US20100206013A1 - Sequential enzyme delivery system - Google Patents

Sequential enzyme delivery system Download PDF

Info

Publication number
US20100206013A1
US20100206013A1 US12/670,671 US67067108A US2010206013A1 US 20100206013 A1 US20100206013 A1 US 20100206013A1 US 67067108 A US67067108 A US 67067108A US 2010206013 A1 US2010206013 A1 US 2010206013A1
Authority
US
United States
Prior art keywords
enzyme
enzymes
phospholipase
wash
savinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/670,671
Other languages
English (en)
Inventor
Panos Kotsakis
Neil James Parry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conopco Inc
Original Assignee
Conopco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38973008&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100206013(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Conopco Inc filed Critical Conopco Inc
Assigned to CONOPCO, INC. D/B/A UNILEVER reassignment CONOPCO, INC. D/B/A UNILEVER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOTSAKIS, PANOS, PARRY, NEIL JAMES
Publication of US20100206013A1 publication Critical patent/US20100206013A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • C11D2111/12

Definitions

  • the present invention concerns the sequential delivery of enzymes in a washing process.
  • WO2000070006 discloses protease/cellulose combinations.
  • WO20050089966, EP1664258, US20050059567 and US20060172913 disclose enzyme mixtures for grass and egg stain removal.
  • An objective is to provide an improved washing/stain removal process involving enzymes. It is also very difficult to provide a blend of enzymes whereby protease is one of those major components due to hydrolysis of the other components.
  • the present invention provides a fabric washing process in which fabric is treated sequentially with at least two different enzymes, the process comprising the steps:
  • the second enzyme(s) comprise one or more lipolytic enzymes
  • the invention provides a process for removing stains from fabric comprising the steps:
  • Preferred features of the process of the second aspect are as for the first aspect.
  • the process of the second aspect of the invention is a process for removing grass stains from fabric
  • the invention provides a fabric washing and/or stain removal kit including at least one package containing first and second enzymes according to the first aspect which are separated from each other, the package optionally including instructions for washing fabric and/or removing stains from fabric according to the first and/or second aspects of the invention.
  • the invention provides a washing machine incorporating a device for sequentially treating fabrics with at least first and second enzymes according to the first aspect, the device comprising a plurality of separate chambers containing respectively first and second enzymes, from which chambers the enzymes are sequentially dispensed.
  • the device preferably comprises the drawer of a washing machine.
  • the invention provides the use sequentially of first then second enzymes according to the first aspect in a process for treatment of stains, particularly grass stains from fabric.
  • the first and second enzymes may comprise a single enzyme or a mixture of enzymes.
  • the above arrangement allows the enzymes to work with minimal interference from other enzymes.
  • the proteases, dosed first, might be expected to attack the other enzyme(s) on addition to the wash liquor preventing the non proteolytic treatment of stains.
  • the stain removal performance of the enzymes due to sequential dosing is vastly improved.
  • Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • alkaline proteases are subtilisins, especially those derived from Bacillus , e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147 and subtilisin 168 (described in WO 89/06279).
  • Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270 and WO 94/25583.
  • Examples of useful proteases are the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946, especially the variants with substitutions in one or more of the following positions: 27, 36, 57, 76, 87, 97, 101, 104, 120, 123, 167, 170, 194, 206, 218, 222, 224, 235 and 274.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase , e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1,372,034), P.
  • lipase variants such as those described in WO 92/05249, WO 94/01541, EP 407 225, EP 260 105, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202.
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM (Novozymes A/S). It is to be understood that enzyme variants (produced, for example, by recombinant techniques) are included within the meaning of the term “enzyme”. Examples of such enzyme variants are disclosed, e.g., in EP 251,446 (Genencor), WO 91/00345 (Novo Nordisk), EP 525,610 (Solvay) and WO 94/02618 (Gist-Brocades NV).
  • enzymes which may appropriately be incorporated in granules of the invention include oxidoreductases (EC 1.-.-.-), transferases (EC 2.-.-.-), hydrolases (EC 3.-.-.-), lyases (EC 4.-.-.-), isomerases (EC 5.-.-.-) and ligases (EC 6.-.-.-).
  • the sequentially delivered proteases and lipolytic enzymes may be dosed in isolation from other main wash components or they may be dosed with such components, but preferably not combining the protease with other enzymes.
  • the sequentially delivered enzymes of the invention may be delivered together with one or more surfactants and/or optionally other ingredients such that at least one of the sequential doses is a fully functional laundry cleaning and/or care compositions.
  • Such compositions of the invention may be in dry solid or liquid form.
  • the composition may be a concentrate to be diluted, rehydrated and/or dissolved in a solvent, including water, before use.
  • the composition may also be a ready-to-use (in-use) composition.
  • the present invention is suitable for use in industrial or domestic fabric wash compositions, fabric conditioning compositions and compositions for both washing and conditioning fabrics (so-called through the wash conditioner compositions).
  • the present invention can also be applied to industrial or domestic non-detergent based fabric care compositions, for example spray-on compositions.
  • Fabric wash compositions according to the present invention may be in any suitable form, for example powdered, tableted powders, liquid or solid detergent bars.
  • contemplated ingredients including surfactants, hydrotropes, preservatives, fillers, builders, complexing agents, polymers, stabilizers, perfumes per se, other detergent ingredients, or combinations of one or more thereof are discussed below.
  • the enzymes may be present as the sole reactive stain removal agent, or other stain removal agents may be incorporated.
  • Additional enzymes may be dosed as part of the overall washing process, providing this follows the initial process according to the invention (i.e. treatment with an enzyme such as a protease/s and then a second or more enzyme such as lipase/s).
  • Such additional (i.e. subsequently dosed) enzymes may include further proteases and lipases as above, and also alpha-amylases, cellulases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Additional components may also include cutinase. classified in EC 3.1.1.74.
  • the cutinase used according to the invention may be of any origin.
  • Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
  • Cutinases are enzymes which are able to degrade cutin.
  • the cutinase is derived from a strain of Aspergillus , in particular Aspergillus oryzae , a strain of Alternaria , in particular Alternaria brassiciola , a strain of Fusarium , in particular Fusarium solani, Fusarium solani pisi, Fusarium roseum culmorum , or Fusarium roseum sambucium , a strain of Helminthosporum , in particular Helminthosporum sativum , a strain of Humicola , in particular Humicola insolens , a strain of Pseudomonas , in particular Pseudomonas mendocina , or Pseudomonas putida , a strain of Rhizoctonia , in particular Rhizoctonia solani , a strain of Streptomyces , a
  • the cutinase is derived from a strain of Humicola insolens , in particular the strain Humicola insolens DSM 1800.
  • Humicola insolens cutinase is described in WO 96/13580 which is hereby incorporated by reference.
  • the cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502, which are hereby incorporated by reference.
  • Preferred cutinase variants include variants listed in Example 2 of WO 01/92502, which is hereby specifically incorporated by reference.
  • Preferred commercial cutinases include NOVOZYMTM 51032 (available from Novozymes A/S, Denmark).
  • Additional components may also include phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • phospholipase includes enzymes with phospholipase activity, e.g., phospholipase A (A 1 or A 2 ), phospholipase B activity, phospholipase C activity or phospholipase D activity.
  • phospholipase A used herein in connection with an enzyme of the invention is intended to cover an enzyme with Phospholipase A 1 and/or Phospholipase A 2 activity.
  • the phospholipase activity may be provided by enzymes having other activities as well, such as, e.g., a lipase with phospholipase activity.
  • the phospholipase activity may, e.g., be from a lipase with phospholipase side activity.
  • the phospholipase enzyme activity is provided by an enzyme having essentially only phospholipase activity and wherein the phospholipase enzyme activity is not a side activity.
  • the phospholipase may be of any origin, e.g., of animal origin (such as, e.g., mammalian), e.g. from pancreas (e.g., bovine or porcine pancreas), or snake venom or bee venom.
  • animal origin such as, e.g., mammalian
  • pancreas e.g., bovine or porcine pancreas
  • snake venom or bee venom e.g., from snake venom or bee venom.
  • the phospholipase may be of microbial origin, e.g., from filamentous fungi, yeast or bacteria, such as the genus or species Aspergillus , e.g., A. niger; Dictyostelium , e.g., D. discoideum; Mucor , e.g. M. javanicus, M. mucedo, M.
  • subtilissimus Neurospora , e.g. N. crassa; Rhizomucor , e.g., R. pusillus; Rhizopus , e.g. R. arrhizus, R. japonicus, R. stolonifer; Sclerotinia , e.g., S. libertiana; Trichophyton , e.g. T. rubrum; Whetzelinia , e.g., W. sclerotiorum; Bacillus , e.g., B. megaterium, B. subtilis; Citrobacter , e.g., C.
  • freundii Enterobacter , e.g., E. aerogenes, E. cloacae Edwardsiella, E. tarda; Erwinia , e.g., E. herbicola; Escherichia , e.g., E. coli; Klebsiella , e.g., K. pneumoniae; Proteus , e.g., P. vulgaris; Providencia , e.g., P. stuartii; Salmonella , e.g. S. typhimurium; Serratia , e.g., S. liquefasciens, S. marcescens; Shigella , e.g., S.
  • the phospholipase may be fungal, e.g., from the class Pyrenomycetes, such as the genus Fusarium , such as a strain of F. culmorum, F. heterosporum, F. solani , or a strain of F. oxysporum .
  • the phospholipase may also be from a filamentous fungus strain within the genus Aspergillus , such as a strain of Aspergillus awamori, Aspergillus foetidus, Aspergillus japonicus, Aspergillus niger or Aspergillus oryzae.
  • Preferred phospholipases are derived from a strain of Humicola , especially Humicola lanuginosa .
  • the phospholipase may be a variant, such as one of the variants disclosed in WO 00/32758, which are hereby incorporated by reference.
  • Preferred phospholipase variants include variants listed in Example 5 of WO 00/32758, which is hereby specifically incorporated by reference.
  • the phospholipase is one described in WO 04/111216, especially the variants listed in the table in Example 1.
  • the phospholipase is derived from a strain of Fusarium , especially Fusarium oxysporum .
  • the phospholipase may be the one concerned in WO 98/026057 derived from Fusarium oxysporum DSM 2672, or variants thereof.
  • the phospholipase is preferably a phospholipase A 1 (EC. 3.1.1.32). or a phospholipase A 2 (EC.3.1.1.4.).
  • Examples of commercial phospholipases include LECITASETM and LECITASETM ULTRA, YIELSMAX, or LIPOPAN F (available from Novozymes A/S, Denmark).
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus , e.g. a special strain of B. licheniformis , described in more detail in GB 1,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • amylases are the variants described in WO 94/02597, WO 94/18314, WO 96/23873, WO 97/43424, WO 01/066712, WO 02/010355, WO 02/031124 and PCT/DK2005/000469 (which references all incorporated by reference.
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium , e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila , and Fusarium oxysporum disclosed in U.S. Pat. No. 4,435,307, U.S. Pat. No. 5,648,263, U.S. Pat. No. 5,691,178, U.S. Pat. No. 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • cellulases are the alkaline or neutral cellulases having color care benefits.
  • Examples of such cellulases are cellulases described in EP 0 495 257, EP 0 531 372, WO 96/11262, WO 96/29397, WO 98/08940.
  • Other examples are cellulase variants such as those described in WO 94/07998, EP 0 531 315, U.S. Pat. No. 5,457,046, U.S. Pat. No. 5,686,593, U.S. Pat. No. 5,763,254, WO 95/24471, WO 98/12307 and PCT/DK98/00299.
  • cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500 (B)TM (Kao Corporation).
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus , e.g. from C. cinereas , and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
  • pectate lyases examples include pectate lyases that have been cloned from different bacterial genera such as Erwinia, Pseudomonas, Klebsiella and Xanthomonas , as well as from Bacillus subtilis (Nasser et al. (1993) FEBS Letts. 335:319-326) and Bacillus sp. YA-14 (Kim et al. (1994) Biosci. Biotech. Biochem. 58:947-949). Purification of pectate lyases with maximum activity in the pH range of 8-10 produced by Bacillus pumilus (Dave and Vaughn (1971) J. Bacteriol. 108:166-174), B.
  • the pectate lyase comprises the amino acid sequence of a pectate lyase disclosed in Heffron et al., (1995) Mol. Plant-Microbe Interact. 8: 331-334 and Henrissat et al., (1995) Plant Physiol. 107: 963-976.
  • pectatel lyases are disclosed in WO 99/27083 and WO 99/27084.
  • pectate lyases derived from Bacillus licheniformis is disclosed in U.S. Pat. No. 6,284,524 (which document is hereby incorporated by reference).
  • pectate lyase variants are disclosed in WO 02/006442, especially the variants disclosed in the Examples in WO 02/006442 (which document is hereby incorporated by reference).
  • alkaline pectate lyases examples include BIOPREPTM and SCOURZYMETM L from Novozymes A/S, Denmark.
  • mannanases examples include mannanases of bacterial and fungal origin.
  • the mannanase is derived from a strain of the filamentous fungus genus Aspergillus , preferably Aspergillus niger or Aspergillus aculeates (WO 94/25576).
  • WO 93/24622 discloses a mannanase isolated from Trichoderma reseei .
  • Mannanases have also been isolated from several bacteria, including Bacillus organisms. For example, Talbot et al., Appl. Environ. Microbiol., Vol. 56, No. 11, pp.
  • JP-A-03047076 discloses a beta-mannanase derived from Bacillus sp.
  • JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase.
  • JP-A-63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta-mannosidase.
  • JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001.
  • a purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164.
  • WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active.
  • Contemplated are the alkaline family 5 and 26 mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619.
  • Especially contemplated are the Bacillus sp. mannanases concerned in the Examples in WO 99/64619 which document is hereby incorporated by reference.
  • mannanases examples include MannawayTM available from Novozymes A/S Denmark.
  • Any enzyme present in a composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • the fabric wash compositions may comprise a fabric wash detergent material selected from non-soap anionic surfactant, nonionic surfactants, soap, amphoteric surfactants, zwitterionic surfactants and mixtures thereof.
  • Detergent compositions suitable for use in domestic or industrial automatic fabric washing machines generally contain anionic non-soap surfactant or nonionic surfactant, or combinations of the two in suitable ratio, as will be known to the person skilled in the art, optionally together with soap.
  • the surfactants may be present in the composition at a level of from 0.1% to 60% by weight.
  • Suitable anionic surfactants are well known to the person skilled in the art and include alkyl benzene sulphonate, primary and secondary alkyl sulphates, particularly C 8 -C 15 primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates, dialkyl sulphosuccinates; ether carboxylates; isethionates; sarcosinates; fatty acid ester sulphonates and mixtures thereof.
  • the sodium salts are generally preferred.
  • the composition When included therein the composition usually contains from about 1% to about 50%, preferably 10 wt %-40 wt % based on the fabric treatment composition of an anionic surfactant such as linear alkylbenzenesulfonate, alpha-olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, alpha-sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid or soap.
  • Preferred surfactants are alkyl ether sulphates and blends of alkoxylated alkyl nonionic surfactants with either alkyl sulphonates or alkyl ether sulphates.
  • Preferred alkyl ether sulphates are C8-C15 alkyl and have 2-10 moles of ethoxlation.
  • Preferred alkyl sulphates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of C 8 -C 15 .
  • the counter ion for anionic surfactants is typically sodium, although other counter-ions such as TEA or ammonium can be used. Suitable anionic surfactant materials are available in the marketplace as the ‘Genapol’TM range from Clariant.
  • Nonionic surfactants are also well known to the person skilled in the art and include primary and secondary alcohol ethoxylates, especially C 8 -C 20 aliphatic alcohol ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • Non-ethoxylated nonionic surfactants include alkyl polyglycosides, glycerol monoethers and polyhydroxy amides (glucamide). Mixtures of nonionic surfactant may be used. When included therein the composition usually contains from about 0.2% to about 40%, preferably 1 to 20 wt %, more preferably 5 to 15 wt % of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
  • glucamides N-acyl N-alkyl derivatives of glucosamine
  • Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 20 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the C 10 -C 15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • Hydrotropes may be included in the composition/s.
  • the term “hydrotrope” generally means a compound with the ability to increase the solubilities, preferably aqueous solubilities, of certain slightly soluble organic compounds. Examples of hydrotropes include sodium xylene sulfonate, SCM.
  • composition/s may comprise a solvent such as water or an organic solvent such as isopropyl alcohol or glycol ethers. Solvents are typically present in liquid or gel compositions.
  • the composition/s may contain a metal chelating agent such as carbonates, bicarbonates, and sesquicarbonates.
  • the metal chelating agent can be a bleach stabiliser (i.e. heavy metal sequestrant).
  • Suitable bleach stabilisers include ethylenediamine tetraacetate (EDTA), diethylenetriamine pentaacetate (DTPA), ethylenediamine disuccinate (EDDS), and the polyphosphonates such as the Dequests (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP).
  • EDTA ethylenediamine tetraacetate
  • DTPA diethylenetriamine pentaacetate
  • EDDS ethylenediamine disuccinate
  • polyphosphonates such as the Dequests (Trade Mark), ethylenediamine tetramethylene phosphonate (EDTMP) and diethylenetriamine pentamethylene phosphate (DETPMP).
  • Builder materials may be selected from 1) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water-insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • composition/s may also contain 0-65% of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are bleach-stabilising agents by virtue of their ability to complex metal ions.
  • composition/s may suitably contain less than 20% wt, preferably less than 10% by weight, and most preferably less than 10% wt of detergency builder.
  • composition/s may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15% w.
  • Aluminosilicates are materials having the general formula:
  • M is a monovalent cation, preferably sodium.
  • M a monovalent cation, preferably sodium.
  • These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 SiO 2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • phosphate embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • carbonate including bicarbonate and sesquicarbonate
  • citrate may be employed as builders.
  • the composition may comprise one or more polymers.
  • polymers include carboxymethylcellulose, poly(vinylpyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
  • dye-transfer inhibitors Modern detergent compositions typically employ polymers as so-called ‘dye-transfer inhibitors’. These prevent migration of dyes, especially during long soak times.
  • Any suitable dye-transfer inhibition agents may be used in accordance with the present invention.
  • dye-transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese pthalocyanine, peroxidases, and mixtures thereof.
  • Nitrogen-containing, dye binding, DTI polymers are preferred. Of these polymers and co-polymers of cyclic amines such as vinyl pyrrolidone, and/or vinyl imidazole are preferred.
  • Polyamine N-oxide polymers suitable for use herein contain units having the following structural formula: R-A x -P; wherein P is a polymerizable unit to which an N—O group can be attached or the N—O group can form part of the polymerizable unit; A is one of the following structures: —NC(O)—, —C(O)O—, —S—, —O—, —N ⁇ ; x is 0 or 1; and R is an aliphatic, ethoxylated aliphatic, aromatic, heterocyclic or alicyclic group or combination thereof to which the nitrogen of the N—O group can be attached or the N—O group is part of these groups, or the N—O group can be attached to both units.
  • Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.
  • the N—O group can be represented by the following general structures: N(O)(R) 0-3 , or ⁇ N(O)(R′) 0-1 , wherein each R′ independently represents an aliphatic, aromatic, heterocyclic or alicylic group or combination thereof; and the nitrogen of the N—O group can be attached or form part of any of the aforementioned groups.
  • the amine oxide unit of the polyamine N-oxides has a pKa ⁇ 10, preferably pKa ⁇ 7, more preferably pKa ⁇ 6.
  • Any polymer backbone can be used provided the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties.
  • suitable polymeric backbones are polyvinyls, polyalkylenes, polyesters, polyethers, polyamides, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide.
  • the amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1:1,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation.
  • the polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferably 1,000 to 500,000; most preferably 5,000 to 100,000. This preferred class of materials is referred to herein as “PVNO”.
  • a preferred polyamine N-oxide is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N-oxide ratio of about 1:4.
  • Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers are also preferred.
  • the PVPVI has an average molecular weight range from 5,000 to 1,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000, as determined by light scattering as described in Barth, et al., Chemical Analysis , Vol. 113. “Modern Methods of Polymer Characterization”.
  • the preferred PVPVI copolymers typically have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched. Suitable PVPVI polymers include SokalanTM HP56, available commercially from BASF, Ludwigshafen, Germany.
  • PVP polyvinylpyrrolidone polymers
  • PVP's are disclosed for example in EP-A-262,897 and EP-A-256,696.
  • Suitable PVP polymers include SokalanTM HP50, available commercially from BASF.
  • Compositions containing PVP can also contain polyethylene glycol (“PEG”) having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000.
  • PEG polyethylene glycol
  • the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2:1 to about 50:1, and more preferably from about 3:1 to about 10:1.
  • modified polyethyleneimine polymers are water-soluble or dispersible, modified polyamines.
  • Modified polyamines are further disclosed in U.S. Pat. No. 4,548,744; U.S. Pat. No. 4,597,898; U.S. Pat. No. 4,877,896; U.S. Pat. No. 4,891,160; U.S. Pat. No. 4,976,879; U.S. Pat. No. 5,415,807; GB-A-1,537,288; GB-A-1,498,520; DE-A-28 29022; and JP-A-06313271.
  • composition/s according to the present invention comprises a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO), polyvinyl pyrrolidone (PVP), polyvinyl imidazole, N-vinylpyrrolidone and N-vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
  • a dye transfer inhibition agent selected from polyvinylpyrridine N-oxide (PVNO), polyvinyl pyrrolidone (PVP), polyvinyl imidazole, N-vinylpyrrolidone and N-vinylimidazole copolymers (PVPVI), copolymers thereof, and mixtures thereof.
  • the amount of dye transfer inhibition agent in the composition/s according to the present invention will be from 0.01 to 10%, preferably from 0.02 to 5%, more preferably from 0.03 to 2%, by weight of the composition.
  • composition/s may also contain other detergent ingredients such as e.g. fabric conditioners including clays, foam boosters, suds suppressors (anti-foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes.
  • fabric conditioners including clays, foam boosters, suds suppressors (anti-foams), anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, further dyes, anti-microbials, optical brighteners, tarnish inhibitors, or perfumes.
  • the dispensing drawer of an automatic washing machine may be used to sequentially dose the enzymes, for example by using the pre-wash chamber to dose the protease/s and the main wash chamber to dose the lipase/s.
  • the invention may also be employed in hand washing operation, which can be effected without the need for additional devices, but enzymes are simply added sequentially to the wash liquor in which the items are being washed.
  • a hand washing operation may however involve wash tools such as scrubbing devices and the compositions may be applied directly to said tools, in sequence in accordance with the invention, and the tools then used to clean the clothes.
  • the tools or devices may also be impregnated and/or may function as a delivery device to deliver said enzymes in a washing/stain removal (preferably grass stain removal) process according to the invention.
  • Wash performance was evaluated by washing grass stained polyester swatches (wfk30A) in a detergent solution with a protease (Savinase 12TXT) and a lipase (Lipex 100T or lipolase 100T) in single enzyme, combination and sequence (2 wash) treatments.
  • wfk30A a detergent solution with a protease (Savinase 12TXT) and a lipase (Lipex 100T or lipolase 100T) in single enzyme, combination and sequence (2 wash) treatments.
  • the table shows how the sequential dosing of a protease followed by a lipase provides much improved stain removal.
  • Wash performance was evaluated by washing grass stained cotton testcloth in a detergent solution with a protease (Savinase 12TXT) and a lipase (Lipex 100T) in single enzyme, combination and sequence (2 wash) treatments.
  • a protease Sevinase 12TXT
  • a lipase Lipex 100T

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)
US12/670,671 2007-08-03 2008-06-27 Sequential enzyme delivery system Abandoned US20100206013A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07113806.9 2007-08-03
EP07113806 2007-08-03
PCT/EP2008/058294 WO2009019075A1 (en) 2007-08-03 2008-06-27 Sequential enzyme delivery system

Publications (1)

Publication Number Publication Date
US20100206013A1 true US20100206013A1 (en) 2010-08-19

Family

ID=38973008

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/670,671 Abandoned US20100206013A1 (en) 2007-08-03 2008-06-27 Sequential enzyme delivery system

Country Status (7)

Country Link
US (1) US20100206013A1 (zh)
EP (1) EP2173845B1 (zh)
CN (2) CN105887421B (zh)
BR (1) BRPI0814331A2 (zh)
ES (1) ES2391357T3 (zh)
WO (1) WO2009019075A1 (zh)
ZA (1) ZA201000215B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178148A1 (en) * 2009-09-07 2012-07-12 Reckitt Benckiser N.V. Detergent Composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174340A1 (en) * 2010-01-20 2011-07-21 Ecolab USA Low and high temperature enzymatic system
EP2537918A1 (en) 2011-06-20 2012-12-26 The Procter & Gamble Company Consumer products with lipase comprising coated particles
MX2015010348A (es) * 2013-02-14 2015-10-29 Novozymes As Lavado industrial e institucional utilizando composiciones multienzimaticas.
EP4363092A1 (en) 2021-06-29 2024-05-08 Christeyns Method and apparatus for on-site preparation and dosing of an enzyme-containing detergent formulation

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663278A (en) * 1982-04-30 1987-05-05 Syva Company Agglutination dependent enzyme channeling immunoassay
US5164100A (en) * 1990-12-11 1992-11-17 Lever Brothers Company, Division Of Conopco, Inc. Fabric softener compositions containing a polymeric fluorescent whitening agent
US5272893A (en) * 1992-09-11 1993-12-28 White Consolidated Industries, Inc. Enzyme bath maintenance system
US5733763A (en) * 1988-08-19 1998-03-31 Novo Nordisk A/S Enzyme granulate formed of an enzyme-containing core and an enzyme-containing shell
US5846798A (en) * 1993-09-01 1998-12-08 Henkel Kommanditgesellschaft Auf Aktien Multi-enzyme granules
US6551981B1 (en) * 1998-07-17 2003-04-22 Patrizio Ricci Detergent tablet
US6616705B2 (en) * 2000-09-08 2003-09-09 Cognis Deutschland Gmbh & Co. Kg Laundry detergent compositions
US20040139554A1 (en) * 2002-12-20 2004-07-22 Unliever Home & Personal Care Usa, Division Of Conopco, Inc. Fabric care composition
US6812199B2 (en) * 2000-04-28 2004-11-02 The Procter & Gamble Company Method for treating stained materials
US20050059567A1 (en) * 2003-09-11 2005-03-17 The Procter & Gamble Company Methods of formulating enzyme cocktails, enzyme cocktails for the removal of egg-based and grass-based stains and/or soils, compositions and products comprising same
US6955067B2 (en) * 2002-03-28 2005-10-18 The Procter & Gamble Company Smart dosing device
US20050245418A1 (en) * 2002-06-28 2005-11-03 Reckitt Benckiser N.V. Detergent composition
US20060123557A1 (en) * 2000-05-11 2006-06-15 Caswell Debra S Laundry system having unitized dosing
US20060253406A1 (en) * 2004-02-18 2006-11-09 Christophe Caillon Method for sorting postal items in a plurality of sorting passes
US7977298B2 (en) * 2006-06-30 2011-07-12 The Sun Products Corporation Laundry articles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2306243Y (zh) * 1997-07-03 1999-02-03 海尔集团公司 洗衣机的洗涤剂自动投入装置
CN1779017A (zh) * 2004-11-19 2006-05-31 乐金电子(天津)电器有限公司 洗衣机的供水控制方法
MX2008000413A (es) * 2005-07-11 2008-03-10 Genencor Int Tabletas enzimaticas para el cuidado de telas para el consumidor y metodos de elaboracion.

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663278A (en) * 1982-04-30 1987-05-05 Syva Company Agglutination dependent enzyme channeling immunoassay
US5733763A (en) * 1988-08-19 1998-03-31 Novo Nordisk A/S Enzyme granulate formed of an enzyme-containing core and an enzyme-containing shell
US5164100A (en) * 1990-12-11 1992-11-17 Lever Brothers Company, Division Of Conopco, Inc. Fabric softener compositions containing a polymeric fluorescent whitening agent
US5272893A (en) * 1992-09-11 1993-12-28 White Consolidated Industries, Inc. Enzyme bath maintenance system
US5333338A (en) * 1992-09-11 1994-08-02 White Consolidated Industries, Inc. Process for treating textiles
US5846798A (en) * 1993-09-01 1998-12-08 Henkel Kommanditgesellschaft Auf Aktien Multi-enzyme granules
US6551981B1 (en) * 1998-07-17 2003-04-22 Patrizio Ricci Detergent tablet
US6812199B2 (en) * 2000-04-28 2004-11-02 The Procter & Gamble Company Method for treating stained materials
US20060123556A1 (en) * 2000-05-11 2006-06-15 Caswell Debra S Laundry system having unitized dosing
US20060123557A1 (en) * 2000-05-11 2006-06-15 Caswell Debra S Laundry system having unitized dosing
US6616705B2 (en) * 2000-09-08 2003-09-09 Cognis Deutschland Gmbh & Co. Kg Laundry detergent compositions
US6955067B2 (en) * 2002-03-28 2005-10-18 The Procter & Gamble Company Smart dosing device
US20050245418A1 (en) * 2002-06-28 2005-11-03 Reckitt Benckiser N.V. Detergent composition
US20040139554A1 (en) * 2002-12-20 2004-07-22 Unliever Home & Personal Care Usa, Division Of Conopco, Inc. Fabric care composition
US20050059567A1 (en) * 2003-09-11 2005-03-17 The Procter & Gamble Company Methods of formulating enzyme cocktails, enzyme cocktails for the removal of egg-based and grass-based stains and/or soils, compositions and products comprising same
US20060172913A1 (en) * 2003-09-11 2006-08-03 Showell Michael S Methods of formulating enzyme cocktails, enzyme cocktails for the removal of egg-based and grass-based stains and/or soils, compositions and products comprising same
US20060253406A1 (en) * 2004-02-18 2006-11-09 Christophe Caillon Method for sorting postal items in a plurality of sorting passes
US7977298B2 (en) * 2006-06-30 2011-07-12 The Sun Products Corporation Laundry articles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178148A1 (en) * 2009-09-07 2012-07-12 Reckitt Benckiser N.V. Detergent Composition
US9453187B2 (en) * 2009-09-07 2016-09-27 Reckitt Benckiser Finish B.V. Detergent composition
US10655089B2 (en) 2009-09-07 2020-05-19 Reckitt Benckiser Finish B.V. Detergent composition
US11015148B2 (en) 2009-09-07 2021-05-25 Reckitt Benckiser Finish B.V. Detergent composition

Also Published As

Publication number Publication date
CN105887421A (zh) 2016-08-24
ZA201000215B (en) 2011-03-30
EP2173845B1 (en) 2012-07-11
ES2391357T3 (es) 2012-11-23
CN105887421B (zh) 2019-04-09
EP2173845A1 (en) 2010-04-14
CN101772568A (zh) 2010-07-07
WO2009019075A1 (en) 2009-02-12
BRPI0814331A2 (pt) 2016-10-04

Similar Documents

Publication Publication Date Title
EP2300586B1 (en) Improvements relating to fabric cleaning
US8628765B2 (en) Bacteria cultures and compositions comprising bacteria cultures
US9150993B2 (en) Methods and compositions for fabric cleaning
EP2476743B1 (en) Method of laundering fabric
EP2794832B1 (en) Isotropic liquid detergents comprising soil release polymer
EP2294174B1 (en) A viscous laundry product and packaging therefor
EP2707472B1 (en) Aqueous concentrated laundry detergent compositions
EP2522714A1 (en) Aqueous concentrated laundry detergent compositions
EP2522715A1 (en) Aqueous concentrated laundry detergent compositions
EP2173845B1 (en) Sequential enzyme delivery system
WO2010012552A1 (en) A viscous laundry product and packaging therefor
ES1076140U (es) Dispensador y pretratador para líquidos viscosos
EP2202290A1 (en) A flowable laundry composition and packaging therefor
US20230058174A1 (en) Fabric treatment using bacterial spores
WO2010069799A1 (en) A flowable laundry composition and packaging therefor
EP2171027A1 (en) Enzyme delivery device
WO2019038187A1 (en) IMPROVEMENTS RELATING TO THE CLEANING OF FABRICS

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONOPCO, INC. D/B/A UNILEVER, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOTSAKIS, PANOS;PARRY, NEIL JAMES;REEL/FRAME:024393/0341

Effective date: 20100420

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION