provides for arbitrating a smart chargepoint includes a first smart charging module implemented on equipment located inside a vehicle.

Description

  • This non-provisional patent application claims priority to, and incorporates herein by reference, U.S. Provisional Patent Application No. 61/165,344 filed on Mar. 31, 2009. This application also incorporates herein by reference the following: U.S. patent application Ser. No. 12/252,657 filed Oct. 16, 2008; U.S. patent application Ser. No. 12/252,209 filed Oct. 15, 2008; U.S. patent application Ser. No. 12/252,803 filed Oct. 16, 2008; and U.S. patent application Ser. No. 12/252,950 filed Oct. 16, 2008.
  • This application includes material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent disclosure, as it appears in the Patent and Trademark Office files or records, but otherwise reserves all copyright rights whatsoever.
  • FIELD OF THE INVENTION
  • The present invention relates in general to the field of electric vehicles, and in particular to novel systems and methods for communication and interaction between electric vehicles and the electrical grid.
  • BACKGROUND OF THE INVENTION
  • Low-level electrical and communication interfaces to enable charging and discharging of electric vehicles with respect to the grid is described in U.S. Pat. No. 5,642,270 to Green et al., entitled, “Battery powered electric vehicle and electrical supply system,” incorporated herein by reference. The Green reference describes a bi-directional charging and communication system for grid-connected electric vehicles.
  • Modern automobiles, including electric vehicles, have many electronic control units for various subsystems. While some subsystems are independent, communications among others are essential. To fill this need, controller-area network (CAN or CAN-bus) was devised as a multi-master broadcast serial bus standard for connecting electronic control units. Using a message based protocol designed specifically for automotive applications, CAN-bus is a vehicle bus standard designed to allow microcontrollers and devices to communicate with each other within a vehicle without a host computer. The CAN-bus is used in vehicles to connect the engine control unit, transmission, airbags, antilock braking, cruise control, audio systems, windows, doors, mirror adjustment, climate control, and seat control. CAN is one of five protocols used in the (On-Board Diagnostics) OBD-II vehicle diagnostics standard.
  • Modern vehicles contain a variety of subsystems that may benefit from communications with various off-vehicle entities. As the smart energy marketplace evolves, multiple application-level protocols may further develop for the control of power flow for electric vehicles and within the home. For example, energy management protocols are being developed for both Zigbee and Homeplug. A vehicle manufacturer may need to support multiple physical communications mediums. For example, ZigBee is used in some installations while PLC is used in others. Considering the very long service life of items such as utility meters and automobiles, the use of multiple incompatible protocols may pose an barrier to deployment. For example, if a homeowner buys a car that utilizes one protocol and receives a utility meter that uses another protocol, it is unlikely that either device will quickly replace other device.
  • Significant opportunities for improvement exist with respect to communications with power grids and among electric vehicles. It would be beneficial to enhance modern electric vehicles to have a centrally controlled charging program. What is needed are systems and methods that provide for the complexity of charging intelligence of smart vehicles. There is also a need for novel communication techniques effectively use existing communication hardware, that allow for upgrading existing equipment, and that do not require specific hardware. In addition, novel systems and methods are needed that effectively provide communication services to vehicle subsystems.
  • SUMMARY OF THE INVENTION
  • In an embodiment, a system for communicating in a power flow management system utilizing existing hardware includes a smart charging module that is configured to be implemented on an server subsystem in a vehicle. The server subsystem is connected to a shared vehicle-wide communications medium for communication with another subsystem in the vehicle. The module is further configured to provide a set of services using capabilities provided by the server subsystem and the other subsystem. These services includes sending messages, using the shared vehicle-wide communications medium to one subsystem in the vehicle to implement a smart charging program.
  • In another embodiment, a communications module for providing communication services to vehicle subsystems includes a central processing unit in a vehicle and a CAN-bus transceiver operatively connected to the central processing unit connected to an external bus in the vehicle. The external bus is operatively connected to a vehicle subsystem. The module includes a software stack operatively connected to the central processing unit configured to wrap communications packets in a CAN header for communications packets entering a vehicle from an external network. The software stack is further configured to remove CAN headers for communications packets leaving the vehicle. The module includes software, executed by the central processing unit, configured to translate messages comprising the communications packets from a remote network format to CAN format. The module also includes software, executed by the central processing unit, configured to support a bonding or provisioning process required by an external communications protocol.
  • In yet another embodiment, an interface enabling the installation of a charge controller for a control extensibility system includes a physical interface to a vehicle's CAN-bus comprising an electrical contact plug. The interface also includes an expansion module providing a standardization of software messages sent over the CAN-bus to control charging. In addition, the interface includes a physical location for the charge controller to reside, where the CAN interface plug is located.
  • In an embodiment, an interface enabling an electric vehicle to communicate with an electric power supply device without specific hardware includes transmitting information from an electrical load associated with the electric vehicle to an electric power supply by modulating the power transfer between the electrical load and an electric power supply.
  • In another embodiment, a system for arbitrating a smart chargepoint includes a first smart charging module that is configured to be implemented on equipment located inside a vehicle. The first smart charging module is configured to communicate with a server implementing a smart charging program. The smart charging program coordinates the charging activities of a plurality of vehicles distributed over an area. The first smart charging module moderates electrical load in the vehicle by reducing the power consumption of the vehicle. In addition, the first smart charging module communicates with a second smart charging module in external equipment responsible for providing electricity to the vehicle, enabling the first smart charging module and the second smart charging module to implement a charge coordination protocol to determine which of the two modules is responsible for communicating with the server implementing the smart charging program.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other objects, features, and advantages of the invention will be apparent from the following more particular description of embodiments as illustrated in the accompanying drawings, in which reference characters refer to the same parts throughout the various views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating principles of the invention.
  • FIG. 1 is a diagram of an example of a power aggregation system.
  • FIGS. 2A-2B are diagrams of an example of connections between an electric vehicle, the power grid, and the Internet.
  • FIG. 3 is a block diagram of an example of connections between an electric resource and a flow control server of the power aggregation system.
  • FIG. 4 is a diagram of an example of a layout of the power aggregation system.
  • FIG. 5 is a diagram of an example of control areas in the power aggregation system.
  • FIG. 6 is a diagram of multiple flow control centers in the power aggregation system and a directory server for determining a flow control center.
  • FIG. 7 is a block diagram of an example of flow control server.
  • FIG. 8A is a block diagram of an example of remote intelligent power flow module.
  • FIG. 8B is a block diagram of an example of transceiver and charging component combination.
  • FIG. 8C is an illustration of an example of simple user interface for facilitating user controlled charging.
  • FIG. 9 is a diagram of an example of resource communication protocol.
  • FIG. 10 is a diagram of an example of communications using existing hardware.
  • FIG. 11 is a diagram of an example of communication services to vehicle subsystems.
  • FIG. 12 is a diagram of an example of an extensibility system.
  • FIG. 13 is a diagram of an example of communications without specific hardware.
  • FIG. 14 is a diagram of an example of arbitrating a smart chargepoint.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • Reference will now be made in detail to the embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
  • Overview
  • Described herein is a power aggregation system for distributed electric resources, and associated methods. In one implementation, a system communicates over the Internet and/or some other public or private networks with numerous individual electric resources connected to a power grid (hereinafter, “grid”). By communicating, the system can dynamically aggregate these electric resources to provide power services to grid operators (e.g. utilities, Independent System Operators (ISO), etc).
  • “Power services” as used herein, refers to energy delivery as well as other ancillary services including demand response, regulation, spinning reserves, non-spinning reserves, energy imbalance, reactive power, and similar products.
  • “Aggregation” as used herein refers to the ability to control power flows into and out of a set of spatially distributed electric resources with the purpose of providing a power service of larger magnitude.
  • “Charge Control Management” as used herein refers to enabling or performing the starting, stopping, or level-setting of a flow of power between a power grid and an electric resource.
  • “Power grid operator” as used herein, refers to the entity that is responsible for maintaining the operation and stability of the power grid within or across an electric control area. The power grid operator may constitute some combination of manual/human action/intervention and automated processes controlling generation signals in response to system sensors. A “control area operator” is one example of a power grid operator.
  • “Control area” as used herein, refers to a contained portion of the electrical grid with defined input and output ports. The net flow of power into this area must equal (within some error tolerance) the sum of the power consumption within the area and power outflow from the area.
  • “Power grid” as used herein means a power distribution system/network that connects producers of power with consumers of power. The network may include generators, transformers, interconnects, switching stations, and safety equipment as part of either/both the transmission system (i.e., bulk power) or the distribution system (i.e. retail power). The power aggregation system is vertically scalable for use within a neighborhood, a city, a sector, a control area, or (for example) one of the eight large-scale Interconnects in the North American Electric Reliability Council (NERC). Moreover, the system is horizontally scalable for use in providing power services to multiple grid areas simultaneously.
  • “Grid conditions” as used herein, refers to the need for more or less power flowing in or out of a section of the electric power grid, in response to one of a number of conditions, for example supply changes, demand changes, contingencies and failures, ramping events, etc. These grid conditions typically manifest themselves as power quality events such as under- or over-voltage events or under- or over-frequency events.
  • “Power quality events” as used herein typically refers to manifestations of power grid instability including voltage deviations and frequency deviations; additionally, power quality events as used herein also includes other disturbances in the quality of the power delivered by the power grid such as sub-cycle voltage spikes and harmonics.
  • “Electric resource” as used herein typically refers to electrical entities that can be commanded to do some or all of these three things: take power (act as load), provide power (act as power generation or source), and store energy. Examples may include battery/charger/inverter systems for electric or hybrid-electric vehicles, repositories of used-but-serviceable electric vehicle batteries, fixed energy storage, fuel cell generators, emergency generators, controllable loads, etc.
  • “Electric vehicle” is used broadly herein to refer to pure electric and hybrid electric vehicles, such as plug-in hybrid electric vehicles (PHEVs), especially vehicles that have significant storage battery capacity and that connect to the power grid for recharging the battery. More specifically, electric vehicle means a vehicle that gets some or all of its energy for motion and other purposes from the power grid. Moreover, an electric vehicle has an energy storage system, which may consist of batteries, capacitors, etc., or some combination thereof. An electric vehicle may or may not have the capability to provide power back to the electric grid.
  • Electric vehicle “energy storage systems” (batteries, super capacitors, and/or other energy storage devices) are used herein as a representative example of electric resources intermittently or permanently connected to the grid that can have dynamic input and output of power. Such batteries can function as a power source or a power load. A collection of aggregated electric vehicle batteries can become a statistically stable resource across numerous batteries, despite recognizable tidal connection trends (e.g., an increase in the total number of vehicles connected to the grid at night; a downswing in the collective number of connected batteries as the morning commute begins, etc.) Across vast numbers of electric vehicle batteries, connection trends are predictable and such batteries become a stable and reliable resource to call upon, should the grid or a part of the grid (such as a person's home in a blackout) experience a need for increased or decreased power. Data collection and storage also enable the power aggregation system to predict connection behavior on a per-user basis.
  • An Example of the Presently Disclosed System
  • FIG. 1 shows a power aggregation system 100. A flow control center 102 is communicatively coupled with a network, such as a public/private mix that includes the Internet 104, and includes one or more servers 106 providing a centralized power aggregation service. “Internet” 104 will be used herein as representative of many different types of communicative networks and network mixtures (e.g., one or more wide area networks—public or private—and/or one or more local area networks). Via a network, such as the Internet 104, the flow control center 102 maintains communication 108 with operators of power grid(s), and communication 110 with remote resources, i.e., communication with peripheral electric resources 112 (“end” or “terminal” nodes/devices of a power network) that are connected to the power grid 114. In one implementation, power line communicators (PLCs), such as those that include or consist of Ethernet-over-power line bridges 120 are implemented at connection locations so that the “last mile” (in this case, last feet—e.g., in a residence 124) of Internet communication with remote resources is implemented over the same wire that connects each electric resource 112 to the power grid 114. Thus, each physical location of each electric resource 112 may be associated with a corresponding Ethernet-over-power line bridge 120 (hereinafter, “bridge”) at or near the same location as the electric resource 112. Each bridge 120 is typically connected to an Internet access point of a location owner, as will be described in greater detail below. The communication medium from flow control center 102 to the connection location, such as residence 124, can take many forms, such as cable modem, DSL, satellite, fiber, WiMax, etc. In a variation, electric resources 112 may connect with the Internet by a different medium than the same power wire that connects them to the power grid 114. For example, a given electric resource 112 may have its own wireless capability to connect directly with the Internet 104 or an Internet access point and thereby with the flow control center 102.
  • Electric resources 112 of the power aggregation system 100 may include the batteries of electric vehicles connected to the power grid 114 at residences 124, parking lots 126 etc.; batteries in a repository 128, fuel cell generators, private dams, conventional power plants, and other resources that produce electricity and/or store electricity physically or electrically.
  • In one implementation, each participating electric resource 112 or group of local resources has a corresponding remote intelligent power flow (IPF) module 134 (hereinafter, “remote IPF module” 134). The centralized flow control center 102 administers the power aggregation system 100 by communicating with the remote IPF modules 134 distributed peripherally among the electric resources 112. The remote IPF modules 134 perform several different functions, including, but not limited to, providing the flow control center 102 with the statuses of remote resources; controlling the amount, direction, and timing of power being transferred into or out of a remote electric resource 112; providing metering of power being transferred into or out of a remote electric resource 112; providing safety measures during power transfer and changes of conditions in the power grid 114; logging activities; and providing self contained control of power transfer and safety measures when communication with the flow control center 102 is interrupted. The remote IPF modules 134 will be described in greater detail below.
  • In another implementation, instead of having an IPF module 134, each electric resource 112 may have a corresponding transceiver (not shown) to communicate with a local charging component (not shown). The transceiver and charging component, in combination, may communicate with flow control center 102 to perform some or all of the above mentioned functions of IPF module 134. A transceiver and charging component are shown in FIG. 2B and are described in greater detail herein.
  • FIG. 2A shows another view of electrical and communicative connections to an electric resource 112. In this example, an electric vehicle 200 includes a battery bank 202 and a remote IPF module 134. The electric vehicle 200 may connect to a conventional wall receptacle (wall outlet) 204 of a residence 124, the wall receptacle 204 representing the peripheral edge of the power grid 114 connected via a residential powerline 206.
  • In one implementation, the power cord 208 between the electric vehicle 200 and the wall outlet 204 can be composed of only conventional wire and insulation for conducting alternating current (AC) power to and from the electric vehicle 200. In FIG. 2A, a location-specific connection locality module 210 performs the function of network access point—in this case, the Internet access point. A bridge 120 intervenes between the receptacle 204 and the network access point so that the power cord 208 can also carry network communications between the electric vehicle 200 and the receptacle 204. With such a bridge 120 and connection locality module 210 in place in a connection location, no other special wiring or physical medium is needed to communicate with the remote IPF module 134 of the electric vehicle 200 other than a conventional power cord 208 for providing residential line current at any conventional voltage. Upstream of the connection locality module 210, power and communication with the electric vehicle 200 are resolved into the powerline 206 and an Internet cable 104.
  • Alternatively, the power cord 208 may include safety features not found in conventional power and extension cords. For example, an electrical plug 212 of the power cord 208 may include electrical and/or mechanical safeguard components to prevent the remote IPF module 134 from electrifying or exposing the male conductors of the power cord 208 when the conductors are exposed to a human user.
  • In some embodiments, a radio frequency (RF) bridge (not shown) may assist the remote IPF module 134 in communicating with a foreign system, such as a utility smart meter (not shown) and/or a connection locality module 210. For example, the remote IPF module 134 may be equipped to communicate over power cord 208 or to engage in some form of RF communication, such as Zigbee or Bluetooth™, and the foreign system may be able to engage in a different form of RF communication. In such an implementation, the RF bridge may be equipped to communicate with both the foreign system and remote IPF module 134 and to translate communications from one to a form the other may understand, and to relay those messages. In various embodiments, the RF bridge may be integrated into the remote IPF module 134 or foreign system, or may be external to both. The communicative associations between the RF bridge and remote IPF module 134 and between the RF bridge and foreign system may be via wired or wireless communication.
  • FIG. 2B shows a further view of electrical and communicative connections to an electric resource 112. In this example, the electric vehicle 200 may include a transceiver 212 rather than a remote IPF module 134. The transceiver 212 may be communicatively coupled to a charging component 214 through a connection 216, and the charging component itself may be coupled to a conventional wall receptacle (wall outlet) 204 of a residence 124 and to electric vehicle 200 through a power cord 208. The other components shown in FIG. 2B may have the couplings and functions discussed with regard to FIG. 2A.
  • In various embodiments, transceiver 212 and charging component 214 may, in combination, perform the same functions as the remote IPF module 134. Transceiver 212 may interface with computer systems of electric vehicle 200 and communicate with charging component 214, providing charging component 214 with information about electric vehicle 200, such as its vehicle identifier, a location identifier, and a state of charge. In response, transceiver 212 may receive requests and commands which transceiver 212 may relay to vehicle 200's computer systems.
  • Charging component 214, being coupled to both electric vehicle 200 and wall outlet 204, may effectuate charge control of the electric vehicle 200. If the electric vehicle 200 is not capable of charge control management, charging component 214 may directly manage the charging of electric vehicle 200 by stopping and starting a flow of power between the electric vehicle 200 and a power grid 114 in response to commands received from a flow control server 106. If, on the other hand, the electric vehicle 200 is capable of charge control management, charging component 214 may effectuate charge control by sending commands to the electric vehicle 200 through the transceiver 212.
  • In some embodiments, the transceiver 212 may be physically coupled to the electric vehicle 200 through a data port, such as an OBD-II connector. In other embodiments, other couplings may be used. The connection 216 between transceiver 212 and charging component 214 may be a wireless signal, such as a radio frequency (RF), such as a Zigbee, or Bluetooth™ signal. And charging component 214 may include a receiver socket to couple with power cord 208 and a plug to couple with wall outlet 204. In one embodiment, charging component 214 may be coupled to connection locality module 210 in either a wired or wireless fashion. For example, charging component 214 may have a data interface for communicating wirelessly with both the transceiver 212 and locality module 210. In such an embodiment, the bridge 120 may not be required.
  • Further details about the transceiver 212 and charging component 214 are illustrated by FIG. 8B and described in greater detail herein.
  • FIG. 3 shows another implementation of the connection locality module 210 of FIG. 2, in greater detail. In FIG. 3, an electric resource 112 has an associated remote IPF module 134, including a bridge 120. The power cord 208 connects the electric resource 112 to the power grid 114 and also to the connection locality module 210 in order to communicate with the flow control server 106.
  • The connection locality module 210 includes another instance of a bridge 120, connected to a network access point 302, which may include such components as a router, switch, and/or modem, to establish a hardwired or wireless connection with, in this case, the Internet 104. In one implementation, the power cord 208 between the two bridges 120 and 120′ is replaced by a wireless Internet link, such as a wireless transceiver in the remote IPF module 134 and a wireless router in the connection locality module 210.
  • In other embodiments, a transceiver 212 and charging component 214 may be used instead of a remote IPF module 134. In such an embodiment, the charging component 214 may include or be coupled to a bridge 120, and the connection locality module 210 may also include a bridge 120′, as shown. In yet other embodiments, not shown, charging component 214 and connection locality module 210 may communicate in a wired or wireless fashion, as mentioned previously, without bridges 120 and 120′. The wired or wireless communication may utilize any sort of connection technology known in the art, such as Ethernet or RF communication, such as Zigbee, or Bluetooth.
  • System Layouts
  • FIG. 4 shows a layout 400 of the power aggregation system 100. The flow control center 102 can be connected to many different entities, e.g., via the Internet 104, for communicating and receiving information. The layout 400 includes electric resources 112, such as plug-in electric vehicles 200, physically connected to the grid within a single control area 402. The electric resources 112 become an energy resource for grid operators 404 to utilize.
  • The layout 400 also includes end users 406 classified into electric resource owners 408 and electrical connection location owners 410, who may or may not be one and the same. In fact, the stakeholders in a power aggregation system 100 include the system operator at the flow control center 102, the grid operator 404, the resource owner 408, and the owner of the location 410 at which the electric resource 112 is connected to the power grid 114.
  • Electrical connection location owners 410 can include:
  • Rental car lots—rental car companies often have a large portion of their fleet parked in the lot. They can purchase fleets of electric vehicles 200 and, participating in a power aggregation system 100, generate revenue from idle fleet vehicles.
  • Public parking lots—parking lot owners can participate in the power aggregation system 100 to generate revenue from parked electric vehicles 200. Vehicle owners can be offered free parking, or additional incentives, in exchange for providing power services.
  • Workplace parking—employers can participate in a power aggregation system 100 to generate revenue from parked employee electric vehicles 200. Employees can be offered incentives in exchange for providing power services.
  • Residences—a home garage can merely be equipped with a connection locality module 210 to enable the homeowner to participate in the power aggregation system 100 and generate revenue from a parked car. Also, the vehicle battery 202 and associated power electronics within the vehicle can provide local power backup power during times of peak load or power outages.
  • Residential neighborhoods—neighborhoods can participate in a power aggregation system 100 and be equipped with power-delivery devices (deployed, for example, by homeowner cooperative groups) that generate revenue from parked electric vehicles 200.
  • The grid operations 116 of FIG. 4 collectively include interactions with energy markets 412, the interactions of grid operators 404, and the interactions of automated grid controllers 118 that perform automatic physical control of the power grid 114.
  • The flow control center 102 may also be coupled with information sources 414 for input of weather reports, events, price feeds, etc. Other data sources 414 include the system stakeholders, public databases, and historical system data, which may be used to optimize system performance and to satisfy constraints on the power aggregation system 100.
  • Thus, a power aggregation system 100 may consist of components that:
  • communicate with the electric resources 112 to gather data and actuate charging/discharging of the electric resources 112;
  • gather real-time energy prices;
  • gather real-time resource statistics;
  • predict behavior of electric resources 112 (connectedness, location, state (such as battery State-Of-Charge) at a given time of interest, such as a time of connect/disconnect);
  • predict behavior of the power grid 114/load;
  • encrypt communications for privacy and data security;
  • actuate charging of electric vehicles 200 to optimize some figure(s) of merit;
  • offer guidelines or guarantees about load availability for various points in the future, etc.
  • These components can be running on a single computing resource (computer, etc.), or on a distributed set of resources (either physically co-located or not).
  • Power aggregation systems 100 in such a layout 400 can provide many benefits: for example, lower-cost ancillary services (i.e., power services), fine-grained (both temporal and spatial) control over resource scheduling, guaranteed reliability and service levels, increased service levels via intelligent resource scheduling, and/or firming of intermittent generation sources such as wind and solar power generation.
  • The power aggregation system 100 enables a grid operator 404 to control the aggregated electric resources 112 connected to the power grid 114. An electric resource 112 can act as a power source, load, or storage, and the resource 112 may exhibit combinations of these properties. Control of a set of electric resources 112 is the ability to actuate power consumption, generation, or energy storage from an aggregate of these electric resources 112.
  • FIG. 5 shows the role of multiple control areas 402 in the power aggregation system 100. Each electric resource 112 can be connected to the power aggregation system 100 within a specific electrical control area. A single instance of the flow control center 102 can administer electric resources 112 from multiple distinct control areas 501 (e.g., control areas 502, 504, and 506). In one implementation, this functionality is achieved by logically partitioning resources within the power aggregation system 100. For example, when the control areas 402 include an arbitrary number of control areas, control area “A” 502, control area “B” 504, . . . , control area “n” 506, then grid operations 116 can include corresponding control area operators 508, 510, . . . , and 512. Further division into a control hierarchy that includes control division groupings above and below the illustrated control areas 402 allows the power aggregation system 100 to scale to power grids 114 of different magnitudes and/or to varying numbers of electric resources 112 connected with a power grid 114.
  • FIG. 6 shows a layout 600 of a power aggregation system 100 that uses multiple centralized flow control centers 102 and 102′ and a directory server 602 for determining a flow control center. Each flow control center 102 and 102′ has its own respective end users 406 and 406′. Control areas 402 to be administered by each specific instance of a flow control center 102 can be assigned dynamically. For example, a first flow control center 102 may administer control area A 502 and control area B 504, while a second flow control center 102′ administers control area n 506. Likewise, corresponding control area operators (508, 510, and 512) are served by the same flow control center 102 that serves their respective different control areas.
  • In various embodiments, an electric resource may determine which flow control center 102/102′ administers its control area 502/504/506 by communicating with a directory server 602. The address of the directory server 602 may be known to electric resource 112 or its associated IPF module 134 or charging component 214. Upon plugging in, the electric resource 112 may communicate with the directory server 602, providing the directory server 112 with a resource identifier and/or a location identifier. Based on this information, the directory server 602 may respond, identifying which flow control center 102/102′ to use.
  • In another embodiment, directory server 602 may be integrated with a flow control server 106 of a flow control center 102/102′. In such an embodiment, the electric resource 112 may contact the server 106. In response, the server 106 may either interact with the electric resource 112 itself or forward the connection to another flow control center 102/102′ responsible for the location identifier provided by the electric resource 112.
  • In some embodiments, whether integrated with a flow control server 106 or not, directory server 602 may include a publicly accessible database for mapping locations to flow control centers 102/102′.
  • Flow Control Server
  • FIG. 7 shows a server 106 of the flow control center 102. The illustrated implementation in FIG. 7 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting a server 106 of the flow control center 102 are possible within the scope of the subject matter. Such a server 106 and flow control center 102 can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • The flow control server 106 includes a connection manager 702 to communicate with electric resources 112, a prediction engine 704 that may include a learning engine 706 and a statistics engine 708, a constraint optimizer 710, and a grid interaction manager 712 to receive grid control signals 714. Grid control signals 714 are sometimes referred to as generation control signals, such as automated generation control (AGC) signals. The flow control server 106 may further include a database/information warehouse 716, a web server 718 to present a user interface to electric resource owners 408, grid operators 404, and electrical connection location owners 410; a contract manager 720 to negotiate contract terms with energy markets 412, and an information acquisition engine 414 to track weather, relevant news events, etc., and download information from public and private databases 722 for predicting behavior of large groups of the electric resources 112, monitoring energy prices, negotiating contracts, etc.
  • Remote IPF Module
  • FIG. 8A shows the remote IPF module 134 of FIGS. 1 and 2 in greater detail. The illustrated remote IPF module 134 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting a remote IPF module 134 are possible within the scope of the subject matter. Such a remote IPF module 134 has some hardware components and some components that can be executed in hardware, software, or combinations of hardware, software, firmware, etc. In other embodiments, executable instructions configured to perform some or all of the operations of remote IPF module 134 may be added to hardware of an electric resource 112 such as an electric vehicle that, when combined with the executable instructions, provides equivalent functionality to remote IPF module 134. References to remote IPF module 134 as used herein include such executable instructions.
  • The illustrated example of a remote IPF module 134 is represented by an implementation suited for an electric vehicle 200. Thus, some vehicle systems 800 are included as part of the remote IPF module 134 for the sake of description. However, in other implementations, the remote IPF module 134 may exclude some or all of the vehicles systems 800 from being counted as components of the remote IPF module 134.
  • The depicted vehicle systems 800 include a vehicle computer and data interface 802, an energy storage system, such as a battery bank 202, and an inverter/charger 804. Besides vehicle systems 800, the remote IPF module 134 also includes a communicative power flow controller 806. The communicative power flow controller 806 in turn includes some components that interface with AC power from the grid 114, such as a powerline communicator, for example an Ethernet-over-powerline bridge 120, and a current or current/voltage (power) sensor 808, such as a current sensing transformer.
  • The communicative power flow controller 806 also includes Ethernet and information processing components, such as a processor 810 or microcontroller and an associated Ethernet media access control (MAC) address 812; volatile random access memory 814, nonvolatile memory 816 or data storage, an interface such as an RS-232 interface 818 or a CAN-bus interface 820; an Ethernet physical layer interface 822, which enables wiring and signaling according to Ethernet standards for the physical layer through means of network access at the MAC/Data Link Layer and a common addressing format. The Ethernet physical layer interface 822 provides electrical, mechanical, and procedural interface to the transmission medium—i.e., in one implementation, using the Ethernet-over-powerline bridge 120. In a variation, wireless or other communication channels with the Internet 104 are used in place of the Ethernet-over-powerline bridge 120.
  • The communicative power flow controller 806 also includes a bidirectional power flow meter 824 that tracks power transfer to and from each electric resource 112, in this case the battery bank 202 of an electric vehicle 200.
  • The communicative power flow controller 806 operates either within, or connected to an electric vehicle 200 or other electric resource 112 to enable the aggregation of electric resources 112 introduced above (e.g., via a wired or wireless communication interface). These above-listed components may vary among different implementations of the communicative power flow controller 806, but implementations typically include:
      • an intra-vehicle communications mechanism that enables communication with other vehicle components;
      • a mechanism to communicate with the flow control center 102;
      • a processing element;
      • a data storage element;
      • a power meter; and
      • optionally, a user interface.
  • Implementations of the communicative power flow controller 806 can enable functionality including:
      • executing pre-programmed or learned behaviors when the electric resource 112 is offline (not connected to Internet 104, or service is unavailable);
      • storing locally-cached behavior profiles for “roaming” connectivity (what to do when charging on a foreign system, i.e., when charging in the same utility territory on a foreign meter or in a separate utility territory, or in disconnected operation, i.e., when there is no network connectivity);
      • allowing the user to override current system behavior; and
      • metering power-flow information and caching meter data during offline operation for later transaction.
  • Thus, the communicative power flow controller 806 includes a central processor 810, interfaces 818 and 820 for communication within the electric vehicle 200, a powerline communicator, such as an Ethernet-over-powerline bridge 120 for communication external to the electric vehicle 200, and a power flow meter 824 for measuring energy flow to and from the electric vehicle 200 via a connected AC powerline 208.
  • Power Flow Meter
  • Power is the rate of energy consumption per interval of time. Power indicates the quantity of energy transferred during a certain period of time, thus the units of power are quantities of energy per unit of time. The power flow meter 824 measures power for a given electric resource 112 across a bidirectional flow—e.g., power from grid 114 to electric vehicle 200 or from electric vehicle 200 to the grid 114. In one implementation, the remote IPF module 134 can locally cache readings from the power flow meter 824 to ensure accurate transactions with the central flow control server 106, even if the connection to the server is down temporarily, or if the server itself is unavailable.
  • Transceiver and Charging Component
  • FIG. 8B shows the transceiver 212 and charging component 214 of FIG. 2B in greater detail. The illustrated transceiver 212 and charging component 214 is only one example configuration, for descriptive purposes. Many other arrangements of the illustrated components or even different components constituting the transceiver 212 and charging component 214 are possible within the scope of the subject matter. Such a transceiver 212 and charging component 214 have some hardware components and some components that can be executed in hardware, software, or combinations of hardware, software, firmware, etc.
  • The illustrated example of the transceiver 212 and charging component 214 is represented by an implementation suited for an electric vehicle 200. Thus, some vehicle systems 800 are illustrated to provide context to the transceiver 212 and charging component 214 components.
  • The depicted vehicle systems 800 include a vehicle computer and data interface 802, an energy storage system, such as a battery bank 202, and an inverter/charger 804. In some embodiments, vehicle systems 800 may include a data port, such as an OBD-II port, that is capable of physically coupling with the transceiver 212. The transceiver 212 may then communicate with the vehicle computer and data interface 802 through the data port, receiving information from electric resource 112 comprised by vehicle systems 800 and, in some embodiments, providing commands to the vehicle computer and data interface 802. In one implementation, the vehicle computer and data interface 802 may be capable of charge control management. In such an embodiment, the vehicle computer and data interface 802 may perform some or all of the charging component 214 operations discussed below. In other embodiments, executable instructions configured to perform some or all of the operations of the vehicle computer and data interface 802 may be added to hardware of an electric resource 112 such as an electric vehicle that, when combined with the executable instructions, provides equivalent functionality to the vehicle computer and data interface 802. References to the vehicle computer and data interface 802 as used herein include such executable instructions.
  • In various embodiments, the transceiver 212 may have a physical form that is capable of coupling to a data port of vehicle systems 800. Such a transceiver 212 may also include a plurality of interfaces, such as an RS-232 interface 818 and/or a CAN-bus interface 820. In various embodiments, the RS-232 interface 818 or CAN-bus interface 820 may enable the transceiver 212 to communicate with the vehicle computer and data interface 802 through the data port. Also, the transceiver may be or comprise an additional interface (not shown) capable of engaging in wireless communication with a data interface 820 of the charging component 214. The wireless communication may be of any form known in the art, such as radio frequency (RF) communication (e.g., Zigbee, and/or Bluetooth™ communication). In other embodiments, the transceiver may comprise a separate conductor or may be configured to utilize a powerline 208 to communicate with charging component 214. In yet other embodiments, not shown, transceiver 212 may simply be a radio frequency identification (RFID) tag capable of storing minimal information about the electric resource 112, such as a resource identifier, and of being read by a corresponding RFID reader of charging component 214. In such other embodiments, the RFID tag may not couple with a data port or communicate with the vehicle computer and data interface 802.
  • As shown, the charging component 214 may be an intelligent plug device that is physically connected to a charging medium, such as a powerline 208 (the charging medium coupling the charging component 214 to the electric resource 112) and an outlet of a power grid (such as the wall outlet 204 shown in FIG. 2B). In other embodiments charging component 214 may be a charging station or some other external control. In some embodiments, the charging component 214 may be portable.
  • In various embodiments, the charging component 214 may include components that interface with AC power from the grid 114, such as a powerline communicator, for example an Ethernet-over-powerline bridge 120, and a current or current/voltage (power) sensor 808, such as a current sensing transformer.
  • In other embodiments, the charging component 214 may include a further Ethernet plug or wireless interface in place of bridge 120. In such an embodiment, data-over-powerline communication is not necessary, eliminating the need for a bridge 120. The Ethernet plug or wireless interface may communicate with a local access point, and through that access point to flow control server 106.
  • The charging component 214 may also include Ethernet and information processing components, such as a processor 810 or microcontroller and an associated Ethernet media access control (MAC) address 812; volatile random access memory 814, nonvolatile memory 816 or data storage, a data interface 826 for communicating with the transceiver 212, and an Ethernet physical layer interface 822, which enables wiring and signaling according to Ethernet standards for the physical layer through means of network access at the MAC/Data Link Layer and a common addressing format. The Ethernet physical layer interface 822 provides electrical, mechanical, and procedural interface to the transmission medium—i.e., in one implementation, using the Ethernet-over-powerline bridge 120. In a variation, wireless or other communication channels with the Internet 104 are used in place of the Ethernet-over-powerline bridge 120.
  • The charging component 214 may also include a bidirectional power flow meter 824 that tracks power transfer to and from each electric resource 112, in this case the battery bank 202 of an electric vehicle 200.
  • Further, in some embodiments, the charging component 214 may comprise an RFID reader to read the electric resource information from transceiver 212 when transceiver 212 is an RFID tag.
  • Also, in various embodiments, the charging component 214 may include a credit card reader to enable a user to identify the electric resource 112 by providing credit card information. In such an embodiment, a transceiver 212 may not be necessary.
  • Additionally, in one embodiment, the charging component 214 may include a user interface, such as one of the user interfaces described in greater detail below.
  • Implementations of the charging component 214 can enable functionality including:
      • executing pre-programmed or learned behaviors when the electric resource 112 is offline (not connected to Internet 104, or service is unavailable);
      • storing locally-cached behavior profiles for “roaming” connectivity (what to do when charging on a foreign system or in disconnected operation, i.e., when there is no network connectivity);
      • allowing the user to override current system behavior; and
      • metering power-flow information and caching meter data during offline operation for later transaction.
  • User Interfaces (UI)
  • Charging Station UI. An electrical charging station, whether free or for pay, can be installed with a user interface that presents useful information to the user. Specifically, by collecting information about the grid 114, the electric resource state, and the preferences of the user, the station can present information such as the current electricity price, the estimated recharge cost, the estimated time until recharge, the estimated payment for uploading power to the grid 114 (either total or per hour), etc. The information acquisition engine 414 communicates with the electric resource 112 and with public and/or private data networks 722 to acquire the data used in calculating this information.
  • The types of information gathered from the electric resource 112 can include an electric resource identifier (resource ID) and state information like the state of charge of the electric resource 112. The resource ID can be used to obtain knowledge of the electric resource type and capabilities, preferences, etc. through lookup with the flow control server 106.
  • In various embodiments, the charging station system including the UI may also gather grid-based information, such as current and future energy costs at the charging station.
  • User Charge Control UI Mechanisms. In various embodiments, by default, electric resources 112 may receive charge control management via power aggregation system 100. In some embodiments, an override control may be provided to override charge control management and charge as soon as possible. The override control may be provided, in various embodiments, as a user interface mechanism of the remote IPF module 134, the charging component 214, of the electric resource (for example, if electric resource is a vehicle 200, the user interface control may be integrated with dash controls of the vehicle 200) or even via a web page offered by flow control server 106. The control can be presented, for example, as a button, a touch screen option, a web page, or some other UI mechanism. In one embodiment, the UI may be the UI illustrated by FIG. 8C and discussed in greater detail below. In some embodiments, the override is a one-time override, only applying to a single plug-in session. Upon disconnecting and reconnecting, the user may again need to interact with the UI mechanism to override the charge control management.
  • In some embodiments, the user may pay more to charge with the override on than under charge control management, thus providing an incentive for the user to accept charge control management. Such a cost differential may be displayed or rendered to the user in conjunction with or on the UI mechanism. This differential can take into account time-varying pricing, such as Time of Use (TOU), Critical Peak Pricing (CPP), and Real-Time Pricing (RTP) schemes, as discussed above, as well as any other incentives, discounts, or payments that may be forgone by not accepting charge control management.
  • UI Mechanism for Management Preferences. In various embodiments, a user interface mechanism of the remote IPF module 134, the charging component 214, of the electric resource (for example, if electric resource is a vehicle 200, the user interface control may be integrated with dash controls of the vehicle 200) or even via a web page offered by flow control server 106 may enable a user to enter and/or edit management preferences to affect charge control management of the user's electric resource 112. In some embodiments, the UI mechanism may allow the user to enter/edit general preferences, such as whether charge control management is enabled, whether vehicle-to-grid power flow is enabled or whether the electric resource 112 should only be charged with clean/green power. Also, in various embodiments, the UI mechanism may enable a user to prioritize relative desires for minimizing costs, maximizing payments (i.e., fewer charge periods for higher amounts), achieving a full state-of-charge for the electric resource 112, charging as rapidly as possible, and/or charging in as environmentally-friendly a way as possible. Additionally, the UI mechanism may enable a user to provide a default schedule for when the electric resource will be used (for example, if resource 112 is a vehicle 200, the schedule is for when the vehicle 200 should be ready to drive). Further, the UI mechanism may enable the user to add or select special rules, such as a rule not to charge if a price threshold is exceeded or a rule to only use charge control management if it will earn the user at least a specified threshold of output. Charge control management may then be effectuated based on any part or all of these user entered preferences.
  • Simple User Interface. FIG. 8C illustrates a simple user interface (UI) which enables a user to control charging based on selecting among a limited number of high level preferences. For example, UI 2300 includes the categories “green”, “fast”, and “cheap” (with what is considered “green”, “fast”, and “cheap” varying from embodiment to embodiment). The categories shown in UI 2300 are selected only for the sake of illustration and may instead includes these and/or any other categories applicable to electric resource 112 charging known in the art. As shown, the UI 2300 may be very basic, using well known form controls such as radio buttons. In other embodiments, other graphic controls known in the art may be used. The general categories may be mapped to specific charging behaviors, such as those discussed above, by a flow control server 106.
  • Electric Resource Communication Protocol
  • FIG. 9 illustrates a resource communication protocol. As shown, a remote IPF module 134 or charging component 214 may be in communication with a flow control server 106 over the Internet 104 or another networking fabric or combination of networking fabrics. In various embodiments, a protocol specifying an order of messages and/or a format for messages may be used to govern the communications between the remote IPF module 134 or charging component 214 and flow control server 106.
  • In some embodiments, the protocol may include two channels, one for messages initiated by the remote IPF module 134 or charging component 214 and for replies to those messages from the flow control server 106, and another channel for messages initiated by the flow control server 106 and for replies to those messages from the remote IPF module 134 or charging component 214. The channels may be asynchronous with respect to each other (that is, initiation of messages on one channel may be entirely independent of initiation of messages on the other channel). However, each channel may itself be synchronous (that is, once a message is sent on a channel, another message may not be sent until a reply to the first message is received).
  • As shown, the remote IPF module 134 or charging component 214 may initiate communication 902 with the flow control server 106. In some embodiments, communication 902 may be initiated when, for example, an electric resource 112 first plugs in/connects to the power grid 114. In other embodiments, communication 902 may be initiated at another time or times. The initial message 902 governed by the protocol may require, for example, one or more of an electric resource identifier, such as a MAC address, a protocol version used, and/or a resource identifier type.
  • Upon receipt of the initial message by the flow control server 106, a connection may be established between the remote IPF module 134 or charging component 214 and flow control server 106. Upon establishing a connection, the remote IPF module 134 or charging component 214 may register with flow control server 106 through a subsequent communication 903. Communication 903 may include a location identifier scheme, a latitude, a longitude, a max power value that the remote IPF module 134 or charging component 214 can draw, a max power value that the remote IPF module 134 or charging component 214 can provide, a current power value, and/or a current state of charge.
  • After the initial message 902, the protocol may require or allow messages 904 from the flow control server 106 to the remote IPF module 134 or charging component 214 or messages 906 from remote IPF module 134 or charging component 214 to the flow control server 106. The messages 904 may include, for example, one or more of commands, messages, and/or updates. Such messages 904 may be provided at any time after the initial message 902. In one embodiment, messages 904 may include a command setting, a power level and/or a ping to determine whether the remote IPF module 134 or charging component 214 is still connected.
  • The messages 906 may include, for example, status updates to the information provided in the registration message 903. Such messages 906 may be provided at any time after the initial message 902. In one embodiment, the messages 906 may be provided on a pre-determined time interval basis. In various embodiments, messages 906 may even be sent when the remote IPF module 134 or charging component 214 is connected, but not registered. Such messages 906 may include data that is stored by flow control server 106 for later processing. Also, in some embodiments, messages 904 may be provided in response to a message 902 or 906.
  • Communications Utilizing Existing Hardware
  • Certain automotive subsystems, such as battery charge controllers, require real-time communications links to off-vehicle networks. The communications hardware to provide this off vehicle link includes Cellular, Wi-Fi, ZigBee, and Homeplug. Such equipment is expensive and can be difficult to configure.
  • Subsystems in a vehicle are connected together over a shared bus, known as the CAN-bus. This bus provides high-speed low-latency communication to attached devices, but does not provide the mechanisms necessary for communicating with off-vehicle entities. Rather than implement communications hardware directly, a client subsystem issues commands over the CAN-bus to request off-vehicle communications services from another “server” subsystem.
  • Existing subsystem in the vehicle that already possess communications hardware can perform this server role without requiring any additional hardware. Because the CAN-bus does not support routing or packet forwarding, it is necessary to define an encapsulation mechanism to permit the off-board communications protocol to be embedded within CAN messages.
  • In some circumstances, vehicle designs may include existing communications hardware for purposes other than charge management. These other uses may include emergency response and remote vehicle diagnostics. Rather than adding additional communications hardware, an electric vehicle can make use of these existing communications modules. Such module re-use is accomplished by enhancing the software on the existing communications modules in order to expand functionality.
  • Similar to modules installed via an extensibility mechanism, preexisting modules upgraded through software can engage in smart charging through two distinct mechanisms.
  • In one embodiment, the software upgraded communications module provides a communications path to external networks which allows vehicle modules to participate in a smart charging program in a manner similar to that of a vehicle that is initially equipped with a communications module.
  • In another embodiment, the software upgraded communications module includes all smart charging logic. In this embodiment, the software upgraded communications module is solely responsible for participating in the smart charging program, and then implements that program by sending primitive messages to other subsystems in the vehicle.
  • FIG. 10 illustrates an embodiment of communications using existing hardware with a smart charging module configured to be implemented for a vehicle subsystem 1010. The vehicle subsystem is connected to a shared vehicle-wide communications medium 1020. The smart charging module is configured to provide messages to a vehicle subsystem 1030.
  • Communication Services to Vehicle Subsystems
  • Modern electric vehicles benefit in a variety of ways from a centrally controlled smart charging program. However, the modules in the vehicle that are capable of executing a charge management program, e.g. the Battery Management Systems Charge Controller, do not generally have the ability to communicate with external networks which are outside the vehicle. To work effectively, a smart charging program requires the central control of an outside entity via an external network, such as a server. This server is responsible for coordinating the charging activities of a large number of vehicles distributed over a wide area, such as a city.
  • Establishing a communications channel between appropriate vehicle subsystems and external networks facilitates smart charging and reduce the cost of ownership of the vehicle. While most vehicle subsystems lack off-vehicle communication, virtually all subsystems are connected to a shared vehicle-wide communications medium or bus. In many vehicles, this bus uses the CAN-bus standard, as defined by the International Standards Organization (ISO) standard #11898. Over time, some new vehicle designs will transition to other vehicle-wide communications mediums, such as Flexray or other similar technologies. However, the basic principle of a shared communications medium to allow vehicle subsystems to communicate will remain intact, and the concepts in the present disclosure will be similarly applicable to these future communications mediums.
  • Rather than adding off-vehicle communications capabilities to existing vehicle subsystems, a separate module provides communication services to all subsystems on a vehicle, making these services available via the vehicle's CAN-bus. Confining the modification to a single module reduces the cost of switching communications standards such that support can be accomplished by installing different communications modules in different cars.
  • Such a communications module includes the hardware necessary to communicate off-vehicle, and also connects to the vehicle's CAN-bus. Software within the communications module translates or encapsulates packets to allow information to flow between the various vehicle subsystems and the entities outside the vehicle.
  • In one embodiment, the communications module can forward messages from the external network, unmodified, to other vehicle subsystems. As an example, if the external network uses the TCP/IP protocol, the communications module forwards TCP packets over the CAN-bus to other vehicle subsystems. Because vehicle communication busses such as CAN-bus do not natively support wide-area protocols such as TCP/IP, an encapsulation protocol is required.
  • Encapsulation works by defining a specific CAN message for TCP transport. Such a CAN message includes a packet header and a packet body. The packet header can specify the packet type to differentiate it from other types of CAN traffic. The packet header can also specify the packet length, and may contain other CAN packet attributes, such as addressing. The packet body includes the bytes of the original external network packet, such as a TCP packet.
  • Such a packet can be transmitted over the CAN-bus from the communications module to the vehicle subsystem wishing to communicate. When the vehicle subsystem wishing to communicate receives such a packet, the subsystem uses the type and size information present in the CAN packet to extract the original TCP packet. When communicating in the reverse direction, i.e. from the vehicle subsystem to the external network, the process is reversed. The vehicle subsystem places a TCP packet within a properly formatted CAN packet and transmits it over the CAN-bus to the communications module. The communications module extracts the TCP packet and transmits it over the external network.
  • In an embodiment, the communications module entirely decodes messages received from the external network, and re-encodes the messages as CAN-bus messages. As such, the communications module extracts the actual intended purpose of the remote message, and transmits a new message across the vehicle's CAN-bus.
  • As an example, the communications module may receive a packet across the external bus with the command specifying the current price of electricity. The communications module transmits a CAN-bus message to the appropriate subsystems indicating the current price of electricity. Since the communications module is fully and completely decoding and encoding each message in each direction, it is not necessary for the external network messages and the vehicle-internal CAN-bus messages to be similar in any way.
  • A communications module can include the following components: a central processing unit (CPU) with sufficient power to run the appropriate software; a CAN transceiver, or transceiver for an alternate in-vehicle communications network; an external communications transceiver for one or more external communications networks; a software stack capable of wrapping high level communications packets in a CAN header, for packets entering the vehicle, and removing a can header, for packets leaving the vehicle; software capable translating messages from a remote network format to the local CAN format; and, software capable of the bonding/provisioning process required by the specific external communications protocol.
  • FIG. 11 illustrates an embodiment of communication services to vehicle subsystems. A CAN transceiver is connected to a CPU in a vehicle and to an external bus, which is connected to a vehicle subsystem 1110. A software stack is connected to the CPU for augmenting CAN headers for packets 1120. Software is configured to translate messages from a remote network format to a CAN format 1130. Software is also configured for a provisioning process of external communications protocol 1140.
  • Vehicle Power Systems Control Extensibility System
  • Electric and plug-in hybrid electric vehicles benefit greatly from on-board charge-management controllers. Such controllers can harmonize a vehicle's electricity consumption with the needs of the power grid. However, price-sensitivity time-to-market concerns, or a lack of standardization, can preclude the factory installation of these charge management controllers.
  • It is desirable that vehicles without factory-equipped charge controllers have the capacity to be upgraded with an after-market controller. A vehicle can be upgradable by providing a physical and software interface to allow the installation of a charge controller. This interface may include: a physical interface to the vehicle's CAN-bus, via an electrical contact plug; a standardization of software messages that are to be sent over the CAN-bus to control charging; and, a physical location for the charge controller to reside, where the CAN interface plug must be located.
  • Vehicles may be sold without the ability to communicate with off-vehicle networks or systems, and therefore without the ability to coordinate their charging behavior with a central authority or server. A vehicle manufacturer that recognizes the benefit of charge management may opt to not include charge management, due to reasons such as price sensitivity, time-to-market concerns, or a lack of standardization. In these situations, it is beneficial for vehicles to be easily upgradable through the installation of a communications module or charge management module. Such upgradability can be managed by clearly defining the physical, electrical and software interfaces between a communications module and the vehicle.
  • The mechanical interface may include a physical location for the module to be installed in the vehicle. This physical location provides access to the electrical/signaling interface, provides a particular level of environmental protection, and accommodate a particular size and shape of add-on modules.
  • The electrical/signaling interface may include a standardized connector to the vehicle's standardized internal communications bus, such as CAN-bus, and a standardized connector to an electrical supply. In some vehicles, the vehicle's communications bus can be a non-electrical standard, such as a Fiber-optic based system. While such a system may not be compatible with electrically signaled CAN based systems, the general principle of the extension interface can still apply.
  • The software interface defines the protocol messages by which the expansion module interfaces with existing modules in the vehicle.
  • In one embodiment, the other relevant modules in the vehicle are designed to communicate with the expansion module as defined elsewhere in the application. The expansion module provides a communications path to external networks which allows vehicle modules to participate in a smart charging program in a manner similar to that of a vehicle that is initially equipped with a communications module.
  • In an embodiment, existing modules in the vehicle have no explicit support for smart charging, and all smart charging logic is contained in the expansion module. As such, the expansion module is solely responsible for participating in the smart charging program. The expansion module implements the program by sending primitive messages to other subsystems in the vehicle.
  • FIG. 12 illustrates an embodiment of an extensibility system including a contact plug for a CAN-bus in a vehicle 1210. An expansion module provides standardization of transmitted messages to control charging 1220. In addition, a charge controller for control extensibility is located at the contact plug 1230.
  • Communications without Specific Hardware
  • In many applications, it is beneficial for an electrical load, such as an electric vehicle, to communicate with an electric power supply, such as a charging station or an electric vehicle service equipment. Such communication can convey information such as device identification, state of battery charge, or power consumption preferences. This communication can also be utilized to implement the arbitration protocol described herein. The communication is desirable even in situations where the two devices in question do not possess hardware designed to facilitate communication.
  • For devices to communicate without specific communications hardware, information can be conveyed by modulating the power transfer between the electrical load (e.g. an electric vehicle) and the electric power supply (electric vehicle service equipment). To facilitate the transmission of information from the electrical load to the electric power supply, an electric load device can intermittently draw power and/or refrain from drawing power. Communications time may be subdivided into seconds. For example, each second wherein the load device drew power is interrupted as the binary 1 digit, and each second wherein the load device did not draw power is interrupted as the binary 0 digit. In a similar manner, the power supply device can communicate with the load device to facilitate the transmission of information from the electric power supply to the electric load device. The electric power supply can provide power for an interval, represented as the binary 1 digit, or refraining from providing power, represent as the binary 0 digit.
  • A variety of standard communication protocol techniques may be used to address issues such as data reliability and clock drift. Depending on the accuracy of both sensing equipment in the receiving device and switching equipment in the transmitting device, the time interval can be varied. For example, the time interval may be varied to an interval much lower than one second. Lower intervals would allow a greater amount of information to be transmitted in the same amount of time.
  • Because the non-powered intervals deprive the load device of electrical power, the load device requires a supplemental power source to remain functional during such intervals. This supplemental power source can be a storage battery, a capacitor, or an alternative primary electrical source. This system does not interfere with the primary function of the power circuit, which is power transfer, because all communication may be completed early in the power connection and power can flow uninterrupted for the remainder of the connection time.
  • To address the limitation of communications mediums that prohibit both the electric vehicle and the electric power source from transmitting information simultaneously, a variety of sharing protocols can be used. In one embodiment, the electric power supply and the electric vehicle take turns transmitting information, reversing roles after a fixed number of bits. In an embodiment, the transmitted messages are structured as packets with a transmitted size. After the transmission of a packet, the direction of transmission is reversed.
  • FIG. 13 illustrates an embodiment of communications without specific hardware including modulating power transfer between an electrical load associated with an electric vehicle and a power supply 1310, transmitting information from the electrical load to the power supply 1320, and enabling the electrical vehicle to communicate with the power supply 1330.
  • Arbitrating Smart Chargepoint with Smart Vehicle
  • Modern Electric vehicles could benefit in a variety of ways from a centrally controlled smart charging program where a central server coordinates the charging activities of a large number of vehicles distributed over a wide area, such as a city. This coordination is accomplished by the server communicating directly with a smart charging module located at each vehicle. The smart charging module can be located inside the vehicle, either as an original component of the vehicle or an aftermarket accessory. Equipment located inside the vehicle can moderate electrical load by directly reducing the power consumption of the vehicle.
  • In one embodiment, the smart charging module will be located in external equipment responsible for providing electricity to the vehicle. Such external equipment may be electric vehicle service equipment (EVSE). EVSE or charging stations can reduce power consumption by curtailing the power available to the vehicle.
  • In the case where both the electric vehicle and the EVSE contain smart charging modules, a potential problem arises. Because charge management systems can be integrated into both vehicles and vehicle charging infrastructure, each of these systems may initially assume that they are the only charging intelligence present in a charging session. When a smart car attaches to a smart chargepoint, certain problems arise. Because the two devices are not communicating with each other, the devices each act as if they have full control of the charge session. If the central smart charging server is not informed that the two devices represent a single vehicle, it will manage the two devices independently. The two devices may attempt to charge at different times, resulting in no power flow. Furthermore, both devices may receive stop charging messages from a utility at the same time, resulting in double-counting of load reduction.
  • To address these concerns, electric vehicles and charging equipment, or EVSE, can both implement a charge coordination protocol. This protocol allows the EVSE and the vehicle to determine which of the two entities is responsible for communicating with the charge management server and implementing a smart charging program. The other entity would enter a passive mode, following the direction of the primary entity.
  • With such a protocol, an electric vehicle can transmit a charge coordination capabilities message to the chargepoint when the vehicle is connected. The capabilities message specifies charge coordination modes that the vehicle supports. The charge equipment can send a charge coordination mode message specifying the coordination mode. This mode may be selected from the list provided by the vehicle. When the two messages have been transmitted, the charge equipment and vehicle commence coordinated charging.
  • Two coordinated charging modes are initially defined as charge-equipment switching charging and vehicle-switching charging. In the charge-equipment switched charging mode, the electric vehicle stops smart charging and behaves as a dumb load. The EVSE, or the charge equipment, sends electricity as it determines while the vehicle does not communicate with any external entity for purposes of charge management. As such, the EVSE controls the rate of electricity flow to the vehicle and is responsible for all communication with smart charging server.
  • In the vehicle-switched charging mode, the EVSE or charging equipment does not engage in smart charging and provide electricity on-demand to the Vehicle at all times. The electric vehicle controls its rate of electricity consumption and is responsible for all communication with the smart charging server. The electric vehicle performs the physical regulation of charge level. However, the regulation of charging is based on commands issued by the charging equipment.
  • If the vehicle possessed an alternative communications channel, such as cellular, the vehicle stops accepting charge commands from that channel. Charging equipment may monitor the vehicle to determine whether the vehicle had complied with charge directives. The vehicle can fall back to direct control if it is determined that the vehicle was non-compliant.
  • Additional charging modes may be defined over time. Communication between the electric vehicle and the EVSE could be accomplished via Power Line Communications (PLC) over the charging cable, or via other means, including wireless communications.
  • FIG. 14 illustrates an embodiment of arbitrating a smart chargepoint with a smart charging module configured to be implemented on vehicle equipment 1410. The module is configured to communicate with the smart charging program 1420, and to moderate an electric load by reducing power consumption of the vehicle 1430. In addition, the module is configured to communicate with a second smart charging module in external charging equipment 1440, and the modules implement a charge coordination protocol 1450.
  • CONCLUSION
  • Although systems and methods have been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as examples of implementations of the claimed methods, devices, systems, etc. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention.

Claims (37)

  1. 1. A system for communicating in a power flow management system utilizing existing hardware, comprising:
    a smart charging module, the module being configured to be implemented on an server subsystem in a vehicle, the server subsystem being connected to a shared vehicle-wide communications medium for communication with at least one other subsystem in the vehicle, the module being further configured to provide a set of services using capabilities provided by the server subsystem and the at least one other subsystem, the services comprising:
    sending messages, using the shared vehicle-wide communications medium to the at least one subsystem in the vehicle to implement a smart charging program.
  2. 2. The system of claim 1 wherein the services further comprise:
    embedding off-board communications protocols in shared vehicle-wide communications medium messages;
    communicating with an external system coordinating the smart charging program using capabilities provided by the server subsystem or the at least one other subsystem.
  3. 3. The system of claim 2 wherein the shared vehicle-wide communications medium is a CAN bus and the vehicle-wide communications messages are CAN bus messages.
  4. 4. The system of claim 2 wherein the communicating with the external system is performed by an existing communications module of the server subsystem or the at least one other subsystem, the existing communications module being upgraded to include at least a portion of the smart charging module.
  5. 5. The system of claim 4 wherein the existing communications module is related to an emergency response system.
  6. 6. The system of claim 4 wherein the existing communications module is related to a remote vehicle diagnostic system.
  7. 7. A communications module for providing communication services to vehicle subsystems, comprising:
    a central processing unit in a vehicle;
    a CAN transceiver operatively connected to the central processing unit connected to an external bus in the vehicle, the external bus being operatively connected to at least one vehicle subsystem;
    a software stack operatively connected to the central processing unit configured to wrap communications packets in a CAN header for communications packets entering a vehicle from an external network, the software stack being further configured to remove CAN headers for communications packets leaving the vehicle;
    software, executed by the central processing unit, configured to translate messages comprising the communications packets from a remote network format to CAN format; and,
    software, executed by the central processing unit, configured to support a bonding or provisioning process required by at least one external communications protocol.
  8. 8. The communications module of claim 7 wherein the module is further configured to establishing a communications channel between the at least one vehicle subsystem and at least one external system coordinating a smart charging program.
  9. 9. The communications module of claim 7 wherein the messages comprising the communications packets from a remote network are forwarded unmodified to other vehicle subsystems using an encapsulation protocol.
  10. 10. The communications module of claim 7 wherein the communications module is configured to receive packets across the external bus with at least one command specifying the current price of electricity, the communications module being further configured to transmits at least one CAN-bus message to at least one subsystem in the vehicle indicating the current price of electricity.
  11. 11. The communications module of claim 7 wherein the external network uses the TCP/IP protocol and the communications module forwards TCP packets over the CAN-bus to at least one subsystem.
  12. 12. An interface enabling the installation of a charge controller for a control extensibility system, comprising:
    a physical interface to a vehicle's CAN-bus, comprising an electrical contact plug;
    an expansion module providing a standardization of software messages sent over the CAN-bus to control charging; and
    a physical location for the charge controller to reside, where the CAN interface plug is located.
  13. 13. The interface of claim 12 wherein the physical interface provides environmental protection to the add-on modules.
  14. 14. The interface of claim 12 wherein the interface comprises a standardized connector to the vehicle's CAN-bus, and a standardized connector to an electrical supply.
  15. 15. The interface of claim 12 wherein the expansion module provides a communications path to external networks that enables the expansion module to participate in a smart charging program;
  16. 16. The interface of claim 12 wherein existing modules in the vehicle have no explicit support for smart charging, and all smart charging logic is contained in the expansion module.
  17. 17. An interface enabling an electric vehicle to communicate with an electric power supply device without specific hardware, comprising:
    transmitting information from an electrical load associated with the electric vehicle to an electric power supply by modulating the power transfer between the electrical load and an electric power supply.
  18. 18. The interface of claim 17 wherein an electric vehicle is further enabled to communicate with the electric power supply device comprising:
    receiving information by an electrical load associated with the electric vehicle from an electric power supply by detecting changes in the modulation of the power transfer between the electrical load and the electric power supply.
  19. 19. The interface of claim 18 wherein information is transmitted by the electric power supply by providing power for an interval, represented as the binary 1 digit, or by refraining from providing power for an interval, represented as the binary 0 digit.
  20. 20. The interface of claim 18 wherein communications time of the electric load is subdivided into seconds, wherein each second wherein the load drew power is interrupted as the binary 1 digit, and each second wherein the load device did not draw power is interrupted as the binary 0 digit.
  21. 21. The interface of claim 20 wherein communications time of the electric supply is subdivided into seconds, wherein each second wherein the supply provided power is interrupted as the binary 1 digit, and each second wherein the supply did not provide power is the binary 0 digit.
  22. 22. The interface of claim 20 wherein the time interval is varied to an interval lower than one second.
  23. 23. The interface of claim 17 wherein the electrical load is supplied with a supplemental power source to remain functional during intervals when the electric power supply is not supplying power to the electrical load.
  24. 24. The interface of claim 17 wherein the supplemental power source is selected from the group: storage battery, capacitor, and an alternative primary electrical source.
  25. 25. The interface of claim 17 wherein the electric power supply and the electric vehicle take turns transmitting information.
  26. 26. The interface of claim 23 wherein, the transmitted messages are structured as packets with a transmitted size and after the transmission of a packet, the direction of transmission is reversed.
  27. 27. A system for arbitrating a smart chargepoint, comprising:
    a first smart charging module, the module being configured to be implemented on equipment located inside a vehicle, the first smart charging module being configured to:
    communicate with a server implementing a smart charging program, the smart charging program coordinating the charging activities of a plurality of vehicles distributed over an area;
    moderate electrical load in the vehicle by reducing the power consumption of the vehicle;
    communicate with at least a second smart charging module in external equipment responsible for providing electricity to the vehicle, enabling the first smart charging module and the second smart charging module to implement a charge coordination protocol to determine which of the two modules is responsible for communicating with the server implementing the smart charging program.
  28. 28. The system of claim 27 wherein the charge coordination protocol causes one of the smart charging modules to assume a primary role and the other to enter a passive mode, following the direction of the module in the primary entity.
  29. 29. The system of claim 27 wherein the charge coordination protocol causes one of the smart charging modules to assume a primary role and the other to enter a passive mode, following the direction of the module in the primary entity.
  30. 30. The system of claim 27 wherein the first smart charging module is further configured to transmit a charge coordination capabilities message to a chargepoint when the vehicle is connected to the chargepoint, the message specifying charge coordination modes that the vehicle supports.
  31. 31. The system of claim 30 wherein coordination modes that the vehicle supports are selected from a list provided by the vehicle.
  32. 32. The system of claim 30 wherein two of the coordination modes that the vehicle supports are selected from a list provided by the vehicle.
  33. 33. The system of claim 30 wherein one of the coordination modes is charge-equipment switching charging mode, wherein in charge-equipment switched charging mode, the electric vehicle stops smart charging and behaves as a dumb load, and the external equipment responsible for providing electricity to the vehicle controls the rate of electricity flow to the vehicle and communicates with the server implementing the smart charging program
  34. 34. The system of claim 30 wherein one of the coordination modes is vehicle-switched charging mode, wherein the external equipment responsible for providing electricity to the vehicle does not engage in smart charging and provides electricity on-demand to the vehicle at all times, and wherein the vehicle performs the physical regulation of charge level
  35. 35. The system of claim 27 wherein the external equipment responsible for providing electricity to the vehicle is configured to determine if the vehicle complies with charge directives, wherein the vehicle fall back to direct control of smart charging it is determined that the vehicle was non-compliant.
  36. 36. The system of claim 27 wherein the communication between the first smart charging module and the second smart charging module is accomplished via Power Line Communications over the charging cable.
  37. 37. The system of claim 27 wherein the communication between the first smart charging module and the second smart charging module is accomplished via wireless communications.
US12751862 2009-03-31 2010-03-31 Vehicle communication systems and methods for electric vehicle power management Abandoned US20110010043A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16534409 true 2009-03-31 2009-03-31
US12751862 US20110010043A1 (en) 2009-03-31 2010-03-31 Vehicle communication systems and methods for electric vehicle power management

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12751862 US20110010043A1 (en) 2009-03-31 2010-03-31 Vehicle communication systems and methods for electric vehicle power management
US13671717 US8796881B2 (en) 2009-03-31 2012-11-08 Electric vehicle power management systems
US14338427 US9283862B2 (en) 2009-03-31 2014-07-23 Electric vehicle power management systems

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US12751837 Continuation US20110004406A1 (en) 2009-03-31 2010-03-31 Systems and methods for location determination of devices using network fingerprints for power management
US12751852 Continuation US8781809B2 (en) 2009-03-31 2010-03-31 Software modeling systems for metering and translating measurements

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12751845 Continuation US20110001356A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle grid stabilization
US12751852 Continuation US8781809B2 (en) 2009-03-31 2010-03-31 Software modeling systems for metering and translating measurements

Publications (1)

Publication Number Publication Date
US20110010043A1 true true US20110010043A1 (en) 2011-01-13

Family

ID=42982790

Family Applications (9)

Application Number Title Priority Date Filing Date
US12751852 Active 2033-02-08 US8781809B2 (en) 2009-03-31 2010-03-31 Software modeling systems for metering and translating measurements
US12751821 Abandoned US20110004358A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle power flow management
US12751853 Abandoned US20110007824A1 (en) 2009-03-31 2010-03-31 System communication systems and methods for electric vehicle power management
US12751862 Abandoned US20110010043A1 (en) 2009-03-31 2010-03-31 Vehicle communication systems and methods for electric vehicle power management
US12751837 Abandoned US20110004406A1 (en) 2009-03-31 2010-03-31 Systems and methods for location determination of devices using network fingerprints for power management
US12751845 Abandoned US20110001356A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle grid stabilization
US13671717 Active US8796881B2 (en) 2009-03-31 2012-11-08 Electric vehicle power management systems
US14338427 Active US9283862B2 (en) 2009-03-31 2014-07-23 Electric vehicle power management systems
US14986083 Abandoned US20160221453A1 (en) 2009-03-31 2015-12-31 Electric vehicle power management systems

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US12751852 Active 2033-02-08 US8781809B2 (en) 2009-03-31 2010-03-31 Software modeling systems for metering and translating measurements
US12751821 Abandoned US20110004358A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle power flow management
US12751853 Abandoned US20110007824A1 (en) 2009-03-31 2010-03-31 System communication systems and methods for electric vehicle power management

Family Applications After (5)

Application Number Title Priority Date Filing Date
US12751837 Abandoned US20110004406A1 (en) 2009-03-31 2010-03-31 Systems and methods for location determination of devices using network fingerprints for power management
US12751845 Abandoned US20110001356A1 (en) 2009-03-31 2010-03-31 Systems and methods for electric vehicle grid stabilization
US13671717 Active US8796881B2 (en) 2009-03-31 2012-11-08 Electric vehicle power management systems
US14338427 Active US9283862B2 (en) 2009-03-31 2014-07-23 Electric vehicle power management systems
US14986083 Abandoned US20160221453A1 (en) 2009-03-31 2015-12-31 Electric vehicle power management systems

Country Status (4)

Country Link
US (9) US8781809B2 (en)
CN (1) CN102449572A (en)
GB (1) GB2481946A (en)
WO (1) WO2010120551A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986126B1 (en) 2010-10-01 2011-07-26 Toyota Motor Sales, U.S.A., Inc. Automated system for determining whether vehicle charge station is publicly accessible
US20110246252A1 (en) * 2010-03-31 2011-10-06 Motion Co., Ltd. Vehicle charging allocation managing server and vehicle charging allocation managing system
US20120032636A1 (en) * 2010-08-09 2012-02-09 Bianco James S Power Share System for Electric Vehicle Service Equipment
US20120054125A1 (en) * 2010-09-01 2012-03-01 Eric Douglass Clifton Resource management and control system
US20120306446A1 (en) * 2010-02-22 2012-12-06 Toyota Jidosha Kabushiki Kaisha Power supply control device and information provision device
US20120306442A1 (en) * 2011-06-01 2012-12-06 GM Global Technology Operations LLC Rapid Energy Recharge System for a Battery Electric Vehicle
US20120319650A1 (en) * 2010-03-29 2012-12-20 Toshiya Iwasaki Recharging system
US20130026986A1 (en) * 2011-07-26 2013-01-31 Honeywell International Inc. Transformer-level management of power consumption by one or more consumers
US20130116845A1 (en) * 2010-05-19 2013-05-09 Florian Krug Method for controlling the stability of an electric supply grid
CN103138350A (en) * 2013-03-20 2013-06-05 张家港市华为电子有限公司 Single phase industrial frequency transformer type charging equipment
US20130215982A1 (en) * 2012-02-20 2013-08-22 Sumitomo Electric Networks, Inc. Communication system, communication method, relaying device, and recording medium
US8595122B2 (en) 2010-07-23 2013-11-26 Electric Transportation Engineering Corporation System for measuring electricity and method of providing and using the same
US8710372B2 (en) 2010-07-23 2014-04-29 Blink Acquisition, LLC Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
WO2014150216A1 (en) 2013-03-15 2014-09-25 Gogoro, Inc. Modular system for collection and distribution of electric storage devices
US8854013B2 (en) 2011-07-27 2014-10-07 The Boeing Company System for monitoring a battery charger
US20140334342A1 (en) * 2011-12-05 2014-11-13 Volkswagen Ag Method for operating an internet-protocol-based functional system and associated internet-protocol-based functional system in a vehicle
CN104301339A (en) * 2013-07-16 2015-01-21 北京基业达电气有限公司 Electric vehicle charging station metropolitan area network Internet of Vehicles management system
US20150022151A1 (en) * 2013-07-19 2015-01-22 Ford Global Technologies, Llc Vehicle authentication for a bev charger
US9003492B2 (en) 2011-06-21 2015-04-07 Qualcomm Incorporated Secure client authentication and service authorization in a shared communication network
US9021278B2 (en) 2011-08-10 2015-04-28 Qualcomm Incorporated Network association of communication devices based on attenuation information
US9026813B2 (en) 2010-11-22 2015-05-05 Qualcomm Incorporated Establishing a power charging association on a powerline network
US20160099607A1 (en) * 2014-10-03 2016-04-07 Active Power, Inc. Uninterrupted power supply systems and methods
US9348381B2 (en) 2011-10-19 2016-05-24 Zeco Systems Pte Ltd Methods and apparatuses for charging of electric vehicles
US20160236634A1 (en) * 2013-08-28 2016-08-18 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink
US9552682B2 (en) 2011-07-26 2017-01-24 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US9573478B2 (en) 2014-11-14 2017-02-21 Schneider Electric USA, Inc. EVSE doubler add-on unit
US9707850B2 (en) 2014-11-18 2017-07-18 Schneider Electric USA, Inc. EVSE handle with automatic thermal shut down by NTC to ground
US9772347B2 (en) 2013-08-28 2017-09-26 San Diego Gas & Electric Company Interconnection meter socket adapters
US9804034B2 (en) 2014-11-14 2017-10-31 Schneider Electric USA, Inc. EVSE with cordset handle temperature measurement
WO2017189882A1 (en) * 2016-04-27 2017-11-02 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink
US9830753B2 (en) 2011-07-26 2017-11-28 Gogoro Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US20180019614A1 (en) * 2014-12-29 2018-01-18 Marielle Damara Fillit Solar Home System for All Household Services
EP2711236A3 (en) * 2012-09-25 2018-01-24 Nissan Motor Manufacturing (UK) Ltd. Fault detection system and method
US9911252B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for providing to a user device information regarding availability of portable electrical energy storage devices at a portable electrical energy storage device collection, charging and distribution machine
US9995768B2 (en) 2013-08-28 2018-06-12 San Diego Gas & Electric Interconnection meter socket adapters
US10040359B2 (en) 2014-09-04 2018-08-07 Gogoro Inc. Apparatus, system, and method for vending, charging, and two-way distribution of electrical energy storage devices
US10089641B2 (en) 2013-08-28 2018-10-02 San Diego Gas & Electric Company Interconnect socket adapter for adapting one or more power sources and power sinks
US10132838B2 (en) 2013-08-28 2018-11-20 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink

Families Citing this family (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8805552B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. Method and apparatus for actively managing consumption of electric power over an electric power grid
US8806239B2 (en) 2007-08-28 2014-08-12 Causam Energy, Inc. System, method, and apparatus for actively managing consumption of electric power supplied by one or more electric power grid operators
WO2010120551A1 (en) * 2009-03-31 2010-10-21 Gridpoint, Inc. Electric vehicle power management systems
US20100292855A1 (en) * 2009-05-14 2010-11-18 Michael Kintner-Meyer Battery Charging Control Methods, Electrical Vehicle Charging Methods, Battery Charging Control Apparatus, and Electrical Vehicles
DE102010002093A1 (en) * 2009-06-03 2010-12-09 Continental Teves Ag & Co. Ohg C2X communication with reduced data volume
US20110109165A1 (en) * 2009-11-11 2011-05-12 International Business Machines Corporation Apparatus and method for managing a power source
US9559522B2 (en) * 2009-12-22 2017-01-31 Kevin James WILLIAMS Distributed energy source system
JP5659506B2 (en) * 2010-03-03 2015-01-28 富士通株式会社 Power leveling control device, the power leveling control method, and program
US20110257804A1 (en) * 2010-04-14 2011-10-20 Raytheon Company Administration of Power Environments
EP2385606A1 (en) * 2010-05-03 2011-11-09 Siemens Aktiengesellschaft System for interchanging electric energy between a battery and an electric grid and respective method.
WO2011148531A1 (en) * 2010-05-25 2011-12-01 三菱電機株式会社 Power information management apparatus, power information management system, and power information management method
US9209623B1 (en) 2010-08-04 2015-12-08 University Of Washington Through Its Center For Commercialization Methods and systems for charging electrical devices via an electrical system
US9469203B2 (en) * 2010-08-05 2016-10-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery information output equipment for power supply and demand leveling system
WO2012027634A1 (en) 2010-08-27 2012-03-01 Trilliant Networkd, Inc. System and method for interference free operation of co-located tranceivers
US8639409B2 (en) * 2010-09-30 2014-01-28 Hitachi, Ltd System for managing electrical power distribution between infrastructure and electric vehicles
US8594859B2 (en) 2010-10-18 2013-11-26 Qualcomm Incorporated Method and system for real-time aggregation of electric vehicle information for real-time auctioning of ancillary services, and real-time lowest cost matching electric vehicle energy demand to charging services
US9283857B2 (en) 2010-10-27 2016-03-15 The Aes Corporation Methods and apparatus for identifying a grid connection point using a tag
DE102010043001A1 (en) * 2010-10-27 2012-05-03 Siemens Aktiengesellschaft Charging system and method for charging vehicle batteries
US8401711B2 (en) * 2010-10-28 2013-03-19 Solar Chief, Llc System and method for managing distributed renewable energy systems
US10069454B2 (en) * 2010-10-28 2018-09-04 Solar Chief, Llc System and method for managing distributed renewable energy systems and service providers
US20120123604A1 (en) * 2010-11-12 2012-05-17 Nathan Bowman Littrell Systems, methods, and apparatus for demand response of battery-powered devices
US8832428B2 (en) 2010-11-15 2014-09-09 Trilliant Holdings Inc. System and method for securely communicating across multiple networks using a single radio
GB2486016A (en) * 2010-12-02 2012-06-06 Sony Corp Control of storage devices in an electric power network
JP5533788B2 (en) * 2010-12-24 2014-06-25 株式会社日立製作所 Charge control system
US9282383B2 (en) 2011-01-14 2016-03-08 Trilliant Incorporated Process, device and system for volt/VAR optimization
US8712595B2 (en) * 2011-01-18 2014-04-29 General Electric Company Dynamic load profiling in a power network
US8502498B2 (en) * 2011-01-19 2013-08-06 General Motors Llc Localized charging of electric vehicles
US8970394B2 (en) 2011-01-25 2015-03-03 Trilliant Holdings Inc. Aggregated real-time power outages/restoration reporting (RTPOR) in a secure mesh network
EP3288236A1 (en) 2011-02-10 2018-02-28 Trilliant Holdings, Inc. Device and method for facilitating secure communications over a cellular network
US9041349B2 (en) * 2011-03-08 2015-05-26 Trilliant Networks, Inc. System and method for managing load distribution across a power grid
US20140002233A1 (en) * 2011-03-11 2014-01-02 Interactive Control Solutions, Llc Wireless control module and docking apparatus
US9837821B2 (en) 2011-03-25 2017-12-05 Green Charge Networks Llc Energy allocation for energy storage cooperation
US9893526B2 (en) 2011-03-25 2018-02-13 Green Charge Networks Llc Networked power management and demand response
US20120265362A1 (en) * 2011-04-14 2012-10-18 Christopher Charles Yasko Charging device for use with electric vehicles and methods of assembling same
WO2012145715A3 (en) * 2011-04-22 2013-02-21 Expanergy, Llc. Systems and methods for analyzing energy usage
GB2494368B (en) * 2011-04-27 2014-04-02 Ea Tech Ltd Electric power demand management
EP2665618A1 (en) 2011-05-04 2013-11-27 Siemens Aktiengesellschaft Method and apparatus for providing electrical energy
CN102323800A (en) * 2011-05-31 2012-01-18 北京许继电气有限公司 Panoramic electricity consumption information intelligent home system based on internet of things
US9300138B2 (en) * 2011-06-07 2016-03-29 Fujitsu Limited System and method for managing power consumption
US9310786B2 (en) * 2011-06-17 2016-04-12 Siemens Industry, Inc. Automated demand response scheduling to reduce electrical loads
JP5516525B2 (en) 2011-07-20 2014-06-11 トヨタ自動車株式会社 Driving support system
US9124098B2 (en) * 2011-08-08 2015-09-01 General Electric Company Managing excess renewable energy
US8384347B2 (en) 2011-08-08 2013-02-26 General Electric Company Methods and systems for charging an energy storage device
US20130046411A1 (en) * 2011-08-15 2013-02-21 Siemens Corporation Electric Vehicle Load Management
US9811130B2 (en) * 2011-09-12 2017-11-07 The Boeing Company Power management control system
WO2013039753A1 (en) * 2011-09-16 2013-03-21 Aerovironment, Inc. Methods for operating a multi-use energy management and conversion system for electric vehicle charging
US9001787B1 (en) 2011-09-20 2015-04-07 Trilliant Networks Inc. System and method for implementing handover of a hybrid communications module
US8384359B2 (en) 2011-10-21 2013-02-26 General Electric Company System, charging device, and method of charging a power storage device
US8358102B2 (en) 2011-10-21 2013-01-22 General Electric Company System, charging device, and method of charging a power storage device
US8332078B2 (en) 2011-10-21 2012-12-11 General Electric Company System, charging device, and method of supplying current to a power storage device
CN103946760B (en) * 2011-10-31 2016-12-14 Abb研究有限公司 It used to restore a system and method within the power system services
CN102419839B (en) * 2011-11-15 2014-10-08 国家电网公司 Electric car battery box tracking system and method
CA2858189A1 (en) 2011-12-05 2013-06-13 Hatch Ltd. System, method and controller for managing and controlling a micro-grid
WO2013086411A1 (en) * 2011-12-09 2013-06-13 The Aes Corporation Frequency responsive charge sustaining control of electricity storage systems for ancillary services on an electrical power grid
US9946285B2 (en) 2011-12-23 2018-04-17 International Business Machines Corporation Energy allocation system for balancing energy consumption
US9007027B2 (en) 2012-01-31 2015-04-14 Green Charge Networks Llc Charge management for energy storage temperature control
US9290103B2 (en) * 2012-02-08 2016-03-22 Control Module, Inc. EVSE controller system
US20130226484A1 (en) * 2012-02-27 2013-08-29 Nokia Corporation Method and apparatus for generating power flow signatures
US9235825B2 (en) 2012-03-05 2016-01-12 Green Charge Neworks LLC Processing load profiles for consumption management systems
US9045042B2 (en) 2012-04-13 2015-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for a one-time departure schedule setup for charging battery-electric vehicles
US8913801B2 (en) 2012-06-29 2014-12-16 Apple Inc. Enrollment using synthetic fingerprint image and fingerprint sensing systems
JP6179512B2 (en) * 2012-07-04 2017-08-16 日本電気株式会社 Charging system controller, the charging system, program, and control method
US9078099B2 (en) 2012-07-16 2015-07-07 Qualcomm Incorporated Localization method employing radio signal strength measurements of electric and gas meters
US9831677B2 (en) * 2012-07-19 2017-11-28 Solarcity Corporation Software abstraction layer for energy generation and storage systems
US9513648B2 (en) * 2012-07-31 2016-12-06 Causam Energy, Inc. System, method, and apparatus for electric power grid and network management of grid elements
CN102831719B (en) * 2012-08-06 2014-09-24 成志东 Orderly alternate electric vehicle charging control system capable of preventing overload of power grid
JP5968719B2 (en) * 2012-08-06 2016-08-10 京セラ株式会社 Management system, management method, control device and storage battery device
EP2883739A4 (en) * 2012-08-10 2016-04-20 Panasonic Ip Man Co Ltd Electric vehicle
CN102832663B (en) * 2012-08-15 2015-11-11 中国电力科学研究院 Adaptive charging control system and a control method based on sdp electric vehicles and v2gtp-exi
JP5931644B2 (en) * 2012-08-17 2016-06-08 株式会社東芝 Charging management system
US8981709B1 (en) * 2012-08-22 2015-03-17 Edee, LLC Supplemental electrical generation apparatus and method
US20160332527A1 (en) * 2013-09-04 2016-11-17 Recargo, Inc. Managing electric vehicle loads on an electric grid
US9434271B2 (en) * 2012-09-04 2016-09-06 Recargo, Inc. Conditioning an electric grid using electric vehicles
GB2506401A (en) 2012-09-28 2014-04-02 Ibm Method for allocating electrical energy in a smart grid
US9348384B2 (en) 2012-11-12 2016-05-24 Kevin J. Williams Distributed energy source system
JP2016510587A (en) * 2013-02-13 2016-04-07 カーボントラック ピーティーワイ リミテッドCarbontrack Pty Ltd System and method for monitoring and control of equipment
US9517701B2 (en) * 2013-03-04 2016-12-13 Talino Ev Management Systems Inc. Distributed battery management system for remote repletion of electric vehicles
US20140266039A1 (en) * 2013-03-14 2014-09-18 General Electric Company Systems and Methods for Controlling a Charging Device
WO2014168376A1 (en) * 2013-04-08 2014-10-16 Geo Sung Gyoo Location-based electric power mediation module, electric vehicle, mediation server, and user certification socket or connector
DE102013006254A8 (en) * 2013-04-11 2015-01-08 Audi Ag Power disconnected a high-voltage vehicle
US9873345B2 (en) 2013-04-18 2018-01-23 Talino Ev Management Systems, Inc. Distributed charge management system for electric vehicles
DE102013212221A1 (en) * 2013-06-26 2014-12-31 Bayerische Motorenwerke Aktiengesellschaft Charging port detection
JP5735050B2 (en) * 2013-06-28 2015-06-17 トヨタ自動車株式会社 Vehicle and the power receiving apparatus
FR3008246B1 (en) * 2013-07-03 2017-07-07 Schneider Electric Ind Sas electrical charging system of a plurality of electric vehicles and method of distribution of the electrical power delivered by an electrical power of such a system
JP6142729B2 (en) * 2013-08-19 2017-06-07 トヨタ自動車株式会社 Charging systems, vehicles and charging equipment
JP6129701B2 (en) * 2013-09-20 2017-05-17 株式会社東芝 Charge management device, the charging management system and charging management method
US9599976B2 (en) * 2013-09-23 2017-03-21 Infosys Limited Systems and methods for effective selection of disparate distributed power sources for smart grid
US20150097531A1 (en) * 2013-10-03 2015-04-09 The Trustees Of Princeton University System and method for controlling networked, grid-level energy storage devices
CN103618380B (en) * 2013-11-07 2017-02-01 南车株洲电力机车研究所有限公司 Intelligent monitoring system based on photovoltaic microgrid
KR101528079B1 (en) * 2013-12-27 2015-06-10 두산중공업 주식회사 Battery exchange station and operating method for battery exchange station
US9514351B2 (en) 2014-02-12 2016-12-06 Apple Inc. Processing a fingerprint for fingerprint matching
US9576126B2 (en) * 2014-02-13 2017-02-21 Apple Inc. Updating a template for a biometric recognition device
US9409492B2 (en) 2014-04-21 2016-08-09 Honda Motor Co., Ltd. Method for precise demand response and control, and a system thereof
US9219499B2 (en) 2014-05-16 2015-12-22 Robert Bosch Gmbh Run time compression method for a vehicle communication bus
US9315108B2 (en) * 2014-07-08 2016-04-19 Toyota Jidosha Kabushiki Kaisha Vehicle function determination
CN104134372A (en) * 2014-08-04 2014-11-05 上海扬梓投资管理有限公司 Vehicle safety information communication terminal and method
WO2016040944A1 (en) * 2014-09-12 2016-03-17 Pruf Energy Solutions, Llc Systems and methods for managing power grid demand
US9744870B2 (en) * 2014-11-11 2017-08-29 Empire Technology Development Llc Wirelessly charging vehicles moving in vehicle convoy
US9785126B2 (en) * 2014-11-25 2017-10-10 Rockwell Automation Technologies, Inc. Inferred energy usage and multiple levels of energy usage
US9694684B2 (en) * 2014-12-03 2017-07-04 Honda Motor Co., Ltd. Priority based power management system and method for an electric vehicle
JPWO2016104501A1 (en) * 2014-12-25 2017-09-14 京セラ株式会社 Power management system, a relay device and a power management method
US9550406B2 (en) 2015-03-16 2017-01-24 Thunder Power Hong Kong Ltd. Thermal dissipation system of an electric vehicle
US9499067B2 (en) 2015-03-16 2016-11-22 Thunder Power Hong Kong Ltd. Power management in electric vehicles
US9954260B2 (en) 2015-03-16 2018-04-24 Thunder Power New Energy Vehicle Development Company Limited Battery system with heat exchange device
US9731615B2 (en) 2015-03-24 2017-08-15 Honda Motor Co., Ltd. Grid overlay for a zip coded map system and method therefor
US20160280091A1 (en) * 2015-03-27 2016-09-29 Nissan North America, Inc. Managing the exchange of electrical power with rechargeable vehicle batteries in v2x systems
US9630518B2 (en) * 2015-06-09 2017-04-25 Ford Global Technologies, Llc Dynamic grid loading using plug-in electrified vehicles
US20160365729A1 (en) * 2015-06-10 2016-12-15 Tanachat Pochana Intelligent control system for power generation equipment
CN104881822A (en) * 2015-06-29 2015-09-02 国家电网公司 Evaluation method, device and system
WO2017008055A1 (en) * 2015-07-09 2017-01-12 Powertree Services, Inc. Grid integration with photovoltaic generation and electric vehicle charging
WO2017015353A1 (en) * 2015-07-20 2017-01-26 Rutgers, The State University Of New Jersey Methods and systems of optimizing energy capture for electric or hybrid vehicle solar panels
JP2017093223A (en) * 2015-11-13 2017-05-25 株式会社東芝 Power reception device, power transmission device, and wireless electric power transmission system
US20170297436A1 (en) * 2016-04-18 2017-10-19 Ford Global Technologies, Llc Structure to optimize electricity generation in a vehicle
WO2018052415A1 (en) * 2016-09-14 2018-03-22 Ford Motor Company Autonomous vehicle fueling with centralized scheduling
CN106300675A (en) * 2016-09-20 2017-01-04 浙江工业大学 Microgrid experimental platform and control system thereof
DE102016219726A1 (en) * 2016-10-11 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft A method of controlling the electric charging of a group of vehicles
WO2018098400A1 (en) * 2016-11-26 2018-05-31 The Regents Of The University Of California Multi-layer electric vehicle energy management system with customized data models
DE102017204727A1 (en) * 2017-03-21 2018-09-27 Robert Bosch Gmbh A method for establishing a communication link, the vehicle communication device and charging station communications apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6882904B1 (en) * 2000-12-29 2005-04-19 Abb Technology Ag Communication and control network for distributed power resource units
US20080319893A1 (en) * 2000-08-25 2008-12-25 Governing Dynamics, Llc Intelligent Routing Of Electric Power
US20110063126A1 (en) * 2008-02-01 2011-03-17 Energyhub Communications hub for resource consumption management

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113400A (en) * 1998-09-30 2000-04-21 Honda Motor Co Ltd Automatic tracking travel system
US6278898B1 (en) * 1999-04-07 2001-08-21 Voyan Technology Model error bounds for identification of stochastic models for control design
US7133800B2 (en) * 2002-10-09 2006-11-07 California Institute Of Technology Sensor web
JP2006287705A (en) * 2005-04-01 2006-10-19 Matsushita Electric Ind Co Ltd Communication system, information communication device for vehicle and indoor information processing device
US20070203860A1 (en) * 2006-02-24 2007-08-30 Gridpoint, Inc. Energy budget manager
US20070282495A1 (en) * 2006-05-11 2007-12-06 University Of Delaware System and method for assessing vehicle to grid (v2g) integration
US20080039979A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Smart Islanding and Power Backup in a Power Aggregation System for Distributed Electric Resources
US7747739B2 (en) * 2006-08-10 2010-06-29 Gridpoint, Inc. Connection locator in a power aggregation system for distributed electric resources
US20090066287A1 (en) * 2006-08-10 2009-03-12 V2Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20080052145A1 (en) * 2006-08-10 2008-02-28 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US7949435B2 (en) * 2006-08-10 2011-05-24 V2Green, Inc. User interface and user control in a power aggregation system for distributed electric resources
US20080040263A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US7844370B2 (en) * 2006-08-10 2010-11-30 Gridpoint, Inc. Scheduling and control in a power aggregation system for distributed electric resources
US20090040029A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Transceiver and charging component for a power aggregation system
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US20090043520A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080040296A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US8898278B2 (en) * 2006-08-10 2014-11-25 Gridpoint, Inc. Connection locator in a power aggregation system for distributed electric resources
US20080040295A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20080040223A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Module in a Power Aggregation System for Distributed Electric Resources
CN101150259B (en) * 2006-09-18 2010-05-12 比亚迪股份有限公司 Electric vehicle charging system
JP4352078B2 (en) * 2007-03-28 2009-10-28 三菱電機株式会社 Power supply control circuit of the vehicle electronic control unit
KR20100040275A (en) * 2007-05-09 2010-04-19 그리드포인트,인코포레이티드 Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
WO2009036439A3 (en) * 2007-09-13 2009-12-30 Gridpoint, Inc. User interface for demand side energy management
US8000913B2 (en) * 2008-01-21 2011-08-16 Current Communications Services, Llc System and method for providing power distribution system information
US7937247B2 (en) * 2008-08-12 2011-05-03 Square D Company Virtual metering
US20100145885A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc System for on-board metering of recharging energy consumption in vehicles equipped with electrically powered propulsion systems
US20100141203A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc Self-identifying power source for use in recharging vehicles equipped with electrically powered propulsion systems
US20100145837A1 (en) * 2008-12-05 2010-06-10 Lava Four, Llc Network for authentication, authorization, and accounting of recharging processes for vehicles equipped with electrically powered propulsion systems
US8106627B1 (en) * 2008-12-15 2012-01-31 Comverge, Inc. Method and system for co-operative charging of electric vehicles
WO2010120551A1 (en) * 2009-03-31 2010-10-21 Gridpoint, Inc. Electric vehicle power management systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319893A1 (en) * 2000-08-25 2008-12-25 Governing Dynamics, Llc Intelligent Routing Of Electric Power
US6882904B1 (en) * 2000-12-29 2005-04-19 Abb Technology Ag Communication and control network for distributed power resource units
US20110063126A1 (en) * 2008-02-01 2011-03-17 Energyhub Communications hub for resource consumption management

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126493B2 (en) * 2010-02-22 2015-09-08 Toyota Jidosha Kabushiki Kaisha Power supply control device and information provision device
US20120306446A1 (en) * 2010-02-22 2012-12-06 Toyota Jidosha Kabushiki Kaisha Power supply control device and information provision device
US20120319650A1 (en) * 2010-03-29 2012-12-20 Toshiya Iwasaki Recharging system
US20110246252A1 (en) * 2010-03-31 2011-10-06 Motion Co., Ltd. Vehicle charging allocation managing server and vehicle charging allocation managing system
US20130116845A1 (en) * 2010-05-19 2013-05-09 Florian Krug Method for controlling the stability of an electric supply grid
US9203241B2 (en) * 2010-05-19 2015-12-01 Siemens Aktiengesellschaft Method for controlling the stability of an electric supply grid
US10124691B1 (en) 2010-06-02 2018-11-13 Bryan Marc Failing Energy transfer with vehicles
US9393878B1 (en) 2010-06-02 2016-07-19 Bryan Marc Failing Energy transfer with vehicles
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US9114719B1 (en) 2010-06-02 2015-08-25 Bryan Marc Failing Increasing vehicle security
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US8710372B2 (en) 2010-07-23 2014-04-29 Blink Acquisition, LLC Device to facilitate moving an electrical cable of an electric vehicle charging station and method of providing the same
US8595122B2 (en) 2010-07-23 2013-11-26 Electric Transportation Engineering Corporation System for measuring electricity and method of providing and using the same
US20120032636A1 (en) * 2010-08-09 2012-02-09 Bianco James S Power Share System for Electric Vehicle Service Equipment
US8981716B2 (en) * 2010-08-09 2015-03-17 Control Module, Inc. Power share system for electric vehicle service equipment
US20120054125A1 (en) * 2010-09-01 2012-03-01 Eric Douglass Clifton Resource management and control system
US7986126B1 (en) 2010-10-01 2011-07-26 Toyota Motor Sales, U.S.A., Inc. Automated system for determining whether vehicle charge station is publicly accessible
US9026813B2 (en) 2010-11-22 2015-05-05 Qualcomm Incorporated Establishing a power charging association on a powerline network
US9445361B2 (en) 2010-11-22 2016-09-13 Qualcomm Incorporated Establishing a power charging association on a powerline network
US20120306442A1 (en) * 2011-06-01 2012-12-06 GM Global Technology Operations LLC Rapid Energy Recharge System for a Battery Electric Vehicle
US8854000B2 (en) * 2011-06-01 2014-10-07 GM Global Technology Operations LLC Rapid energy recharge system for a battery electric vehicle
US9003492B2 (en) 2011-06-21 2015-04-07 Qualcomm Incorporated Secure client authentication and service authorization in a shared communication network
US9830753B2 (en) 2011-07-26 2017-11-28 Gogoro Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US9911252B2 (en) 2011-07-26 2018-03-06 Gogoro Inc. Apparatus, method and article for providing to a user device information regarding availability of portable electrical energy storage devices at a portable electrical energy storage device collection, charging and distribution machine
US20130026986A1 (en) * 2011-07-26 2013-01-31 Honeywell International Inc. Transformer-level management of power consumption by one or more consumers
US9552682B2 (en) 2011-07-26 2017-01-24 Gogoro Inc. Apparatus, method and article for redistributing power storage devices, such as batteries, between collection, charging and distribution machines
US8854013B2 (en) 2011-07-27 2014-10-07 The Boeing Company System for monitoring a battery charger
US9021278B2 (en) 2011-08-10 2015-04-28 Qualcomm Incorporated Network association of communication devices based on attenuation information
US9348381B2 (en) 2011-10-19 2016-05-24 Zeco Systems Pte Ltd Methods and apparatuses for charging of electric vehicles
US20140334342A1 (en) * 2011-12-05 2014-11-13 Volkswagen Ag Method for operating an internet-protocol-based functional system and associated internet-protocol-based functional system in a vehicle
US9537947B2 (en) * 2011-12-05 2017-01-03 Volkswagen Ag Method for operating an internet-protocol-based functional system and associated internet-protocol-based functional system in a vehicle
US20130215982A1 (en) * 2012-02-20 2013-08-22 Sumitomo Electric Networks, Inc. Communication system, communication method, relaying device, and recording medium
EP2711236A3 (en) * 2012-09-25 2018-01-24 Nissan Motor Manufacturing (UK) Ltd. Fault detection system and method
WO2014150216A1 (en) 2013-03-15 2014-09-25 Gogoro, Inc. Modular system for collection and distribution of electric storage devices
EP2973937A4 (en) * 2013-03-15 2016-11-02 Gogoro Inc Modular system for collection and distribution of electric storage devices
CN103138350A (en) * 2013-03-20 2013-06-05 张家港市华为电子有限公司 Single phase industrial frequency transformer type charging equipment
CN104301339A (en) * 2013-07-16 2015-01-21 北京基业达电气有限公司 Electric vehicle charging station metropolitan area network Internet of Vehicles management system
US20150022151A1 (en) * 2013-07-19 2015-01-22 Ford Global Technologies, Llc Vehicle authentication for a bev charger
US9937811B2 (en) * 2013-07-19 2018-04-10 Ford Global Technologies, Llc Vehicle authentication for a BEV charger
US9772347B2 (en) 2013-08-28 2017-09-26 San Diego Gas & Electric Company Interconnection meter socket adapters
US10089641B2 (en) 2013-08-28 2018-10-02 San Diego Gas & Electric Company Interconnect socket adapter for adapting one or more power sources and power sinks
US9995768B2 (en) 2013-08-28 2018-06-12 San Diego Gas & Electric Interconnection meter socket adapters
US20160236634A1 (en) * 2013-08-28 2016-08-18 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink
US9904308B2 (en) * 2013-08-28 2018-02-27 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink
US10132838B2 (en) 2013-08-28 2018-11-20 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an energy storage source/sink
US10040359B2 (en) 2014-09-04 2018-08-07 Gogoro Inc. Apparatus, system, and method for vending, charging, and two-way distribution of electrical energy storage devices
US20160099607A1 (en) * 2014-10-03 2016-04-07 Active Power, Inc. Uninterrupted power supply systems and methods
US9573478B2 (en) 2014-11-14 2017-02-21 Schneider Electric USA, Inc. EVSE doubler add-on unit
US9804034B2 (en) 2014-11-14 2017-10-31 Schneider Electric USA, Inc. EVSE with cordset handle temperature measurement
US9707850B2 (en) 2014-11-18 2017-07-18 Schneider Electric USA, Inc. EVSE handle with automatic thermal shut down by NTC to ground
US20180019614A1 (en) * 2014-12-29 2018-01-18 Marielle Damara Fillit Solar Home System for All Household Services
WO2017189882A1 (en) * 2016-04-27 2017-11-02 San Diego Gas & Electric Company Managing power source interaction through an interconnect socket adapter configured with an electric vehicle sink

Also Published As

Publication number Publication date Type
US9283862B2 (en) 2016-03-15 grant
WO2010120551A1 (en) 2010-10-21 application
GB2481946A (en) 2012-01-11 application
US20110004358A1 (en) 2011-01-06 application
US20130217409A1 (en) 2013-08-22 application
US8781809B2 (en) 2014-07-15 grant
US20110001356A1 (en) 2011-01-06 application
US20110004406A1 (en) 2011-01-06 application
US20110007824A1 (en) 2011-01-13 application
CN102449572A (en) 2012-05-09 application
US20160221453A1 (en) 2016-08-04 application
US20110010158A1 (en) 2011-01-13 application
US8796881B2 (en) 2014-08-05 grant
US20150202976A1 (en) 2015-07-23 application
GB201118767D0 (en) 2011-12-14 application

Similar Documents

Publication Publication Date Title
Khan et al. A comprehensive review of the application characteristics and traffic requirements of a smart grid communications network
US20110109266A1 (en) Method and system for co-operative charging of electric vehicles
Mwasilu et al. Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration
US20100315197A1 (en) Authorization in a networked electric vehicle charging system
US20090177580A1 (en) Collection of electric vehicle power consumption tax
US8258743B2 (en) Sub-network load management for use in recharging vehicles equipped with electrically powered propulsion systems
US20100082277A1 (en) Distributed car charging management system and method
US7917251B2 (en) Metering system and method of operation
US20100141205A1 (en) Dynamic load management for use in recharging vehicles equipped with electrically powered propulsion systems
US20100145535A1 (en) Intra-vehicle charging system for use in recharging vehicles equipped with electrically powered propulsion systems
US20130031318A1 (en) Apparatus, method and article for providing vehicle diagnostic data
US20130030696A1 (en) Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
US20100145885A1 (en) System for on-board metering of recharging energy consumption in vehicles equipped with electrically powered propulsion systems
US20100141203A1 (en) Self-identifying power source for use in recharging vehicles equipped with electrically powered propulsion systems
US20130030580A1 (en) Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US7956570B2 (en) Network-controlled charging system for electric vehicles
US20130024306A1 (en) Systems and methods for charging electric vehicles
US20090259603A1 (en) Mobile intelligent metering and charging system for charging uniquely identifiable chargeable vehicle destinations and method for employing same
US20100145837A1 (en) Network for authentication, authorization, and accounting of recharging processes for vehicles equipped with electrically powered propulsion systems
US20120253567A1 (en) Method and process for acquiring and delivering electric vehicle owner-operator preference data which is used to schedule and regulate the charging of multiple electric vehicle batteries within a shared local power distribution network
US20130179061A1 (en) Smart electric vehicle (ev) charging and grid integration apparatus and methods
US20120146583A1 (en) Control of Charging Stations
US20100013436A1 (en) Street Light Mounted Network-Controlled Charge Transfer Device for Electric Vehicles
US20100114798A1 (en) Managing Charging of Electric Vehicles
US20100145540A1 (en) Centralized load management for use in controllably recharging vehicles equipped with electrically powered propulsion systems