US20100210649A1 - Pyridazinones and furan-containing compounds - Google Patents

Pyridazinones and furan-containing compounds Download PDF

Info

Publication number
US20100210649A1
US20100210649A1 US12/520,434 US52043407A US2010210649A1 US 20100210649 A1 US20100210649 A1 US 20100210649A1 US 52043407 A US52043407 A US 52043407A US 2010210649 A1 US2010210649 A1 US 2010210649A1
Authority
US
United States
Prior art keywords
optionally substituted
aryl
aliphatic
heteroaryl
heteroaliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US12/520,434
Other languages
English (en)
Inventor
Hakim Djaballah
Harold E. Varmus
David Shum
Romel Somwar
Alexander Chucholowski
Mohan Santhanam Thiruvazhi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memorial Sloan Kettering Cancer Center
Original Assignee
Sloan Kettering Institute for Cancer Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sloan Kettering Institute for Cancer Research filed Critical Sloan Kettering Institute for Cancer Research
Priority to US12/520,434 priority Critical patent/US20100210649A1/en
Assigned to SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH reassignment SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUCHOLOWSKI, ALEXANDER, SANTHANAM, MOHAN, SHUM, DAVID, DJABALLAH, HAKIM, SOMWAR, ROMEL, VARMUS, HAROLD E.
Publication of US20100210649A1 publication Critical patent/US20100210649A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/04Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having less than three double bonds between ring members or between ring members and non-ring members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/68Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/70Nitro radicals
    • C07D307/71Nitro radicals attached in position 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/82Benzo [b] furans; Hydrogenated benzo [b] furans with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/84Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • C07D307/85Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/92Naphthofurans; Hydrogenated naphthofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems

Definitions

  • Lung cancer has been the most common cancer in the world since 1985, with approximately 163,510 deaths expected to occur in 2005 in the United States. Even with current treatments involving surgery, chemotherapy, and/or radiotherapy, overall 5-year survival in the United States is still only approximately 15 percent; in developing countries, 5-year survival rates are about 9 percent (Parkin et al., CA Cancer J. Clin . (2005) 55:74-108).
  • the overwhelming majority of lung cancers in both sexes can be attributed to smoking. However, approximately 10% of lung cancers arise in individuals who smoked less than 100 cigarettes in a lifetime (“never smokers”).
  • gefitinib tyrosine kinase inhibitors
  • TARCEVATM OSI Pharmaceuticals, Genentech.
  • gefitinib and erlotinib are the only two targeted agents clinically available for treatment of human non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma and large cell carcinoma).
  • Tumors arising from mutant EGFR require the continuous expression/activity of the oncogene for survival. This is based on the regression of mutant EGFR lung tumors that were treated with erlotinib and gefitinb, and has also been demonstrated for lung tumors arising in mice with controlled expression of oncogenic egfr (Politi et al., Genes Dev . (2006) 20:1496-1510) and kras (Fisher et al., Genes Dev . (2001) 15:3249-3262).
  • the mutant oncogene may alter a normal cell so that continued expression or function of the oncogene is required to prevent the cell from entering an apoptotic (or differentiation) pathway. Very likely, the protein encoded by the mutant oncogene activates multiple signaling pathways in such a way that sudden loss of a signal dependent on a mutant oncoprotein removes a block to other signals that direct apoptosis or differentiation.
  • the present invention is directed to pyridazinone and furan-containing compounds, and pharmaceutically acceptable salts, prodrugs, isomers, and tautomers thereof, pharmaceutical compositions, kits, methods of syntheses, and methods of treating proliferative diseases (e.g., neoplasia), such as cancer (e.g., lung cancer), in a subject by administering a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug, isomer, or tautomer thereof.
  • the compounds of the present invention may target a common effector in the oncogenic EGFR and/or KRAS pathways, and may be so identified using cell-based screens as described herein. Such compounds are effective in the treatment of cancers associated with EGFR and/or KRAS mutations.
  • the present invention provides pyridazinone compounds having the formula (I):
  • R x is hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, optionally substituted sulfonyl, optionally substituted hydroxy, or optionally substituted amino;
  • R 1 , R 2 , and R 3 are, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino
  • R 2 and the carbon directly attached to R 2 form an ( ⁇ O), ( ⁇ S), or ( ⁇ NR y ) group
  • R y is hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imid
  • Ar is a group selected from aryl, heteroaryl, aliphatic optionally substituted with aryl or heteroaryl, or heteroaliphatic optionally substituted with aryl or heteroaryl, each group optionally substituted with aliphatic, heteroaliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino, dialiphaticamino, trialiphaticamino, arylamino, diarylamino, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, or halo;
  • the present invention also provides methods of synthesizing compounds of formula (I).
  • the present invention provides furan-containing compounds having the formula (II):
  • each instance of R 1 , R 2 , and R 3 is, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino, dialiphaticamino,
  • each instance of R 4 and R 5 is, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, hydrazino; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino, dialiphaticamino, trialiphaticamino, arylamino, diarylamino, carboxaldehyde,
  • J and J′ together, form an oxo ( ⁇ O), thiooxo ( ⁇ S), or imino ( ⁇ NR N5 ) group, wherein R N5 is hydrogen, optionally substituted hydroxy, optionally substituted amino, optionally substituted aryl, optionally substituted sulfonyl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted aliphatic, or optionally substituted heteroaliphatic; or each instance of J and J′ is, independently, hydrogen, optionally substituted aliphatic or optionally substituted heteroaliphatic,
  • the present invention provides pharmaceutical compositions comprising a therapeutically effective amount of a compound of formula (I), or a compound of formula (II) (or pharmaceutically acceptable salts, prodrugs, isomers, or tautomers thereof), and at least one pharmaceutically acceptable excipient.
  • kits comprising at least one compound of formula (I), or at least one compound of formula (II) (or pharmaceutically acceptable salts, prodrugs, isomers, or tautomers, thereof).
  • a kit of the invention can include additional solvents, buffers, or excipients for pre-mixing before oral or parental administration, means for oral or parental administration, or additional chemotherapeutic agents.
  • the present invention also provides a method of treating proliferative diseases in a subject by administering a therapeutically effective amount of a compound of formula (I), or by administering a therapeutically effective amount of a compound of formula (II) (or a pharmaceutically acceptable salt, prodrug, isomer, or tautomer thereof).
  • the proliferative disease is cancer.
  • the cancer is renal cancer, bladder cancer, liver cancer, testicular cancer, ovarian cancer, colorectal cancer, prostate cancer, pancreatic cancer, lung cancer, breast cancer, brain cancer, bone cancer, stomach cancer, oral cancer, skin cancer, blood cancer, or leukemia.
  • the cancer is associated with EGFR and/or KRAS mutations.
  • the cancer is lung cancer.
  • the lung cancer is human non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma).
  • FIG. 1 SKI-267077 blocks DNA synthesis. H2030 cells were treated with the indicated concentration of SKI-267077 for 24 h and then the incorporation of 3 H-thymidine into DNA was determined
  • FIGS. 2A-2B SKI-267077 induces cell cycle arrest. H2030 cells were treated with SKI-267077 for 24 h. Cell cycle progression was analyzed by FACS analysis.
  • FIG. 2A Percent of cells in S-phase.
  • FIG. 2B percent of cells in G1 phase.
  • FIG. 3 Activation of caspase 3/7 by SKI-267077.
  • H2030 cells were treated with 1 ⁇ M SKI-267077 for 48 h and then caspase 3/7 activity measured in whole cell extracts.
  • FIGS. 4A-4E IC 50 Curves of Primary HTS Data for SKI 104122.
  • FIGS. 5A-5D IC 50 Curves of SKI 104122 (repeated).
  • FIGS. 6A-6E IC 50 Curves for Resynthesized SKI 104122.
  • FIGS. 7A-7D IC 50 Curves for Resynthesized SKI 104122
  • FIGS. 8A-8E IC 50 Curves for Resynthesized SKI 104122.
  • FIGS. 9A-9E IC 50 Curves for Resynthesized SKI 104122.
  • FIGS. 10A-10E IC 50 Curves for Resynthesized SKI 104122.
  • FIGS. 11-40 IC 50 curves for active pyridazinone compounds against the H3255 cell line.
  • FIGS. 41A-41B SKI-267077 inhibits DNA synthesis.
  • SKI-267077 was used to elucidate the mechanism by which this agent inhibits cell growth.
  • Treatment of adenocarcinoma cell lines with either mutant EGFR(H1975 and H3255) resulted in a dose-dependent reduction in DNA synthesis.
  • FIG. 42 SKI-267077 induces apoptosis.
  • Cells were treated for 48 hours with SKI-267077 and then binding of FITC-labeled annexin V to cells determined FACS analysis was used to determine the amount of annexin V-positive cells. There was an induction of apoptosis, as measured by binding of annexin-V to the cell surface.
  • FIG. 43A-43C A phosphoprotein array was used to determine which signaling pathways were affected by treatment of cells with SKI-267077. To detect protein phosphorylation using phosphoprotein arrays (R and D Systems), cells were treated for 24 hours with SKI-267077 or erlotinib (Tarceva). A phosphoprotein array (R and D Systems) was used to measure the level of phosphorylation of cellular proteins. Protein phosphorylation was determined according to the manufacturer's instructions. SKI-267077 blocked phosphorylation of all three AKT isoforms ( FIG. 43A ) and p70 S6 kinase ( FIG. 43B ) (PI-3kinase signaling pathway).
  • Certain compounds of the present invention may exist in particular geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
  • an isomer/enantiomer may, in some embodiments be provided substantially free of the corresponding enantiomer, and may also be referred to as “optically enriched.”
  • an “optically-enriched” isomer/enantiomer refers to a compound which is isolated or separated via separation techniques or prepared free of the corresponding isomer/enantiomer.
  • “Optically-enriched,” as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer. In certain embodiments the compound is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer.
  • Preferred enantiomers may be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts or prepared by asymmetric syntheses.
  • HPLC high pressure liquid chromatography
  • Jacques, et al. Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); Wilen, S. H. Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972).
  • the compounds, as described herein, may be substituted with any number of substituents or functional moieties.
  • substituted whether preceded by the term “optionally” or not, and substituents contained in formulas of this invention, refer to the replacement of hydrogen radicals in a given structure with the radical of a specified substituent. When more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position.
  • substituted is contemplated to include all permissible substituents of organic compounds.
  • the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
  • heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms.
  • this invention is not intended to be limited in any manner by the permissible substituents of organic compounds.
  • substituents include, but are not limited to, aliphatic, carbocyclic, alkyl, alkenyl, alkynyl, aliphaticoxy, alkyloxy, alkenyloxy, alkynyloxy, aliphaticthioxy, alkylthioxy, alkenylthioxy, alkynylthioxy, heteroaliphatic, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, aliphaticamino, dialiphaticamino, trialiphaticamino, arylamino, diarylamino, carboxaldehyde, cyano, isocyano, amino, azido, hydrazino nitro, oxo, thiooxo, imino, hydroxy, thio, halo, aryloxy, arylthioxy, and arylamino; wherein any of the substituent
  • substituents recited above may be optionally substituted by additional substituents, such as oxo, thioxo, or imino, or may be optionally substituted by any of the substituents recited above, given that the combination results in a stable moiety.
  • substituent combinations include, for example, perfluoroaliphatic, perfluoroaliphaticoxy, aminoaliphatic, hydroxyaliphatic, thioaliphatic, arylaliphatic, heteroarylaliphatic, arylaliphaticthioxy, arylaliphaticoxy, arylaliphaticamino, heteroaliphaticoxy, heteroaliphaticthioxy, heteroaliphaticamino; Additional examples of generally applicable substituents are illustrated by the specific embodiments and in the Examples as described herein.
  • stable moiety preferably refers to a moiety which possess stability sufficient to allow manufacture, and which maintains its integrity for a sufficient period of time to be useful for the purposes detailed herein.
  • aliphatic includes both saturated and unsaturated, nonaromatic, straight chain (i.e., unbranched), branched, acyclic, cyclic, or polycyclic hydrocarbons, which are optionally substituted with one or more functional groups.
  • aliphatic is intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties.
  • alkyl includes straight, branched and cyclic alkyl groups.
  • alkyl is used to indicate those alkyl groups (cyclic, acyclic, substituted, unsubstituted, branched or unbranched) having 1-6 carbon atoms.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • Carbocyclic refers to a cyclic aliphatic group, such as a cycloalkyl, cycloalkenyl, and cycloalkynyl, which may be substituted or unsubstituted.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • alkyl refers to saturated, straight- or branched-chain hydrocarbon radicals derived from a hydrocarbon moiety containing between one and twenty carbon atoms by removal of a single hydrogen atom.
  • the alkyl group employed in the invention contains 1-10 carbon atoms.
  • the alkyl group employed contains 1-8 carbon atoms.
  • the alkyl group contains 1-6 carbon atoms.
  • the alkyl group contains 1-4 carbons.
  • alkyl radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, sec-pentyl, iso-pentyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, sec-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, dodecyl, and the like, which may bear one or more sustitutents.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • alkenyl denotes a monovalent group derived from a straight or branched-chain hydrocarbon moiety having at least one carbon-carbon double bond by the removal of a single hydrogen atom.
  • the alkenyl group employed in the invention contains 1-20 carbon atoms.
  • the alkenyl group employed in the invention contains 1-10 carbon atoms.
  • the alkenyl group employed contains 1-8 carbon atoms.
  • the alkenyl group contains 1-6 carbon atoms.
  • the alkenyl group contains 1-4 carbons.
  • Alkenyl groups include, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, and the like, which may bear one or more substituents.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • alkynyl refers to a monovalent group derived from a straight- or branched-chain hydrocarbon having at least one carbon-carbon triple bond by the removal of a single hydrogen atom.
  • the alkynyl group employed in the invention contains 1-20 carbon atoms.
  • the alkynyl group employed in the invention contains 1-10 carbon atoms.
  • the alkynyl group employed contains 1-8 carbon atoms.
  • the alkynyl group contains 1-6 carbon atoms.
  • alkynyl groups include, but are not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl, and the like, which may bear one or more substituents.
  • substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • aliphaticoxy refers to an aliphatic group, defined herein, attached to the parent molecular moiety through an oxygen atom.
  • the aliphatic group contains 1-20 aliphatic carbon atoms.
  • the aliphatic group employed in the invention contain 1-8 aliphatic carbon atoms.
  • the aliphatic group contains 1-6 aliphatic carbon atoms.
  • the aliphatic group contains 1-4 aliphatic carbon atoms.
  • Examples include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, tert-butoxy, i-butoxy, sec-butoxy, neopentoxy, n-hexoxy, and the like, which may bear one or more substituents.
  • Substituents include, but are not limited to, any of the above-listed substituents, and that result in the formation of a stable moiety.
  • alkyloxy refers to an alkyl, alkenyl and alkynyl group, respectively, attached to the parent molecular moiety through an oxygen atom.
  • aliphaticthioxy refers to an aliphatic group attached to the parent molecular moiety through a sulfur atom.
  • the aliphatic group contains 1-20 aliphatic carbon atoms.
  • the aliphatic group contains 1-10 aliphatic carbon atoms.
  • the aliphatic group contains 1-8 aliphatic carbon atoms.
  • the aliphatic group contains 1-6 aliphatic carbon atoms.
  • the aliphatic group contain 1-4 aliphatic carbon atoms. Examples of aliphaticthioxy moieties include, but are not limited to, methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, and the like.
  • alkylthioxy refers to an alkyl, alkenyl, and alkynyl group, respectively, attached to the parent molecular moiety through a sulfur atom.
  • heteroaliphatic refers to an aliphatic moiety, as defined herein, that contain one or more oxygen, sulfur, nitrogen, phosphorus, or silicon atoms, e.g., in place of carbon atoms.
  • heteroaliphatic moieties are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more substituents.
  • substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • heterocyclic refers to an non-aromatic, partially unsaturated or fully saturated, 3- to 10-membered ring system, which includes single rings of 3 to 8 atoms in size, and bi- and tri-cyclic ring systems which may include aromatic five- or six-membered aryl or heteroaryl groups fused to a non-aromatic ring.
  • heterocyclic rings include those having from one to three heteroatoms independently selected from oxygen, sulfur, and nitrogen, in which the nitrogen and sulfur heteroatoms may optionally be oxidized and the nitrogen heteroatom may optionally be quaternized.
  • heterocylic refers to a non-aromatic 5-, 6-, or 7-membered ring or polycyclic group wherein at least one ring atom is a heteroatom selected from O, S, and N (wherein the nitrogen and sulfur heteroatoms may be optionally oxidized), and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms.
  • Heterocycyl groups include, but are not limited to, a bi- or tri-cyclic group, comprising fused five, six, or seven-membered rings having between one and three heteroatoms independently selected from the oxygen, sulfur, and nitrogen, wherein (i) each 5-membered ring has 0 to 2 double bonds, each 6-membered ring has 0 to 2 double bonds, and each 7-membered ring has 0 to 3 double bonds, (ii) the nitrogen and sulfur heteroatoms may be optionally oxidized, (iii) the nitrogen heteroatom may optionally be quaternized, and (iv) any of the above heterocyclic rings may be fused to an aryl or heteroaryl ring.
  • heterocycles include azacyclopropanyl, azacyclobutanyl, piperidinyl, piperazinyl, azocanyl, thiaranyl, thietanyl, tetrahydrothiophenyl, dithiolanyl, thiacyclohexanyl, oxiranyl, oxetanyl, tetrahydrofuranyl, tetrahydropuranyl, dioxanyl, oxathiolanyl, morpholinyl, thioxanyl, tetrahydronaphthyl, and the like, which may bear one or more substituents.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • aryl refers to stable aromatic mono- or polycyclic ring system having 3-20 ring atoms, of which all ring atoms are carbon, and which may be substituted or unsubstituted.
  • aryl refers to a mono, bi, or tricyclic C 4 -C 20 aromatic ring system having one, two, or three aromatic rings which include, but not limited to, phenyl, biphenyl, naphthyl, and the like, which may bear one or more substituents.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • heteroaryl refers to stable aromatic mono- or polycyclic ring system having 3-20 ring atoms, of which one ring atom is selected from S, O, and N; zero, one, or two ring atoms are additional heteroatoms independently selected from S, O, and N; and the remaining ring atoms are carbon, the radical being joined to the rest of the molecule via any of the ring atoms.
  • heteroaryls include, but are not limited to pyrrolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, tetrazinyl, pyyrolizinyl, indolyl, quinolinyl, isoquinolinyl, benzoimidazolyl, indazolyl, quinolinyl, isoquinolinyl, quinolizinyl, cinnolinyl, quinazolynyl, phthalazinyl, naphthridinyl, quinoxalinyl, thiophenyl, thianaphthenyl, furanyl, benzofuranyl, benzothiazolyl, thiazolynyl, isothiazolyl, thiadiazolynyl, oxazolyl, isoxazolyl, oxadiazi
  • acyl refers to a group having the general formula —C( ⁇ O)R, where R is hydrogen, halogen, hydroxy, thio, amino, aliphatic, carbocyclic, heteroaliphatic, alkyl, alkenyl, alkynyl, aryl, alkyloxy, alkylthioxy, alkylamino, dialkylamino, arylamino, diarylamino, aryl, heteroaryl, or heterocycyl.
  • acyl groups include aldehydes, carboxylic acids, ketones (such as an acetyl group [—(C ⁇ O)CH 3 ], esters, amides, carbonates, carbamates, and ureas.
  • acyloxy refers to an acyl group of the formula (—OC( ⁇ O)R), where R may be hydrogen, hydroxy, thio, amino, aliphatic, carbocyclic, heteroaliphatic, alkyl, alkenyl, alkynyl, aryl, aliphaticoxy, aliphaticthioxy, aliphaticamino, dialiphaticamino, arylamino, diarylamino, aryl, heteroaryl, or heterocycyl.
  • amide refers to an acyl group having the general formula —C( ⁇ O)N(R)(R), —N(H)C( ⁇ O)(R), or —N(R)C( ⁇ O)(R), where each instance of R is, hydrogen, hydroxy, thio, amino, aliphatic, carbocyclic, heteroaliphatic, alkyl, alkenyl, alkynyl, aryl, alkyloxy, alkylthioxy, alkylamino, dialkylamino, arylamino, diarylamino, aryl, heteroaryl, or heterocycyl.
  • imide refers to a group having the general formula —C( ⁇ NR)R, —OC( ⁇ NH)R, —OC( ⁇ NR)R, —C( ⁇ NH)R, —N(H)C( ⁇ NH)R, —N(H)C( ⁇ NR)R, —N(R)C( ⁇ NH)R, or —N(R)C( ⁇ NR)R, where each instance of R is, independently, aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclyl.
  • sulfinyl refers to a group of the formula R—S( ⁇ O)— where there is one double bond between the sulfur and oxygen, and where R may be aliphatic, aryl, alkoxy, hydroxy, thiol, alkylthioxy, amino, alkylamino, dialkylamino, aryl, heteroaryl, or heterocyclyl.
  • aliphaticsulfinyl refers to a sulfinyl group where R may be aliphatic, heterocyclyl, or heteroaliphatic.
  • arylsulfinyl refers to a sulfinyl group where R may be aryl or heteroaryl.
  • sulfonyl refers to an organic radical (or functional group) obtained from an sulfonic acid by the removal of the hydroxyl group.
  • Sulfonyl groups can be written as having the general formula R—S( ⁇ O) 2 —, where there are two double bonds between the sulfur and oxygen, and where R may be aliphatic, heteroaliphatic, aryl, alkyloxy, hydroxy, thiol, alkylthioxy, amino, alkylamino, dialkylamino, aryl, heteroaryl, or heterocyclic.
  • aliphaticsulfonyl refers to a sulfonyl group where R may be aliphatic, heteroaliphatic, or heterocyclic.
  • arylsulfonyl refers to a sulfonyl group where R may be aryl or heteroaryl.
  • the names of sulfonyl groups typically end in -syl, such as tosyl (toluene sulfonyl, CH 3 C 6 H 4 SO 2 —), mesyl (methyl sulfonyl, CH 3 SO 2 —), etc.
  • aliphaticamino refers to one, two, or three, respectively, aliphatic, heterocyclyl or heteroaliphatic groups, as previously defined, attached to the parent molecular moiety through a nitrogen atom.
  • aliphaticamino refers to a group having the structure —NHR′ wherein R′ is an aliphatic, heterocyclyl or heteroaliphatic group, as previously defined; and the term “dialiphaticamino” refers to a group having the structure —NR′R′′, wherein R′ and R′′ are each independently selected from the group consisting of aliphatic, heterocyclyl or heteroaliphatic groups.
  • trialiphaticamino refers to a group having the structure —NR′R′′R′′′, wherein R′, R′′, and R′′′ are each independently selected from the group consisting of aliphatic, heterocyclyl or heteroaliphatic groups.
  • the R′, R′′, or R′′′ groups contain 1-20 carbon atoms.
  • the R′, R′′, or R′′′ groups contain 1-10 carbon atoms.
  • the R′, R′′, or R′′′ groups contain 1-8 carbon atoms.
  • the R′, R′′, or R′′′ groups contain 1-6 carbon atoms.
  • R′, R′′, or R′′′ groups contain 1-4 carbon atoms. Additionally, R′, R′′, and/or R′′′ taken together may optionally be joined to form a five to six membered ring system. Examples include, but are not limited to, methylamino, dimethylamino, ethylamino, diethylamino, diethylaminocarbonyl, methylethylamino, iso-propylamino, piperidino, piperzinyl, pyrrolidinyl, trimethylamino, and propylamino.
  • the R′, R′′, or R′′′ groups are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more substituents.
  • substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • arylamino refers to one, or two, respectively, aryl or heteroaryl groups, as previously defined, attached to the parent molecular moiety through a nitrogen atom.
  • arylamino refers to a group having the structure —NHR′ wherein R′ is an aryl or heteroaryl group, as previously defined; and the term “diarylamino” refers to a group having the structure —NR′R′′, wherein R′ and R′′ are each independently selected from the group consisting of aryl and heteroaryl.
  • the R′ or R′′ groups are substituted by independent replacement of one or more of the hydrogen atoms thereon with one or more substituents. Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • perfluoroaliphatic refers to an aliphatic group, as defined herein, that has only fluorine substituents. Such perfluoroaliphatic include trifluoromethyl (—CF 3 ).
  • perfluoroaliphaticoxy refers to a perfluoroaliphatic group, as defined herein, that is attached to the parent group through an oxygen atom.
  • carboxaldehyde or “carboxyaldehyde,” as used herein, refers to an acyl group of the formula —CHO.
  • cyano refers to a group of the formula (—CN).
  • isocyano refers to a group of the formula (—NC).
  • amino refers to a group of the formula (—NH 2 ).
  • azido refers to a group of the formula (—N 3 ).
  • hydrozino refers to a group of the formula [(—N(R′′′)—N(R′)(R′′)], wherein each instance of R′, R′′, or R′′′, is a hydrogen, or a substituent.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • nitro refers to a group of the formula (—NO 2 ).
  • thiooxo refers to a group of the formula ( ⁇ S).
  • amino refers to a group of the formula ( ⁇ NR′), wherein R′ is a hydrogen, or a substituent.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • hydroxy refers to a group of the formula (—OH).
  • thio refers to a group of the formula (—SH).
  • halo and “halogen” as used herein refer to an atom selected from fluorine (fluoro), chlorine (chloro), bromine (bromo), and iodine (iodo).
  • aminoaliphatic refers to an amino group; as defined herein, attached to the parent molecular moiety through an aliphatic group.
  • hydroxyaliphatic refers to a hydroxy group, as defined herein, attached to the parent molecular moeity through an aliphatic group.
  • thioaliphatic refers to a thio group, as defined herein, attached to the parent molecular moiety through an aliphatic group.
  • arylaliphatic refers to an aryl group, as defined herein, attached to the parent molecular moeity through an aliphatic group.
  • heteroarylaliphatic refers to a heteroaryl group, as defined herein, attached to the parent molecular moiety through an aliphatic group.
  • aryloxy refers to an aryl group, as defined herein, attached to the parent molecular moiety through an oxygen atom.
  • arylthioxy refers to an aryl group, as defined herein, attached to the parent molecular moiety through a sulfur atom.
  • arylamino refers to an aryl group, as defined herein, attached to the parent molecular moiety through a nitrogen atom —(N)(R′)—, wherein R′ is a hydrogen, or a substituent.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • arylaliphaticthioxy refers to an arylaliphatic group, as defined herein, attached to the parent molecular moiety through a sulfur atom.
  • arylaliphaticoxy refers to an arylaliphatic group, as defined herein, attached to the parent molecular moiety through an oxygen atom.
  • arylaliphaticamino refers to an arylaliphatic group, as defined herein, attached to the parent molecular moiety through a nitrogen atom —(N)(R′)—, wherein R′ is a hydrogen, or a substituent.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • heteroaliphaticoxy refers to a heteroaliphatic group, as defined herein, attached to the parent molecular moiety through an oxygen atom.
  • heteroaliphaticthioxy refers to a heteroaliphatic group, as defined herein, attached to the parent molecular moiety through a sulfur atom.
  • heteroaliphaticamino refers to a heteroaliphatic group, as defined herein, attached to the parent molecular moiety through a nitrogen atom —(N)(R′)(R′′), wherein R′ and R′′ is, independentyl, a hydrogen, or a substituent.
  • Substituents include, but are not limited to, any of the substituents described herein, that result in the formation of a stable moiety.
  • Ph refers to a phenyl group
  • Ar refers to an aryl or a heteroaryl group.
  • neoplasia refers to the abnormal growth of tissue in a subject, and may be either benign or malignant.
  • the presently claimed invention is directed to the treatment of neoplasia in a subject.
  • the neoplasia is a tumor.
  • the neoplasia is a benign tumor.
  • the neoplasia is a malignant tumor (i.e., cancer).
  • tumor is meant a neoplastic growth of cells which may be either benign or malignant.
  • proliferative disease refers to any disease associated with an undesired and/or abnormal proliferation of cells.
  • the cells may be any type of cell found in the subject.
  • the proliferation may be due to any cause (e.g., any genetic mutation, any signal).
  • proliferative diseases include cancer, neoplasms, inflammatory diseases, autoimmune diseases, graft-vs.-host disease, diabetic retinopathy, and benign tumors.
  • carcinoma malignant tumors derived from epithelial cells, and represents the most common cancers, including breast, prostate, lung and colon cancer
  • lymphoma and leukemia malignant tumors derived from blood and bone marrow cells
  • sarcoma malignant tumors derived from connective tissue, or mesenchymal cells
  • mesothelioma tumors derived from the mesothelial cells lining the peritoneum and the pleura
  • glioma tumors derived from glia, the most common type of brain cell
  • germinoma tumors derived from germ cells, normally found in the testicle and ovary
  • choriocarcinoma malignant tumors derived from the placenta.
  • the presently claimed invention is directed to the treatment of prostate cancer, lung cancer, breast cancer, brain cancer, bone cancer, stomach cancer, oral cancer, skin cancer (melanoma), colorectal cancer, bladder cancer, pancreatic cancer, endometrial cancer, ovarian cancer, endometrial cancer, cutaneous melanoma, leukemia, non-Hodgkin's lymphoma, Wilms' tumor, lymphomas, rhabdomyosarcoma (arising from muscle), retinoblastoma, osteosarcoma, or Ewing's sarcoma, in a subject.
  • subject refers to any animal. In certain embodiments, the subject is a mammal. In certain embodiments, the term “subject”, as used herein, refers to a human (e.g., a man, a woman, or a child).
  • administer refers to either directly administering a compound or composition to a patient, or administering a prodrug derivative or analog of the compound to the patient, which will form an equivalent amount of the active compound or substance within the patient's body.
  • treat refers to partially or completely alleviating, inhibiting, preventing, ameliorating, and/or relieving the condition.
  • an effective amount and “therapeutically effective amount,” as used herein, refer to the amount of a compound of the presently claimed invention that, when administered to a patient, is effective to at least partially treat a condition from which the subject is suffering.
  • Conditions include, but are not limited to, renal cancer, bladder cancer, liver cancer, testicular cancer, ovarian cancer, colorectal cancer, prostate cancer, pancreatic cancer, lung cancer, breast cancer, brain cancer, bone cancer, stomach cancer, oral cancer, skin cancer, blood cancer, leukemia, non-Hodgkin's lymphoma, Wilms' tumor, lymphomas, rhabdomyosarcoma, retinoblastoma, ostcosarcoma, Ewing's sarcoma, or any other disorder as described herein.
  • neoplasm e.g., tumor or cancer
  • a subject diagnosed or suffering from a tumor or cancer e.g., cancer
  • pharmaceutically acceptable salts or “pharmaceutically acceptable salt” includes acid addition salts, that is salts derived from treating a compound of the presently claimed invention with an organic or inorganic acid such as, for example, acetic, lactic, citric, cinnamic, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, oxalic, propionic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, glycolic, pyruvic, methanesulfonic, ethanesulfonic, toluenesulfonic, salicylic, benzoic, or similarly known acceptable acids.
  • an organic or inorganic acid such as, for example, acetic, lactic, citric, cinnamic, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, oxalic, propionic, hydrochloric, hydrobromic, phosphoric,
  • prodrug is meant a compound which is administered to a subject in an inactive (or significantly less active) form. Once administered, the prodrug is metabolised in vivo, for example, by deacylation, dephosphorylation, hydrolysis, or epimerization, into a more active compound.
  • isomers two or more organic compounds that are configurational isomers (e.g., isomers that are constitutionally identical but differ by a 3D distribution of groups in space).
  • Configurational isomers include geometric isomers (e.g., cis, trans, E, Z) and stereoisomers (e.g., enantiomers, diastereomers, atropisomers).
  • tautomers two or more organic compounds generated from each other by a formal migration of a hydrogen atom, and accompanied by an exchange of valencies between a single bond and an adjacent double bond, i.e., a tautomerization reaction.
  • Tautomers include keto-enol, amide-imidic, lactam-lactim, enamine-imine, and enamine-imine.
  • a chemical equilibrium of the tautomers will be reached. The exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH.
  • the present invention is directed to pyridazinone and furan-containing compounds, and pharmaceutically acceptable salts, prodrugs, isomers, and tautomers, thereof, pharmaceutical compositions, kits, methods of syntheses, and methods of treating proliferative diseases, such as cancer (e.g., lung cancer), in a subject by administering a therapeutically effective amount of a compound of the present invention, or a pharmaceutically acceptable salt, prodrug, isomer, or tautomer, thereof.
  • cancer e.g., lung cancer
  • the compounds of the present invention may target a common effector in the oncogenic EGFR and/or KRAS pathways, and may be so identified using cell-based screens as described herein. Such compounds are effective in the treatment of cancers that are associated with EGFR and/or KRAS mutations.
  • Pyridazinone compounds of the present invention correspond to compounds of formula (I) as depicted below:
  • X is oxygen or NR x ;
  • R x is hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, optionally substituted sulfonyl, optionally substituted hydroxy, or optionally substituted amino;
  • R 1 , R 2 , and R 3 are, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfony
  • R 2 and the carbon directly attached to R 2 form an ( ⁇ O), ( ⁇ S), or ( ⁇ NR y ) group
  • R y is hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amid
  • Ar is a group selected from aryl, heteroaryl, aliphatic optionally substituted with aryl, aliphatic optionally substituted with heteroaryl, heteroaliphatic optionally substituted with aryl, or heteroaliphatic optionally substituted with heteroaryl, each group optionally substituted with aliphatic, heteroaliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino, dialiphaticamino, trialiphaticamino, arylamino, diarylamino, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, or halo;
  • the compound 4,5-dichloro-2-m-tolyl-2H-pyridazin-3-one is specifically excluded from compounds of formula (I):
  • R 1 and R 2 are the same, and R 3 is hydrogen, halo, optionally substituted acyl, optionally substituted heterocyclic, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted hydroxy.
  • R 1 and R 2 are both hydrogen.
  • R 1 and R 2 are both chloro. In other embodiments, R 1 and R 2 are both bromo. In other embodiments, R 1 and R 2 are both iodo. In other embodiments, R 1 and R 2 are both fluoro.
  • R 1 and R 2 are both optionally substituted hydroxy. In yet other embodiments, R 1 and R 2 are both optionally substituted thio. In yet other embodiments, R 1 and R 2 are both optionally substituted amino.
  • R 1 and R 2 are both optionally substituted aliphatic. In yet other embodiments, R 1 and R 2 are both optionally substituted heterocylic. In yet other embodiments, R 1 and R 2 are both cyano.
  • the compounds of formula (I), wherein R 1 and R 2 are the same have one of the following structural formulae:
  • X is oxygen or NR x ;
  • Hal is bromo, chloro, iodo or fluoro;
  • Het is an optionally substituted heterocycyl;
  • each instance of R O is hydrogen, or an optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, or optionally substituted sulfonyl, or two R O groups are joined to form a 5- to 6-membered optionally substituted heterocyclic ring;
  • each instance of R S is hydrogen, or an optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, or optionally substituted sulfonyl, or two R S groups are joined to form a 5- to 6-membered optionally substitute
  • R 1 and R 2 are the different, and R 3 is hydrogen, halo, optionally substituted acyl, optionally substituted heterocyclic, optionally substituted aryl, optionally substituted heteroaryl, or optionally substituted hydroxy.
  • R 1 and R 2 are the different, and are selected from the group consisting of hydrogen, halo, cyano, nitro, azido, optionally substituted hydroxy, optionally substituted thio, optionally substituted amino, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl.
  • EWG electron withdrawing group
  • acyl e.g., carboxylic acid, carboxaldehyde, ester, amide, imide, ketone
  • R N is, hydrogen, or an optionally substituted amino, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, or optionally substituted sulfonyl, or two R N groups, both groups present on the same nitrogen, are joined to form a 5- to 6-membered optionally substituted heterocyclic ring, an azido group (—N 3 ), or an optionally substituted hydrazino group.
  • the Ar group of compounds of formula (I) corresponds to an optionally substituted aryl, or an aliphatic group optionally substituted with aryl.
  • exemplary aryl groups include phenyl, napthyl, and biphenyl.
  • the Ar group is an optionally substituted phenyl group.
  • the Ar group of compounds of formula (I) corresponds to an optionally substituted heteroaryl, or an aliphatic group optionally substituted with heteroaryl.
  • exemplary heteroaryl groups include pyrrolyl, pyrazolyl, imidazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, tetrazinyl, pyyrolizinyl, indolyl, quinolinyl, isoquinolinyl, benzimidazolyl, indazolyl, quinolinyl, isoquinolinyl, quinolizinyl, cinnolinyl, quinazolynyl, phthalazinyl, naphthridinyl, quinoxalinyl, thiophenyl, thianaphthenyl, furanyl, benzofuranyl, thiazolynyl, isothiazoly
  • the Ar group of compounds of formula (I) correspond to the following structural formula:
  • n 0 or 1
  • W is a carbon or nitrogen atom
  • each instance of R 6 , R 7 , R 8 , R 9 , and R 10 is, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, heteroaliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, ali
  • R 6 and R 7 may be joined to form a 5- or 6-membered optionally substituted carbocyclic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl ring;
  • R 7 and R 8 may be joined to form a 5- or 6-membered optionally substituted carbocyclic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl ring;
  • R 8 and R 9 may be joined to form a 5- or 6-membered optionally substituted carbocyclic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl ring; or
  • R 9 and R 10 may be joined to form a 5- or 6-membered optionally substituted carbocyclic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl ring;
  • each instance of R 4 and R 5 is, independently, hydrogen or optionally substituted aliphatic.
  • the Ar group of formula (I) corresponds to the following structural formulae:
  • n 0, and R 6 , R 7 , R 8 , R 9 , and R 10 are as described above and herein.
  • R 7 is not hydrogen. In certain embodiments, when n is 0, R 7 is not hydrogen. In certain embodiments, when n is 1, R 6 , R 7 , R 8 , R 9 , and R 10 are all hydrogen. In certain embodiments, when R 8 is not hydrogen, R 7 is also not hydrogen. In certain embodiments, when R 6 is not hydrogen, R 8 is hydrogen.
  • the Ar group of formula (I) corresponds to the following structural formulae:
  • R 7 is halo, optionally substituted hydroxy, optionally substituted aliphatic, or optionally substituted heteroaliphatic. In certain embodiments, R 7 is bromo, chloro, iodo, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy.
  • R 6 and R 7 are, independently, halo, optionally substituted hydroxy, optionally substituted aliphatic, or optionally substituted heteroaliphatic.
  • R 6 is bromo, chloro, iodo, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy
  • R 7 is bromo, chloro, iodo, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy.
  • R 7 and R 8 are, independently, halo, optionally substituted hydroxy, optionally substituted aliphatic, or optionally substituted heteroaliphatic, or R 7 and R 8 may be joined to form a 5- or 6-membered optionally substituted carbocyclic, optionally substituted heterocyclic, optionally substituted aryl, or optionally substituted heteroaryl ring.
  • R 7 is bromo, chloro, iodo, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy
  • R 8 is bromo, chloro, iodo, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy.
  • R 7 and R 9 are, independently, halo, optionally substituted hydroxy, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, or optionally substituted heteroaryl.
  • R 7 is bromo, chloro, iodo, fluoro, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy
  • R 9 is bromo, chloro, iodo, fluoro, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, benzyl, or methoxy.
  • H, E, and F are sulfur, oxygen, —N(H)—, or —CH 2 —; G is carbon or nitrogen; p is 0 to 1; and R Ar1 , R Ar2 , and R Ar3 , are, independently, hydrogen, optionally substituted heterocyclic, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroaliphatic, or optionally substituted aliphatic.
  • each instance of R Ar1 , R Ar2 , and R Ar3 is, independently, hydrogen, methyl, ethyl, phenyl, or benzyl, optionally substituted with bromo, chloro, iodo, fluoro, methyl, ethyl, n-propyl, n-butyl, trifluoromethyl, or methoxy.
  • compounds of formula (I) correspond to compounds wherein X is oxygen.
  • Such compounds of formula (I) are exemplified in Table 1:
  • compounds of formula (I) correspond to compounds 7a-7c, 9a-9n, 12a-12c, 14, 15a-15c, 16, 17, 20a-20b, 21-23 and 29-31, as depicted above in Table 1.
  • compounds of formula (I) correspond to compounds 7a-7c, 9a-9n, 12a-12c, 14, 15a-15c, 16, 17, and 20a-20b.
  • compounds of formula (I) correspond to compounds wherein X is NR x ; and wherein R x is hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, optionally substituted sulfonyl, optionally substituted hydroxy, or optionally substituted amino.
  • X is —NH.
  • compounds of formula (I) correspond to compounds wherein a is a single bond, b is a double bond, R 2 and the carbon directly attached to R 2 forms the group ( ⁇ NR y ), and R y is hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted heterocyclyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted sulfinyl, optionally substituted sulfonyl, optionally substituted hydroxy, or optionally substituted amino.
  • R y is optionally substituted amino.
  • R y is —NH 2 .
  • R y is —NH(CH 3 ).
  • the present invention is also directed to a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (I), as defined herein, or a pharmaceutically acceptable salt, prodrug, isomer or tautomer thereof, and at least one pharmaceutically acceptable excipient.
  • compositions include, without limitation, purified water, mannitol, sorbit, silicon dioxide, terpenes (e.g., menthol), alcohols (e.g., ethanol, propylene glycol, glycerol and other similar alcohols), organic solvents (e.g., dimethylsulfoxide, dimethylformamide, dimethylacetamide), waxes, saccharides, oligosaccharides and/or polysaccharides (e.g., starch or starch fragments, corn starch, glucose, galactose, lactose, cellulose), dextrins, amino acids, gums (e.g., xanthan gum, locust bean gum, British gum) and the like, or mixtures thereof.
  • menthol e.g., menthol
  • alcohols e.g., ethanol, propylene glycol, glycerol and other similar alcohols
  • organic solvents e.g., dimethylsulfoxide, di
  • the present invention is also directed to methods of treating a proliferative disease in a subject by administering to a subject a therapeutically effective amount of a compound of formula (I), or a pharmaceutically acceptable salt, prodrug, isomer or tautomer thereof.
  • the present application also contemplates a method of treating a proliferative disease in a subject by administering to a subject a therapeutically effective amount of a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt, prodrug, or tautomer thereof, and a pharmaceutically acceptable excipient.
  • the proliferative disease is neoplasia.
  • Neoplasia refers to the abnormal growth of tissue in a subject, and may be either benign or malignant.
  • the neoplasia is a tumor.
  • the neoplasia is cancer.
  • the cancer is renal cancer, bladder cancer, liver cancer, testicular cancer, ovarian cancer, colorectal cancer, prostate cancer, pancreatic cancer, lung cancer, breast cancer, brain cancer, bone cancer, stomach cancer, oral cancer, skin cancer, blood cancer, or leukemia.
  • the cancer is non-Hodgkin's lymphoma, Wilms' tumor, lymphomas, rhabdomyosarcoma (arising from muscle), retinoblastoma, osteosarcoma, or Ewing's sarcoma.
  • the cancer is lung cancer.
  • the lung cancer is human non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma).
  • the cancer is associated with EGFR and/or KRAS mutations.
  • compounds of formula (I) are effective against a cancer or a tumor.
  • reducing the mass e.g., a tumor or cancer
  • slowing or halting the growth or spread of the mass in a subject diagnosed or suffering from a tumor or cancer.
  • compounds of formula (I) are therapeutically effective against a cancer or a tumor with EGFR and/or KRAS mutations.
  • compounds of formula (I) are therapeutically effective against a lung cancer or a lung tumor with EGFR and/or KRAS mutations.
  • administration of a compound of the invention to a subject is not particularly restricted, and can be oral or a parenteral administration using generally employed methods.
  • administration may be enteral (by mouth, by feeding tube, rectally), parenteral by injection or infusion (e.g., intravenous, intraarterial, intramuscular, intracardiac, subcutaneous, intradermal, intrathecal, intraperitoneal), and/or parenteral other than injection (e.g., transdermal, transmucosal, or by inhalation).
  • dosages may fall between about 0.01 mg/kg/day to about 100 mg/kg/day for an adult, and such dosages may be administered once or divided over several days.
  • a therapeutically effective amount of a compound of formula (I) is between about 0.01 mg/kg/day to about 100 mg/kg/day.
  • a therapeutically effective amount of a compound of formula (I) is at least 0.01 mg/kg/day, 0.05 mg/kg/day, 0.10 mg/kg/day, 1.0 mg/kg/day, 5.0 mg/kg/day, 10 mg/kg/day, 15 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day, 40 mg/kg/day, 50 mg/kg/day, 60 mg/kg/day, 70 mg/kg/day, 80 mg/kg/day, 90 mg/kg/day, or 100 mg/kg/day.
  • kits comprising at least one compound of formula (I), or pharmaceutically acceptable salts, prodrugs, isomers, or tautomers thereof.
  • a kit of the invention can be particularly useful if it provides additional solvents, buffers, or excipients for pre-mixing before administration to a subject, or if it provides a means for oral or parental administration (e.g., syringes or graduated measurement cups).
  • a kit of the invention can also be particularly useful if it contains additional chemotherapeutic agents for use in combination with a compound of formula (I). For instance, a physician may wish to administer to a subject one or more compounds of formula (I) in combination with one or more additional chemotherapeutic agents.
  • chemotherapeutic agents include, but are not limited to, 13-cis-Retinoic Acid, 2-CdA (2-Chlorodeoxyadenosine), 5-Fluorouracil (5-FU), 6-Mercaptopurine, 6-MP, 6-TG, 6-Thioguanine, Abraxane, ACCUTANE®, ACTINOMYCIN-D, ADRIAMYCIN®, ADRUCIL®, AGRYLIN®, ALA-CORT®, Aldesleukin, Alemtuzumab, ALIMTA, Alitretinoin, ALKABAN-AQ®, ALKERAN®, All-transretinoic acid Alpha interferon, Altretamine, Amethopterin, Amifostine, Aminoglutethimide, Anagrelide, ANANDRON®, Anastrozole, Arabinosylcytosine, Ara-C ARANESP®, AREDIA®, ARIMIDEX®, AROMASIN®, ARRANON®,
  • the present invention also provides a method of synthesizing compounds of formula (I), as depicted in Scheme 1 below.
  • step 1 under standard hydrazine formation conditions, optionally substituted aniline (A) is converted to optionally substituted phenyl hydrazine (B).
  • step 2 reaction of compound (B) with compound (C), wherein Z is, independently, hydrogen or halo (—Cl, —Br, —I, —F), generates an optionally substituted pyridazin-3-one derivative (D).
  • R 12 and R 13 are, independently, optionally substituted aliphaticoxy, aliphaticthioxy, aliphaticamino, dialiphaticamino, trialiphaticamino, arylamino, diarylamino, isocyano, amino, azido, hydrazino, hydroxy, thio, halo, aryloxy, arylthioxy, arylamino, heteroaryloxy, heteroarylamino, or heteroarylthiooxy.
  • compound (D) is treated with a mono- or di-substituted aliphaticamine to form compounds (E), and/or (F), and/or (G), wherein R 12 and R 13 are, independently, —N(R N ) 2 , and each instance of R N is, independently, hydrogen or optionally substituted aliphatic, heteroaliphatic, aryl, heteroaryl, or two R N groups form an optionally substituted 5- to 6-membered heteroaryl or heterocyclic ring.
  • compound (D) is treated with an optionally substituted hydroxy group to form compounds (E), and/or (F), and/or (G), wherein R 12 and R 13 are, independently, —O(R O ), and each instance of R O is, independently, hydrogen or optionally substituted aliphatic, heteroaliphatic, aryl, heteroaryl, or two R O groups form an optionally substituted 5- to 6-membered heteroaryl or heterocyclic ring.
  • compound (D) is treated with an optionally substituted thio group to form compounds (E), and/or (F), and/or (G), wherein R 12 and R 13 are, independently, —S(R S ), and each instance of R S is, independently, hydrogen or optionally substituted aliphatic, heteroaliphatic, aryl, heteroaryl, or two R S groups form an optionally substituted 5- to 6-membered heteroaryl or heterocyclic ring.
  • compound (D) is treated with a Br ⁇ nstead acid (such as hydrogen chloride, hydrogen bromide, hydrogen bromide, hydrogen fluoride, nitric acid, sulfuric acid, phosphoric acid, and the like), or a halogenating reagent (such as NBS, Br 2 , NCS, and the like) to form compounds (D), and/or (E), and/or (F), wherein R 12 and R 13 are, independently, hydrogen, bromo, iodo, fluoro, —NO 2 , —SO 3 , —OP(O)(OH) 2 and the like.
  • a Br ⁇ nstead acid such as hydrogen chloride, hydrogen bromide, hydrogen bromide, hydrogen fluoride, nitric acid, sulfuric acid, phosphoric acid, and the like
  • a halogenating reagent such as NBS, Br 2 , NCS, and the like
  • step 4 (S-4) under suitable cyclization conditions, optionally substituted phenyl hydrazine (B) reacts with a compound of formula (H) wherein Z is, independently, hydrogen or halo, to generate an optionally substituted pyridazine-3,6-dionepyridazin-3-one derivative (J).
  • step 5 (S-5) Treatment of compound (J) under suitable reducing conditions or alkylation conditions, in step 5 (S-5), generates optionally substituted pyridazin-3-one derivative (K), wherein R O is hydrogen or optionally substituted aliphatic, respectively.
  • Reaction of compound (K) in step 6 (S-6) with different nucleophiles can generate a wide variety of compounds with different substitutions and/or substitution patterns (for example, compounds (L), (M), and/or (N), as depicted below).
  • the present invention is also directed to compounds of formula (II):
  • each instance of R 1 , R 2 , and R 3 is, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, or halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino, dialiphaticamino
  • each instance of R 4 and R 5 is, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, hydrazino; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, hetcroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino, dialiphaticamino, trialiphaticamino, arylamino, diarylamino, carboxaldehy
  • J and J′ together, form an oxo ( ⁇ O), thiooxo ( ⁇ S), or imino ( ⁇ NR N5 ) group, wherein R N5 is hydrogen, optionally substituted hydroxy, optionally substituted amino, optionally substituted aryl, optionally substituted sulfonyl, optionally substituted heteroaryl, optionally substituted acyl, optionally substituted aliphatic, or optionally substituted heteroaliphatic; or each instance of J and J′ is, independently, hydrogen, optionally substituted aliphatic or optionally substituted heteroaliphatic.
  • the compound 5-nitro-furan-2-carboxylic acid (4-chloro-phenyl)-amide is specifically excluded from compounds of formula (II):
  • compounds of formula (II) have the structural formulae:
  • each instance of R 6 is, independently, hydrogen or optionally substituted aliphatic
  • each W is, independently, —N—, —C(H)—, or —C(R 7 )—; wherein each instance of R 7 is, independently, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulf
  • p 0 or 1.
  • R 6 is hydrogen. In certain embodiments, R 6 is alkyl. In certain embodiments, R 6 is C 1-6 alkyl.
  • compounds of formula (II) have the structural formula IIa.
  • Such compounds of formula IIa are exemplified in Table 4:
  • compounds of formula (II) have the structural formulae:
  • Y is —O—, —N(R 2 )—, or —C(R 12 ) 2 —;
  • each instance of R 8 , R 9 , R 10 , R 11 , and R 12 is, independently, hydrogen, aliphatic, heteroaliphatic, hydroxy, thio, amino, heterocyclic, aryl, heteroaryl, acyl, amido, imido, sulfinyl, sulfonyl, carboxaldehyde, cyano, isocyano, azido, hydrazino, nitro, halo; optionally substituted with oxo, thiooxo, imino, aliphatic, carbocyclic, hydroxy, aliphaticoxy, aryloxy, thio, aliphaticthioxy, arylthioxy, heteroaliphatic, heterocyclic, aryl, arylaliphatic, heteroaryl, heteroarylaliphatic, acyl, acyloxy, amido, imido, sulfinyl, sulfonyl, amino, aliphaticamino
  • m 0 or 1.
  • compounds of formula (II) have the structural formula IIc.
  • Such compounds of formula IIc are exemplified in Table 5:
  • the present invention is also directed to a pharmaceutical composition
  • a pharmaceutical composition comprising a therapeutically effective amount of a compound of formula (II), as defined herein, or a pharmaceutically acceptable salt, prodrug, isomer or tautomer thereof, and at least one pharmaceutically acceptable excipient.
  • the present invention is also directed to methods of treating a proliferative disease in a subject by administering to a subject a therapeutically effective amount of a compound of formula (II), or a pharmaceutically acceptable salt, prodrug, isomer or tautomer thereof.
  • the proliferative disease is neoplasia.
  • Neoplasia refers to the abnormal growth of tissue in a subject, and may be either benign or malignant.
  • the neoplasia is a tumor.
  • the neoplasia is cancer.
  • the cancer is renal cancer, bladder cancer, liver cancer, testicular cancer, ovarian cancer, colorectal cancer, prostate cancer, pancreatic cancer, lung cancer, breast cancer, brain cancer, bone cancer, stomach cancer, oral cancer, skin cancer, blood cancer, or leukemia.
  • the cancer is non-Hodgkin's lymphoma, Wilms' tumor, lymphomas, rhabdomyosarcoma (arising from muscle), retinoblastoma, osteosarcoma, or Ewing's sarcoma.
  • the cancer is lung cancer.
  • the lung cancer is human non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma).
  • the cancer is associated with EGFR and/or KRAS mutations.
  • compounds of formula (II) are effective against a cancer or a tumor. In certain embodiments, compounds of formula (II) are effective against a cancer or a tumor associated with EGFR and/or KRAS mutations. In certain embodiments, compounds of formula (II) are effective against lung cancer or a lung tumor associated with EGFR and/or KRAS mutations.
  • kits comprising at least one compound of formula (II), or pharmaceutically acceptable salts, prodrugs, isomers, or tautomers, thereof.
  • a kit of the invention can be particularly useful if it provides additional solvents, buffers, or excipients for pre-mixing before administration, or if it provides a means for oral or parental administration (e.g., syringes or graduated measurement cups).
  • a kit of the invention can also be particularly useful if it contains additional chemotherapeutic agents, as described herein, for use in combination with one or more compounds of formula (II).
  • a therapeutically effective amount of a compound of formula (II) is between about 0.01 mg/kg/day to about 100 mg/kg/day. In certain embodiments, a therapeutically effective amount of a compound of formula (II) is at least 0.01 mg/kg/day, 0.05 mg/kg/day, 0.10 mg/kg/day, 1.0 mg/kg/day, 5.0 mg/kg/day, 10 mg/kg/day, mg/kg/day, 20 mg/kg/day, 30 mg/kg/day, 40 mg/kg/day, 50 mg/kg/day, 60 mg/kg/day, 70 mg/kg/day, 80 mg/kg/day, 90 mg/kg/day, or 100 mg/kg/day.
  • All of the adenocarcinoma cell lines with EGFR mutations shown in Table 6 express wild type KRAS. Conversely, the lines with wild type EGFR in Table 6 carry a mutation in exon 2 of KRAS, resulting in a missense amino acid substitution in codons 12 or 13. In H358 and H2030, this exon 2 mutation results in a G12C amino acid change in KRAS. In H1734, there is a G13C substitution, in KRAS. Introduction of a G12C-KRAS allele-specific siRNA into the H2030 cell line results in growth arrest, suggesting that this cell line is dependent on expression of mutant KRAS for growth. All adenocarcinoma cell lines with mutant KRAS in Table 6 are resistant to erlotinib and express wild type EGFR.
  • NHBE normal human bronchiolar epithelial cells
  • HPL1D human peripheral lung epithelial
  • WI-38 human lung fibroblast cell line. HPLID, NHBE and WI-38 cells will serve as controls in the chemical screens.
  • WT wildtype; WT*: over-expressed wildtype.
  • Cell cycle analysis For cell cycle analysis, cells were plated at a density of 500,000 cells per well in 6-well plates. Attached cells were treated with drugs for 24 h. Cells were then collected, washed with PBS and fixed in 70% ethanol for 1 h. For FACS analysis, fixed cells were washed with cold PBS resuspended in PBS containing 200 ⁇ g/mL propidium iodide and 0.1% sodium citrate. Flow cytometry was performed on a Becton-Dickinson FACSCalibur flow cytometer and data the processed using FlowJo software.
  • Caspase 3/7 enzyme activity assay Apoptosis was determined by measuring the enzymatic activity of caspase 3/7 in cell homogenates. Cells were plated at a density of 10,000 cells per well in 96-well plates and treated immediately with drugs for 24-72 h. Caspase 3/7 activity will be determined in cell extracts using Z-DEVD-R110 (rhodamine 110 conjugated to the caspase substrate Z-DEVD) as substrate (Promega). The fluorescence of the cleaved substrate was measured using a micro-titer fluorescence plate reader (Ex: 499 nm, Em: 521 nm).
  • [ 3 H]-thymidine incorporation assay Cells were seeded in 12-well plates at a density of 100 000 cells/well and treated with inhibitors for 24 hours. H3-thymidine (3 ⁇ Ci/mL) was then added for 3 hours. Cells were washed twice with PBS, fixed with cold 10% TCA (in PBS) for 30 min then lysed with 0.5% NaOH/0.5% SDS. DNA was scraped from the wells and the amount of H3-thymidine incorporated determined by liquid scintillation counting.
  • Small Cell Lung Cancer cell lines are grown and maintained in Corning 175 cm 2 flasks in RPMI 1640 media supplemented with 10% FBS, 1% antibiotic solution, 1% additional glutamine and pyruvate. These cells have a doubling time of 1-2 days. All cell types are adherent and grow in colonies. The cells should be kept at a density between 50,000 cells/mL -500,000 cells/mL to provide for optimum growth and adequate nutrition. The cell line should be maintained at 37° C. in a humidified atmosphere with 5% CO2 in a sterile cell culture incubator.
  • Non Small Cell Lung Cancer Proliferation Assay To perform the assay, the Non Small Cell Lung Cancer lines are diluted in media and plated into 384 well microplates at a final density of 250 cells in 45 L. To ensure consistency and minimal pipetting error, the cells are plated using the Multidrop 384 with the following settings: Rocker Switch set at 384, Volume 45 and Column 24.
  • the remaining wells of the 384 microplate may be treated with different compounds depending on the study. Important Note: All compounds for testing in this assay should be done at the final concentration of 1% DMSO.
  • the cells are placed in cell culture incubator at 37° C. for 48 hours for complete treatment.
  • cytotoxicity is measured by Alamar Blue reduction. 5 ⁇ L of Alamar Blue is added to the 384 microplates using the Flexdrop.
  • the cells are incubated for 48 hours at 37° C. to complete the Alamar Blue reduction.
  • the final step in the assay is to measure the amount of Alamar Blue reduction.
  • the cells are placed in the Wallac 1420 Victor V Plate Reader I and with the following program, DS Alamar Blue Prompt Fluo (#8).
  • the Alamar Blue fluorescence is measured at an excitation of 530 nm and emission of 590 nm.
  • the cell based assay was screened against a small molecule library of approximately 200,000 compounds.
  • the compound library is stored in our automated robotic freezer (Biophile) at ⁇ 20° C. in 100% DMSO. Compound freeze and thaw cycles are kept to a minimum.
  • Compounds for use are diluted into the appropriate concentration and plated into 384 well microplates using our custom built low volume 384-well head tool (TPS 384, Apricot Designs Inc., CA, USA).
  • TPS 384 custom built low volume 384-well head tool
  • This assay was performed on a fully automated linear track robotic platform (CRS F3 Robot System, Thermo Electron Corp., Ontario, Canada) utilizing several integrated peripherals for plate handling, liquid dispensing, and readout detection.
  • non-small cell lung cancer cell lines are dispensed into 384 well microplates (Corning #3712 Tissue Culture Treated Plate, Corning, N.Y., USA) with 5 ⁇ L of test compounds at 100 uM in 10% DMSO for screening studies or 1 mM in 10% DMSO to 50 nM in 10% DMSO for dose response studies.
  • the microplates are then placed at 37° C. for 48 hours to complete treatment of cells with compounds.
  • 5 ul of alamar blue was added using a liquid dispenser (Flexprop Precision Dispenser, Perkin Elmer, Mass., USA) and incubated for 48 hours at 37° C.
  • the alamar blue prompt fluorescence was measured on Victor V (Victor 3 V, Perkin Elmer, Mass., USA) and output data files were loaded into ORIS (Oncology Research Informatics System, MSKCC, NY, USA), a screening data acquisition and analysis platform.
  • Victor V Vector 3 V, Perkin Elmer, Mass., USA
  • ORIS Oncology Research Informatics System, MSKCC, NY, USA
  • a high throughput screening was performed using four established non small cell lung cancer cell lines (H1650, H1975, H2030, H3255) against a chemical library of 200,000 small molecules. Description of the assays is described herein. Several hits were identified inhibiting one or more cell line with the most potent one being 4,5-dichloro-2-m-tolyl-2H-pyridazin-3-one (SKI-104122).
  • FIGS. 4(A-E) to 10(A-E) IC 50 curves are shown for all experiments performed on SKI 104122 including primary HTS and resynthesis.
  • FIGS. 11 to 40 depict IC 50 curves for active pyridazinone compounds against the H3255 cell line.
  • SKI-267077 inhibits DNA synthesis.
  • SKI-267077 a derivative of SKI-104122 to elucidate the mechanism by which this family of compounds caused growth arrest of human lung adenocarcinoma cell lines.
  • H2030 cells were treated with increasing concentrations of SKI-267077 for 24 hours and then incorporation of 3 H-thymide into DNA determined ( FIG. 1 ).
  • SKI-267077 caused a dose-dependent decrease in DNA synthesis.
  • SKI-267077 induces cell cycle arrest at the G1 phase.
  • Cell cycle progression in the presence of SKI-267077 was determined by FACS analysis of H2030 cells that were treated for 24 hours.
  • SKI-267077 treatment resulted in a reduction of the percent of cells in the S phase ( FIG. 2A ) of the cell cycle and a concomitant increase in the percent of cells in the induce G1 phase ( FIG. 2B ).
  • SKI-267077 stimulates the enzymatic activity of caspase 3/7.
  • Treatment of H2030 with SKI-267077 for 48 hours lead to an increase in the activity of caspase 3/7 ( FIG. 3 ).
  • the dose response studies were done with the following standard procedure. First, the cells were counted and dispensed at 250 cells/well into 384-well microplates with compound. The cells were incubated for 48 hours at 37 C to complete treatment, and then alamar blue was added for an additional 48 hours. Finally, alamar blue reduction was measured and the data was loaded into ORIS, our data screening acquisition platform. Table 18 provides a summary of these experiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US12/520,434 2006-12-21 2007-12-21 Pyridazinones and furan-containing compounds Pending US20100210649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/520,434 US20100210649A1 (en) 2006-12-21 2007-12-21 Pyridazinones and furan-containing compounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87118106P 2006-12-21 2006-12-21
PCT/US2007/088543 WO2008080056A2 (en) 2006-12-21 2007-12-21 Pyridazinones and furan-containing compounds
US12/520,434 US20100210649A1 (en) 2006-12-21 2007-12-21 Pyridazinones and furan-containing compounds

Publications (1)

Publication Number Publication Date
US20100210649A1 true US20100210649A1 (en) 2010-08-19

Family

ID=39229610

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/520,256 Expired - Fee Related US9562019B2 (en) 2006-12-21 2007-12-21 Substituted pyridazines as EGFR and/or KRAS inhibitors
US12/520,434 Pending US20100210649A1 (en) 2006-12-21 2007-12-21 Pyridazinones and furan-containing compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/520,256 Expired - Fee Related US9562019B2 (en) 2006-12-21 2007-12-21 Substituted pyridazines as EGFR and/or KRAS inhibitors

Country Status (6)

Country Link
US (2) US9562019B2 (de)
EP (2) EP2099770B1 (de)
AU (1) AU2007336781C1 (de)
CA (1) CA2673299C (de)
HK (1) HK1135985A1 (de)
WO (1) WO2008080056A2 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042879A1 (en) * 2005-04-21 2009-02-12 Nippon Shinyaku Co., Ltd. Phthalazinone derivatives and pharmaceutical compositions comprising the same
US20100249130A1 (en) * 2007-04-13 2010-09-30 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US20100278776A1 (en) * 2007-10-20 2010-11-04 Kinex Pharmaceuticals, Llc Pharmaceutical compositions for modulating a kinase cascade and methods of use thereof
US20110065705A1 (en) * 2004-12-28 2011-03-17 Hangauer Jr David G Compositions and Methods of Treating Cell Proliferation Disorders
US20110281872A1 (en) * 2010-04-16 2011-11-17 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US20120129870A1 (en) * 2007-12-17 2012-05-24 Wenying Chai Piperazinyl derivatives useful as modulators of the neuropeptide y2 receptor
US8598169B2 (en) 2004-12-28 2013-12-03 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US9556120B2 (en) 2006-12-28 2017-01-31 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US9926273B2 (en) 2012-08-30 2018-03-27 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10202361B2 (en) * 2014-08-29 2019-02-12 Fmc Corporation Pyridazinones as herbicides
WO2021097240A1 (en) * 2019-11-13 2021-05-20 Yumanity Therapeutics, Inc. Compounds and uses thereof
CN114835687A (zh) * 2021-04-02 2022-08-02 重庆华森制药股份有限公司 AhR抑制剂
US11873298B2 (en) 2017-10-24 2024-01-16 Janssen Pharmaceutica Nv Compounds and uses thereof
US11970486B2 (en) 2016-10-24 2024-04-30 Janssen Pharmaceutica Nv Compounds and uses thereof
US12098146B2 (en) 2019-01-24 2024-09-24 Janssen Pharmaceutica Nv Compounds and uses thereof

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2099770B1 (de) * 2006-12-21 2015-06-10 Sloan-Kettering Institute for Cancer Research Pyridazinone und furanhaltige verbindungen
UY30892A1 (es) 2007-02-07 2008-09-02 Smithkline Beckman Corp Inhibidores de la actividad akt
DE102008015033A1 (de) 2008-03-17 2009-09-24 Aicuris Gmbh & Co. Kg Substituierte (Pyrazolyl-carbonyl)imidazolidinone und ihre Verwendung
DE102008015032A1 (de) 2008-03-17 2009-09-24 Aicuris Gmbh & Co. Kg Substituierte Pyrazolamide und ihre Verwendung
CA3034994A1 (en) 2008-06-03 2009-12-10 Intermune, Inc. Substituted aryl-2 pyridone compounds and use thereof for treating inflammatory and fibrotic disorders
DE102008062878A1 (de) 2008-12-17 2010-06-24 Aicuris Gmbh & Co. Kg Substituierte Furancarboxamide und ihre Verwendung
DE102008062863A1 (de) 2008-12-17 2010-06-24 Aicuris Gmbh & Co. Kg Substituierte (Thiophenyl-carbonyl)imidazolidinone und ihre Verwendung
JP2012131708A (ja) * 2009-04-28 2012-07-12 Nissan Chem Ind Ltd 4位置換ピリダジノン化合物及びp2x7受容体阻害剤
WO2011028492A2 (en) * 2009-08-24 2011-03-10 The Regents Of The University Of California Sortase a inhibitors
AU2011213621A1 (en) * 2010-02-08 2012-08-30 Allergan, Inc. Pyridazine derivatives useful as cannabinoid - 2 agonists
EP2439194A1 (de) * 2010-10-05 2012-04-11 Rheinische Friedrich-Wilhelms Universität Phenyldiamide und pharmazeutische Zubereitung mit Phenyldiamiden
KR101303283B1 (ko) * 2011-03-28 2013-09-04 한국화학연구원 피리다지논 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 약학적 조성물
AR092742A1 (es) 2012-10-02 2015-04-29 Intermune Inc Piridinonas antifibroticas
ES2858511T3 (es) * 2012-10-17 2021-09-30 Exonate Ltd Compuestos útiles para tratar neovascularización ocular
CN106459042B (zh) 2014-04-02 2019-06-28 英特穆恩公司 抗纤维化吡啶酮类
CA2969786A1 (en) * 2015-01-26 2016-08-04 Ottawa Hospital Research Institute Compositions and methods for enhancing oncolytic virus efficacy
US20180360799A1 (en) * 2015-05-08 2018-12-20 Oklahoma Medical Research Foundation Nitrofuran Derivatives That Induce Apoptosis in Breast Cancer Cells by Activating Protein Expression
JP6974331B2 (ja) 2016-02-05 2021-12-01 デナリ セラピューティクス インコーポレイテッドDenali Therapeutics Inc. 化合物、組成物及び方法
AU2017266911B2 (en) 2016-05-18 2021-09-02 Array Biopharma, Inc. KRas G12C inhibitors
HUE058802T2 (hu) 2016-12-09 2022-09-28 Denali Therapeutics Inc RIPK1 inhibitorokként alkalmas vegyületek
JOP20190193A1 (ar) * 2017-02-09 2019-08-08 Bayer Pharma AG ممركبات 2-أريل غير متجانس-3-أكسو-2، 3-ثنائي هيدرو بيريدازين-4-كربوكساميد لمعالجة السرطان
GB201717080D0 (en) 2017-10-18 2017-11-29 Syngenta Participations Ag Chemical process
LT3710439T (lt) 2017-11-15 2023-05-10 Mirati Therapeutics, Inc. Kras g12c inhibitoriai
US10647715B2 (en) 2017-11-15 2020-05-12 Mirati Therapeutics, Inc. KRas G12C inhibitors
EA037978B1 (ru) * 2017-11-21 2021-06-18 Байер Акциенгезельшафт 2-гетероарил-3-оксо-2,3-дигидропиридазин-4-карбоксамиды для лечения злокачественного новообразования
WO2019122202A1 (en) * 2017-12-20 2019-06-27 Ecole Polytechnique Federale De Lausanne (Epfl) Sting inhibitors
EP3502102A1 (de) * 2017-12-20 2019-06-26 Ecole Polytechnique Federale De Lausanne (Epfl) Sting-inhibitoren
WO2019217307A1 (en) 2018-05-07 2019-11-14 Mirati Therapeutics, Inc. Kras g12c inhibitors
EP3908283A4 (de) 2019-01-10 2022-10-12 Mirati Therapeutics, Inc. Kras-g12c-inhibitoren
CN110156729B (zh) * 2019-05-14 2022-12-06 浙江大学 一种苯基哌嗪类ube2f小分子抑制剂及其合成方法
WO2021041671A1 (en) 2019-08-29 2021-03-04 Mirati Therapeutics, Inc. Kras g12d inhibitors
MX2022003537A (es) 2019-09-24 2022-07-11 Mirati Therapeutics Inc Terapias de combinacion.
JP2023507571A (ja) 2019-12-20 2023-02-24 ミラティ セラピューティクス, インコーポレイテッド Sos1阻害剤
US20230072276A1 (en) * 2020-12-15 2023-03-09 Mirati Therapeutics, Inc. Azaquinazoline pan-KRas inhibitors
AU2023206890A1 (en) 2022-01-12 2024-08-22 Denali Therapeutics Inc. Crystalline forms of (s)-5-benzyl-n-(5-methyl-4-oxo-2, 3,4,5- tetrahydropyrido [3,2-b] [l,4]oxazepin-3-yl)-4h-l,2,4-triazole-3-carboxamide
IL315190A (en) 2022-03-30 2024-10-01 Ishihara Sangyo Kaisha A pyridazinone compound or a salt thereof and a pesticide containing them
WO2024208828A1 (en) * 2023-04-03 2024-10-10 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Radioprotection by inhibition of superoxide dismutase 1

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US5786379A (en) * 1995-12-01 1998-07-28 Centre International De Recherches Dermatologiques Galderma Adamantyl-substituted biaromatic compounds and pharmaceutical/cosmetic compositions comprised thereof
US20070049595A1 (en) * 1997-11-19 2007-03-01 Kowa Co., Ltd. Novel pyridazine derivatives and medicines containing the same as effective ingredients
US20100120760A1 (en) * 2007-04-12 2010-05-13 Istituto Di Ricerche Di Biologia Molecolare P. Ang Benzofuran-carboxamide derivatives as antiviral agents
US20100152270A1 (en) * 2007-06-15 2010-06-17 Anne Suty-Heinze Pesticide composition comprising a strigolactone derivative and a fungicide compound
US20100240644A1 (en) * 2007-06-15 2010-09-23 Hidenori Akatsuka Morpholine derivative
US20100286390A1 (en) * 2007-10-31 2010-11-11 Nissan Chemical Industries Limited Pyridazinone compounds and p2x7 receptor inhibitors
US20110098269A1 (en) * 2008-05-20 2011-04-28 Cephalon, Inc. Substituted Pyridazinone Derivatives as Histamine-3 (H3) Receptor Ligands
US20110118234A1 (en) * 2008-05-05 2011-05-19 Kaustav Biswas Urea Compounds as Gamma Secretase Modulators
US20110136762A1 (en) * 2008-09-24 2011-06-09 E.I. Du Pont De Nemours And Company Fungicidal pyridazines
US20110281864A1 (en) * 2008-08-29 2011-11-17 Amgen Inc. Pyrido[3,2-d]Pyridazine-2(1H)-One Compounds as p38 Modulators and Methods of Use Thereof
US20110301145A1 (en) * 2008-11-12 2011-12-08 Gilead Connecticut INc. Pyridazinones, method of making, and method of use thereof
US20120022059A1 (en) * 2008-12-17 2012-01-26 Aicuris Gmbh & Co. Kg Substituted furancarboxamides, and use thereof
US20120028988A1 (en) * 2009-03-30 2012-02-02 Sumitomo Chemical Company, Limited Use of pyridazinone compound for control of harmful arthropod pests

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2241760A (en) * 1937-04-03 1941-05-13 Eastman Kodak Co Process for preparing n-furfurylaminophenols
NL252908A (de) * 1959-06-23
DE1420969A1 (de) * 1960-08-19 1968-10-24 Basf Ag Verfahren zur Herstellung von 4,5-Dihalogenpyridazonen
BE627826A (de) * 1960-09-09
DE1224557B (de) * 1964-12-29 1966-09-08 Basf Ag Selektives Herbizid
DE1542813A1 (de) * 1966-01-03 1970-03-26 Basf Ag Herbizid
GB1244696A (en) * 1968-06-20 1971-09-02 Fuji Photo Film Co Ltd Improvements in colour developer compositions
DE1930002A1 (de) * 1969-06-13 1970-12-17 Basf Ag Verfahren zur Herstellung von Monoalkyl-Monocycloalkyl- oder Monoaralkylhydrazinen
DE2526643A1 (de) * 1975-06-14 1976-12-30 Basf Ag Substituierte pyridazone
US4123529A (en) * 1976-04-23 1978-10-31 Lilly Industries Limited Phenylpiperazine derivatives
DE2808193A1 (de) 1978-02-25 1979-09-06 Basf Ag Pyridazon-verbindungen
US4695575A (en) * 1984-11-13 1987-09-22 Janssen Pharmaceutica, N.V. 4-[(bicycle heterocyclyl)-methyl and -hetero]-piperidines
WO2000009488A1 (fr) * 1998-08-14 2000-02-24 Nihon Nohyaku Co., Ltd. Derives de pyridazinone
US6166028A (en) * 1998-12-09 2000-12-26 American Home Products Corporation Diaminopuridine-containing thiourea inhibitors of herpes viruses
DE10010692C1 (de) 2000-03-04 2001-07-19 Willi Skoberne Schornstein
EP1470112A1 (de) * 2002-01-18 2004-10-27 Pharmacia Corporation Substituierte pyridazinone als p38-inhibitoren
EP1490064B1 (de) * 2002-02-14 2009-11-18 Pharmacia Corporation Substituierte pyridinone als modulatoren für p38 map kinase
JP2007525460A (ja) * 2003-04-25 2007-09-06 オーソ−マクニール・フアーマシユーチカル・インコーポレーテツド c−fmsキナーゼ阻害剤
US20050026968A1 (en) * 2003-07-14 2005-02-03 University Of Tennessee Research Foundation Heterocyclic amides with anti-tuberculosis activity
WO2005007632A1 (en) * 2003-07-18 2005-01-27 Pharmacia Corporation Substituted pyridazinones as inhibitors of p38
WO2006124874A2 (en) * 2005-05-12 2006-11-23 Kalypsys, Inc. Inhibitors of b-raf kinase
EP2099770B1 (de) * 2006-12-21 2015-06-10 Sloan-Kettering Institute for Cancer Research Pyridazinone und furanhaltige verbindungen

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2003A (en) * 1841-03-12 Improvement in horizontal windivhlls
US5786379A (en) * 1995-12-01 1998-07-28 Centre International De Recherches Dermatologiques Galderma Adamantyl-substituted biaromatic compounds and pharmaceutical/cosmetic compositions comprised thereof
US20070049595A1 (en) * 1997-11-19 2007-03-01 Kowa Co., Ltd. Novel pyridazine derivatives and medicines containing the same as effective ingredients
US20100120760A1 (en) * 2007-04-12 2010-05-13 Istituto Di Ricerche Di Biologia Molecolare P. Ang Benzofuran-carboxamide derivatives as antiviral agents
US20100152270A1 (en) * 2007-06-15 2010-06-17 Anne Suty-Heinze Pesticide composition comprising a strigolactone derivative and a fungicide compound
US20100240644A1 (en) * 2007-06-15 2010-09-23 Hidenori Akatsuka Morpholine derivative
US20100286390A1 (en) * 2007-10-31 2010-11-11 Nissan Chemical Industries Limited Pyridazinone compounds and p2x7 receptor inhibitors
US20110118234A1 (en) * 2008-05-05 2011-05-19 Kaustav Biswas Urea Compounds as Gamma Secretase Modulators
US20110098269A1 (en) * 2008-05-20 2011-04-28 Cephalon, Inc. Substituted Pyridazinone Derivatives as Histamine-3 (H3) Receptor Ligands
US20110281864A1 (en) * 2008-08-29 2011-11-17 Amgen Inc. Pyrido[3,2-d]Pyridazine-2(1H)-One Compounds as p38 Modulators and Methods of Use Thereof
US20110136762A1 (en) * 2008-09-24 2011-06-09 E.I. Du Pont De Nemours And Company Fungicidal pyridazines
US20110301145A1 (en) * 2008-11-12 2011-12-08 Gilead Connecticut INc. Pyridazinones, method of making, and method of use thereof
US20120022059A1 (en) * 2008-12-17 2012-01-26 Aicuris Gmbh & Co. Kg Substituted furancarboxamides, and use thereof
US20120028988A1 (en) * 2009-03-30 2012-02-02 Sumitomo Chemical Company, Limited Use of pyridazinone compound for control of harmful arthropod pests

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Bill, et al., PLoS ONE, 1 July 2012, Vol. 7, # 7, e41179 *
Gridelli, et al., The Oncologist 2007;12:840-849 *
Hackh's Chem. Dict., 3rd Ed., 1944, page 18 *
Hawley's Condensed Chem. Dict., 14th Ed., 2002 *
http://www.iupac.org/goldbook/A00123.pdf, downloaded 10-29-2010. *
Jänne, Lung Cancer (2008) 60 (Supplement 2), S3-S9 *
Mummenthaler, et al., Mol. Pharmaceutics 2011, 8, 2069-2079 *
Wikipedia, Acyl, last modified 03-11-2010 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9655903B2 (en) 2004-12-28 2017-05-23 Athenex, Inc. Compositions and methods of treating cell proliferation disorders
US20110065705A1 (en) * 2004-12-28 2011-03-17 Hangauer Jr David G Compositions and Methods of Treating Cell Proliferation Disorders
US8598169B2 (en) 2004-12-28 2013-12-03 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US8980890B2 (en) 2004-12-28 2015-03-17 Kinex Pharmaceuticals, Llc Compositions and methods of treating cell proliferation disorders
US9580387B2 (en) 2004-12-28 2017-02-28 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
US20090042879A1 (en) * 2005-04-21 2009-02-12 Nippon Shinyaku Co., Ltd. Phthalazinone derivatives and pharmaceutical compositions comprising the same
US10323001B2 (en) 2006-12-28 2019-06-18 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US9556120B2 (en) 2006-12-28 2017-01-31 Athenex, Inc. Compositions for modulating a kinase cascade and methods of use thereof
US20100249130A1 (en) * 2007-04-13 2010-09-30 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
US10196357B2 (en) 2007-04-13 2019-02-05 Athenex, Inc. Biaryl compositions and methods for modulating a kinase cascade
US20100278776A1 (en) * 2007-10-20 2010-11-04 Kinex Pharmaceuticals, Llc Pharmaceutical compositions for modulating a kinase cascade and methods of use thereof
US20120129870A1 (en) * 2007-12-17 2012-05-24 Wenying Chai Piperazinyl derivatives useful as modulators of the neuropeptide y2 receptor
US8748423B2 (en) * 2010-04-16 2014-06-10 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US20110281872A1 (en) * 2010-04-16 2011-11-17 Kinex Pharmaceuticals, Llc Compositions and methods for the prevention and treatment of cancer
US9926273B2 (en) 2012-08-30 2018-03-27 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10106505B2 (en) 2012-08-30 2018-10-23 Athenex, Inc. Composition and methods for modulating a kinase cascade
US10202361B2 (en) * 2014-08-29 2019-02-12 Fmc Corporation Pyridazinones as herbicides
US11970486B2 (en) 2016-10-24 2024-04-30 Janssen Pharmaceutica Nv Compounds and uses thereof
US11873298B2 (en) 2017-10-24 2024-01-16 Janssen Pharmaceutica Nv Compounds and uses thereof
US12098146B2 (en) 2019-01-24 2024-09-24 Janssen Pharmaceutica Nv Compounds and uses thereof
WO2021097240A1 (en) * 2019-11-13 2021-05-20 Yumanity Therapeutics, Inc. Compounds and uses thereof
CN114835687A (zh) * 2021-04-02 2022-08-02 重庆华森制药股份有限公司 AhR抑制剂

Also Published As

Publication number Publication date
CA2673299C (en) 2016-04-12
US20130131062A1 (en) 2013-05-23
HK1135985A1 (en) 2010-06-18
WO2008080056A2 (en) 2008-07-03
AU2007336781A1 (en) 2008-07-03
EP2518063B1 (de) 2017-02-01
CA2673299A1 (en) 2008-07-03
AU2007336781B2 (en) 2014-06-26
US9562019B2 (en) 2017-02-07
EP2099770A2 (de) 2009-09-16
EP2518063A1 (de) 2012-10-31
EP2099770B1 (de) 2015-06-10
AU2007336781C1 (en) 2014-10-09
WO2008080056A3 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
US9562019B2 (en) Substituted pyridazines as EGFR and/or KRAS inhibitors
US10435389B2 (en) Octahydrocyclopenta[c]pyrrole allosteric inhibitors of SHP2
US11279710B2 (en) Processes for preparing ACC inhibitors and solid forms thereof
US20240051936A1 (en) Isoindolinone compounds
WO2023276828A1 (ja) 腎障害の予防および/または治療用医薬組成物、並びにオートファジー活性化剤
AU2014233641B2 (en) Pyridazinones and furan-containing compounds
TWI851542B (zh) Shp2之八氫環戊烷并[c]吡咯別構抑制劑
US20220324849A1 (en) Truncated itraconazole analogues and methods of use thereof
WO2012081039A1 (en) Molecules with anticancer activity and uses thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DJABALLAH, HAKIM;VARMUS, HAROLD E.;SHUM, DAVID;AND OTHERS;SIGNING DATES FROM 20090731 TO 20090830;REEL/FRAME:023306/0135

STPP Information on status: patent application and granting procedure in general

Free format text: MISSASSIGNED APPLICATION NUMBER