US20100287994A1 - Strand-Feeder - Google Patents

Strand-Feeder Download PDF

Info

Publication number
US20100287994A1
US20100287994A1 US12/454,167 US45416709A US2010287994A1 US 20100287994 A1 US20100287994 A1 US 20100287994A1 US 45416709 A US45416709 A US 45416709A US 2010287994 A1 US2010287994 A1 US 2010287994A1
Authority
US
United States
Prior art keywords
strand
teeth
disks
rotatable
feeding device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/454,167
Inventor
Kurt W. Niederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/454,167 priority Critical patent/US20100287994A1/en
Publication of US20100287994A1 publication Critical patent/US20100287994A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/02Rotary devices, e.g. with helical forwarding surfaces
    • B65H51/04Rollers, pulleys, capstans, or intermeshing rotary elements
    • B65H51/06Rollers, pulleys, capstans, or intermeshing rotary elements arranged to operate singly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • This invention relates to an apparatus and method for slip-free feeding of yarn strands. It is especially useful where tension force is applied in order to increase or decrease the strand tension.
  • the invention relates to an apparatus and method of controlling the movement of a strand. More specifically, it transmits tension and/or velocity from a control mechanism to a moving strand.
  • Strand materials such as filaments, fiberglass, textile yarns and the like are frequently guided around at least a portion of a pulley or sheave in order to add or reduce the strand tension by means of driving or breaking the pulley or sheave.
  • One common problem with these systems is that the frictional forces between the strand and the pulley are insufficient to prevent slippage.
  • some sheaves are equipped with a waving groove on their periphery which forces the strand to follow its path and through this undulated path increases the friction between the sheave and the strand.
  • Yet a further object of the present invention is to freely release the downstream strand from the feeding sheaves without the need to forcefully pull the downstream strand out of the feeding sheaves.
  • Another object of the invention is to provide a feeding system without the possibility of the strand or individual fibers from wrapping themselves around rotating mechanical elements.
  • Yet another object of the invention is to use flexible means to control the amount of undulation in the transported strand in order to limit the stress in the transported strand during it's engagement with the transporting sheaves.
  • An additional object of the invention is to be able to adjust the force of the flexible means to control the amount of undulation in the transported strand in order to limit the stress in the transported strand during it's engagement with the transporting sheaves to a desirable level.
  • Yet another object of the invention is the provision to adjust the clamping force exerted by the feeding disks on the passing strand.
  • FIG. 1 is a perspective view of the strand feeder with the strand wrapped around the two tooth wheels;
  • FIG. 2 is a side view of the strand feeder and demonstrates the open throat of the unit on the right side and the intermeshing teeth on the left;
  • FIG. 3 shows the back side of the strand feeder with the undulated configuration of the clamped strand between by the tooth wheels;
  • FIG. 4 gives a top view of the strand feeder
  • FIG. 5 gives a cross section of the strand feeder showing the interior parts of the unit
  • FIG. 6 shows the major elements of the strand feeder in exploded view and indicates how the parts are fitted together
  • FIG. 7 the two tooth wheels are shown separated with the strand shown between them;
  • FIG. 8 gives a variance of the strand feeder in a cross sectional view with an adjustable spring to controlling the clamping force of the strand between the two tooth wheels;
  • FIG. 9 shows another variance where the strand is held against an elastomer or foam material on the bottom wheel by the tooth apex of the upper wheel;
  • FIG. 10 is a cross section with a disk brake holding the upper tooth wheel 3 back through which means the strand is clamped between the teeth of the two opposing tooth wheels.
  • FIG. 11 is a cross-section through both wheels showing the various tooth portions.
  • FIG. 1 shows in a perspective overall view the strand feeder. It consists of a tension control body 1 with a rotatable lower tooth wheel 2 on top. An upper tooth wheel 3 is located at a slanted angle above the lower tooth wheel 2 and intermeshes with it's teeth 19 on one side with the teeth 19 of the lower tooth wheel 2 . The upper tooth wheel 3 is rotatably mounted on the upper bearing housing 4 , which is stationary and being held through the mounting bracket 5 onto the tension control body 1 . The upstream strand 6 is wrapped around the teeth 19 of the lower tooth wheel 2 and the upper tooth wheel 3 and the downstream strand 7 exits the feeder-system “A” after approximately 270 degree.
  • FIG. 2 the side shows the skewed axis 30 of the upper tooth wheel 3 which is biased in relation to the main axis 29 . This results in an open throat 28 of the lower tooth wheel 2 and the upper tooth wheel 3 into which the upstream strand 6 is laid.
  • the rear view shows how the undulated strand 8 is held between the teeth 19 for a positive downstream feeding of the downstream strand 7 .
  • the upper bearing housing 4 is mounted onto the tension control body 1 by means of the mounting bracket 5
  • the top of the feeder-system “A” is revealed in FIG. 4 . It also shows the upstream strand 6 entering the feeder-system “A” and the downstream strand 7 leaving it. It reveals the top side of the mounting bracket 5 to which is fastened the upper bearing housing 4 .
  • the cross section of the feeder-system “A” in FIG. 5 details the inside of the unit.
  • the control rotor 9 is firmly mounted over the bottom shaft 12 .
  • the rotational velocity of the control rotor 9 with lower tooth wheel 2 firmly connected control the feed rate of the unit by electromagnetic means (not shown).
  • the effect of this is a control of the tension in the downstream strand 7 in relation to the upstream strand 6 . It also can be used to control the velocity of the downstream strand 7 .
  • the bottom shaft 12 is mounted in two body bearings 10 which also maintain its axial position.
  • the top shaft 13 is mounted in two top wheel bearings 11 which in turn are mounted in the adjustment hub 18 .
  • the adjustment hub 18 is provided with an external adjustment thread 14 .
  • this adjustment hub 18 By turning this adjustment hub 18 in the internally threaded mounting bracket 5 its axial position can be adjusted in order to adjust the engagement of the teeth 19 on the lower tooth wheel 2 with the teeth 19 of the upper tooth wheel 3 . Through this adjustment, the possibility is given to run finer as well as coarser strands through the feeder-system “A”.
  • An adjustment lock-screw 15 clamps the adjustment hub 18 firmly onto the mounting bracket 5 in order to maintain a adjusted setting.
  • the lower tooth wheel 2 is mounted onto the bottom shaft 12 by means of a lower mounting-flange 16 and the upper tooth wheel 3 is mounted onto the top shaft 13 by means of the upper mounting-flange 17 .
  • the exploded view shows the individual sup-assemblies more clearly.
  • the center lines demonstrate how the individual parts are positioned in assembled mode.
  • FIG. 7 the lower tooth wheel 2 and the upper tooth wheel 3 are shown separated to more clearly demonstrate how the strand 36 relates to them.
  • the undulated configuration is caused by the teeth 19 of both, the lower tooth wheel 2 and the upper tooth wheel 3 .
  • This zigzagging of the strand generates at each bending point additional friction which assists in the positive transport of the strand through the feeder-system “A”.
  • the thickness of the tension teeth 19 can be designed in such a manner that they touch each other on both tooth flanks 35 .
  • FIG. 8 A variant of the clamping action is shown in FIG. 8 .
  • this variation incorporates a spring loaded downward clamping force induced by the tension spring 21 which presses the axially floating hub 22 downward.
  • the rate of the spring force can be adjusted by threading the spring nut 20 up or down on the fixed mounting plate 23 .
  • This arrangement allows the upper tooth wheel 3 to self-adjust according to the thickness and/or stiffness of the strand and thus prevents excess stressing of the undulated strand 8 .
  • FIG. 9 reveals another variation of clamping assistance for the strand material.
  • the undulated strand 8 is pressed by the teeth 19 of the upper tooth wheel 3 into a soft elastomer or foam material 31 . This provides sufficient clamping force, together with the friction multiplying undulation to positively feed the strand by the feeder-system “A”.
  • FIG. 10 shows another variation of the invention where a braking force is applied to the upper tooth wheel 3 by means of the brake spring 25 , pushing against the brake disk 24 .
  • This generates sufficient drag on the upper tooth wheel 3 by pressing its tooth flank 35 against the tooth flank 35 of the lower tooth wheel 2 .
  • This pressure provides sufficient clamping force to the passing strand 36 for slip-less feeding.
  • the material of the teeth 19 can be composed of polyurethane or a similar elastic material.
  • the braking force can be adjusted by threading the adjustment nut 26 up or down the fixed mounting hub 27 .
  • FIG. 11 a cross-section through the lower tooth wheel 2 and upper tooth wheel 3 illustrate the slight skewing of the skewed axis 30 against the main axis 29 .
  • the different portions of the teeth 19 are shown with the tooth lead-in 32 assuring that the upstream strand 6 is properly placed into the open throat 28 of the two wheels.
  • the tooth apex 33 is the portion around which the strand 36 (not shown) is laid during its intermeshing with the teeth 19 of the upper tooth wheel 3 .

Landscapes

  • Tension Adjustment In Filamentary Materials (AREA)

Abstract

A mechanical device for advancing a strand between two rotatable sheaves where the facing sides of the sheaves are provided with teeth. The sheaves are mounted on separate axis and are tilted toward each other. This tilting allows the teeth of the two sheaves to engage with each other at one side and to disengage with a gap between themselves on the opposite side of the two disks. The strand is laid in the gap portion between the two sheaves and is wrapped in circular configuration between the teeth portion in undulated shape. The downstream portion of the wrapped strand is released by the teeth of the two sheaves in the gap portion and can be effortlessly be withdrawn from the sheaves.

Description

    TECHNICAL FIELD
  • This invention relates to an apparatus and method for slip-free feeding of yarn strands. It is especially useful where tension force is applied in order to increase or decrease the strand tension.
  • BACKGROUND
  • The invention relates to an apparatus and method of controlling the movement of a strand. More specifically, it transmits tension and/or velocity from a control mechanism to a moving strand. Strand materials such as filaments, fiberglass, textile yarns and the like are frequently guided around at least a portion of a pulley or sheave in order to add or reduce the strand tension by means of driving or breaking the pulley or sheave. One common problem with these systems is that the frictional forces between the strand and the pulley are insufficient to prevent slippage. To improve the adherence of the strand to the transporting pulley some sheaves are equipped with a waving groove on their periphery which forces the strand to follow its path and through this undulated path increases the friction between the sheave and the strand. One problem inherited with these systems is that the upstream strands have to have a certain tension in order to be pulled into the wavy groove. Another problem is the release of the downstream strand from the groove in the sheave which again requires a certain tension to assure that all filaments of a multi-fiber strand are released. Especially if some fibers of the strand are broken, they have a chance to be wound up around the sheave, fill up the undulated groove and the sheave loses the effect of the friction increasing groove.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a strand delivery system for controlling the tension and/or rate of delivery of a strand to a downstream located strand processing station by improving the coordination of sheave rotation with strand movement through a positive gripping of the strand by the engaging sheaves.
  • It is another object of object of the invention to be able to present the upstream strand to the feeding sheaves without the need of applying pretension to the upstream strand but rather by the simple act of laying the strand into an open space in the strand delivery system.
  • Yet a further object of the present invention is to freely release the downstream strand from the feeding sheaves without the need to forcefully pull the downstream strand out of the feeding sheaves.
  • Another object of the invention is to provide a feeding system without the possibility of the strand or individual fibers from wrapping themselves around rotating mechanical elements.
  • It is a further object of the invention to adjust the engagement of the protrusions in two sheaves in order to control the undulation of the transported strand.
  • Yet another object of the invention is to use flexible means to control the amount of undulation in the transported strand in order to limit the stress in the transported strand during it's engagement with the transporting sheaves.
  • An additional object of the invention is to be able to adjust the force of the flexible means to control the amount of undulation in the transported strand in order to limit the stress in the transported strand during it's engagement with the transporting sheaves to a desirable level.
  • It is a further object of the invention to provide a physical clamping action of the transported strand during its passing through the feeding disks through flanks of teeth of the feeding system.
  • Yet another object of the invention is the provision to adjust the clamping force exerted by the feeding disks on the passing strand.
  • It is yet another object of the invention to apply a clamping action on a strand while it passes through feeding disks by the application of an elastic material which presses the strand against the apex of teeth on an opposite disk.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Some of the objects of the invention have been set forth above. Other objects and advantages of the invention will appear as the description of the invention proceeds when taken in conjunction with the following drawings, in which:
  • FIG. 1 is a perspective view of the strand feeder with the strand wrapped around the two tooth wheels;
  • FIG. 2 is a side view of the strand feeder and demonstrates the open throat of the unit on the right side and the intermeshing teeth on the left;
  • FIG. 3 shows the back side of the strand feeder with the undulated configuration of the clamped strand between by the tooth wheels;
  • FIG. 4 gives a top view of the strand feeder;
  • FIG. 5 gives a cross section of the strand feeder showing the interior parts of the unit;
  • FIG. 6 shows the major elements of the strand feeder in exploded view and indicates how the parts are fitted together;
  • In FIG. 7 the two tooth wheels are shown separated with the strand shown between them;
  • FIG. 8 gives a variance of the strand feeder in a cross sectional view with an adjustable spring to controlling the clamping force of the strand between the two tooth wheels;
  • FIG. 9 shows another variance where the strand is held against an elastomer or foam material on the bottom wheel by the tooth apex of the upper wheel;
  • FIG. 10 is a cross section with a disk brake holding the upper tooth wheel 3 back through which means the strand is clamped between the teeth of the two opposing tooth wheels.
  • FIG. 11 is a cross-section through both wheels showing the various tooth portions.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring now specifically to the drawings, FIG. 1 shows in a perspective overall view the strand feeder. It consists of a tension control body 1 with a rotatable lower tooth wheel 2 on top. An upper tooth wheel 3 is located at a slanted angle above the lower tooth wheel 2 and intermeshes with it's teeth 19 on one side with the teeth 19 of the lower tooth wheel 2. The upper tooth wheel 3 is rotatably mounted on the upper bearing housing 4, which is stationary and being held through the mounting bracket 5 onto the tension control body 1. The upstream strand 6 is wrapped around the teeth 19 of the lower tooth wheel 2 and the upper tooth wheel 3 and the downstream strand 7 exits the feeder-system “A” after approximately 270 degree.
  • In FIG. 2 the side shows the skewed axis 30 of the upper tooth wheel 3 which is biased in relation to the main axis 29. This results in an open throat 28 of the lower tooth wheel 2 and the upper tooth wheel 3 into which the upstream strand 6 is laid.
  • Referring to FIG. 3, the rear view shows how the undulated strand 8 is held between the teeth 19 for a positive downstream feeding of the downstream strand 7. In addition it can be seen how the upper bearing housing 4 is mounted onto the tension control body 1 by means of the mounting bracket 5
  • The top of the feeder-system “A” is revealed in FIG. 4. It also shows the upstream strand 6 entering the feeder-system “A” and the downstream strand 7 leaving it. It reveals the top side of the mounting bracket 5 to which is fastened the upper bearing housing 4.
  • The cross section of the feeder-system “A” in FIG. 5 details the inside of the unit. The control rotor 9 is firmly mounted over the bottom shaft 12. The rotational velocity of the control rotor 9 with lower tooth wheel 2 firmly connected control the feed rate of the unit by electromagnetic means (not shown). The effect of this is a control of the tension in the downstream strand 7 in relation to the upstream strand 6. It also can be used to control the velocity of the downstream strand 7. The bottom shaft 12 is mounted in two body bearings 10 which also maintain its axial position. The top shaft 13 is mounted in two top wheel bearings 11 which in turn are mounted in the adjustment hub 18. The adjustment hub 18 is provided with an external adjustment thread 14. By turning this adjustment hub 18 in the internally threaded mounting bracket 5 its axial position can be adjusted in order to adjust the engagement of the teeth 19 on the lower tooth wheel 2 with the teeth 19 of the upper tooth wheel 3. Through this adjustment, the possibility is given to run finer as well as coarser strands through the feeder-system “A”. An adjustment lock-screw 15 clamps the adjustment hub 18 firmly onto the mounting bracket 5 in order to maintain a adjusted setting. The lower tooth wheel 2 is mounted onto the bottom shaft 12 by means of a lower mounting-flange 16 and the upper tooth wheel 3 is mounted onto the top shaft 13 by means of the upper mounting-flange 17.
  • Referring to FIG. 6, the exploded view shows the individual sup-assemblies more clearly. The center lines demonstrate how the individual parts are positioned in assembled mode.
  • In FIG. 7 the lower tooth wheel 2 and the upper tooth wheel 3 are shown separated to more clearly demonstrate how the strand 36 relates to them. The undulated configuration is caused by the teeth 19 of both, the lower tooth wheel 2 and the upper tooth wheel 3. This zigzagging of the strand generates at each bending point additional friction which assists in the positive transport of the strand through the feeder-system “A”. The thickness of the tension teeth 19 can be designed in such a manner that they touch each other on both tooth flanks 35.
  • A variant of the clamping action is shown in FIG. 8. Rather than a fixed adjustment as shown particularly in FIG. 5 this variation incorporates a spring loaded downward clamping force induced by the tension spring 21 which presses the axially floating hub 22 downward. The rate of the spring force can be adjusted by threading the spring nut 20 up or down on the fixed mounting plate 23. This arrangement allows the upper tooth wheel 3 to self-adjust according to the thickness and/or stiffness of the strand and thus prevents excess stressing of the undulated strand 8.
  • FIG. 9 reveals another variation of clamping assistance for the strand material. The undulated strand 8 is pressed by the teeth 19 of the upper tooth wheel 3 into a soft elastomer or foam material 31. This provides sufficient clamping force, together with the friction multiplying undulation to positively feed the strand by the feeder-system “A”.
  • FIG. 10 shows another variation of the invention where a braking force is applied to the upper tooth wheel 3 by means of the brake spring 25, pushing against the brake disk 24. This generates sufficient drag on the upper tooth wheel 3 by pressing its tooth flank 35 against the tooth flank 35 of the lower tooth wheel 2. This pressure provides sufficient clamping force to the passing strand 36 for slip-less feeding. It should be realized that the material of the teeth 19 can be composed of polyurethane or a similar elastic material. The braking force can be adjusted by threading the adjustment nut 26 up or down the fixed mounting hub 27.
  • In FIG. 11 a cross-section through the lower tooth wheel 2 and upper tooth wheel 3 illustrate the slight skewing of the skewed axis 30 against the main axis 29. The different portions of the teeth 19 are shown with the tooth lead-in 32 assuring that the upstream strand 6 is properly placed into the open throat 28 of the two wheels. The tooth apex 33 is the portion around which the strand 36 (not shown) is laid during its intermeshing with the teeth 19 of the upper tooth wheel 3. The absence of a shaft between the two disks, the constant intermeshing of the tooth nose 34 and the general shape of the teeth 19 prevents broken filament of the strand 36 from moving into the center of the lower tooth wheel 2 and upper tooth wheel 3 and from wrapping itself around any rotating parts disks of the feeder-system “A”.
  • Although the invention has been described with reference to specific example embodiments, it will be appreciated that it is intended to cover all modifications and equivalents within the scope of the appended claims. It should also be understood that the present disclosure includes all possible combinations and applications of any individual features recited in any of the appended claims.
  • NUMBERING IN DRAWINGS
    • feeder-system “A”
    • tension control body 1
    • lower tooth wheel 2
    • upper tooth wheel 3
    • upper bearing housing 4
    • mounting bracket 5
    • upstream strand 6
    • downstream strand 7
    • undulated strand 8
    • control rotor 9
    • body bearing 10
    • top wheel bearings 11
    • bottom shaft 12
    • top shaft 13
    • adjustment thread 14
    • adjustment lock-screw 15
    • lower mounting-flange 16
    • upper mounting-flange 17
    • adjustment hub 18
    • teeth 19
    • spring nut 20
    • tension spring 21
    • axially floating hub 22
    • fixed mounting plate 23
    • brake disk 24
    • brake spring 25
    • adjustment nut 26
    • fixed mounting hub 27
    • open throat 28
    • main axis 29
    • skewed axis 30
    • elastomer or foam material 31
    • tooth lead-in 32
    • tooth apex 33
    • tooth nose 34
    • tooth flank 35
    • strand 36

Claims (8)

1. A strand feeding device for transporting strand material comprising of:
(a) a pair of rotatable disks;
(b) the axis of the two rotatable disks skewed to each;
(c) the skewing of the two axis resulting that one portion of a rotatable disk is closer to the other rotatable disk on one side and further apart on the opposite side;
(d) supplying both rotatable disks with teeth on the surfaces where they face each other;
(e) intermeshing the teeth of one rotatable disks with the teeth of the other rotatable disks at the place where they are closer together;
(f) guiding a moving strand to a point between the two rotatable disks where they are further part;
(g) letting the strand run through the portion of the two rotatable disks where they intermesh.
2. A strand feeding device according to claim 1 where the rate of rotation of at least one rotatable disk is controlled.
3. A strand feeding device according to claim 1 where the clearance of the intermeshing teeth can be adjusted.
4. A strand feeding device according to claim 1 or 2 where the two rotatable disks are pressed together by an adjustable spring force;
5. A strand feeding device according to claim 1 or 2 where the rear portion of the teeth have an extension to prevent the strand from slipping towards the centers of the two disks.
6. A strand feeding device according to claim 1 where the teeth are made from elastomeric materials;
7. A strand feeding device according to claim 1 where an elastomeric foam cushion is placed between the teeth of one rotatable disk which presses against the teeth of the other rotatable disk in order to act as a clamp for the passing strand.
8. A method of feeding a strand by mechanical means comprising the steps of:
(a) application of a pair of disks
(b) providing each of the two disks with teeth facing each other;
(c) skewing the axis of the disks against each other in order to intermesh the teeth of the two disks in one area and leaving a gap between the teeth on the opposite side;
(d) guiding a moving strand into the gap between the two rotatable disks;
(h) letting the strand run through the portion of the two rotatable disks where they intermesh.
US12/454,167 2009-05-14 2009-05-14 Strand-Feeder Abandoned US20100287994A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/454,167 US20100287994A1 (en) 2009-05-14 2009-05-14 Strand-Feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/454,167 US20100287994A1 (en) 2009-05-14 2009-05-14 Strand-Feeder

Publications (1)

Publication Number Publication Date
US20100287994A1 true US20100287994A1 (en) 2010-11-18

Family

ID=43067395

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/454,167 Abandoned US20100287994A1 (en) 2009-05-14 2009-05-14 Strand-Feeder

Country Status (1)

Country Link
US (1) US20100287994A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508457A3 (en) * 2011-04-04 2014-04-02 Kern Antriebstechnik GmbH Thread supplier
CN110255280A (en) * 2019-06-19 2019-09-20 温州大学瓯江学院 A kind of adjustable hawser dragger
CN116475541A (en) * 2023-06-26 2023-07-25 山东智迈德智能科技有限公司 Submerged arc welding wire reel supporting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US656428A (en) * 1900-05-18 1900-08-21 William S Sherd Twine-tension device.
US4015447A (en) * 1975-01-03 1977-04-05 Morris Philip Method and apparatus for positively feeding yarn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US656428A (en) * 1900-05-18 1900-08-21 William S Sherd Twine-tension device.
US4015447A (en) * 1975-01-03 1977-04-05 Morris Philip Method and apparatus for positively feeding yarn

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508457A3 (en) * 2011-04-04 2014-04-02 Kern Antriebstechnik GmbH Thread supplier
CN110255280A (en) * 2019-06-19 2019-09-20 温州大学瓯江学院 A kind of adjustable hawser dragger
CN116475541A (en) * 2023-06-26 2023-07-25 山东智迈德智能科技有限公司 Submerged arc welding wire reel supporting device

Similar Documents

Publication Publication Date Title
US10017364B2 (en) Traction winch
US20100287994A1 (en) Strand-Feeder
US9340381B2 (en) Paper-sheet feeding unit
JP2006347121A (en) Belt core wire supply apparatus
JP4460164B2 (en) Self-compensating filament material tension control device
CN102556734A (en) Cloth paving machine
US6435445B1 (en) Self-compensating filament tension control device employing a friction band
NL1032830C2 (en) Device for bringing elongated flexible elements to mutually equal voltages.
CN202400664U (en) Cloth paving machine
US6119734A (en) Cable binding tool
CN106865343B (en) Wire guiding device for a winding machine and associated winding machine
US2605056A (en) Wire-reeling device
CN104085740B (en) A kind of uncoiling being applied to fiber coating equipment and tension adjusting device
JP5744651B2 (en) Winding machine tensioning device
JPH08157189A (en) Metallic wheel having braking function
EP2509904B1 (en) Self-compensating filament tension control device with eddy current braking
WO2024024910A1 (en) Winding device and winding method
CN104032434A (en) Idler wheel friction tension device
EP4198181A2 (en) Yarn sending device and false-twist texturing machine
JP5234280B2 (en) Tension device in filament winding device
CN203904584U (en) Rolling wheel friction tensioner
JP2024010846A (en) Optical fiber winder and torque control roller
WO2023106396A1 (en) Fiber bundle drawing device, method for drawing out fiber bundle, and method for manufacturing fiber composite material
JPH03216442A (en) Coil material feeding device and conveying mechanism used for this device
JPS641318Y2 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION