US20100325992A1 - Access Floor and Installation Method Therefor - Google Patents

Access Floor and Installation Method Therefor Download PDF

Info

Publication number
US20100325992A1
US20100325992A1 US12/865,912 US86591209A US2010325992A1 US 20100325992 A1 US20100325992 A1 US 20100325992A1 US 86591209 A US86591209 A US 86591209A US 2010325992 A1 US2010325992 A1 US 2010325992A1
Authority
US
United States
Prior art keywords
units
floor
technical floor
technical
fitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/865,912
Inventor
Tomás Morcillo Barjola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDUSTRIAS TOMAS MORCILLO SL
Original Assignee
INDUSTRIAS TOMAS MORCILLO SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDUSTRIAS TOMAS MORCILLO SL filed Critical INDUSTRIAS TOMAS MORCILLO SL
Assigned to INDUSTRIAS TOMAS MORCILLO S.L. reassignment INDUSTRIAS TOMAS MORCILLO S.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORCILLO BARJOLA, TOMAS
Publication of US20100325992A1 publication Critical patent/US20100325992A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/48Special adaptations of floors for incorporating ducts, e.g. for heating or ventilating
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/326Floor structures wholly cast in situ with or without form units or reinforcements with hollow filling elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/16Load-carrying floor structures wholly or partly cast or similarly formed in situ
    • E04B5/32Floor structures wholly cast in situ with or without form units or reinforcements
    • E04B5/36Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor
    • E04B5/38Floor structures wholly cast in situ with or without form units or reinforcements with form units as part of the floor with slab-shaped form units acting simultaneously as reinforcement; Form slabs with reinforcements extending laterally outside the element

Definitions

  • This invention refers to a procedure for installing a technical floor of the type mainly used in industrial or office premises, which includes the formation of a base structure, forming a structural filling and possibly a decorative covering, including opening systems for fitting different types of installations, such as electrical wiring or drainage conduits, as well as a structure for forming said base structure.
  • Technical floors can be defined as the type of flooring that allows access underneath these for fitting different types of installations. Though these can be removable, a permanent structure can also be set up.
  • Technological evolution meant that it was necessary for each machine or work station to have a set of conduits including, without implying any limitation thereby, electrical power and lighting connections, telephony, communications, water outlets or drains, pneumatic or hydraulic connections etc.
  • FIG. 1 shows an elevation of a basic unit of the technical floor of the invention, provided with a central opening for inspection;
  • FIG. 2 shows a plan view of the basic unit of the technical floor of FIG. 1 , on which a cladding for said floor can be fitted, such as a concrete casting;
  • FIG. 3 shows a plan view of a set of basic units set out in fitting position
  • FIG. 4 shows a cross-section of the technical floor of the invention in fitted position, provided with an inspection hatch and covered on the outside by cladding items such as tiles.
  • FIG. 5 shows a cross-section of a unit of the technical floor of the invention according to an embodiment in which the inspection hatch is formed by an exterior body and with an interior body like a basin supported on this, which forms a very strong opening for access to the interior space of the technical floor after pouring in concrete;
  • FIG. 6 shows a cross-section view of a unit of the technical floor according to the embodiment of FIG. 6 , but with the opening parts set out separately prior to being fitted and to pouring the concrete;
  • FIG. 7 shows a cross-section of the technical floor of the invention, according to what is represented in FIG. 1 , in which the central opening of the inspection hatch also includes a frame for supporting a cover;
  • FIG. 8 shows a frontal schematic view of an item for covering the lateral gaps in the technical floor units prior to concreting, providing with pre-cut zones for inserting tubes and other installations;
  • FIG. 9 shows a schematic cross-section view of an assembly of the technical floor of the invention provided with a support for connections, this support being raised over the height of the floor on which this is located;
  • FIG. 10 shows a schematic cross-section view of the support for connections of FIG. 9 ;
  • FIG. 11 gives a schematic plan view of the support for connections of FIGS. 9 and 10 .
  • a technical floor according to the invention consisting of a plurality of basic structural units 1 , normally made of a light plastic material, each of said units forming a surface determining a lower space 8 which determines a corresponding covering surface 2 at the top, as well as a lower edge 3 for supporting said unit 1 in the floor 13 .
  • Each unit 1 also includes an opening 10 , normally centred in this, said opening preferably being surrounded by a perimeter wall 9 .
  • the units 1 include cut-back portions for forming pillars.
  • the corners of each of the units are cut back by a portion 6 , so that the cut-back portions 6 of four adjacent units define a housing 12 for a filling material.
  • These portions can have a support base formed as a part of each unit 1 , or not have this, and have a wall for separation with the lower space 8 .
  • the upper surface has an upper edge 4 , able to be assembled with the corresponding adjacent unit 1 .
  • said edge 4 has a groove, so that the groove of one piece can be fitted together with the adjacent pieces.
  • each of the cut-back portions 6 also include an edge, identical to or different from the upper edge 4 , which is also able to fit into the adjacent unit 1 .
  • the coupling 16 of each item with the corresponding adjacent one is preferably by means of a male-female joint.
  • the properly assembled set of units 1 is deposited on the ground 13 .
  • a grid 11 of rods is fitted in order to constitute the reinforcement of the strong part of the technical floor according to the invention.
  • concrete 14 or some other similar material is poured onto the surface forming the set of units 1 . Since the cut-back parts 6 of the units adjacent to each vertex form a housing 12 , this housing will have the function of a strong pillar, whose strength will be distributed by means of the concrete at the top, leaving a continuous space at the bottom formed of the set of spaces 8 of the units 1 .
  • the openings 10 may include a protection cover (not shown) which prevents the concrete (or other material) from getting into the spaces 8 .
  • the concrete or strength-giving material poured into the set of spaces will have to reach and be left flush with the walls 9 of the opening 10 .
  • the height of said walls 9 or of the spaces 8 can be variable depending on the particular need of each application. That is, the height in an industrial area which has to support heavy machinery will have to be greater, both as regards the height of the space 8 for conduits and of the strength-giving layer than in a room intended for offices, for example.
  • the upper part of the technical floor can include an intermediate layer 15 for fitting a final floor 17 (that can be dismantled) or directly be said floor 17 .
  • the opening 10 is fitted with a frame item 18 , 20 , which comprises a reduction in its section on the inside (lower side).
  • the outer (upper) edge has a projection 19 with a greater section than the interior (lower) zone.
  • this defines a housing for a cover or lid 21 , which will be housed inside and could be withdrawn when this is considered appropriate.
  • a second type of frame piece 20 forms a housing for a basin, 22 , so that when the concrete is poured in, this basin will also be filled with concrete, giving the inspection hatch structural strength in accordance with the height of the layer of concrete and its reinforcement. The basin will be able to be taken out by simply pulling this, as there will be no cohesion between the basin and the frame.
  • this second type of frame piece 20 there is a normally circular protuberance 23 in the central part of the basin, with no significant effect on the structural strength, in which an extraction screw or hook is or can be housed.
  • the decreasing section can be conical or pyramidal, or stepped, either regularly or irregularly.
  • the concreting stage requires the lower spaces 8 located outside the assembly to be covered in order to prevent the poured concrete from getting into the interior (lower) zone of the technical floor, but without restricting the corresponding conduit characteristics.
  • the profile of the lower spaces 8 has been designed to include a set of tabs enabling a blocking piece 24 to be fitted.
  • the blocking piece 24 has an essentially identical section to that of the lower space in which this will be located, so that by means of the tabs set inside this lower space 8 the blocking piece 24 can be fitted into said unit 1 from below on the plane of the surface of the hollow space and at the same time, and after setting unit 1 in the floor its accidental withdrawal is practically impossible.
  • the blocking piece 24 includes a set of pre-cut zones 25 for allowing different wiring tubes or conduits through.
  • connection body 26 able to be fitted instead of a tile or covering slab of a technical floor which comprises a base 27 , that can be secured to the technical floor, for example by screwing this on, with a connection zone 29 .
  • This connection zone 29 is raised a few centimetres over floor level.
  • the connection zone 29 comprises a plurality of pre-cut areas 28 for fitting the corresponding connection bases.
  • the covering can be by means of assembled tiles or slabs.
  • the connection body 26 can also be fitted with means for assembly with the corresponding slabs or tiles.
  • the units 1 may have different heights depending on the application for which the technical floor is intended. For example, it will have to be higher if it has to contain drains than if only electrical wiring has to be allowed through.
  • the height of the frame 20 will also depend on the thickness of concrete required, and this will be determined depending on the strength characteristics required by the installation.
  • opening units 1 can be combined with other identical units not fitted with these hatches.
  • technical floors can be installed in building of several storeys or with limited free height. Particularly in these cases a technical floor should be installed in such a way that the weight, and in this case the layer of concrete poured in, is reduced as far as possible.
  • a body formed in a single piece made up of a set of units, at least one of these being openable, has been designed, so that apart from the angular spaces which will form the pillars of the assembly there are spaces for forming these pillars in multiple interior and perimeter zones other than the corners. This allows great strength through greater distribution of the loads.
  • the body described is as if at least one opening unit 1 were taken and possibly one or more non-opening units set adjacently, forming bodies of 1 ⁇ 2, 2 ⁇ 2, 2 ⁇ 3, 3 ⁇ 3 formed as a single piece.
  • a solution equivalent to the one in the present invention and which should thus be considered within its scope is that none of the pillars are set at the corners or the perimeter and the coupling between units or bodies of sets of units is done in places which are not crossed by said pillars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Floor Finish (AREA)
  • Building Environments (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

An access floor and the installation method therefor includes a plurality of basic structural units (1) usually made from a lightweight plastic material, each unit including at least one surface (2), at least one lower cavity (8) defined by the upper surface (2), at least one lower unit-supporting edge (3) in contact with the supporting floor (13) and at least one opening (10) provided in the aforementioned surface (2). A method for installing the access floor, includes the following steps: pre-positioning the pipes, assembling the units (1) and positioning the pipes in the cavities (8), forming the cavities for the pillars (12), positioning a grating (11) on the surface (2) of the units (1), sealing the openings (10) using the corresponding cover, pouring concrete (14) or another resistant material, and positioning the coating (15) and/or the final floor (17).

Description

  • This invention refers to a procedure for installing a technical floor of the type mainly used in industrial or office premises, which includes the formation of a base structure, forming a structural filling and possibly a decorative covering, including opening systems for fitting different types of installations, such as electrical wiring or drainage conduits, as well as a structure for forming said base structure.
  • Technical floors can be defined as the type of flooring that allows access underneath these for fitting different types of installations. Though these can be removable, a permanent structure can also be set up.
  • Industrial, commercial or office installations have evolved over time. When office instruments were manual, such as typewriters, and operators rarely had access to the telephone, the only fixed installation required was lighting, and this was fitted from the ceiling of the corresponding area.
  • In industry too, in which a good deal of the machines were manual, the electrical connections were external and it was the machines which were located close to said connections.
  • Technological evolution meant that it was necessary for each machine or work station to have a set of conduits including, without implying any limitation thereby, electrical power and lighting connections, telephony, communications, water outlets or drains, pneumatic or hydraulic connections etc.
  • The development of technical floors has facilitated the installation of all this type of conduits with no need to resort to building work in floors. This nevertheless entails some difficulties when dealing with heavy machinery, or if the intention is to give the floor a strength for treading on this which technical floors do not always have.
  • It is thus desirable and the purpose of this invention for a technical floor to have the strength of a masonry floor and at the same time be able to be opened for fitting all kinds of installations, as described in claim 1. Another subject of the invention is a procedure for setting up the technical floor of claim 1, as described in claim 12.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to illustrate the following explanation, we are enclosing three sheets of drawings with this descriptive report, which represent the essence of this invention in four figures, and in which:
  • FIG. 1 shows an elevation of a basic unit of the technical floor of the invention, provided with a central opening for inspection;
  • FIG. 2 shows a plan view of the basic unit of the technical floor of FIG. 1, on which a cladding for said floor can be fitted, such as a concrete casting;
  • FIG. 3 shows a plan view of a set of basic units set out in fitting position; and
  • FIG. 4 shows a cross-section of the technical floor of the invention in fitted position, provided with an inspection hatch and covered on the outside by cladding items such as tiles.
  • FIG. 5 shows a cross-section of a unit of the technical floor of the invention according to an embodiment in which the inspection hatch is formed by an exterior body and with an interior body like a basin supported on this, which forms a very strong opening for access to the interior space of the technical floor after pouring in concrete;
  • FIG. 6 shows a cross-section view of a unit of the technical floor according to the embodiment of FIG. 6, but with the opening parts set out separately prior to being fitted and to pouring the concrete;
  • FIG. 7 shows a cross-section of the technical floor of the invention, according to what is represented in FIG. 1, in which the central opening of the inspection hatch also includes a frame for supporting a cover;
  • FIG. 8 shows a frontal schematic view of an item for covering the lateral gaps in the technical floor units prior to concreting, providing with pre-cut zones for inserting tubes and other installations;
  • FIG. 9 shows a schematic cross-section view of an assembly of the technical floor of the invention provided with a support for connections, this support being raised over the height of the floor on which this is located;
  • FIG. 10 shows a schematic cross-section view of the support for connections of FIG. 9; and
  • FIG. 11 gives a schematic plan view of the support for connections of FIGS. 9 and 10.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A technical floor according to the invention is described consisting of a plurality of basic structural units 1, normally made of a light plastic material, each of said units forming a surface determining a lower space 8 which determines a corresponding covering surface 2 at the top, as well as a lower edge 3 for supporting said unit 1 in the floor 13. Each unit 1 also includes an opening 10, normally centred in this, said opening preferably being surrounded by a perimeter wall 9.
  • The units 1 include cut-back portions for forming pillars. According to a preferential embodiment, the corners of each of the units are cut back by a portion 6, so that the cut-back portions 6 of four adjacent units define a housing 12 for a filling material. These portions can have a support base formed as a part of each unit 1, or not have this, and have a wall for separation with the lower space 8. Between each pair of cut-back portions the upper surface has an upper edge 4, able to be assembled with the corresponding adjacent unit 1. According to a preferential embodiment, said edge 4 has a groove, so that the groove of one piece can be fitted together with the adjacent pieces. Like the upper part, the lateral zones of each of the cut-back portions 6 also include an edge, identical to or different from the upper edge 4, which is also able to fit into the adjacent unit 1. The coupling 16 of each item with the corresponding adjacent one is preferably by means of a male-female joint. The properly assembled set of units 1 is deposited on the ground 13.
  • After forming the set of units 1 a grid 11 of rods is fitted in order to constitute the reinforcement of the strong part of the technical floor according to the invention. Later on, concrete 14 or some other similar material is poured onto the surface forming the set of units 1. Since the cut-back parts 6 of the units adjacent to each vertex form a housing 12, this housing will have the function of a strong pillar, whose strength will be distributed by means of the concrete at the top, leaving a continuous space at the bottom formed of the set of spaces 8 of the units 1.
  • The openings 10 may include a protection cover (not shown) which prevents the concrete (or other material) from getting into the spaces 8.
  • The concrete or strength-giving material poured into the set of spaces will have to reach and be left flush with the walls 9 of the opening 10. The height of said walls 9 or of the spaces 8 can be variable depending on the particular need of each application. That is, the height in an industrial area which has to support heavy machinery will have to be greater, both as regards the height of the space 8 for conduits and of the strength-giving layer than in a room intended for offices, for example.
  • The upper part of the technical floor can include an intermediate layer 15 for fitting a final floor 17 (that can be dismantled) or directly be said floor 17.
  • The perforations required in order to access the set of conduits going underneath this can thus be made in only one of the covering slabs.
  • According to a preferential embodiment, the opening 10 is fitted with a frame item 18, 20, which comprises a reduction in its section on the inside (lower side). In other words, the outer (upper) edge has a projection 19 with a greater section than the interior (lower) zone. This means that between the walls 9 of the opening 10, the upper surface of the units 1 forming the technical floor, and the lower surface of the projection there is a space able to be filled with concrete which will, after setting and possibly being reinforced, form a strong structure, in which the units 1 of the technical floor are only the elements giving shape to the formwork, with no strength-giving function for the floor after being completed.
  • According to a first type of frame item 18, this defines a housing for a cover or lid 21, which will be housed inside and could be withdrawn when this is considered appropriate.
  • A second type of frame piece 20 forms a housing for a basin, 22, so that when the concrete is poured in, this basin will also be filled with concrete, giving the inspection hatch structural strength in accordance with the height of the layer of concrete and its reinforcement. The basin will be able to be taken out by simply pulling this, as there will be no cohesion between the basin and the frame. According to a particular embodiment of this second type of frame piece 20, there is a normally circular protuberance 23 in the central part of the basin, with no significant effect on the structural strength, in which an extraction screw or hook is or can be housed.
  • Since the section decreases towards the bottom, a wide contact surface between the frame item 20 and the basin 22 will allow very great mechanical strength. The decreasing section can be conical or pyramidal, or stepped, either regularly or irregularly.
  • When the technical floor is set up the units do not quite reach the surface of the walls against which this has to be set, a space normally filled with concrete being left between some of said walls and the last of the units of the technical floor. Hence, the concreting stage requires the lower spaces 8 located outside the assembly to be covered in order to prevent the poured concrete from getting into the interior (lower) zone of the technical floor, but without restricting the corresponding conduit characteristics. For this purpose the profile of the lower spaces 8 has been designed to include a set of tabs enabling a blocking piece 24 to be fitted. The blocking piece 24 has an essentially identical section to that of the lower space in which this will be located, so that by means of the tabs set inside this lower space 8 the blocking piece 24 can be fitted into said unit 1 from below on the plane of the surface of the hollow space and at the same time, and after setting unit 1 in the floor its accidental withdrawal is practically impossible. The blocking piece 24 includes a set of pre-cut zones 25 for allowing different wiring tubes or conduits through.
  • When connections have to be made on the technical floor, it is advisable to prevent cleaning, or any accidental spilling of liquids etc. from getting to the connection zone. Until now however, all the technical floors which include electrical or electric connections are located at floor level, with the risks mentioned above. For this reason, we have described as part of this invention a connection body 26 able to be fitted instead of a tile or covering slab of a technical floor which comprises a base 27, that can be secured to the technical floor, for example by screwing this on, with a connection zone 29. This connection zone 29 is raised a few centimetres over floor level. The connection zone 29 comprises a plurality of pre-cut areas 28 for fitting the corresponding connection bases.
  • The covering can be by means of assembled tiles or slabs. In this case, the connection body 26 can also be fitted with means for assembly with the corresponding slabs or tiles.
  • We should stress that the units 1 may have different heights depending on the application for which the technical floor is intended. For example, it will have to be higher if it has to contain drains than if only electrical wiring has to be allowed through. The height of the frame 20 will also depend on the thickness of concrete required, and this will be determined depending on the strength characteristics required by the installation.
  • Obviously the opening units 1 according to the invention can be combined with other identical units not fitted with these hatches.
  • In some cases technical floors can be installed in building of several storeys or with limited free height. Particularly in these cases a technical floor should be installed in such a way that the weight, and in this case the layer of concrete poured in, is reduced as far as possible. For these cases a body formed in a single piece made up of a set of units, at least one of these being openable, has been designed, so that apart from the angular spaces which will form the pillars of the assembly there are spaces for forming these pillars in multiple interior and perimeter zones other than the corners. This allows great strength through greater distribution of the loads. That is, the body described is as if at least one opening unit 1 were taken and possibly one or more non-opening units set adjacently, forming bodies of 1×2, 2×2, 2×3, 3×3 formed as a single piece. A solution equivalent to the one in the present invention and which should thus be considered within its scope is that none of the pillars are set at the corners or the perimeter and the coupling between units or bodies of sets of units is done in places which are not crossed by said pillars.
  • Although this has essentially been described already, the procedure includes the following stages:
      • Possibly installing conduits;
      • Assembly and coupling of the units 1 or bodies of sets of units and fitting, where applicable, the conduits in the spaces 8, forming the hollows for the pillars 12;
      • Fitting blocking items in the spaces 8 of the units 1 not adjacent to another unit or to a wall;
      • Fitting a grid 11 on the surface 2 of the units 1;
      • Fitting the frames 28, 20 of the inspection hatches;
      • Blocking the openings 10 by means of a corresponding cover 21 or by means of basins 22 for receiving concrete;
      • Fitting, where applicable, the reinforcement for these basins
      • Pouring in concrete 14 or some other strength-giving material;
      • Fitting, where applicable, the cladding 15, and/or the final floor 17.
        This is for application in making and installing commercial and/or industrial technical floors.

Claims (18)

1. A technical floor, comprising a plurality of basic structural units, each of these units in turn comprising:
at least one upper surface;
at least one lower interior space defined by said upper surface;
at least one lower edge for supporting said unit on a floor on which said unit rests;
at least one cut-back portion for setting up a support pillar, formed at each corner of each of the units, so that adjacent cut-back portions of four adjacent units define a housing for a structural filling material;
the upper surfaces having upper edges adapted to be assembled with upper surfaces of corresponding adjacent units, so that each item can be fitted together with an adjacent item; and
at least one opening made in said upper surface which communicates the interior space with an exterior of said unit, said opening being surrounded by a perimeter wall.
2. A technical floor, according to claim 1, wherein the opening surrounds a frame item with a section of the frame item decreasing towards a bottom thereof, that can be fitted into the perimeter wall.
3. A technical floor, according to claim 2, wherein the decreasing section of the frame item decreases in steps.
4. A technical floor, according to claim 2, wherein the decreasing section of the frame item decreases regularly.
5. A technical floor, according to claim 1, wherein lateral zones of each of the cut-back portions comprise an edge which is one of:
identical to and
different to
the upper edge and which is also able to fit together with one said lateral zone of the adjacent unit.
6. A technical floor, according to claim 1, further comprising a grid of rods and a strength-giving material at a top of the upper surface.
7. A technical floor, according to claim 1, wherein each of the openings comprises a protection cover which is removable.
8. A technical floor, according to claim 1, wherein each of the openings comprises a basin for housing concrete.
9. A technical floor, according to claim 8, wherein the basin comprises a central zone with a protuberance with a circular section in which one of:
an extraction screw and
a hook
is adapted to be housed.
10. A technical floor, according to claim 1, further comprising blocking pieces, each with a section essentially identical to that of the lower space in which the blocking piece is adapted to be located, and said lower space comprises a set of securing tabs for said blocking piece.
11. A technical floor, according to claim 10, wherein the blocking piece comprises a set of pre-cut zones for allowing through tubes of different conduits.
12. A technical floor, according to claim 1, further comprising a connections unit adapted to be fitted for covering the technical floor, and which comprises a connection base adapted to be secured to the technical floor, and a connections zone being a few centimetres higher than the floor itself.
13. A technical floor, according to claim 1, wherein the connections zone comprises a plurality of pre-cut areas for fitting the corresponding connection bases.
14. A technical floor, according to claim 1, wherein the units are combined one of:
with one another and
with other non-opening units
to form a single body, and defining at least one non-perimeter space for forming pillars.
15. A method for installing the technical floor according to claim 1, comprising the following stages:
assembling and coupling of the units;
fitting, where applicable, conduits in the spaces,
forming hollows for receiving pillars;
fitting blocking pieces in the spaces of the units not adjacent at least one of:
to another unit and
to a wall;
fitting a grid on the upper surface of the units;
pouring in concrete;
fitting, where applicable, at least one of:
cladding and
a final floor (17); and
after assembling the units and before pouring the concrete performing the following steps:
fitting blocking pieces in the spaces of the units not adjacent at least one of:
to another unit or and
to a wall;
fitting frames of inspection hatches; and
blocking the openings by one of:
a corresponding cover and
basins adapted to be filled with concrete.
16. A technical floor, according to claim 1, wherein the structural units are made of a light plastic material.
17. A technical floor, according to claim 1, wherein the upper edges of the upper surfaces are provided with grooves.
18. A technical floor, according to claim 6, wherein the strength-giving material is concrete.
US12/865,912 2008-02-29 2009-02-26 Access Floor and Installation Method Therefor Abandoned US20100325992A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ESP200800693 2008-02-29
ES200800693A ES2308941B1 (en) 2008-02-29 2008-02-29 TECHNICAL FLOOR AND INSTALLATION PROCEDURE.
PCT/ES2009/070046 WO2009106670A1 (en) 2008-02-29 2009-02-26 Access floor and installation method therefor

Publications (1)

Publication Number Publication Date
US20100325992A1 true US20100325992A1 (en) 2010-12-30

Family

ID=40019057

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/865,912 Abandoned US20100325992A1 (en) 2008-02-29 2009-02-26 Access Floor and Installation Method Therefor

Country Status (5)

Country Link
US (1) US20100325992A1 (en)
EP (1) EP2267236A1 (en)
BR (1) BRPI0907806A2 (en)
ES (1) ES2308941B1 (en)
WO (1) WO2009106670A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTV20110168A1 (en) * 2011-12-06 2013-06-07 T P S S R L COUPLING AND FIXING DEVICE FOR FORMWORKS TO LOSE.
GB201212611D0 (en) * 2012-07-16 2012-08-29 Suscom Internat Ltd Footing system
WO2017212317A1 (en) * 2016-06-09 2017-12-14 Mirkhani Seyed Soroush A slab filler

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187907A (en) * 1988-10-31 1993-02-23 Kabushiki Kaisha Toshiba Interior panel unit for permitting arrangement of cables and devices on room floor
US5263289A (en) * 1986-10-22 1993-11-23 Cablescape Access Flooring Pty. Limited Modular hollow floor panels with integral ducting
US5904015A (en) * 1997-07-18 1999-05-18 Chen; Yao-Chung Cover plate connecting structure of a network floor
US5992108A (en) * 1997-03-20 1999-11-30 Falcey; Mark Masao Modular access floor system
US6061982A (en) * 1998-02-27 2000-05-16 Owen; David D. Raised flooring system and method
US20020092249A1 (en) * 2001-01-17 2002-07-18 Runhorn Pretech Engineering Co., Ltd. Partially prefabricated waffle slab
US20070277457A1 (en) * 2006-06-02 2007-12-06 Steelcase Development Corporation Floor assembly utility panel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3803062A1 (en) * 1988-01-29 1989-08-10 Herbst Donald BENDABLE SHUTTERING FILM
EP0803618B1 (en) * 1996-04-23 2000-08-02 Valerio Pontarolo Modular element for the support and ventilation of floors
IT1310542B1 (en) * 1999-03-03 2002-02-18 Valerio Pontarolo MODULAR ELEMENT FOR ROOF AND FLOOR
SM200100024A (en) * 2001-11-22 2003-05-28 Donatella Sinigaglia Modular element for the support of building products, such as floors, floors, or the like
NL1019711C2 (en) * 2002-01-08 2003-07-17 Dycore B V Method for making a floor from concrete, and formwork plate therefor.
DE202008007983U1 (en) * 2008-06-17 2008-08-28 Knauf Alutop Gmbh Floor audit device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263289A (en) * 1986-10-22 1993-11-23 Cablescape Access Flooring Pty. Limited Modular hollow floor panels with integral ducting
US5187907A (en) * 1988-10-31 1993-02-23 Kabushiki Kaisha Toshiba Interior panel unit for permitting arrangement of cables and devices on room floor
US5992108A (en) * 1997-03-20 1999-11-30 Falcey; Mark Masao Modular access floor system
US5904015A (en) * 1997-07-18 1999-05-18 Chen; Yao-Chung Cover plate connecting structure of a network floor
US6061982A (en) * 1998-02-27 2000-05-16 Owen; David D. Raised flooring system and method
US20020092249A1 (en) * 2001-01-17 2002-07-18 Runhorn Pretech Engineering Co., Ltd. Partially prefabricated waffle slab
US20070277457A1 (en) * 2006-06-02 2007-12-06 Steelcase Development Corporation Floor assembly utility panel

Also Published As

Publication number Publication date
WO2009106670A4 (en) 2009-10-29
ES2308941R (en) 2008-12-16
ES2308941B1 (en) 2009-07-28
EP2267236A1 (en) 2010-12-29
WO2009106670A1 (en) 2009-09-03
BRPI0907806A2 (en) 2019-08-27
ES2308941A2 (en) 2008-12-01

Similar Documents

Publication Publication Date Title
EP3628787B1 (en) Modular integrated building and construction method thereof
EP3594422B1 (en) Modular integrated building and construction method thereof
US5997792A (en) Apparatus and process for casting large concrete boxes
EP3670774B1 (en) Prefabricated bathroom and methods for constructing and installing the same
US7467910B2 (en) Prefabricated structure made of reinforced concrete with an integrated removable handling system
US5644871A (en) Modular building system
KR102197689B1 (en) Vertical core structure horizontally assembled and construction method therewith
US20100325992A1 (en) Access Floor and Installation Method Therefor
CA2801335C (en) Procedure for manufacturing of compact modules for construction
SG184609A1 (en) Prefabricated bathroom and method for constructing and installing the same
US4408434A (en) Multi-storey building and a prefabricated panel for such a building
CN110778154A (en) Integral prefabricated toilet
EP1982026B1 (en) Method for repairing sanitary facilities of a block of flats
KR20170000255A (en) Construction method for bathroom and Bathroom using the same
CN211313514U (en) Integral prefabricated toilet
KR102271151B1 (en) A Construction Method In Which A Factory Manufactured Toilet Module Is Lifted And The Installation Time Is Selected And Installed
CN210507974U (en) Prefabricated folded plate for same-layer drainage of toilet
KR102281887B1 (en) Factory manufactured toilet module construction method using the ceiling slab opening of the building
KR102271152B1 (en) Manufacturing Method of Factory-made Integrated Toilet Module
CN114645574A (en) Prefabricated bathroom
CN86104846A (en) Thin shell concrete wall panel
JP3352043B2 (en) Floor structure
KR101390862B1 (en) building
KR970004248B1 (en) Process for constructing concrete unit bathrooms
JP2001107565A (en) Building construction method

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDUSTRIAS TOMAS MORCILLO S.L., SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORCILLO BARJOLA, TOMAS;REEL/FRAME:024780/0301

Effective date: 20100730

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION