US20100266445A1 - Portable antimicrobial ultra violet sterilizer - Google Patents

Portable antimicrobial ultra violet sterilizer Download PDF

Info

Publication number
US20100266445A1
US20100266445A1 US12/761,859 US76185910A US2010266445A1 US 20100266445 A1 US20100266445 A1 US 20100266445A1 US 76185910 A US76185910 A US 76185910A US 2010266445 A1 US2010266445 A1 US 2010266445A1
Authority
US
United States
Prior art keywords
uvc
chamber
ozone
supply
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/761,859
Inventor
Kenneth L. Campagna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STER-O-WAVE LLC
Original Assignee
Kenneth L. Campagna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenneth L. Campagna filed Critical Kenneth L. Campagna
Priority to US12/761,859 priority Critical patent/US20100266445A1/en
Priority to CN2010800277616A priority patent/CN102458485A/en
Priority to PCT/US2010/031527 priority patent/WO2010123785A2/en
Priority to CA2763710A priority patent/CA2763710C/en
Priority to EP10767563.9A priority patent/EP2429595B1/en
Publication of US20100266445A1 publication Critical patent/US20100266445A1/en
Assigned to STER-O-WAVE LLC reassignment STER-O-WAVE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMPAGNA, KENNETH L.
Priority to US13/606,180 priority patent/US9114183B2/en
Priority to US14/703,386 priority patent/US20150231288A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/20Gaseous substances, e.g. vapours
    • A61L2/202Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/24Apparatus using programmed or automatic operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/14Means for controlling sterilisation processes, data processing, presentation and storage means, e.g. sensors, controllers, programs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/16Mobile applications, e.g. portable devices, trailers, devices mounted on vehicles

Definitions

  • This invention relates generally to sterilizing systems, and more particularly, to a portable antimicrobial ultraviolet sterilizer for inactivating bacteria, viruses, fungi, prions, viroids and spores.
  • a typical sterilization procedure using an autoclave requires distilled water, sterilization or biohazard bags, germicidal liquid spray wash, ultra sonic bathing and drying by air compressors.
  • UV sterilization is known for use and sterilizing all manners of objects, and is used in purification and disinfection of water, air and surface. Throughout the years ultraviolet technology has become well established as a method of choice for its effectiveness, economy, safety, speed, ease of use, and because the process is free of by-products. UV sterilization is a rapid sterilization method, without the use of heat or chemicals. However, this process has not been reduced in practice to a readily accepted device and method for common usage.
  • UV sterilizers take many shapes and forms, and offer a variety of features. While these prior art UV sterilizers are presumably adequate for their intended purposes, none of these prior art devices are configured adequately to a portable device or applications that can be used as commercial medical grade sterilization units that replace conventional autoclaves or for low cost portable home units.
  • a portable sterilization unit consisting of an enclosure which uses an ultra violet radiation in the C band wave length to sterilize objects and surfaces by inactivating bacteria, viruses, fungi, prions, viroids and spores.
  • the sterilization program sequentially irradiates articles with UV radiation at a wavelength that creates ozone (preferably 185 nm) followed by irradiation with germicidal UVC radiation wavelengths (preferably 253-255 nm).
  • ozone preferably 185 nm
  • germicidal UVC radiation wavelengths preferably 253-255 nm
  • an entrance door on one or more faces of the cubical structure.
  • a shelf formed of silica or quartz glass or sapphire plate disposed substantially in the central portion of the enclosure's interior compartment.
  • Mounted in the interior of the chamber is at least one ozone lamp that spans substantially the full length of the interior of the chamber.
  • at least an elongated UVC lamp spanning substantially the entire width of the chamber is used.
  • at least two elongated UVC lamps are used and disposed opposing one another such that one lamp is mounted on an upper portion of the chamber and a second lamp is mounted on a lower portion of the chamber below the glass plate shelf.
  • two elongated UVC lamps are mounted in an upper portion of the chamber and four elongated UVC lamps are mounted on a lower portion of the chamber below the glass plate shelf.
  • UVC type radiation in a self contained portable enclosure could be considered “green,” environmentally safe, and controlled with no adverse effects or residuals.
  • the purpose of the present invention is to present a UV sterilization system that has none of the disadvantages of prior art.
  • each embodiment may meet one or more of the foregoing recited objects in any combination. It is not intended that each embodiment will necessarily meet each objective.
  • FIG. 1 is a top left front perspective view of a portable antimicrobial ultraviolet sterilizer according to the present invention.
  • FIG. 2 is a top right front perspective view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 with the entrance door open and showing the interior of a sterilizing chamber.
  • FIG. 3 is a top right front perspective view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 with the entrance door removed to further illustrate dimensions of the sterilizing chamber and the printer of FIG. 1 removed to further illustrate the support slide assembly used to hold the printer.
  • FIG. 4 is a partially transparent left side orthogonal view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 illustrating the spatial relationships of UVC lamps, an ozone lamp and a glass shelf of the present invention.
  • FIG. 5 is a partial orthogonal view of a curved corner of FIG. 1 illustrating the use of a curved corner between a chamber's entrance door and its adjacent walls.
  • FIG. 6 is a block diagram of one preferred embodiment of the present invention.
  • FIG. 7 is a flow chart depicting a present novel method used in a sterilization session to destroy or render harmless any DNA based organisms on objects being sterilized.
  • UVC Ultraviolet C
  • UVC generally refers to radiation of wavelengths ranging from 280 nm to 100 nm and energy per photon ranging from 4.43 to 12.4 eV.
  • rectangular is understood to include the case where all sides of the geometric shape are of equal length, also known as an equilateral rectangle or a square.
  • FIG. 1 is a top left front perspective view of a portable antimicrobial ultraviolet sterilizer.
  • FIG. 2 is a top right front perspective view thereof with the entrance door open and showing the interior of a sterilizing chamber 8 .
  • a portable sterilizer 2 according to the present invention comprises a housing 3 which forms two compartments, a parts compartment 5 that houses electronic and electrical components and the chamber 8 that is used for the actual sterilization process.
  • the parts compartment 5 houses operative and functional components of the unit such as a printer 20 , ballasts, lamp holders, sockets, micro switches, blower motor, ballasts, cooling fan, power supply, wiring and circuit fuses.
  • the chamber 8 is a generally rectangular cavity having a ceiling 10 , a floor 12 opposingly disposed to the ceiling 10 and four side walls 14 defining a spatial volume sufficient for irradiating an object by direct contact with UVC wavelengths.
  • the chamber 8 is preferably rectangular and is formed of plastic, metal, stainless steel or other material that is opaque to UV radiation and conducive to reflecting or scattering UV radiation within the chamber 8 .
  • the chamber 8 may also be made spherical, a rectangular chamber is more easily manufactured using conventional manufacturing techniques than a spherical chamber.
  • a rectangular chamber is used, the applicant discovered that it is advantageous to provide curved corners in order to enhance scattering of ultraviolent radiation within the chamber 8 .
  • the chamber walls are formed of 304-308 grade stainless steel.
  • the chamber's interior surfaces are preferably highly polished mirror finish stainless steel to reflect and scatter the UVC radiation within the chamber 8 .
  • the interior surface is coated with highly reflective white paint coating.
  • the size of the chamber 8 may vary depending upon the application, however, in most embodiments, the size will be such that the unit is portable. In the embodiment depicted in FIG. 1 , the sterilizer approximates the size of a conventional microwave oven. Typical embodiments comprise a chamber volume ranging from about 1500 cubic inches to about 2500 cubic inches, preferably from about 1700 cubic inches to about 1900 cubic inches.
  • an entrance door 54 on one or more walls of the chamber 8 there is provided an entrance door 54 on one or more walls of the chamber 8 .
  • the entrance door 54 is hingeably connected to an edge of the chamber 8 and secured using a magnetic latch on an opposing edge.
  • the entrance door 54 is secured using a mechanical latch, solenoid or electric magnetic coil.
  • this side wall 14 provided by the entrance door 54 will be referenced as the front, however, it is to be understood that any side may contain an entrance door or even several walls of the chamber 8 may feature an entrance door 54 .
  • the entrance door 54 preferably contains a door gasket (not depicted) to create and maintain a seal when the door is in the closed position.
  • a handle is affixed to the entrance door 54 to facilitate easy opening of the door 54 by a user. As will be appreciated, any size or configuration of handle may be used.
  • the user input/output interface 30 comprises a key pad or touch pad for receiving and transmitting user input to the controller 40 and a communicating means to a device operably connected to the user input/output interface 30 .
  • the communicating means comprises a wireless terminal capable of transmitting data wirelessly from the controller to a device operably connected to the controller or from the device to the controller.
  • the display is configurable to display any number of indicators relating to the operation of the sterilizer.
  • a value is displayed to indicate the usage hours of each UVC and ozone lamp in the sterilizer, a value is displayed to indicate the progress of a sterilization session and a value is displayed to indicate whether a sterilization session has been completed. All such indications aid a user in knowing when to change a UVC and/or ozone lamp and perform other periodic maintenance or testing activities and whether a sterilization session was complete and/or successful in sterilizing the articles.
  • an analog or digital timer dial is provided and is operably connected to the controller. As the timer dial is turned, a sterilization session is started. As the timer dial stops, the active sterilization session is terminated.
  • the timer dial is preferably one that allows for 0-60 minutes to indicate the duration of a sterilization session. It is to be appreciated that other equivalent user interfaces may be used to set a sterilization timer.
  • the user input/out interface and visual display may also be located on other portions of the sterilizer.
  • a power (on-off) switch 66 and an operation indicator 68 for example a light
  • an operator indicator is digitally displayed on the display 24 in lieu of using a separate operation indicator.
  • the power switch 66 connects the controller and all components operably connected to it and all lamps to a power source.
  • the power switch 66 removes the controller and all components operably connected to it and all lamps from the power source.
  • an exterior socket 28 allows a UVC wand to be operably connected to the sterilizer for external use.
  • a UVC wand may be connected to a wall socket directly.
  • a UVC wand that is connected to the sterilizer receives the benefit of operating using a program set in the sterilizer. This is especially useful for surfaces which cannot be contained within the chamber 8 , such as, for example, shelves, chairs, tables, equipment and the like.
  • the UVC wand allows surfaces to be treated by waving the wand over the surface.
  • the wand is preferably coupled with a half moon safety shield to protect the user from UVC radiation during use.
  • An interior socket 26 allows a UVC wand to be operably connected to the interior of the chamber 8 for supplemental UVC radiation.
  • a UVC wand is most beneficially used on an object to be sterilized if the object is generally elongated and has a narrow lumen which the radiation of the UVC lamps 6 may not sufficiently reach. Placing the wand in the lumen provides direct UVC radiation to these surfaces to maximize the sterilization effects.
  • FIG. 3 is a top right front perspective view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 with the entrance door 54 removed to further illustrate dimensions of the sterilizing chamber and the printer of FIG. 1 removed to further illustrate the support slide assembly used to hold the printer 20 of FIG. 2 .
  • FIG. 4 is a partially transparent left side orthogonal view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 illustrating the spatial relationships of UVC lamps 6 , an ozone lamp 4 and a glass shelf 16 of the present invention.
  • Mounted in the interior of the chamber 8 is at least one UVC lamp 6 that spans substantially the full width 56 of the chamber 8 .
  • six functionally equivalent and elongated UVC lamps 6 are used.
  • Two are substantially aligned with the width 56 of the chamber and disposed substantially symmetrically about the depth 60 and width 56 of the ceiling 10 and provide combined working UV power output of at least 8 watts.
  • Four are substantially aligned with the width 56 of the chamber and disposed substantially symmetrically about the depth 60 and width 56 of the floor 12 and provide combined working UV power output of at least 16 watts.
  • Other lamp shapes (such as U-shaped) and mounting locations may be used as long as radiation is directed such that all portions of the chamber 8 receive UVC radiation.
  • the width 56 , depth 60 and height 58 are preferably about 15 inches, 12 inches and 12 inches, respectively. However, other suitable dimensions can be used provided that the output requirements defined elsewhere herein of the ozone and UVC lamps are met.
  • the low pressure UVC lamps are most effective, because they emit most of the radiant energy in the germicidal wavelength of 253.7 nm to 254.3 nm in the UVC and germicidal part of the spectrum.
  • the ozone lamp preferably a high or very high ozone lamp, emits a radiation below 200 nm, and preferably at 185 nm, which wavelengths produce ozone.
  • Ozone has deodorizing properties and is in itself a bactericidal and fungicidal agent. This gaseous ozone contacts surfaces of the equipment that are difficult or impossible to contact with the UVC waves, getting into hollow portions, small cavities, crevices and other apertures where microbes, fungi, yeast, viruses and other germs may be hosted.
  • an elongated ozone lamp 4 is disposed substantially centrally on the ceiling and parallel to and substantially spanning the width 56 of the chamber 8 .
  • Other ozone lamp shapes and mounting locations may also be used provided that the object to be sterilized is fully exposed to ozone generated by such an ozone lamp.
  • a shelf 16 formed of silica or quartz glass or sapphire plate disposed substantially centrally in the chamber 8 and/or between the two groups of UVC lamps on the ceiling 10 and on the floor 12 with the shelf's 16 plane substantially parallel to the ceiling 10 or floor 12 .
  • the shelf 16 is supported by one or more stainless steel pins 18 or other mounting means known in the art.
  • the silica or quartz glass or sapphire plate is of a grade that allows at least 50% transmission of UVC short wave radiations, preferably at least 55% transmission.
  • a silica or quartz glass or sapphire plate must be used because ordinary window glass passes about 90% of the light above 350 nm, but blocks over 90% of the light below 300 nm, the wavelength of the UVC lamp radiation.
  • the glass plate effectively divides the chamber 8 into two portions, i.e., an upper portion and a lower portion.
  • an object to be sterilized is disposed on the upper portion.
  • an ozone lamp 4 is beneficially disposed on the upper portion of the chamber 8 , enabling ozone generated by the ozone lamp 4 to penetrate openings of the object to be sterilized.
  • FIG. 5 is a partial orthogonal view of a curved corner of the chamber 8 of FIG. 2 , illustrating the use of a curved corner between the entrance door 54 and one of its adjacent walls, for example, the ceiling 10 .
  • Curved corners promote reflection and scattering of UVC radiation and reduce the number of UVC lamps required to provide sufficient UVC radiation coverage within the chamber 8 . Curved corners also reduce the number of surfaces (walls) on which UVC lamps are required, thereby simplifying the design of the sterilizer and reducing associated manufacturing and maintenance costs.
  • a curved corner 62 is formed on the ceiling 10 of the chamber 8 such that when the entrance door 54 is closed, a side wall 14 is formed, continuing the profile formed by the curved corner 62 of the ceiling 10 onto a vertical side wall 14 .
  • the radius of the curved corner is defined by the relationship where the ratio of the radius to the width 56 of the chamber 8 , height 58 of the chamber 8 or depth 60 of the chamber 8 preferably ranges from 0.0026 to 0.1. In one preferred embodiment, the radius is about 0.25 inches.
  • UVC lamps 6 use an ultra violet radiation in the short-wave ultraviolet radiation, in the “C” band (100 to 280 nanometers) to sterilize objects and surfaces by inactivating bacteria, viruses, fungi, prions, viroids and spores.
  • UV-C UV-C
  • UVGI ultraviolet germicidal irradiation
  • UVGI Ultraviolet Germicidal Irradiation
  • UVC light at 253-254 nm causes damage to the nucleic acid of microorganisms by forming covalent bonds between certain adjacent bases in the DNA.
  • the formation of such bonds prevents the DNA from being unzipped for replication, and the organism is unable to reproduce. In fact, when the organism tries to replicate, it dies.
  • the present invention is effective in killing prions, in particular prion glycoproteins.
  • the present device and method provide an effective microbiocidal treatment against transmittable prion diseases that occur in humans and animals.
  • the present invention kills the prions associated with the transmissible spongiform encephalopathy (TSE) known more commonly as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (mad cow disease) in cattle, and scrapie in sheep. These prions are also suspected to cause Alzheimer's disease and other brain plaque conditions.
  • TSE transmissible spongiform encephalopathy
  • CJD Creutzfeldt-Jakob disease
  • bovine spongiform encephalopathy mad cow disease
  • scrapie in sheep are also suspected to cause Alzheimer's disease and other brain plaque conditions.
  • the present invention also kills the viroids associated with Hepatitis D.
  • the combination of ozone and UVC radiation treatment at the dosage mentioned elsewhere in the specification is capable of inactivating microorganisms such as prion, viroids, SARS, AIDS, HIV, e-coli, Agrobacterium lumefaciens 5, Pseudomonas aeruginosa (Environ.Strain) 1,2,3,4,5,9, Bacillus anthracis 1,4,5,7,9 (anthrax veg.), Pseudomonas aeruginosa (Lab. Strain) 5 , 7 , Bacillus anthracis Spores (anthrax spores), Pseudomonas fluorescens 4,9, Bacillus megatherium Sp.
  • microorganisms such as prion, viroids, SARS, AIDS, HIV, e-coli, Agrobacterium lumefaciens 5, Pseudomonas aeruginosa (Environ.Strain) 1,2,3,4,5,9, Bacill
  • FIG. 6 is a block diagram of one preferred embodiment of the present invention.
  • a controller 40 is provided to control operations of the sterilizer 2 .
  • a user Input/Output interface 30 functionally connected to the controller 40 is further provided to receive inputs from a user or a device and send outputs to the user or the device.
  • the device is a keypad, touch pad, computer, a monitor, an MP3 player, MP4 player, a digital display, an ipod, an ipad, a finger print reader, a security card reader, an entry code reader, a smart phone and the like.
  • a display 24 functionally connected to the controller 40 is provided to display the result of a sterilization session or communicate other pertinent information from the controller to a walk-up user.
  • a printer 20 functionally connected to the controller 40 is provided to receive and provide a printout of the result corresponding to a sterilization session if requested.
  • a power switch 66 is provided to enable or halt all operations of the sterilizer 2 .
  • a door state switch 36 functionally connected to the controller is provided to indicate whether the entrance door 54 is open. In the off state, the power switch 66 removes power from all components of the sterilizer, thereby halting all activities including programming of the sterilizer. When the door state switch 36 indicates an opened entrance door 54 , the user may still program the controller in order to set a sterilizing program.
  • a UVC lamp operation monitor 32 functionally connected to the controller 40 is further provided to detect proper operation of the UVC lamps 32 and it provides an indication to the controller 40 whether the UVC lamps are functioning properly.
  • An example parameter monitored by the lamp operation detector 32 is the amount of electrical current at an electrical potential the UVC lamps 6 source to function at the level expected to provide proper sterilization. If the electrical current at the electrical potential received by the UVC lamps 6 deviates from a predetermined range, a fault condition is issued by the UVC lamp operation monitor 32 and received by the controller 40 .
  • an ozone lamp operation monitor 34 functionally connected to the controller 40 is further provided to detect the proper operation of the ozone lamp 4 .
  • a fault condition is issued by the ozone lamp operation monitor 34 and received by the controller 40 .
  • the controller 40 further communicates the fault condition to a remote server which then specifies the failure and a need for service.
  • the controller 40 further comprises a memory 42 and a clock 44 .
  • the result of a sterilization session may be saved in the memory 42 for later retrieval.
  • a section of the memory 42 is preferably reserved for long-term storage of sterilization session data and is erasable only by a trained professional. This long-term storage facilitates auditing of sterilization session data which can be traced back for a number of years.
  • sterilization session data is additionally transmitted to an offsite location for storage or notification purposes.
  • the clock 44 enables the controller to perform time-keeping operations such as providing realtime time stamps to a sterilization session.
  • a typical sterilization session result comprises an indication whether a sterilization session runs to completion.
  • a successfully completed sterilization session is defined as a sterilization session in which a fault has not occurred during the entire duration of the sterilization session.
  • a successfully completed sterilization session however does not necessarily indicate a successful sterilization session.
  • an unused UVC test strip is further provided and substantially centrally disposed prior to the commencement of each sterilization session such that the proper functioning of the UVC lamps can be verified.
  • the evidence of exposure to the UVC lamps on the UVC test strip is visually read, quantified and compared to a pre-established standard for sufficient UVC exposure corresponding to a pass condition.
  • an unused ozone test strip is further provided and disposed on the upper surface of the glass plate 16 prior to the commencement of each sterilization session such that the proper functioning of the ozone lamp can be verified.
  • the evidence of exposure to the ozone lamp on the ozone test strip is visually read, quantified and compared to a pre-established standard for sufficient ozone exposure corresponding to a pass condition.
  • a pass condition from both UVC and ozone test strips and the successful completion of a sterilization session constitute a successful sterilization session.
  • the visually determined test strips data is entered manually via the user Input/Output interface 30 such that the controller 40 can determine whether the sterilization session was successful and saves such a result to the memory 42 .
  • an automatic indication of a successful sterilization session may also be provided by using a UVC detector and an ozone detector, both functionally connected to the controller 40 .
  • the evidence and level of exposure to the ozone lamp and UVC lamp on the ozone and UVC test strips are automatically read respectively, quantified and compared to a their corresponding pre-established standards for sufficient ozone and UVC exposure respectively corresponding to a pass condition.
  • a lock solenoid 38 functionally connected to the controller 40 for locking the entrance door 54 in its closed position.
  • the controller 40 checks whether the entrance door 54 is closed by receiving a reading from the door state switch 36 . If the entrance door 54 is determined to be closed, the lock solenoid 38 is then activated such that the entrance door 54 is locked. Upon the completion or cancellation of a sterilization session, the ozone and UVC lamps are deactivated and the lock solenoid 38 is deactivated such that the entrance door 54 becomes unlocked.
  • An internal socket 26 functionally connected to the controller 40 is further provided in the interior of the chamber 8 .
  • the sterilization program set for the UVC lamps 8 is applied to a UVC wand connected to the internal socket 26 .
  • U.S. Pat. Pub. No. 20080260601 discloses a UV sterilizing wand which can be adapted to be powered by plugging its power cord into the internal socket 26 , which patent application is incorporated by reference in its entirety herein.
  • Such an additional sterilizing source is most beneficial when an object to be sterilized has a generally opaque structure consisting of narrow openings which cannot be easily reachable by using merely the UVC lamps 6 of the sterilizer 2 according to the present invention.
  • An external socket 26 functionally connected to the controller 40 is further provided on the exterior of the chamber 8 .
  • the sterilization program set for the UVC lamps 8 is applied to a UVC wand connected to the external socket 28 .
  • a separate sterilization program can be applied.
  • a wand is used externally when an object to be sterilized is too big to be placed within the chamber 8 .
  • the sterilizer 2 typically receives power from a conventional AC power source such as a wall power outlet 48 .
  • a battery 52 can be functionally connected to the controller 40 as an alternative power source.
  • a power selector 46 is used to selectably allow the user to select the power source from which to power the sterilizer 2 .
  • the power selector 46 is essentially a manual single pole double throw switch which selectively connects the wall power 48 or battery 52 to the controller 40 .
  • An inverter is provided to convert the battery DC power to AC power in order to power the controller 40 . It shall be appreciated that other equivalent means of switching power source may be suitably employed. It shall also be appreciated that the controller 40 may or may not provide power directly to any components that require electrical power to run.
  • a manual power generator 50 is further provided to allow a user to recharge the battery 52 .
  • a manual power generator 50 is essentially a device that converts human power to electrical power. Though not required, it is generally a hand crank in the form of a rotary device is fitted with a handle which can be turned to create DC power.
  • the battery 52 is a rechargeable battery. It should be appreciated that various other means of generating power to be stored in the battery 52 are readily available to those skilled in the art. For instance, electrical energy may alternatively be generated from solar panels and wind turbines.
  • FIG. 7 is a flow chart depicting a present novel method used in a sterilization session to destroy or render harmless any DNA based organisms on objects being sterilized.
  • an object is placed on the glass shelf 16 in the interior of the chamber 8 as depicted in FIG. 2 .
  • the entrance door 54 is then closed.
  • the method comprises step of turning on 74 ozone lamp for a first predetermined duration of from 15 seconds to 60 minutes, preferably from 15 to 60 seconds.
  • a timer corresponding to the predetermined duration is started.
  • At least one ozone lamp 4 capable of producing from at least 0.25 to 10 grams per hour of ozone is used.
  • an ozone lamp 4 capable of emitting UV radiation at wavelength of about 185 nm is used. Referring to FIGS.
  • the controller 40 checks whether the timer has expired 78 . If the timer has expired, the controller 40 continues to execute the preprogrammed next step. The controller 40 further checks whether an event has occurred that canceled the current sterilization session 82 . For instance, if the ozone lamp operation monitor 34 detects a fault condition, the sterilization session will be stopped, rendering the sterilization session incomplete.
  • the method further comprises step of turning on 76 at least one UVC lamp but preferably six UVC lamps for a second predetermined duration of from 15 seconds to 60 minutes, preferably from 15 to 60 seconds.
  • a timer corresponding to the predetermined duration is started.
  • at least one UVC lamp capable of supplying UVC radiation at a wavelength of about 253.7 nm and dosage of from at least 100 to 800 microwatts per square centimeter at one meter from the UVC lamp is used.
  • the controller 40 checks whether the timer has expired 80 . If the timer has expired, the controller continues to indicate that the sterilization session has been completed.
  • the controller 40 further checks whether an event has occurred that canceled the current sterilization session 82 . For instance, if the ozone lamp operation monitor 34 detects a fault condition, the sterilization session will be stopped, rendering the sterilization session incomplete.
  • the ozone molecules formed as a result of the ozone lamp absorb ultraviolet radiation having wavelengths between 240 and 310 nm. Upon absorbing ultraviolet radiation of wavelength of 254 nm, each triatomic ozone molecule becomes diatomic molecular oxygen molecule O 2 plus a free oxygen atom O, thereby reducing the ozone O 3 concentration to an acceptable level as depicted in the following chemical reaction.
  • ozone is an oxidative agent which must be avoided when concentration rises above 0.05 ppm in an indoor environment
  • ozone evacuation or treatment becomes necessary when ozone concentration rises beyond a level capable of producing health hazards.
  • Such evacuation or treatment requires purpose-built equipment which adds to the cost of producing such a sterilizer
  • Applicant discovered that by sequencing the operation of the ozone and UVC lamps, production and neutralization of ozone is accomplished within a sterilization session without requiring additional steps or equipment.
  • the ozone generated and used in the sterilization session is completely decomposed to form oxygen molecules and oxygen atoms, thereby rendering the sterilizer safe to be handled without additional treatment.
  • any DNA based organisms on the objects being sterilized are destroyed and rendered harmless.
  • the equipment to be sterilized is first rinsed or immersed in an antimicrobial or biocidal solution.
  • the solution is a non-alcohol based cleaning solution.
  • the equipment is immersed in a solution prepared according to the teachings in United States Published Patent Application 20100006804 to Sakovich et al for “A highly protonated, supercharged, low pH, non-corrosive composition,” which patent application is incorporated by reference in its entirety herein. This product is sold under the trade name Saniphex by Odysseus Industries, Inc., 8348 Little Road, New Port Richey, Fla.

Abstract

The present invention relates to a sterilization unit consisting of a cubical enclosure which uses a sequenced supply of ozone and ultraviolet radiation in the C band (UVC) wave length to sterilize. In use, an article to be sterilized is positioned atop a glass plate mounted between two sources of UVC radiation sources and ozone is first supplied to the enclosure for a period of 15 seconds to 60 minutes followed by a supply of UVC radiation for a period of 15 seconds to 60 minutes.

Description

    PRIORITY CLAIM AND RELATED APPLICATIONS
  • This application claims the benefit of priority from provisional application U.S. Ser. No. 61/171,346 filed Apr. 21, 2009. Said application is incorporated by reference in its entirety.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to sterilizing systems, and more particularly, to a portable antimicrobial ultraviolet sterilizer for inactivating bacteria, viruses, fungi, prions, viroids and spores.
  • 2. Description of Related Art
  • The use of portable sterilizing devices is known in the prior art. By way of illustration, medical facilities generally sterilize equipment by using autoclaves having a pressurized steam and superheated water process. This process is commonly used in microbiology, medicine, body piercing, veterinary science, dentistry, podiatry and metallurgy. Autoclaves are also used in curing carbon-fiber composite parts and rubber parts and for the treatment and sterilization of waste.
  • This steam sterilization process requires many steps and resources.
  • A typical sterilization procedure using an autoclave requires distilled water, sterilization or biohazard bags, germicidal liquid spray wash, ultra sonic bathing and drying by air compressors.
  • Drawbacks of these autoclaves include high energy consumption, time waste due to multiple step disinfecting sequences, environmentally toxic and costly harsh germicidal chemicals, and the deteriorating effects of the steam process on stainless steel surfaces. There are also well known safety risks attendant with high power and high pressure machinery such as autoclaves, namely, where the water inside the autoclave has managed to become superheated, the pressure gauge may not indicate the presence of steam even though the temperature may be significantly higher than the local boiling point for water. If the autoclave is opened in this state and the superheated water is disturbed, a steam explosion becomes possible. This phenomenon can easily produce fatal burns to people in the vicinity of the explosion.
  • Other inherent limitations of this prior art technology exist because damp heat is used, and thus heat labile products (such as some plastics) cannot be sterilized this way or they will melt. Some paper or other products that may be damaged by the steam must also be sterilized another way.
  • The prior art sterilization systems such as steam autoclaving, even at increased temperatures, and ethylene oxide gas are not effective to prevent the transmission of prions and viroids via medical and surgical equipment. Current sterilization methods for heat-resistant instruments involves at least a four step process of immersion in hypochlorite followed by autoclaving, followed by a wash and rinse and then routine sterilization methods. Autoclaving generally involves immersion in a sodium hydroxide solution. This has well known drawbacks since hypochlorite and sodium hydroxide may be corrosive to some instruments, such as gold-plated instruments. There is also associated damage to the autoclaves caused by the sodium hydroxide. Autoclaving involves high pressure with steam to attain high temperatures. There is condensate formation during the cycle and hazardous substances such as sodium hydroxide condensate in the autoclave that causes corrosion. Some sterilizer manufacturers have stated that this will void their warranty. Additionally, autoclaving with sodium hydroxide poses hazards to operators as a result of the caustic vapors.
  • UV sterilization is known for use and sterilizing all manners of objects, and is used in purification and disinfection of water, air and surface. Throughout the years ultraviolet technology has become well established as a method of choice for its effectiveness, economy, safety, speed, ease of use, and because the process is free of by-products. UV sterilization is a rapid sterilization method, without the use of heat or chemicals. However, this process has not been reduced in practice to a readily accepted device and method for common usage.
  • UV sterilizers take many shapes and forms, and offer a variety of features. While these prior art UV sterilizers are presumably adequate for their intended purposes, none of these prior art devices are configured adequately to a portable device or applications that can be used as commercial medical grade sterilization units that replace conventional autoclaves or for low cost portable home units.
  • Therefore, there is a need for a new UV sterilization system platform to expand on the prior art, and in particular, a system that provides a portable unit that can be adapted to many applications and overcome the limitations of the prior art. This technology will have a dramatic impact upon public health in third world countries.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, there is provided a portable sterilization unit consisting of an enclosure which uses an ultra violet radiation in the C band wave length to sterilize objects and surfaces by inactivating bacteria, viruses, fungi, prions, viroids and spores. The sterilization program sequentially irradiates articles with UV radiation at a wavelength that creates ozone (preferably 185 nm) followed by irradiation with germicidal UVC radiation wavelengths (preferably 253-255 nm). Although the invention is not so limited, an embodiment of the enclosure defining a cubical or generally airtight rectangular shaped chamber will be described in greater detail to illustrate the inventive concepts.
  • To facilitate access to the interior of the chamber for insertion of the objects to be sterilized, there is provided an entrance door on one or more faces of the cubical structure. There is also provided a shelf formed of silica or quartz glass or sapphire plate disposed substantially in the central portion of the enclosure's interior compartment. Mounted in the interior of the chamber is at least one ozone lamp that spans substantially the full length of the interior of the chamber. Preferably, at least an elongated UVC lamp spanning substantially the entire width of the chamber is used. More preferably, at least two elongated UVC lamps are used and disposed opposing one another such that one lamp is mounted on an upper portion of the chamber and a second lamp is mounted on a lower portion of the chamber below the glass plate shelf. Even more preferably, two elongated UVC lamps are mounted in an upper portion of the chamber and four elongated UVC lamps are mounted on a lower portion of the chamber below the glass plate shelf.
  • To sterilize, an object is placed on a silica or quartz glass or sapphire plate shelf in the interior of the chamber. The door is then closed. The ozone lamp is electrically powered and emits UV radiation in the interior of the chamber at 185 nm to create ozone gas in the chamber. Then, the UVC lamps are electrically powered and emit UVC radiation at 253.7 nm in the interior of the chamber. Any DNA based organisms on the objects being sterilized are destroyed and rendered harmless. It is further noted that using UVC type radiation in a self contained portable enclosure could be considered “green,” environmentally safe, and controlled with no adverse effects or residuals.
  • Therefore, the purpose of the present invention is to present a UV sterilization system that has none of the disadvantages of prior art.
  • It is yet another object of the present invention to provide a UV sterilizer that minimizes or greatly reduces the power requirements of a sterilization system.
  • It is yet another object of the present invention to provide a UV sterilizer that minimizes or greatly reduces the multiplicity of steps and time requirements of the sterilization system.
  • It is yet another object of the present invention to provide a UV sterilizer that eliminates, minimizes or greatly reduces the resource requirements of the sterilization system.
  • It is yet another object of the present invention to provide a UV sterilizer that minimizes or greatly reduces the pressure requirements of the sterilization system.
  • It is yet another object of the present invention to provide a UV sterilizer that can be used with heat liable products and paper products.
  • It is yet another object of the present invention to provide a UV sterilizer that can be operated by a hand crank.
  • It is yet another object of this invention to provide a UV sterilizer that is economical from the viewpoint of the manufacturer and consumer, is susceptible of low manufacturing costs with regard to labor and materials, and which accordingly is then susceptible of low prices for the consuming public, thereby making it economically available to the buying public.
  • Whereas there may be many embodiments of the present invention, each embodiment may meet one or more of the foregoing recited objects in any combination. It is not intended that each embodiment will necessarily meet each objective.
  • Thus, having broadly outlined the more important features of the present invention in order that the detailed description thereof may be better understood, and that the present contribution to the art may be better appreciated, there are, of course, additional features of the present invention that will be described herein and will form a part of the subject matter of the claims appended to this specification. In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The present invention is capable of other embodiments and of being practiced and carried out in various ways. Also it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described by reference to the specification and the drawings, in which like numerals refer to like elements, and wherein:
  • FIG. 1 is a top left front perspective view of a portable antimicrobial ultraviolet sterilizer according to the present invention.
  • FIG. 2 is a top right front perspective view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 with the entrance door open and showing the interior of a sterilizing chamber.
  • FIG. 3 is a top right front perspective view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 with the entrance door removed to further illustrate dimensions of the sterilizing chamber and the printer of FIG. 1 removed to further illustrate the support slide assembly used to hold the printer.
  • FIG. 4 is a partially transparent left side orthogonal view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 illustrating the spatial relationships of UVC lamps, an ozone lamp and a glass shelf of the present invention.
  • FIG. 5 is a partial orthogonal view of a curved corner of FIG. 1 illustrating the use of a curved corner between a chamber's entrance door and its adjacent walls.
  • FIG. 6 is a block diagram of one preferred embodiment of the present invention.
  • FIG. 7 is a flow chart depicting a present novel method used in a sterilization session to destroy or render harmless any DNA based organisms on objects being sterilized.
  • The drawings are not to scale, in fact, some aspects have been emphasized for a better illustration and understanding of the written description.
  • PARTS LIST
    • 2 sterilizer
    • 3 sterilizer housing
    • 4 ozone lamp
    • 5 parts compartment
    • 6 UVC lamp
    • 8 chamber
    • 10 ceiling of chamber
    • 12 floor of chamber
    • 14 side wall of chamber
    • 16 glass shelf upon which an article being sterilized is placeable
    • 18 stainless steel pin
    • 20 printer
    • 22 support slide assembly for printer
    • 24 display
    • 26 interior socket for receiving UVC wand
    • 28 exterior socket for receiving UVC wand
    • 30 user input/output interface
    • 32 ozone lamp operation monitor
    • 34 UVC lamp operation monitor
    • 36 door state switch
    • 38 door lock solenoid
    • 40 controller
    • 42 memory
    • 44 clock
    • 46 power selector
    • 48 wall power
    • 50 manual power generator
    • 52 battery
    • 54 entrance door
    • 56 width of chamber
    • 58 height of chamber
    • 60 depth of chamber
    • 62 curved corner
    • 63 radius of curved corner
    • 66 power switch
    • 70 front wall of sterilizer
    • 72 cancel switch
    • 74 step of turning on ozone lamp
    • 76 step of turning on UVC lamps
    • 78 step of checking whether condition met to advance to step of turning on UVC lamps
    • 80 step of checking whether condition met to advance to step of sterilization session complete
    • 82 step of checking whether condition met to advance to step of sterilization session incomplete
    DEFINITIONS OF TERMS USED IN THIS SPECIFICATION
  • The term Ultraviolet C is abbreviated as UVC and used throughout the document. UVC generally refers to radiation of wavelengths ranging from 280 nm to 100 nm and energy per photon ranging from 4.43 to 12.4 eV. Also, the term rectangular is understood to include the case where all sides of the geometric shape are of equal length, also known as an equilateral rectangle or a square.
  • DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
  • FIG. 1 is a top left front perspective view of a portable antimicrobial ultraviolet sterilizer. FIG. 2 is a top right front perspective view thereof with the entrance door open and showing the interior of a sterilizing chamber 8. Referring to FIGS. 1 and 2, a portable sterilizer 2 according to the present invention comprises a housing 3 which forms two compartments, a parts compartment 5 that houses electronic and electrical components and the chamber 8 that is used for the actual sterilization process. The parts compartment 5 houses operative and functional components of the unit such as a printer 20, ballasts, lamp holders, sockets, micro switches, blower motor, ballasts, cooling fan, power supply, wiring and circuit fuses.
  • The chamber 8 is a generally rectangular cavity having a ceiling 10, a floor 12 opposingly disposed to the ceiling 10 and four side walls 14 defining a spatial volume sufficient for irradiating an object by direct contact with UVC wavelengths. The chamber 8 is preferably rectangular and is formed of plastic, metal, stainless steel or other material that is opaque to UV radiation and conducive to reflecting or scattering UV radiation within the chamber 8.
  • While the chamber 8 may also be made spherical, a rectangular chamber is more easily manufactured using conventional manufacturing techniques than a spherical chamber. When a rectangular chamber is used, the applicant discovered that it is advantageous to provide curved corners in order to enhance scattering of ultraviolent radiation within the chamber 8.
  • In a preferred embodiment, the chamber walls are formed of 304-308 grade stainless steel. The chamber's interior surfaces are preferably highly polished mirror finish stainless steel to reflect and scatter the UVC radiation within the chamber 8. In another embodiment, the interior surface is coated with highly reflective white paint coating.
  • The size of the chamber 8 may vary depending upon the application, however, in most embodiments, the size will be such that the unit is portable. In the embodiment depicted in FIG. 1, the sterilizer approximates the size of a conventional microwave oven. Typical embodiments comprise a chamber volume ranging from about 1500 cubic inches to about 2500 cubic inches, preferably from about 1700 cubic inches to about 1900 cubic inches.
  • To facilitate access to the interior of the chamber 8 for insertion of the objects to be sterilized, there is provided an entrance door 54 on one or more walls of the chamber 8. In one embodiment, the entrance door 54 is hingeably connected to an edge of the chamber 8 and secured using a magnetic latch on an opposing edge. In another embodiment, the entrance door 54 is secured using a mechanical latch, solenoid or electric magnetic coil. For ease of description, this side wall 14 provided by the entrance door 54 will be referenced as the front, however, it is to be understood that any side may contain an entrance door or even several walls of the chamber 8 may feature an entrance door 54. The entrance door 54 preferably contains a door gasket (not depicted) to create and maintain a seal when the door is in the closed position. In one embodiment, a handle is affixed to the entrance door 54 to facilitate easy opening of the door 54 by a user. As will be appreciated, any size or configuration of handle may be used.
  • On the exterior of the chamber 8, preferably on the sterilizer front wall 70, is disposed such display and user input/output interface as may be desired for operation of the sterilizer. In the embodiment depicted in FIG. 1, there is provided a visual display 24 and a user input/output interface 30. In one embodiment, the user input/output interface 30 comprises a key pad or touch pad for receiving and transmitting user input to the controller 40 and a communicating means to a device operably connected to the user input/output interface 30. In an embodiment not shown, the communicating means comprises a wireless terminal capable of transmitting data wirelessly from the controller to a device operably connected to the controller or from the device to the controller. The display is configurable to display any number of indicators relating to the operation of the sterilizer.
  • In one embodiment, a value is displayed to indicate the usage hours of each UVC and ozone lamp in the sterilizer, a value is displayed to indicate the progress of a sterilization session and a value is displayed to indicate whether a sterilization session has been completed. All such indications aid a user in knowing when to change a UVC and/or ozone lamp and perform other periodic maintenance or testing activities and whether a sterilization session was complete and/or successful in sterilizing the articles. In another embodiment not shown, an analog or digital timer dial is provided and is operably connected to the controller. As the timer dial is turned, a sterilization session is started. As the timer dial stops, the active sterilization session is terminated. When a timer dial is provided, the timer dial is preferably one that allows for 0-60 minutes to indicate the duration of a sterilization session. It is to be appreciated that other equivalent user interfaces may be used to set a sterilization timer. The user input/out interface and visual display may also be located on other portions of the sterilizer.
  • There are also provided a power (on-off) switch 66 and an operation indicator 68 (for example a light) to indicate when the unit is in operation. Alternatively, an operator indicator is digitally displayed on the display 24 in lieu of using a separate operation indicator. In the on state, the power switch 66 connects the controller and all components operably connected to it and all lamps to a power source. In the off state, the power switch 66 removes the controller and all components operably connected to it and all lamps from the power source.
  • Referring to FIG. 2, an exterior socket 28 allows a UVC wand to be operably connected to the sterilizer for external use. A UVC wand may be connected to a wall socket directly. However, a UVC wand that is connected to the sterilizer receives the benefit of operating using a program set in the sterilizer. This is especially useful for surfaces which cannot be contained within the chamber 8, such as, for example, shelves, chairs, tables, equipment and the like. When used with the exterior socket, the UVC wand allows surfaces to be treated by waving the wand over the surface. The wand is preferably coupled with a half moon safety shield to protect the user from UVC radiation during use.
  • An interior socket 26 allows a UVC wand to be operably connected to the interior of the chamber 8 for supplemental UVC radiation. A UVC wand is most beneficially used on an object to be sterilized if the object is generally elongated and has a narrow lumen which the radiation of the UVC lamps 6 may not sufficiently reach. Placing the wand in the lumen provides direct UVC radiation to these surfaces to maximize the sterilization effects.
  • FIG. 3 is a top right front perspective view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 with the entrance door 54 removed to further illustrate dimensions of the sterilizing chamber and the printer of FIG. 1 removed to further illustrate the support slide assembly used to hold the printer 20 of FIG. 2. FIG. 4 is a partially transparent left side orthogonal view of the portable antimicrobial ultraviolet sterilizer of FIG. 1 illustrating the spatial relationships of UVC lamps 6, an ozone lamp 4 and a glass shelf 16 of the present invention. Mounted in the interior of the chamber 8 is at least one UVC lamp 6 that spans substantially the full width 56 of the chamber 8. Preferably, as depicted in FIG. 4, six functionally equivalent and elongated UVC lamps 6 are used. Two are substantially aligned with the width 56 of the chamber and disposed substantially symmetrically about the depth 60 and width 56 of the ceiling 10 and provide combined working UV power output of at least 8 watts. Four are substantially aligned with the width 56 of the chamber and disposed substantially symmetrically about the depth 60 and width 56 of the floor 12 and provide combined working UV power output of at least 16 watts. Other lamp shapes (such as U-shaped) and mounting locations may be used as long as radiation is directed such that all portions of the chamber 8 receive UVC radiation. In one embodiment, the width 56, depth 60 and height 58 are preferably about 15 inches, 12 inches and 12 inches, respectively. However, other suitable dimensions can be used provided that the output requirements defined elsewhere herein of the ozone and UVC lamps are met.
  • The low pressure UVC lamps are most effective, because they emit most of the radiant energy in the germicidal wavelength of 253.7 nm to 254.3 nm in the UVC and germicidal part of the spectrum. The ozone lamp, preferably a high or very high ozone lamp, emits a radiation below 200 nm, and preferably at 185 nm, which wavelengths produce ozone. Ozone has deodorizing properties and is in itself a bactericidal and fungicidal agent. This gaseous ozone contacts surfaces of the equipment that are difficult or impossible to contact with the UVC waves, getting into hollow portions, small cavities, crevices and other apertures where microbes, fungi, yeast, viruses and other germs may be hosted.
  • Preferably, as depicted in FIG. 4, an elongated ozone lamp 4 is disposed substantially centrally on the ceiling and parallel to and substantially spanning the width 56 of the chamber 8. Other ozone lamp shapes and mounting locations may also be used provided that the object to be sterilized is fully exposed to ozone generated by such an ozone lamp.
  • There is also provided a shelf 16 formed of silica or quartz glass or sapphire plate disposed substantially centrally in the chamber 8 and/or between the two groups of UVC lamps on the ceiling 10 and on the floor 12 with the shelf's 16 plane substantially parallel to the ceiling 10 or floor 12. Referring to FIG. 4, the shelf 16 is supported by one or more stainless steel pins 18 or other mounting means known in the art. The silica or quartz glass or sapphire plate is of a grade that allows at least 50% transmission of UVC short wave radiations, preferably at least 55% transmission. A silica or quartz glass or sapphire plate must be used because ordinary window glass passes about 90% of the light above 350 nm, but blocks over 90% of the light below 300 nm, the wavelength of the UVC lamp radiation. Though unintendedly, the glass plate effectively divides the chamber 8 into two portions, i.e., an upper portion and a lower portion. In use, an object to be sterilized is disposed on the upper portion. Preferably, an ozone lamp 4 is beneficially disposed on the upper portion of the chamber 8, enabling ozone generated by the ozone lamp 4 to penetrate openings of the object to be sterilized.
  • FIG. 5 is a partial orthogonal view of a curved corner of the chamber 8 of FIG. 2, illustrating the use of a curved corner between the entrance door 54 and one of its adjacent walls, for example, the ceiling 10. Curved corners promote reflection and scattering of UVC radiation and reduce the number of UVC lamps required to provide sufficient UVC radiation coverage within the chamber 8. Curved corners also reduce the number of surfaces (walls) on which UVC lamps are required, thereby simplifying the design of the sterilizer and reducing associated manufacturing and maintenance costs. As depicted, a curved corner 62 is formed on the ceiling 10 of the chamber 8 such that when the entrance door 54 is closed, a side wall 14 is formed, continuing the profile formed by the curved corner 62 of the ceiling 10 onto a vertical side wall 14. The radius of the curved corner is defined by the relationship where the ratio of the radius to the width 56 of the chamber 8, height 58 of the chamber 8 or depth 60 of the chamber 8 preferably ranges from 0.0026 to 0.1. In one preferred embodiment, the radius is about 0.25 inches.
  • The UVC lamps 6 use an ultra violet radiation in the short-wave ultraviolet radiation, in the “C” band (100 to 280 nanometers) to sterilize objects and surfaces by inactivating bacteria, viruses, fungi, prions, viroids and spores. At wavelengths below 254 nm, UV-C (UVC) is also referred to as UVGI (ultraviolet germicidal irradiation). Ultraviolet Germicidal Irradiation (UVGI) is a term used by Federal Agencies such OSHA, NIOSH and the CDC when referring to UVC at 253.7-254.3 nm. UVC penetrates the outer structure of the cell and alters the DNA molecule, preventing replication and causing cell death. Specifically, UVC light at 253-254 nm causes damage to the nucleic acid of microorganisms by forming covalent bonds between certain adjacent bases in the DNA. The formation of such bonds prevents the DNA from being unzipped for replication, and the organism is unable to reproduce. In fact, when the organism tries to replicate, it dies.
  • The present invention is effective in killing prions, in particular prion glycoproteins. Thus, the present device and method provide an effective microbiocidal treatment against transmittable prion diseases that occur in humans and animals. As an illustrative example, the present invention kills the prions associated with the transmissible spongiform encephalopathy (TSE) known more commonly as Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (mad cow disease) in cattle, and scrapie in sheep. These prions are also suspected to cause Alzheimer's disease and other brain plaque conditions. As another illustrative example, the present invention also kills the viroids associated with Hepatitis D.
  • The combination of ozone and UVC radiation treatment at the dosage mentioned elsewhere in the specification is capable of inactivating microorganisms such as prion, viroids, SARS, AIDS, HIV, e-coli, Agrobacterium lumefaciens 5, Pseudomonas aeruginosa (Environ.Strain) 1,2,3,4,5,9, Bacillus anthracis 1,4,5,7,9 (anthrax veg.), Pseudomonas aeruginosa (Lab. Strain) 5,7, Bacillus anthracis Spores (anthrax spores), Pseudomonas fluorescens 4,9, Bacillus megatherium Sp. (veg) 4,5,9, Rhodospirillum rubrum 5, Bacillus megatherium Sp. (spores) 4,9, Salmonella enteritidis 3,4,5,9, Bacillus paratyphosus 4,9 Salmonella paratyphi (Enteric Fever) 5,7, Bacillus subtilis 3,4,5,6,9, Salmonella Species 4,7,9, Bacillus subtilis Spores 2,3,4,6,9, Salmonella typhimurium 4,5,9 Clostridium tetani, Salmonella typhi (Typhoid Fever) 7, Clostridium botulinum Salmonella, Corynebacterium diphtheriae 1,4,5,7,8,9, Sarcina lutea 1,4,5,6,9, Dysentery bacilli 3,4,7,9, Serratia marcescens 1,4,6,9, Eberthella typhosa 1,4,9, Shigella dysenteriae—Dysentery 1,5,7,9, Escherichia coli 1,2,3,4,9, Shigella flexneri—Dysentery 5,7, Legionella bozemanii 5, Shigella paradysenteriae 4,9 Legionella dumoffill 5, Shigella sonnei 5, Legionella gormanil 5, Spirillum rubrum 1,4,6,9, Legionella micdadei 5, Staphylococcus albus 1,6,9, Legionella longbeachae 5, Staphylococcus aureus 3,4,6,9, Legionella pneumophila (Legionnaire's Disease), Staphylococcus epidermidis 5,7, Leptospira canicola—Infectious Jaundice 1,9, Streptococcus faecaila 5,7,8, Leptospira interrogans 1,5,9, Streptococcus hemolyticus 1,3,4,5,6,9, Micrococcus candidus 4,9, Streptococcus lactis 1,3,4,5,6, Micrococcus sphaeroides 1,4,6,9, Streptococcus pyrogenes, Mycobacterium tuberculosis 1,3,4,5,7,8,9, Streptococcus salivarius, Neisseria catarrhalis 1,4,5,9, Streptococcus viridans 3,4,5,9, Phytomonas tumefaciens 1,4,9, Vibrio comma (Cholera) 3,7, Proteus vulgaris 1,4,5,9, Vibrio cholerae 1,5,8,9, Aspergillus amstelodami, Oospora lactis 1,3,4,6,9, Penicillium chrysogenum, Aspergillus flavus 1,4,5,6,9, Aspergillus glaucus 4,5,6,9, Penicillium digitatum 4,5,6,9, Aspergillus niger (breed mold) 2,3,4,5,6,9, Penicillium expansum 1,4,5,6,9, Mucor mucedo, Penicillium roqueforti 1,2,3,4,5,6, Mucor racemosus (A & B) 1,3,4,6,9, Rhizopus nigricans (cheese mold) 3,4,5,6,9, Chlorella vulgaris (algae) 1,2,3,4,5,9, Giardia lamblia (cysts) 3, Blue-green Algae, Nematode Eggs 6, E. hystolytica, Paramecium 1,2,3,4,5,6,9, Adeno Virus Type III 3, Influenza 1,2,3,4,5,7,9, Bacteriophage 1,3,4,5,6,9, Rotavirus 5, Coxsackie, Tobacco Mosaic 2,4,5,6,9, Infectious Hepatitis 1,5,7,9, Baker's Yeast 1,3,4,5,6,7,9, Saccharomyces cerevisiae 4,6,9, Brewer's Yeast 1,2,3,4,5,6,9, Saccharomyces ellipsoideus 4,5,6,9, Common Yeast Cake 1,4,5,6,9, Saccharomyces sp. 2,3,4,5,6,9.
  • FIG. 6 is a block diagram of one preferred embodiment of the present invention. A controller 40 is provided to control operations of the sterilizer 2. A user Input/Output interface 30 functionally connected to the controller 40 is further provided to receive inputs from a user or a device and send outputs to the user or the device. By way of example and not limitation, the device is a keypad, touch pad, computer, a monitor, an MP3 player, MP4 player, a digital display, an ipod, an ipad, a finger print reader, a security card reader, an entry code reader, a smart phone and the like. A display 24 functionally connected to the controller 40 is provided to display the result of a sterilization session or communicate other pertinent information from the controller to a walk-up user. A printer 20 functionally connected to the controller 40 is provided to receive and provide a printout of the result corresponding to a sterilization session if requested. A power switch 66 is provided to enable or halt all operations of the sterilizer 2. A door state switch 36 functionally connected to the controller is provided to indicate whether the entrance door 54 is open. In the off state, the power switch 66 removes power from all components of the sterilizer, thereby halting all activities including programming of the sterilizer. When the door state switch 36 indicates an opened entrance door 54, the user may still program the controller in order to set a sterilizing program.
  • There are provided six UVC lamps 6 and an ozone lamp 4 that are operably connected to the controller 40. A UVC lamp operation monitor 32 functionally connected to the controller 40 is further provided to detect proper operation of the UVC lamps 32 and it provides an indication to the controller 40 whether the UVC lamps are functioning properly. An example parameter monitored by the lamp operation detector 32 is the amount of electrical current at an electrical potential the UVC lamps 6 source to function at the level expected to provide proper sterilization. If the electrical current at the electrical potential received by the UVC lamps 6 deviates from a predetermined range, a fault condition is issued by the UVC lamp operation monitor 32 and received by the controller 40. Similarly, an ozone lamp operation monitor 34 functionally connected to the controller 40 is further provided to detect the proper operation of the ozone lamp 4. If the electrical current at an electrical potential received by the ozone lamp 4 deviates from a predetermined range, a fault condition is issued by the ozone lamp operation monitor 34 and received by the controller 40. In one embodiment, the controller 40 further communicates the fault condition to a remote server which then specifies the failure and a need for service.
  • The controller 40 further comprises a memory 42 and a clock 44. The result of a sterilization session may be saved in the memory 42 for later retrieval. A section of the memory 42 is preferably reserved for long-term storage of sterilization session data and is erasable only by a trained professional. This long-term storage facilitates auditing of sterilization session data which can be traced back for a number of years. In another embodiment, sterilization session data is additionally transmitted to an offsite location for storage or notification purposes. The clock 44 enables the controller to perform time-keeping operations such as providing realtime time stamps to a sterilization session. A typical sterilization session result comprises an indication whether a sterilization session runs to completion. A successfully completed sterilization session is defined as a sterilization session in which a fault has not occurred during the entire duration of the sterilization session. A successfully completed sterilization session however does not necessarily indicate a successful sterilization session. In the present embodiment, for each sterilization session, an unused UVC test strip is further provided and substantially centrally disposed prior to the commencement of each sterilization session such that the proper functioning of the UVC lamps can be verified. At the end of the sterilization session, the evidence of exposure to the UVC lamps on the UVC test strip is visually read, quantified and compared to a pre-established standard for sufficient UVC exposure corresponding to a pass condition. Similarly, in the present embodiment, an unused ozone test strip is further provided and disposed on the upper surface of the glass plate 16 prior to the commencement of each sterilization session such that the proper functioning of the ozone lamp can be verified. At the end of a sterilization session, the evidence of exposure to the ozone lamp on the ozone test strip is visually read, quantified and compared to a pre-established standard for sufficient ozone exposure corresponding to a pass condition. A pass condition from both UVC and ozone test strips and the successful completion of a sterilization session constitute a successful sterilization session. If a sterilization report is desired, the visually determined test strips data is entered manually via the user Input/Output interface 30 such that the controller 40 can determine whether the sterilization session was successful and saves such a result to the memory 42.
  • Alternatively, an automatic indication of a successful sterilization session may also be provided by using a UVC detector and an ozone detector, both functionally connected to the controller 40. At the end of a sterilization session, the evidence and level of exposure to the ozone lamp and UVC lamp on the ozone and UVC test strips are automatically read respectively, quantified and compared to a their corresponding pre-established standards for sufficient ozone and UVC exposure respectively corresponding to a pass condition.
  • There is further provided a lock solenoid 38 functionally connected to the controller 40 for locking the entrance door 54 in its closed position. For safety reasons, before a sterilization session can begin, the controller 40 checks whether the entrance door 54 is closed by receiving a reading from the door state switch 36. If the entrance door 54 is determined to be closed, the lock solenoid 38 is then activated such that the entrance door 54 is locked. Upon the completion or cancellation of a sterilization session, the ozone and UVC lamps are deactivated and the lock solenoid 38 is deactivated such that the entrance door 54 becomes unlocked.
  • An internal socket 26 functionally connected to the controller 40 is further provided in the interior of the chamber 8. The sterilization program set for the UVC lamps 8 is applied to a UVC wand connected to the internal socket 26. By way of illustration, U.S. Pat. Pub. No. 20080260601 discloses a UV sterilizing wand which can be adapted to be powered by plugging its power cord into the internal socket 26, which patent application is incorporated by reference in its entirety herein. Such an additional sterilizing source is most beneficial when an object to be sterilized has a generally opaque structure consisting of narrow openings which cannot be easily reachable by using merely the UVC lamps 6 of the sterilizer 2 according to the present invention.
  • An external socket 26 functionally connected to the controller 40 is further provided on the exterior of the chamber 8. The sterilization program set for the UVC lamps 8 is applied to a UVC wand connected to the external socket 28. Alternatively, a separate sterilization program can be applied. Generally, a wand is used externally when an object to be sterilized is too big to be placed within the chamber 8.
  • The sterilizer 2 typically receives power from a conventional AC power source such as a wall power outlet 48. However, in certain circumstances where wall power is limited, unavailable or not easily accessible, a battery 52 can be functionally connected to the controller 40 as an alternative power source. A power selector 46 is used to selectably allow the user to select the power source from which to power the sterilizer 2. The power selector 46 is essentially a manual single pole double throw switch which selectively connects the wall power 48 or battery 52 to the controller 40. An inverter is provided to convert the battery DC power to AC power in order to power the controller 40. It shall be appreciated that other equivalent means of switching power source may be suitably employed. It shall also be appreciated that the controller 40 may or may not provide power directly to any components that require electrical power to run. Conventionally, power electronics receive their power directly from the power source and not through a controller. In a preferred embodiment, a manual power generator 50 is further provided to allow a user to recharge the battery 52. A manual power generator 50 is essentially a device that converts human power to electrical power. Though not required, it is generally a hand crank in the form of a rotary device is fitted with a handle which can be turned to create DC power. In this instance, the battery 52 is a rechargeable battery. It should be appreciated that various other means of generating power to be stored in the battery 52 are readily available to those skilled in the art. For instance, electrical energy may alternatively be generated from solar panels and wind turbines.
  • FIG. 7 is a flow chart depicting a present novel method used in a sterilization session to destroy or render harmless any DNA based organisms on objects being sterilized. To sterilize, an object is placed on the glass shelf 16 in the interior of the chamber 8 as depicted in FIG. 2. The entrance door 54 is then closed. The method comprises step of turning on 74 ozone lamp for a first predetermined duration of from 15 seconds to 60 minutes, preferably from 15 to 60 seconds. A timer corresponding to the predetermined duration is started. At least one ozone lamp 4 capable of producing from at least 0.25 to 10 grams per hour of ozone is used. In one embodiment, an ozone lamp 4 capable of emitting UV radiation at wavelength of about 185 nm is used. Referring to FIGS. 6 and 7, the controller 40 checks whether the timer has expired 78. If the timer has expired, the controller 40 continues to execute the preprogrammed next step. The controller 40 further checks whether an event has occurred that canceled the current sterilization session 82. For instance, if the ozone lamp operation monitor 34 detects a fault condition, the sterilization session will be stopped, rendering the sterilization session incomplete.
  • The method further comprises step of turning on 76 at least one UVC lamp but preferably six UVC lamps for a second predetermined duration of from 15 seconds to 60 minutes, preferably from 15 to 60 seconds. A timer corresponding to the predetermined duration is started. In a preferred embodiment, at least one UVC lamp capable of supplying UVC radiation at a wavelength of about 253.7 nm and dosage of from at least 100 to 800 microwatts per square centimeter at one meter from the UVC lamp is used. Referring to FIGS. 6 and 7, the controller 40 checks whether the timer has expired 80. If the timer has expired, the controller continues to indicate that the sterilization session has been completed. If the timer continues to run, the controller 40 further checks whether an event has occurred that canceled the current sterilization session 82. For instance, if the ozone lamp operation monitor 34 detects a fault condition, the sterilization session will be stopped, rendering the sterilization session incomplete.
  • The ozone molecules formed as a result of the ozone lamp absorb ultraviolet radiation having wavelengths between 240 and 310 nm. Upon absorbing ultraviolet radiation of wavelength of 254 nm, each triatomic ozone molecule becomes diatomic molecular oxygen molecule O2 plus a free oxygen atom O, thereby reducing the ozone O3 concentration to an acceptable level as depicted in the following chemical reaction.

  • O3+(240 nm<radiation<310 nm)→O2+O
  • As it should be appreciated by those skilled in the art, ozone is an oxidative agent which must be avoided when concentration rises above 0.05 ppm in an indoor environment, Conventionally, ozone evacuation or treatment becomes necessary when ozone concentration rises beyond a level capable of producing health hazards. Such evacuation or treatment requires purpose-built equipment which adds to the cost of producing such a sterilizer, Applicant discovered that by sequencing the operation of the ozone and UVC lamps, production and neutralization of ozone is accomplished within a sterilization session without requiring additional steps or equipment. The ozone generated and used in the sterilization session is completely decomposed to form oxygen molecules and oxygen atoms, thereby rendering the sterilizer safe to be handled without additional treatment. At the successful conclusion of a sterilization session, any DNA based organisms on the objects being sterilized are destroyed and rendered harmless.
  • In one aspect, the equipment to be sterilized is first rinsed or immersed in an antimicrobial or biocidal solution. Preferably, the solution is a non-alcohol based cleaning solution. In one aspect, the equipment is immersed in a solution prepared according to the teachings in United States Published Patent Application 20100006804 to Sakovich et al for “A highly protonated, supercharged, low pH, non-corrosive composition,” which patent application is incorporated by reference in its entirety herein. This product is sold under the trade name Saniphex by Odysseus Industries, Inc., 8348 Little Road, New Port Richey, Fla.
  • What has been disclosed, is a portable antimicrobial ultraviolet sterilizer for inactivating bacteria, viruses, fungi, prions, viroids and spores. Obviously, many modifications and variations of the invention are possible in light of the above teachings. It is therefore understood that the invention is not to be limited by the single embodiment shown in the drawings and described in the description, which are given by way of example and not of limitation, but only in accordance with the scope of the appended claims. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent construction insofar as they do not depart from the spirit and scope of the conception regarded as the present invention.

Claims (24)

1. A portable sterilizer comprising an enclosure defining a chamber having space therein and an entrance door for receiving articles to be sterilized according to a particular sterilization program of exposure of the articles to ultraviolet radiation and ozone gas, a UVC supply arranged to supply germicidal UVC radiation into said chamber, an ozone supply arranged to supply ultraviolet radiation into said chamber at an oxidizing wavelength such that ozone is produced, a power source and a controller arranged to control operation of said sterilizer.
2. The portable sterilizer of claim 1, wherein said ozone supply supplies ultraviolet radiation at about 185 nm for a first predetermined duration ranging from about 15 seconds to about 60 minutes and said UVC supply sequentially supplies said ultraviolet radiation at from about 253.7 nm to about 254.3 nm for a second predetermined duration ranging from about 15 seconds to about 60 minutes.
3. The portable sterilizer of claim 2, wherein said first predetermined duration ranges from about 15 seconds to about 60 seconds and said second predetermined duration ranges from about 15 seconds to about 60 seconds.
4. The portable sterilizer of claim 1, further comprising a support shelf formed of silica or quartz glass or sapphire plate disposed substantially centrally of said chamber, wherein said support shelf receives said articles for sterilization and transmits at least 55% of UVC radiation.
5. The portable sterilizer of claim 1, wherein said UVC supply comprises at least one UVC lamp configured to supply UVC radiation at wavelength of from about 253.7 nm to about 254.4 nm, spans substantially the full width of said chamber and produces from about 100 microwatts to about 800 microwatts per square centimeter at one meter from said at least one UVC lamp.
6. The portable sterilizer of claim 1, where said ozone supply comprises at least one ozone lamp configured to supply UV radiation at a wavelength of about 185 nm that is disposed substantially centrally on a top wall of said chamber, spans substantially the full width of said chamber and produces from about 0.25 grams to about 10 grams per hour of ozone.
7. The portable sterilizer of claim 1, wherein an interior surface of said chamber comprises a material that is reflective of and opaque to ultraviolet radiation.
8. The portable sterilizer of claim 7, wherein said interior surface is formed of polished mirror finish stainless steel.
9. The portable sterilizer of claim 7, wherein said interior surface comprises a highly reflective white paint coating.
10. The portable sterilizer of claim 1, wherein said chamber is generally rectangular and each corner of said chamber is curved to enhance scattering of said ultraviolet radiation.
11. The portable sterilizer of claim 10, wherein each said curved corner comprises a radius where the ratio of said radius to a width, height or depth of said chamber preferably ranges from 0.0026 to 0.1.
12. The portable sterilizer of claim 1, wherein said UVC supply comprises two UVC lamps disposed substantially on a top wall of said chamber to output combined working UV power output of at least 8 watts and four UVC lamps disposed substantially on a bottom wall of said chamber to output combined working UV power output of at least 16 watts.
13. The portable sterilizer of claim 1, wherein said power source is selectably connected to and receives power from a conventional NC power supply or the output of an inverter operably connected to a battery.
14. The portable sterilizer of claim 13, wherein said battery receives energy from a human-powered hand crank.
15. The portable sterilizer of claim 1, further comprising a visual display operably connected to said controller and providing a representation of an output from said controller wherein said output comprises result data and UVC or ozone lamp condition data of said sterilization program.
16. The portable sterilizer of claim 15, wherein said visual display comprises an output selected from the group consisting of a printer, a computer, a monitor, a digital display, an MP3 player, an MP4 player, an ipod, an ipad and a smart phone.
17. The portable sterilizer of claim 1, further comprising a socket for receiving a UVC wand disposed on an interior of said chamber, wherein said socket is operably connected to said controller such that when said UVC wand is operably connected to said portable sterilizer, said UVC wand is controllable using a predetermined program of said controller and said entrance door is fully closable such that UVC radiation and ozone are contained within said chamber during said sterilization program.
18. The portable sterilizer of claim 15, wherein said portable sterilizer further comprises a solenoid lock, a door switch configured to indicate the state of said entrance door and a fault condition detection system, wherein
said door switch indicates the state of said entrance door, wherein a state indicating that said entrance door is open prevents actuation of said ozone and UVC supplies,
said solenoid lock is actuated when said door switch indicates said entrance door is closed and just prior to the start of a sterilization program to prevent accidental opening of said entrance door and accidental exposure of a user to ozone or combined ozone and UVC radiation,
said solenoid lock is deactuated after said sterilization program is complete or canceled, and
said fault condition detection system comprises a UVC lamp operation monitor configured to detect and communicate a UVC lamp failure condition to said controller and an ozone lamp operation monitor configured to detect and communicate an ozone lamp failure condition to said controller such that said controller reports a fault condition to said visual display and stores said fault condition to a non-volatile memory if at least one of said UVC and ozone lamp operation monitors detects a fault and said controller reports a pass condition to said visual display and stores said pass condition to said non-volatile memory if both of said UVC and ozone lamp operation monitors fail to detect a fault after said sterilization program has concluded.
19. A portable sterilizer comprising:
an enclosure defining a generally rectangular chamber having space therein for receiving articles to be sterilized according to a particular sterilization program of exposure of the articles to ultraviolet radiation and ozone gas, wherein at least a wall of said chamber comprises an entrance door, an interior surface of said chamber comprises a material that is reflective of and opaque to ultraviolet radiation, and each corner of said chamber is curved to enhance scattering of said ultraviolet radiation,
a UVC supply arranged to supply ultraviolet radiation at wavelength of from about 253.7 to about 254.3 nm into said chamber,
an ozone supply arranged to supply ultraviolet radiation at wavelength of about 185 nm into said chamber,
a support shelf formed of silica or quartz glass or sapphire plate disposed substantially centrally of said chamber, wherein said support shelf receives said articles for sterilization and transmits at least 55% of UVC radiation,
a power source,
a controller arranged to control operation of the portable sterilizer and having a non-volatile memory operably connected to said controller,
a user input/output interface, wherein said user input/output interface enables communication between said controller and a device selected from a group consisting of a computer, a touchpad, a key pad, a monitor, a digital display, an MP3 player, an MP4 player, an ipod, an ipad, a finger print reader, a security card reader, an entry code reader, and a smart phone, and
a visual display operably connected to said controller and providing a representation of an output from said controller wherein said output comprises result data of said sterilization program,
wherein said ozone supply supplies ultraviolet radiation at about 185 nm for a first predetermined duration ranging from 15 seconds to 60 minutes and said UVC supply sequentially supplies ultraviolet radiation at about 253.7-254.3 nm for a second predetermined duration ranging from 15 seconds to 60 minutes.
20. A method for sterilizing an article comprising the steps of:
placing said article in an enclosure defining a generally rectangular and generally airtight chamber having space therein for receiving articles to be sterilized,
exposing said article to ozone gas in said chamber for a period of from about 15 seconds to about 60 minutes at a rate of about 0.25 grams to about 10 grams per hour, and
exposing said article to UVC radiation in said chamber for a period of from about 15 seconds to about 60 minutes at a rate of about 100 microwatts to about 800 microwatts per square centimeter at one meter from a UVC source irradiating at a wavelength of about 254 nm.
21. The method of claim 20, wherein said article is placed on a support shelf formed of silica or quartz glass or sapphire plate disposed substantially centrally of said chamber, wherein said support shelf receives said article for sterilization and transmits at least 55% of UVC radiation.
22. The method of claim 20, wherein an interior surface of said chamber comprises a material that is reflective of and opaque to ultraviolet radiation, and each corner of said chamber is curved to enhance scattering of said ultraviolet radiation.
23. The method of claim 20, wherein said chamber has at least one UVC lamp that is configured to supply UVC radiation at wavelength of from about 253.7 nm to about 254.4 nm, spans substantially the full width of said chamber and produces from about 100 microwatts to about 800 microwatts per square centimeter at one meter from said at least one UVC lamp.
24. The method of claim 20, wherein said chamber has at least one ozone lamp configured to supply UV radiation at a wavelength of about 185 nm that is disposed substantially centrally on a top wall of said chamber, spans substantially the full width of said chamber and produces from about 0.25 grams to about 10 grams per hour of ozone.
US12/761,859 2009-04-21 2010-04-16 Portable antimicrobial ultra violet sterilizer Abandoned US20100266445A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US12/761,859 US20100266445A1 (en) 2009-04-21 2010-04-16 Portable antimicrobial ultra violet sterilizer
CN2010800277616A CN102458485A (en) 2009-04-21 2010-04-17 Portable antimicrobial ultra violet sterilizer
PCT/US2010/031527 WO2010123785A2 (en) 2009-04-21 2010-04-17 Portable antimicrobial ultra violet sterilizer
CA2763710A CA2763710C (en) 2009-04-21 2010-04-17 Portable antimicrobial ultra violet sterilizer
EP10767563.9A EP2429595B1 (en) 2009-04-21 2010-04-17 Portable antimicrobial ultra violet sterilizer
US13/606,180 US9114183B2 (en) 2009-04-21 2012-09-07 Portable antimicrobial ultra violet sterilizer
US14/703,386 US20150231288A1 (en) 2009-04-21 2015-05-04 Portable antimicrobial ultra violet sterilizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17134609P 2009-04-21 2009-04-21
US12/761,859 US20100266445A1 (en) 2009-04-21 2010-04-16 Portable antimicrobial ultra violet sterilizer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/606,180 Division US9114183B2 (en) 2009-04-21 2012-09-07 Portable antimicrobial ultra violet sterilizer

Publications (1)

Publication Number Publication Date
US20100266445A1 true US20100266445A1 (en) 2010-10-21

Family

ID=42981107

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/761,859 Abandoned US20100266445A1 (en) 2009-04-21 2010-04-16 Portable antimicrobial ultra violet sterilizer
US13/606,180 Active 2030-05-22 US9114183B2 (en) 2009-04-21 2012-09-07 Portable antimicrobial ultra violet sterilizer
US14/703,386 Abandoned US20150231288A1 (en) 2009-04-21 2015-05-04 Portable antimicrobial ultra violet sterilizer

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/606,180 Active 2030-05-22 US9114183B2 (en) 2009-04-21 2012-09-07 Portable antimicrobial ultra violet sterilizer
US14/703,386 Abandoned US20150231288A1 (en) 2009-04-21 2015-05-04 Portable antimicrobial ultra violet sterilizer

Country Status (5)

Country Link
US (3) US20100266445A1 (en)
EP (1) EP2429595B1 (en)
CN (1) CN102458485A (en)
CA (1) CA2763710C (en)
WO (1) WO2010123785A2 (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284773A1 (en) * 2010-05-19 2011-11-24 Pugh Randall B Germicidal bulb disinfection base for ophthalmic lenses
US20120058006A1 (en) * 2010-09-07 2012-03-08 David Tupman Enhanced photo-catalytic cells
US20120138822A1 (en) * 2008-08-06 2012-06-07 Sound Health Designs, LLC System and method for germicidal sanitizing of an elevator or other enclosed structure
US20120298882A1 (en) * 2010-01-29 2012-11-29 Gastone Vitali Assembly for disinfecting water for sanitary fittings
US8389956B2 (en) * 2011-08-03 2013-03-05 Robert Rife Laryngoscope disinfector
WO2013130710A1 (en) * 2012-02-28 2013-09-06 Cohen Ben Z Backlit surgical instrument support assembly
US8791441B1 (en) 2013-08-27 2014-07-29 George Jay Lichtblau Ultraviolet radiation system
US20140363342A1 (en) * 2012-01-17 2014-12-11 Ecoquest Do Brasil Device for sanitizing the air-conditioning system of vehicles using radiant catalytic ionization
US20150025300A1 (en) * 2013-07-18 2015-01-22 American Sterilizer Company Modular patient care enclosure
CN104368403A (en) * 2013-08-14 2015-02-25 海尔集团公司 Biological safety cabinet ultraviolet lamp linkage controller and control method thereof
US9044521B2 (en) 2010-06-01 2015-06-02 Alexander Farren UV sterilization of containers
WO2015080768A1 (en) * 2013-11-26 2015-06-04 Bluemorph Llc Uv devices, systems and methods for uv sterilization
US20150241855A1 (en) * 2012-11-13 2015-08-27 Olympus Winter & Ibe Gmbh Control system for a cleaning device, and cleaning device
US9282796B2 (en) 2010-05-19 2016-03-15 Johnson & Johnson Vision Care, Inc. UV radiation control for disinfecting of ophthalmic lenses
US9289527B1 (en) * 2015-05-18 2016-03-22 George J. Lichtblau UV disinfection system with ballast current monitoring
US9387268B2 (en) 2010-06-01 2016-07-12 Alexander Farren Compositions and methods for UV sterilization
US9457122B2 (en) 2010-09-07 2016-10-04 Puradigm, Llc Enhanced photo-catalytic cells
US20160298857A1 (en) * 2015-04-09 2016-10-13 Sunair HVAC Engineering Corporation Kitchen fume-cleaning apparatus for degreasing and deodorization
US20170030841A1 (en) * 2012-06-29 2017-02-02 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
CN106610680A (en) * 2015-10-22 2017-05-03 博西华电器(江苏)有限公司 A method of controlling a disinfection cabinet and the disinfection cabinet
US9657904B1 (en) * 2014-11-14 2017-05-23 Amazon Technologies, Inc. Photobleaching displays to mitigate color gradients
US9687575B2 (en) 2010-06-01 2017-06-27 Bluemorph, Llc UV devices, systems and methods for UV sterilization
US9707306B2 (en) 2010-06-01 2017-07-18 Bluemorph, Llc UV sterilization of containers
ES2629065A1 (en) * 2016-02-05 2017-08-07 Pedro PÉREZ OJEDA Domestic device for ozonetherapy (Machine-translation by Google Translate, not legally binding)
US20170224858A1 (en) * 2016-02-04 2017-08-10 Xenex Disinfection Services LLC. Support Structures, Cabinets And Methods For Disinfecting Objects
US9795704B2 (en) 2010-05-19 2017-10-24 Johnson & Johnson Vision Care, Inc Ophthalmic lens disinfecting base
CN107440724A (en) * 2017-09-06 2017-12-08 昆明信诺莱伯科技有限公司 A kind of portable field finger print fumigation display equipment
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10046073B2 (en) 2010-06-01 2018-08-14 Bluemorph, Llc Portable UV devices, systems and methods of use and manufacturing
WO2019067563A1 (en) * 2017-09-29 2019-04-04 Hyper Light Technologies, Llc Hyper-wave sterilization cabinet
US10265432B2 (en) 2012-01-17 2019-04-23 Dbg Group Investments, Llc Equipment for sanitizing the air conditioning system of vehicles by means of radiant catalytic ionization
US10279059B2 (en) * 2013-03-18 2019-05-07 Sensor Electronic Technology, Inc. Flexible ultraviolet device
DE102018000575A1 (en) * 2018-01-24 2019-07-25 Thermo Electron Led Gmbh Laboratory device with UV irradiation device and disinfection method for a laboratory device
US10413625B2 (en) * 2017-03-14 2019-09-17 Vioguard Ultraviolet sanitizing device having a modular light assembly
US20190365939A1 (en) * 2018-05-31 2019-12-05 Smartwash Solutions, Llc Microbial control system
US10603391B2 (en) 2015-04-27 2020-03-31 Apollo Renal Therapeutics, Llc Stethoscope sanitizing device
US10772979B2 (en) 2015-04-24 2020-09-15 Limestone Labs Limited Sanitizing device and method for sanitizing articles
ES2790048A1 (en) * 2019-04-25 2020-10-26 Univ Del Pais Vasco / Euskal Herriko Unibertsitatea SURFACE TREATMENT DEVICE FOR DENTAL IMPLANTS (Machine-translation by Google Translate, not legally binding)
US11007292B1 (en) 2020-05-01 2021-05-18 Uv Innovators, Llc Automatic power compensation in ultraviolet (UV) light emission device, and related methods of use, particularly suited for decontamination
US11058783B2 (en) * 2017-02-17 2021-07-13 Seal Shield, Llc UV sterilization system and device and related methods
CN113256867A (en) * 2021-06-16 2021-08-13 佛山予恩科技有限公司 MCU control device and method for access control equipment
WO2021196059A1 (en) * 2020-04-01 2021-10-07 唐山哈船科技有限公司 Disinfection cabinet for preventing novel coronavirus
US20210308317A1 (en) * 2020-04-01 2021-10-07 Ford Global Technologies, Llc Treatment apparatus for a vehicle to treat an object with ultraviolet light
WO2021207556A1 (en) * 2020-04-08 2021-10-14 Cleanbox Technology, Inc. Respirator mask cleaner
IT202000013546A1 (en) * 2020-06-08 2021-12-08 Castel Mac S R L CONTROL PROCEDURE FOR SANITIZATION OF ICE MAKING EQUIPMENT AND RELATED EQUIPMENT
IT202000015778A1 (en) * 2020-06-30 2021-12-30 Lbt Luxury Brands Tech S R L DEVICE FOR RAPID SANITIZATION OF OBJECTS
US11260138B2 (en) 2010-06-01 2022-03-01 Bluemorph, Llc UV sterilization of container, room, space or defined environment
US20220088238A1 (en) * 2020-04-08 2022-03-24 Validfill Llc Ultraviolet sanitization unit for beverage cups
WO2022074273A1 (en) * 2020-10-05 2022-04-14 Bruno Luis Benitez Garcia Portable disinfection box
US11324844B2 (en) * 2019-03-14 2022-05-10 Xiaohui Li UV sterilization device for board-type kitchenware
US11376340B2 (en) 2016-01-25 2022-07-05 Signify North America Corporation Biosecurity system using monitoring and sanitization for an agricultural dwelling
US11382992B2 (en) 2014-09-18 2022-07-12 Xenex Disinfection Services Inc. Room and area disinfection utilizing pulsed light
US20220280665A1 (en) * 2021-03-02 2022-09-08 Susan L. Quan Sterilization device and a method thereof
WO2022197817A1 (en) * 2021-03-17 2022-09-22 Crescent Metal Products, Inc. Chemical-free dry heat and uvc decontamination unit and method
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device
US11583902B2 (en) 2021-07-08 2023-02-21 Anne Costello Bed pan sanitizing assembly
US11596703B2 (en) 2020-09-03 2023-03-07 John Farrell Personal protective equipment sanitizing assembly
WO2023060343A1 (en) * 2021-10-12 2023-04-20 Uvsee Inc. Uvc sterilization chamber
US11680681B2 (en) 2019-02-14 2023-06-20 Philippe Roe Methods and apparatus for providing safety default states in mechanical equipment, processes and mechanisms
US11679171B2 (en) 2021-06-08 2023-06-20 Steribin, LLC Apparatus and method for disinfecting substances as they pass through a pipe
US11690927B2 (en) 2016-02-04 2023-07-04 Xenex Disinfection Services Inc. Systems, cabinets and methods for disinfecting objects
USD992081S1 (en) * 2021-06-01 2023-07-11 NSX Technologies, Inc. UV sanitizing cabinet
US11813371B2 (en) 2021-04-07 2023-11-14 Jigar Patel Currency disinfecting assembly

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645367A (en) * 2013-11-25 2015-05-27 北京白象新技术有限公司 High-temperature high-pressure sterilizer with fingerprint identification function
WO2015095408A1 (en) * 2013-12-17 2015-06-25 Oregon Health & Science University Ultraviolet disinfection of medical device access sites
KR101545608B1 (en) * 2014-06-16 2015-08-19 주식회사 에스엠아이 a bill sterilizer storage type of a counting machine
KR20160030650A (en) * 2014-09-11 2016-03-21 서울바이오시스 주식회사 sterilization apparatus of portable electronic device
WO2016060855A1 (en) * 2014-10-14 2016-04-21 Hepco Medical, LLC System for sterilizing objects utilizing germicidal uv-c radiation and ozone
CN104784717B (en) * 2015-04-16 2018-03-06 何志明 A kind of Quick disinfection method and device
CA2991752A1 (en) * 2015-07-14 2017-01-19 Vitabeam Ltd. Methods and devices for sanitation, disinfection and sterilization
US9925390B2 (en) 2015-09-17 2018-03-27 Ets Technologies, Llc Mobile device case with ultraviolet light sanitizer and light therapy
CN108421070A (en) * 2015-12-30 2018-08-21 夏周阳 A kind of double-purpose Medical appliances sterilizing cabinet
US9968697B1 (en) 2016-10-04 2018-05-15 Eric Philipps UV sanitizing cabinet for sanitizing garments and the like
US10596282B2 (en) 2017-08-23 2020-03-24 Hepco Holdings, Llc Sterilization device utilizing low intensity UV-C radiation and ozone
US11638836B2 (en) 2017-08-23 2023-05-02 Hepco Holdings, Llc Sterilization device utilizing low intensity UV-C radiation and ozone
US10335505B2 (en) 2017-08-23 2019-07-02 Hepco Holdings, Llc Sterilization device for incision and wound sites utilizing low intensity UV-C radiation and ozone
US20190060492A1 (en) * 2017-08-25 2019-02-28 Dabney Patents, L.L.C. System and method of providing disinfection, decontamination, and sterilization
US11331399B2 (en) * 2017-09-22 2022-05-17 John Mansell Sterilizing surgical instrument table
CN108578728A (en) * 2018-04-23 2018-09-28 北京铂鑫天然生物技术有限公司 Blood-plasma virus killing instrument
US11925716B2 (en) * 2020-05-22 2024-03-12 B/E Aerospace, Inc. Trolley with UV sanitation
IT202000013264A1 (en) 2020-06-04 2021-12-04 Gvs Spa System for sterilizing masks for facial protection against viruses and atmospheric agents
CN111870715A (en) * 2020-08-05 2020-11-03 中山易事达光电科技有限公司 Sterilization rod
CZ34388U1 (en) * 2020-08-05 2020-09-15 Jakub Ĺ ĹĄovĂ­ÄŤek Ozone sterilizer with lockable space for sterilizing objects and spaces
US20220061572A1 (en) * 2020-08-26 2022-03-03 Porchboxx Inc. Sanitary delivery container system
WO2022047616A1 (en) * 2020-09-01 2022-03-10 深圳恒之源技术股份有限公司 Dental instrument sterilization box
CN112660557A (en) * 2020-12-22 2021-04-16 广东康宝电器股份有限公司 Dish conveying box with disinfection function
CN112656967A (en) * 2020-12-23 2021-04-16 深圳市宝晟互联信息技术有限公司 Portable intelligent disinfection box

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791790A (en) * 1971-11-16 1974-02-12 Intertech Corp Portable purification device for fluids
US3994603A (en) * 1974-03-08 1976-11-30 Cerberus Ag Detection system to determine the transmissivity of a medium with respect to radiation, particularly the light transmissivity of smoke-contaminated air, for fire detection
US5208461A (en) * 1991-10-03 1993-05-04 Simon Hydro-Aerobics, Inc. Ultra-violet wastewater disinfection system
US5664340A (en) * 1996-03-18 1997-09-09 Brown; Clay A. Ultravoilet, antibacterial, antifungal dryerlight
US20020006275A1 (en) * 1999-07-19 2002-01-17 Shirley Pollack Forced air dryer for infant's bottom
US20020085947A1 (en) * 2000-09-19 2002-07-04 Deal Jeffery L. Ultraviolet area sterilizer and method of area sterilization using ultraviolet radiation
US20030086818A1 (en) * 2001-11-06 2003-05-08 Holley Merrel Truly Portable mail sterilizer which counters biological and chemical warfare agents
US6605260B1 (en) * 1998-04-17 2003-08-12 Tommy Busted Apparatus and a method for sterilizing a member
US6672729B1 (en) * 2002-04-18 2004-01-06 Phoenix Science And Technology, Inc. High efficiency and projection reflectors for light and sound
US20040052702A1 (en) * 2002-07-03 2004-03-18 Shuman Randal L. Food product surface sterilization apparatus and method
US20040141875A1 (en) * 2003-01-15 2004-07-22 Rajiv Doshi System and method for treating microorganisms within motor vehicle heating, ventilation, and air conditioning units
US20040224417A1 (en) * 2003-05-01 2004-11-11 Ziyi Wang Ultraviolet lamp performance measurement
US20040265193A1 (en) * 2003-06-03 2004-12-30 Ron Panice In-line, automated, duct-washing apparatus
US6877248B1 (en) * 2004-03-05 2005-04-12 Gregory N. Cross Clothes dryer with ultraviolet light
US20050212239A1 (en) * 2004-03-24 2005-09-29 Caddy Corporation UVC transport cart
US20050226762A1 (en) * 2004-04-13 2005-10-13 Naarup Gary J Adjustable UV air purifier
US7129592B1 (en) * 2005-03-02 2006-10-31 Yetter Gary L Portable, human-powered electrical energy source
US20070019411A1 (en) * 2004-01-19 2007-01-25 Bishou Chen LED matrix display module with high luminance area ratio
US20070212253A1 (en) * 2004-12-21 2007-09-13 Elrod Scott A Descenting systems and methods
US20070256226A1 (en) * 2006-05-08 2007-11-08 Scott Pinizzotto Toilet accessory with sterilization elements
US20070274879A1 (en) * 2004-07-23 2007-11-29 Uv Light Sciences Group, Inc. Uv sterilizer
US20080260601A1 (en) * 2005-11-03 2008-10-23 Lyon Donald E Uv Sterilizing Wand
US20090047173A1 (en) * 2002-08-07 2009-02-19 Steris Inc. Decontamination system for mail and other articles
US20090148358A1 (en) * 2007-12-11 2009-06-11 Wind Brian E UV light writing instrument sterilizer
US20100006804A1 (en) * 2008-07-11 2010-01-14 S & B Worldwide Corporation Highly protonated, supercharged, low ph, non-corrosive composition
US8101135B2 (en) * 2008-06-20 2012-01-24 Ivs, Inc. Desktop sterilizer for books

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288066A (en) * 1988-09-24 1990-03-28 Kumeta Seisakusho:Kk Sterilizing device
US6723233B1 (en) * 1999-09-10 2004-04-20 Ronald L. Barnes Ozone generator retrofit apparatus for jetted tubs and spas
CN2451119Y (en) * 2000-11-14 2001-10-03 镇江康尔臭氧有限公司 Photon ozone sterilizing cabinet
US20080206095A1 (en) * 2001-07-11 2008-08-28 Duthie Robert E Micro-organism reduction in liquid by use of a metal halide ultraviolet lamp
US20060076506A1 (en) * 2001-07-11 2006-04-13 Duthie Robert E Jr Micro-organism reduction in liquid by use of a metal halide ultraviolet lamp
CN2500306Y (en) * 2001-09-13 2002-07-17 王建平 Portable ultraviolet ray ozone disinfection apparatus
US7175806B2 (en) * 2002-03-15 2007-02-13 Deal Jeffery L C-band disinfector
WO2005000367A2 (en) * 2002-08-07 2005-01-06 Steris Inc. Decontamination system for mail and other articles
JP4596231B2 (en) * 2003-03-14 2010-12-08 岩崎電気株式会社 Active oxygen sterilizer
CN2652391Y (en) * 2003-08-06 2004-11-03 长春工业大学 Portable SARS virus sterilizing box
CN2792502Y (en) * 2004-12-03 2006-07-05 赵恒� Multifunctional air-sterilizing accessories with microcomputer for topped telecommunication network
US8685318B2 (en) * 2008-03-25 2014-04-01 Glen Sheldon Gerald Collard Apparatus for sanitizing oral appliances
KR100956261B1 (en) * 2010-01-14 2010-05-07 이동엽 Ultraviolet reflector and sterilizer within the same

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791790A (en) * 1971-11-16 1974-02-12 Intertech Corp Portable purification device for fluids
US3994603A (en) * 1974-03-08 1976-11-30 Cerberus Ag Detection system to determine the transmissivity of a medium with respect to radiation, particularly the light transmissivity of smoke-contaminated air, for fire detection
US5208461A (en) * 1991-10-03 1993-05-04 Simon Hydro-Aerobics, Inc. Ultra-violet wastewater disinfection system
US5664340A (en) * 1996-03-18 1997-09-09 Brown; Clay A. Ultravoilet, antibacterial, antifungal dryerlight
US6605260B1 (en) * 1998-04-17 2003-08-12 Tommy Busted Apparatus and a method for sterilizing a member
US20020006275A1 (en) * 1999-07-19 2002-01-17 Shirley Pollack Forced air dryer for infant's bottom
US20020085947A1 (en) * 2000-09-19 2002-07-04 Deal Jeffery L. Ultraviolet area sterilizer and method of area sterilization using ultraviolet radiation
US20030086818A1 (en) * 2001-11-06 2003-05-08 Holley Merrel Truly Portable mail sterilizer which counters biological and chemical warfare agents
US6672729B1 (en) * 2002-04-18 2004-01-06 Phoenix Science And Technology, Inc. High efficiency and projection reflectors for light and sound
US20040052702A1 (en) * 2002-07-03 2004-03-18 Shuman Randal L. Food product surface sterilization apparatus and method
US20090047173A1 (en) * 2002-08-07 2009-02-19 Steris Inc. Decontamination system for mail and other articles
US20040141875A1 (en) * 2003-01-15 2004-07-22 Rajiv Doshi System and method for treating microorganisms within motor vehicle heating, ventilation, and air conditioning units
US20040224417A1 (en) * 2003-05-01 2004-11-11 Ziyi Wang Ultraviolet lamp performance measurement
US20040265193A1 (en) * 2003-06-03 2004-12-30 Ron Panice In-line, automated, duct-washing apparatus
US20070019411A1 (en) * 2004-01-19 2007-01-25 Bishou Chen LED matrix display module with high luminance area ratio
US6877248B1 (en) * 2004-03-05 2005-04-12 Gregory N. Cross Clothes dryer with ultraviolet light
US20050212239A1 (en) * 2004-03-24 2005-09-29 Caddy Corporation UVC transport cart
US20050226762A1 (en) * 2004-04-13 2005-10-13 Naarup Gary J Adjustable UV air purifier
US20070274879A1 (en) * 2004-07-23 2007-11-29 Uv Light Sciences Group, Inc. Uv sterilizer
US20070212253A1 (en) * 2004-12-21 2007-09-13 Elrod Scott A Descenting systems and methods
US7129592B1 (en) * 2005-03-02 2006-10-31 Yetter Gary L Portable, human-powered electrical energy source
US20080260601A1 (en) * 2005-11-03 2008-10-23 Lyon Donald E Uv Sterilizing Wand
US20070256226A1 (en) * 2006-05-08 2007-11-08 Scott Pinizzotto Toilet accessory with sterilization elements
US20090148358A1 (en) * 2007-12-11 2009-06-11 Wind Brian E UV light writing instrument sterilizer
US8101135B2 (en) * 2008-06-20 2012-01-24 Ivs, Inc. Desktop sterilizer for books
US20100006804A1 (en) * 2008-07-11 2010-01-14 S & B Worldwide Corporation Highly protonated, supercharged, low ph, non-corrosive composition

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120138822A1 (en) * 2008-08-06 2012-06-07 Sound Health Designs, LLC System and method for germicidal sanitizing of an elevator or other enclosed structure
US8519361B2 (en) * 2008-08-06 2013-08-27 Elevated Health Systems, Llc System and method for germicidal sanitizing of an elevator or other enclosed structure
US20120298882A1 (en) * 2010-01-29 2012-11-29 Gastone Vitali Assembly for disinfecting water for sanitary fittings
US9789220B2 (en) 2010-05-19 2017-10-17 Johnson & Johnson Vision Care, Inc Ophthalmic lens disinfecting base
US20110284773A1 (en) * 2010-05-19 2011-11-24 Pugh Randall B Germicidal bulb disinfection base for ophthalmic lenses
US9282796B2 (en) 2010-05-19 2016-03-15 Johnson & Johnson Vision Care, Inc. UV radiation control for disinfecting of ophthalmic lenses
US9872933B2 (en) 2010-05-19 2018-01-23 Johnson & Johnson Vision Care, Inc. Light emitting diode disinfection base for ophthalmic lenses
US9795704B2 (en) 2010-05-19 2017-10-24 Johnson & Johnson Vision Care, Inc Ophthalmic lens disinfecting base
US10046073B2 (en) 2010-06-01 2018-08-14 Bluemorph, Llc Portable UV devices, systems and methods of use and manufacturing
US11040121B2 (en) 2010-06-01 2021-06-22 Bluemorph, Llc UV sterilization of container, room, space or defined environment
US9707306B2 (en) 2010-06-01 2017-07-18 Bluemorph, Llc UV sterilization of containers
US9687575B2 (en) 2010-06-01 2017-06-27 Bluemorph, Llc UV devices, systems and methods for UV sterilization
US9682161B2 (en) 2010-06-01 2017-06-20 Bluemorph, Llc Compositions and methods for UV sterilization
US9044521B2 (en) 2010-06-01 2015-06-02 Alexander Farren UV sterilization of containers
US11260138B2 (en) 2010-06-01 2022-03-01 Bluemorph, Llc UV sterilization of container, room, space or defined environment
US10603394B2 (en) 2010-06-01 2020-03-31 Bluemorph, Llc UV sterilization of container, room, space or defined environment
US9387268B2 (en) 2010-06-01 2016-07-12 Alexander Farren Compositions and methods for UV sterilization
US9457122B2 (en) 2010-09-07 2016-10-04 Puradigm, Llc Enhanced photo-catalytic cells
US20120058006A1 (en) * 2010-09-07 2012-03-08 David Tupman Enhanced photo-catalytic cells
US8585979B2 (en) * 2010-09-07 2013-11-19 Puradigm, Llc Enhanced photo-catalytic cells
US8389956B2 (en) * 2011-08-03 2013-03-05 Robert Rife Laryngoscope disinfector
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10947138B2 (en) 2011-12-06 2021-03-16 Delta Faucet Company Ozone distribution in a faucet
US20140363342A1 (en) * 2012-01-17 2014-12-11 Ecoquest Do Brasil Device for sanitizing the air-conditioning system of vehicles using radiant catalytic ionization
US9937276B2 (en) * 2012-01-17 2018-04-10 ECOQUEST DO BRASIL, Comercio Imporatacao Exportacao E Serviccos Para Purificacao de ar e Agua, LTDA Device for sanitizing the air-conditioning system of vehicles using radiant catalytic ionization
US10265432B2 (en) 2012-01-17 2019-04-23 Dbg Group Investments, Llc Equipment for sanitizing the air conditioning system of vehicles by means of radiant catalytic ionization
WO2013130710A1 (en) * 2012-02-28 2013-09-06 Cohen Ben Z Backlit surgical instrument support assembly
US10307216B2 (en) 2012-02-28 2019-06-04 Ben Z. Cohen Backlit surgical instrument support assembly
US11191602B2 (en) 2012-02-28 2021-12-07 Ben Z. Cohen Backlit surgical instrument support assembly
US20170030841A1 (en) * 2012-06-29 2017-02-02 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
US10684232B2 (en) * 2012-06-29 2020-06-16 Biocontrol Systems, Inc. Sample collection and bioluminescent analysis system
US20150241855A1 (en) * 2012-11-13 2015-08-27 Olympus Winter & Ibe Gmbh Control system for a cleaning device, and cleaning device
US10279059B2 (en) * 2013-03-18 2019-05-07 Sensor Electronic Technology, Inc. Flexible ultraviolet device
US20150025300A1 (en) * 2013-07-18 2015-01-22 American Sterilizer Company Modular patient care enclosure
US9265678B2 (en) * 2013-07-18 2016-02-23 American Sterilizer Company Modular patient care enclosure
CN104368403A (en) * 2013-08-14 2015-02-25 海尔集团公司 Biological safety cabinet ultraviolet lamp linkage controller and control method thereof
US8791441B1 (en) 2013-08-27 2014-07-29 George Jay Lichtblau Ultraviolet radiation system
WO2015030840A1 (en) * 2013-08-27 2015-03-05 Lichtblau G J Ultraviolet radiation system
WO2015080768A1 (en) * 2013-11-26 2015-06-04 Bluemorph Llc Uv devices, systems and methods for uv sterilization
US11382992B2 (en) 2014-09-18 2022-07-12 Xenex Disinfection Services Inc. Room and area disinfection utilizing pulsed light
US9657904B1 (en) * 2014-11-14 2017-05-23 Amazon Technologies, Inc. Photobleaching displays to mitigate color gradients
US20160298857A1 (en) * 2015-04-09 2016-10-13 Sunair HVAC Engineering Corporation Kitchen fume-cleaning apparatus for degreasing and deodorization
US10772979B2 (en) 2015-04-24 2020-09-15 Limestone Labs Limited Sanitizing device and method for sanitizing articles
US10603391B2 (en) 2015-04-27 2020-03-31 Apollo Renal Therapeutics, Llc Stethoscope sanitizing device
US9289527B1 (en) * 2015-05-18 2016-03-22 George J. Lichtblau UV disinfection system with ballast current monitoring
CN106610680A (en) * 2015-10-22 2017-05-03 博西华电器(江苏)有限公司 A method of controlling a disinfection cabinet and the disinfection cabinet
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device
US11376340B2 (en) 2016-01-25 2022-07-05 Signify North America Corporation Biosecurity system using monitoring and sanitization for an agricultural dwelling
US11690927B2 (en) 2016-02-04 2023-07-04 Xenex Disinfection Services Inc. Systems, cabinets and methods for disinfecting objects
US11648326B2 (en) * 2016-02-04 2023-05-16 Xenex Disinfection Services Inc. Cabinets for disinfecting objects
US20170224858A1 (en) * 2016-02-04 2017-08-10 Xenex Disinfection Services LLC. Support Structures, Cabinets And Methods For Disinfecting Objects
US11000615B2 (en) 2016-02-04 2021-05-11 Xenex Disinfection Services Inc. Support structures, cabinets and methods for disinfecting objects
ES2629065A1 (en) * 2016-02-05 2017-08-07 Pedro PÉREZ OJEDA Domestic device for ozonetherapy (Machine-translation by Google Translate, not legally binding)
US11058783B2 (en) * 2017-02-17 2021-07-13 Seal Shield, Llc UV sterilization system and device and related methods
US11305027B2 (en) * 2017-02-17 2022-04-19 Seal Shield, Llc UV sterilization system and device and related methods
US11191857B2 (en) 2017-03-14 2021-12-07 Vioguard Inc. Modular light assembly for ultraviolet sanitizing device
US10413625B2 (en) * 2017-03-14 2019-09-17 Vioguard Ultraviolet sanitizing device having a modular light assembly
US10682432B2 (en) 2017-03-14 2020-06-16 Vioguard Inc. Modular light assembly for ultraviolet sanitizing device
CN107440724A (en) * 2017-09-06 2017-12-08 昆明信诺莱伯科技有限公司 A kind of portable field finger print fumigation display equipment
WO2019067563A1 (en) * 2017-09-29 2019-04-04 Hyper Light Technologies, Llc Hyper-wave sterilization cabinet
DE102018000575A1 (en) * 2018-01-24 2019-07-25 Thermo Electron Led Gmbh Laboratory device with UV irradiation device and disinfection method for a laboratory device
US10960093B2 (en) 2018-01-24 2021-03-30 Thermo Electron Led Gmbh Laboratory apparatus comprising a UV radiation device, and disinfection method for a laboratory apparatus
US20190365939A1 (en) * 2018-05-31 2019-12-05 Smartwash Solutions, Llc Microbial control system
US11680681B2 (en) 2019-02-14 2023-06-20 Philippe Roe Methods and apparatus for providing safety default states in mechanical equipment, processes and mechanisms
US11324844B2 (en) * 2019-03-14 2022-05-10 Xiaohui Li UV sterilization device for board-type kitchenware
ES2790048A1 (en) * 2019-04-25 2020-10-26 Univ Del Pais Vasco / Euskal Herriko Unibertsitatea SURFACE TREATMENT DEVICE FOR DENTAL IMPLANTS (Machine-translation by Google Translate, not legally binding)
WO2021196059A1 (en) * 2020-04-01 2021-10-07 唐山哈船科技有限公司 Disinfection cabinet for preventing novel coronavirus
US20210308317A1 (en) * 2020-04-01 2021-10-07 Ford Global Technologies, Llc Treatment apparatus for a vehicle to treat an object with ultraviolet light
US11865234B2 (en) * 2020-04-01 2024-01-09 Ford Global Technologies, Llc Treatment apparatus for a vehicle to treat an object with ultraviolet light
WO2021207556A1 (en) * 2020-04-08 2021-10-14 Cleanbox Technology, Inc. Respirator mask cleaner
US20220088238A1 (en) * 2020-04-08 2022-03-24 Validfill Llc Ultraviolet sanitization unit for beverage cups
US11565012B2 (en) 2020-05-01 2023-01-31 Uv Innovators, Llc Ultraviolet (UV) light emission device employing visible light for target distance guidance, and related methods of use, particularly suited for decontamination
US11116858B1 (en) 2020-05-01 2021-09-14 Uv Innovators, Llc Ultraviolet (UV) light emission device employing visible light for target distance guidance, and related methods of use, particularly suited for decontamination
US11883549B2 (en) 2020-05-01 2024-01-30 Uv Innovators, Llc Ultraviolet (UV) light emission device employing visible light for operation guidance, and related methods of use, particularly suited for decontamination
US11007292B1 (en) 2020-05-01 2021-05-18 Uv Innovators, Llc Automatic power compensation in ultraviolet (UV) light emission device, and related methods of use, particularly suited for decontamination
US11020502B1 (en) 2020-05-01 2021-06-01 Uv Innovators, Llc Ultraviolet (UV) light emission device, and related methods of use, particularly suited for decontamination
EP3922936A1 (en) * 2020-06-08 2021-12-15 Castel Mac S.R.L. Control procedure for the sanitization of ice-making apparatus and related apparatus
IT202000013546A1 (en) * 2020-06-08 2021-12-08 Castel Mac S R L CONTROL PROCEDURE FOR SANITIZATION OF ICE MAKING EQUIPMENT AND RELATED EQUIPMENT
IT202000015778A1 (en) * 2020-06-30 2021-12-30 Lbt Luxury Brands Tech S R L DEVICE FOR RAPID SANITIZATION OF OBJECTS
US11596703B2 (en) 2020-09-03 2023-03-07 John Farrell Personal protective equipment sanitizing assembly
WO2022074273A1 (en) * 2020-10-05 2022-04-14 Bruno Luis Benitez Garcia Portable disinfection box
US20220280665A1 (en) * 2021-03-02 2022-09-08 Susan L. Quan Sterilization device and a method thereof
WO2022197817A1 (en) * 2021-03-17 2022-09-22 Crescent Metal Products, Inc. Chemical-free dry heat and uvc decontamination unit and method
US11813371B2 (en) 2021-04-07 2023-11-14 Jigar Patel Currency disinfecting assembly
USD992081S1 (en) * 2021-06-01 2023-07-11 NSX Technologies, Inc. UV sanitizing cabinet
US11679171B2 (en) 2021-06-08 2023-06-20 Steribin, LLC Apparatus and method for disinfecting substances as they pass through a pipe
CN113256867A (en) * 2021-06-16 2021-08-13 佛山予恩科技有限公司 MCU control device and method for access control equipment
US11583902B2 (en) 2021-07-08 2023-02-21 Anne Costello Bed pan sanitizing assembly
WO2023060343A1 (en) * 2021-10-12 2023-04-20 Uvsee Inc. Uvc sterilization chamber

Also Published As

Publication number Publication date
WO2010123785A2 (en) 2010-10-28
US9114183B2 (en) 2015-08-25
EP2429595A2 (en) 2012-03-21
CA2763710C (en) 2017-03-07
EP2429595A4 (en) 2013-03-27
US20120328474A1 (en) 2012-12-27
CN102458485A (en) 2012-05-16
WO2010123785A3 (en) 2011-03-24
EP2429595B1 (en) 2016-06-08
CA2763710A1 (en) 2010-10-28
US20150231288A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
US9114183B2 (en) Portable antimicrobial ultra violet sterilizer
US9498551B2 (en) Anti-microbial cash drawer
KR101847710B1 (en) Chlorine dioxide gas generating apparatus
US20090304553A1 (en) Tool and tray sanitation
WO2009086053A1 (en) Germicidal apparatus and method for sterilizing objects
US20060147339A1 (en) Methods and apparatus for ultraviolet sterilization
US10363328B2 (en) Anti-microbial cash drawer
EP1259266A1 (en) Uv-c sterilizer
WO2014153282A1 (en) Instrument disinfector
CN201775809U (en) Medical sterilizing cabinet
JP2009082359A (en) Sterilization apparatus
JP3123511U (en) Denture cleaner
US20230355818A1 (en) System for reducing microbial burden on a surface
CN212038348U (en) Medical instrument disinfection box with good disinfection effect
US20230372561A1 (en) Apparatus and method for uv-c mask sanitization
JP3775404B2 (en) Operating method of food machine with sterilization means
CN201295397Y (en) Medical disinfecting instrument
CN101411881A (en) Medical disinfecting instrument
CN113384724B (en) Device for disinfecting medical record data of hospital clinical department and control method thereof
BR102021007678A2 (en) DISINFECTION CHAMBER FOR PATHOGENS
US20210275705A1 (en) Combination ultra-violet a (uva) and ultra-violet c (uvc) system for reduction and inhibition of growth of pathogens
JPH01284255A (en) Complex sterilization by microwave and device therefor
US20220118126A1 (en) Anti-Microbial Hand Sanitizing Device
JPH078544A (en) Sterilizing tank for medical supplies
KR20220129410A (en) Device for manufacturing Chlorine dioxide

Legal Events

Date Code Title Description
AS Assignment

Owner name: STER-O-WAVE LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CAMPAGNA, KENNETH L.;REEL/FRAME:027946/0026

Effective date: 20120328

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION