US20100183713A1 - Gastrointestinal-specific multiple drug release system - Google Patents
Gastrointestinal-specific multiple drug release system Download PDFInfo
- Publication number
- US20100183713A1 US20100183713A1 US12/688,818 US68881810A US2010183713A1 US 20100183713 A1 US20100183713 A1 US 20100183713A1 US 68881810 A US68881810 A US 68881810A US 2010183713 A1 US2010183713 A1 US 2010183713A1
- Authority
- US
- United States
- Prior art keywords
- drug
- composition
- release
- polymer
- permeable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003814 drug Substances 0.000 title claims abstract description 524
- 229940079593 drug Drugs 0.000 title claims abstract description 524
- 230000002496 gastric effect Effects 0.000 title 1
- 239000000203 mixture Substances 0.000 claims abstract description 117
- 210000001072 colon Anatomy 0.000 claims abstract description 63
- 210000000813 small intestine Anatomy 0.000 claims abstract description 36
- 229920000642 polymer Polymers 0.000 claims description 195
- 150000001720 carbohydrates Chemical class 0.000 claims description 132
- -1 fructoligosaccharide Chemical compound 0.000 claims description 59
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 56
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 56
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 56
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 56
- 229920001577 copolymer Polymers 0.000 claims description 53
- 239000002702 enteric coating Substances 0.000 claims description 45
- 238000009505 enteric coating Methods 0.000 claims description 45
- 229920001688 coating polymer Polymers 0.000 claims description 42
- 229960000511 lactulose Drugs 0.000 claims description 38
- PFCRQPBOOFTZGQ-UHFFFAOYSA-N lactulose keto form Natural products OCC(=O)C(O)C(C(O)CO)OC1OC(CO)C(O)C(O)C1O PFCRQPBOOFTZGQ-UHFFFAOYSA-N 0.000 claims description 38
- JCQLYHFGKNRPGE-FCVZTGTOSA-N lactulose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 JCQLYHFGKNRPGE-FCVZTGTOSA-N 0.000 claims description 36
- 229940126409 proton pump inhibitor Drugs 0.000 claims description 31
- 239000000612 proton pump inhibitor Substances 0.000 claims description 31
- 150000003839 salts Chemical class 0.000 claims description 28
- 239000006172 buffering agent Substances 0.000 claims description 26
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 16
- 229960000381 omeprazole Drugs 0.000 claims description 16
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 claims description 14
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 14
- 239000002253 acid Substances 0.000 claims description 14
- 239000002775 capsule Substances 0.000 claims description 13
- 210000002784 stomach Anatomy 0.000 claims description 13
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 11
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 10
- 102000004169 proteins and genes Human genes 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 229930006000 Sucrose Natural products 0.000 claims description 9
- 239000003242 anti bacterial agent Substances 0.000 claims description 9
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 9
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 9
- 239000002255 antigout agent Substances 0.000 claims description 9
- 229960002708 antigout preparations Drugs 0.000 claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 239000003485 histamine H2 receptor antagonist Substances 0.000 claims description 9
- 229940088597 hormone Drugs 0.000 claims description 9
- 239000005556 hormone Substances 0.000 claims description 9
- IWVKTOUOPHGZRX-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.COC(=O)C(C)=C IWVKTOUOPHGZRX-UHFFFAOYSA-N 0.000 claims description 9
- 239000005720 sucrose Substances 0.000 claims description 9
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 8
- 229920001661 Chitosan Polymers 0.000 claims description 8
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 claims description 8
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 8
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 claims description 8
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 8
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 claims description 8
- 206010051482 Prostatomegaly Diseases 0.000 claims description 8
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 claims description 8
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 claims description 8
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 claims description 8
- 230000000954 anitussive effect Effects 0.000 claims description 8
- 239000000924 antiasthmatic agent Substances 0.000 claims description 8
- 239000001961 anticonvulsive agent Substances 0.000 claims description 8
- 239000003472 antidiabetic agent Substances 0.000 claims description 8
- 229940125708 antidiabetic agent Drugs 0.000 claims description 8
- 239000002246 antineoplastic agent Substances 0.000 claims description 8
- 239000000164 antipsychotic agent Substances 0.000 claims description 8
- 229940124584 antitussives Drugs 0.000 claims description 8
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 8
- PCHPORCSPXIHLZ-UHFFFAOYSA-N diphenhydramine hydrochloride Chemical compound [Cl-].C=1C=CC=CC=1C(OCC[NH+](C)C)C1=CC=CC=C1 PCHPORCSPXIHLZ-UHFFFAOYSA-N 0.000 claims description 8
- 229960004770 esomeprazole Drugs 0.000 claims description 8
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 claims description 8
- 239000003172 expectorant agent Substances 0.000 claims description 8
- 230000003419 expectorant effect Effects 0.000 claims description 8
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 claims description 8
- 229960003174 lansoprazole Drugs 0.000 claims description 8
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 claims description 8
- 229960005019 pantoprazole Drugs 0.000 claims description 8
- YREYEVIYCVEVJK-UHFFFAOYSA-N rabeprazole Chemical compound COCCCOC1=CC=NC(CS(=O)C=2NC3=CC=CC=C3N=2)=C1C YREYEVIYCVEVJK-UHFFFAOYSA-N 0.000 claims description 8
- 229960004157 rabeprazole Drugs 0.000 claims description 8
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 claims description 8
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 claims description 8
- 229940124549 vasodilator Drugs 0.000 claims description 8
- 239000003071 vasodilator agent Substances 0.000 claims description 8
- 229920000623 Cellulose acetate phthalate Polymers 0.000 claims description 7
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 7
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000001856 Ethyl cellulose Substances 0.000 claims description 7
- 229930091371 Fructose Natural products 0.000 claims description 7
- 239000005715 Fructose Substances 0.000 claims description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 7
- 229930195725 Mannitol Natural products 0.000 claims description 7
- 229920001800 Shellac Polymers 0.000 claims description 7
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 7
- TYVWBCMQECJNSK-UHFFFAOYSA-N [2-methyl-3-(2-methylprop-2-enoyloxy)butan-2-yl]azanium;chloride Chemical compound [Cl-].CC([NH3+])(C)C(C)OC(=O)C(C)=C TYVWBCMQECJNSK-UHFFFAOYSA-N 0.000 claims description 7
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 7
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 claims description 7
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 claims description 7
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 claims description 7
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 7
- 230000003115 biocidal effect Effects 0.000 claims description 7
- 229940081734 cellulose acetate phthalate Drugs 0.000 claims description 7
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 7
- 229920001249 ethyl cellulose Polymers 0.000 claims description 7
- GDCRSXZBSIRSFR-UHFFFAOYSA-N ethyl prop-2-enoate;2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CCOC(=O)C=C GDCRSXZBSIRSFR-UHFFFAOYSA-N 0.000 claims description 7
- 229930182830 galactose Natural products 0.000 claims description 7
- 239000008103 glucose Substances 0.000 claims description 7
- 239000001863 hydroxypropyl cellulose Substances 0.000 claims description 7
- 229920003132 hydroxypropyl methylcellulose phthalate Polymers 0.000 claims description 7
- 229940031704 hydroxypropyl methylcellulose phthalate Drugs 0.000 claims description 7
- 239000000594 mannitol Substances 0.000 claims description 7
- 235000010355 mannitol Nutrition 0.000 claims description 7
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 7
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 7
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 7
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 7
- 239000004208 shellac Substances 0.000 claims description 7
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 claims description 7
- 229940113147 shellac Drugs 0.000 claims description 7
- 235000013874 shellac Nutrition 0.000 claims description 7
- 229920002554 vinyl polymer Polymers 0.000 claims description 7
- 230000000202 analgesic effect Effects 0.000 claims description 6
- 239000008187 granular material Substances 0.000 claims description 6
- NXMXPVQZFYYPGD-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;methyl prop-2-enoate Chemical compound COC(=O)C=C.COC(=O)C(C)=C NXMXPVQZFYYPGD-UHFFFAOYSA-N 0.000 claims description 6
- 125000002099 lactulose group Chemical group 0.000 claims 2
- 210000001035 gastrointestinal tract Anatomy 0.000 abstract description 38
- 238000000034 method Methods 0.000 abstract description 19
- 230000005923 long-lasting effect Effects 0.000 abstract description 5
- 239000003826 tablet Substances 0.000 description 66
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 61
- 241000305071 Enterobacterales Species 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 235000019441 ethanol Nutrition 0.000 description 23
- NEDGUIRITORSKL-UHFFFAOYSA-N butyl 2-methylprop-2-enoate;2-(dimethylamino)ethyl 2-methylprop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound COC(=O)C(C)=C.CCCCOC(=O)C(C)=C.CN(C)CCOC(=O)C(C)=C NEDGUIRITORSKL-UHFFFAOYSA-N 0.000 description 22
- 238000004519 manufacturing process Methods 0.000 description 22
- 238000012377 drug delivery Methods 0.000 description 21
- 150000007524 organic acids Chemical class 0.000 description 20
- 238000010586 diagram Methods 0.000 description 15
- 229920003148 Eudragit® E polymer Polymers 0.000 description 14
- 235000014113 dietary fatty acids Nutrition 0.000 description 13
- 229930195729 fatty acid Natural products 0.000 description 13
- 239000000194 fatty acid Substances 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 12
- 238000006731 degradation reaction Methods 0.000 description 12
- 239000000654 additive Substances 0.000 description 10
- 229940126701 oral medication Drugs 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 229920003139 Eudragit® L 100 Polymers 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 9
- 239000002861 polymer material Substances 0.000 description 9
- 229920003149 Eudragit® E 100 Polymers 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- 210000003750 lower gastrointestinal tract Anatomy 0.000 description 8
- 230000000144 pharmacologic effect Effects 0.000 description 8
- 238000013268 sustained release Methods 0.000 description 8
- 239000012730 sustained-release form Substances 0.000 description 8
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 7
- 239000002662 enteric coated tablet Substances 0.000 description 7
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 description 7
- 229960001596 famotidine Drugs 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 239000000395 magnesium oxide Substances 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 7
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 7
- 239000001069 triethyl citrate Substances 0.000 description 7
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 description 7
- 235000013769 triethyl citrate Nutrition 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 150000004676 glycans Chemical class 0.000 description 6
- 210000002429 large intestine Anatomy 0.000 description 6
- 235000005985 organic acids Nutrition 0.000 description 6
- 229920001282 polysaccharide Polymers 0.000 description 6
- 239000005017 polysaccharide Substances 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 230000002459 sustained effect Effects 0.000 description 6
- 239000000454 talc Substances 0.000 description 6
- 229910052623 talc Inorganic materials 0.000 description 6
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 5
- 229960003459 allopurinol Drugs 0.000 description 5
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 210000003405 ileum Anatomy 0.000 description 5
- 229960003194 meglumine Drugs 0.000 description 5
- 230000000813 microbial effect Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- 102000055006 Calcitonin Human genes 0.000 description 4
- 108060001064 Calcitonin Proteins 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 description 4
- 239000004359 castor oil Substances 0.000 description 4
- 235000019438 castor oil Nutrition 0.000 description 4
- 210000004534 cecum Anatomy 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 4
- 239000008240 homogeneous mixture Substances 0.000 description 4
- 229940125396 insulin Drugs 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 4
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 4
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 description 3
- WTJXVDPDEQKTCV-UHFFFAOYSA-N 4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide;hydron;chloride Chemical compound Cl.C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2C1CC1C(N(C)C)C(=O)C(C(N)=O)=C(O)C1(O)C2=O WTJXVDPDEQKTCV-UHFFFAOYSA-N 0.000 description 3
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229960004015 calcitonin Drugs 0.000 description 3
- 238000009502 compressed coating Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 102000038379 digestive enzymes Human genes 0.000 description 3
- 108091007734 digestive enzymes Proteins 0.000 description 3
- 150000002016 disaccharides Chemical class 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 230000000503 lectinlike effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229960004023 minocycline Drugs 0.000 description 3
- 229960002421 minocycline hydrochloride Drugs 0.000 description 3
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 3
- 229920000053 polysorbate 80 Polymers 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000009885 systemic effect Effects 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- RUDATBOHQWOJDD-UHFFFAOYSA-N (3beta,5beta,7alpha)-3,7-Dihydroxycholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)CC2 RUDATBOHQWOJDD-UHFFFAOYSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 108010001478 Bacitracin Proteins 0.000 description 2
- 241000186000 Bifidobacterium Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 108090000932 Calcitonin Gene-Related Peptide Proteins 0.000 description 2
- 102000004414 Calcitonin Gene-Related Peptide Human genes 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 102400000739 Corticotropin Human genes 0.000 description 2
- 101800000414 Corticotropin Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229920003136 Eudragit® L polymer Polymers 0.000 description 2
- 229920003137 Eudragit® S polymer Polymers 0.000 description 2
- 229920003134 Eudragit® polymer Polymers 0.000 description 2
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 2
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 2
- 108700012941 GNRH1 Proteins 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 2
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 2
- XNSAINXGIQZQOO-UHFFFAOYSA-N L-pyroglutamyl-L-histidyl-L-proline amide Natural products NC(=O)C1CCCN1C(=O)C(NC(=O)C1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-UHFFFAOYSA-N 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 239000000637 Melanocyte-Stimulating Hormone Substances 0.000 description 2
- 108010007013 Melanocyte-Stimulating Hormones Proteins 0.000 description 2
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 102100022365 NAD(P)H dehydrogenase [quinone] 1 Human genes 0.000 description 2
- 102000003982 Parathyroid hormone Human genes 0.000 description 2
- 108090000445 Parathyroid hormone Proteins 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920001214 Polysorbate 60 Polymers 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 241000194017 Streptococcus Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- 239000000627 Thyrotropin-Releasing Hormone Substances 0.000 description 2
- 102400000336 Thyrotropin-releasing hormone Human genes 0.000 description 2
- 101800004623 Thyrotropin-releasing hormone Proteins 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 229940035676 analgesics Drugs 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 210000001815 ascending colon Anatomy 0.000 description 2
- 108010066657 azoreductase Proteins 0.000 description 2
- 229960003071 bacitracin Drugs 0.000 description 2
- 229930184125 bacitracin Natural products 0.000 description 2
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- RUDATBOHQWOJDD-BSWAIDMHSA-N chenodeoxycholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-BSWAIDMHSA-N 0.000 description 2
- 229960001091 chenodeoxycholic acid Drugs 0.000 description 2
- 235000019416 cholic acid Nutrition 0.000 description 2
- MYSWGUAQZAJSOK-UHFFFAOYSA-N ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 2
- 230000000112 colonic effect Effects 0.000 description 2
- IDLFZVILOHSSID-OVLDLUHVSA-N corticotropin Chemical compound C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)NC(=O)[C@@H](N)CO)C1=CC=C(O)C=C1 IDLFZVILOHSSID-OVLDLUHVSA-N 0.000 description 2
- 229960000258 corticotropin Drugs 0.000 description 2
- 229960000913 crospovidone Drugs 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- KXGVEGMKQFWNSR-UHFFFAOYSA-N deoxycholic acid Natural products C1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 KXGVEGMKQFWNSR-UHFFFAOYSA-N 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 239000013583 drug formulation Substances 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 229940066493 expectorants Drugs 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229960002949 fluorouracil Drugs 0.000 description 2
- 239000001087 glyceryl triacetate Substances 0.000 description 2
- 235000013773 glyceryl triacetate Nutrition 0.000 description 2
- 150000002337 glycosamines Chemical class 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 210000001630 jejunum Anatomy 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000000391 magnesium silicate Substances 0.000 description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 description 2
- 235000019792 magnesium silicate Nutrition 0.000 description 2
- 229960005489 paracetamol Drugs 0.000 description 2
- 239000000199 parathyroid hormone Substances 0.000 description 2
- 229960001319 parathyroid hormone Drugs 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 2
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- XNSAINXGIQZQOO-SRVKXCTJSA-N protirelin Chemical compound NC(=O)[C@@H]1CCCN1C(=O)[C@@H](NC(=O)[C@H]1NC(=O)CC1)CC1=CN=CN1 XNSAINXGIQZQOO-SRVKXCTJSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 229960002920 sorbitol Drugs 0.000 description 2
- 235000010356 sorbitol Nutrition 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 2
- 238000013269 sustained drug release Methods 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 description 2
- 229940034199 thyrotropin-releasing hormone Drugs 0.000 description 2
- 229960002622 triacetin Drugs 0.000 description 2
- FVVCFHXLWDDRHG-UPLOTWCNSA-N (2s,3r,4s,5r,6r)-2-[(2r,3s,4r,5r,6r)-6-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)[C@@H](CO)O1 FVVCFHXLWDDRHG-UPLOTWCNSA-N 0.000 description 1
- HSINOMROUCMIEA-FGVHQWLLSA-N (2s,4r)-4-[(3r,5s,6r,7r,8s,9s,10s,13r,14s,17r)-6-ethyl-3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2-methylpentanoic acid Chemical compound C([C@@]12C)C[C@@H](O)C[C@H]1[C@@H](CC)[C@@H](O)[C@@H]1[C@@H]2CC[C@]2(C)[C@@H]([C@H](C)C[C@H](C)C(O)=O)CC[C@H]21 HSINOMROUCMIEA-FGVHQWLLSA-N 0.000 description 1
- BHQCQFFYRZLCQQ-UHFFFAOYSA-N (3alpha,5alpha,7alpha,12alpha)-3,7,12-trihydroxy-cholan-24-oic acid Natural products OC1CC2CC(O)CCC2(C)C2C1C1CCC(C(CCC(O)=O)C)C1(C)C(O)C2 BHQCQFFYRZLCQQ-UHFFFAOYSA-N 0.000 description 1
- DNXIKVLOVZVMQF-UHFFFAOYSA-N (3beta,16beta,17alpha,18beta,20alpha)-17-hydroxy-11-methoxy-18-[(3,4,5-trimethoxybenzoyl)oxy]-yohimban-16-carboxylic acid, methyl ester Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(C(=O)OC)C(O)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 DNXIKVLOVZVMQF-UHFFFAOYSA-N 0.000 description 1
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 description 1
- XIYOPDCBBDCGOE-IWVLMIASSA-N (4s,4ar,5s,5ar,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methylidene-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide Chemical compound C=C1C2=CC=CC(O)=C2C(O)=C2[C@@H]1[C@H](O)[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O XIYOPDCBBDCGOE-IWVLMIASSA-N 0.000 description 1
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 description 1
- MMRINLZOZVAPDZ-LSGRDSQZSA-N (6r,7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetyl]amino]-3-[(1-methylpyrrolidin-1-ium-1-yl)methyl]-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid;chloride Chemical compound Cl.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1C[N+]1(C)CCCC1 MMRINLZOZVAPDZ-LSGRDSQZSA-N 0.000 description 1
- MINDHVHHQZYEEK-UHFFFAOYSA-N (E)-(2S,3R,4R,5S)-5-[(2S,3S,4S,5S)-2,3-epoxy-5-hydroxy-4-methylhexyl]tetrahydro-3,4-dihydroxy-(beta)-methyl-2H-pyran-2-crotonic acid ester with 9-hydroxynonanoic acid Natural products CC(O)C(C)C1OC1CC1C(O)C(O)C(CC(C)=CC(=O)OCCCCCCCCC(O)=O)OC1 MINDHVHHQZYEEK-UHFFFAOYSA-N 0.000 description 1
- RXZBMPWDPOLZGW-XMRMVWPWSA-N (E)-roxithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=N/OCOCCOC)/[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 RXZBMPWDPOLZGW-XMRMVWPWSA-N 0.000 description 1
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- AUVALWUPUHHNQV-UHFFFAOYSA-N 2-hydroxy-3-propylbenzoic acid Chemical class CCCC1=CC=CC(C(O)=O)=C1O AUVALWUPUHHNQV-UHFFFAOYSA-N 0.000 description 1
- OHXPGWPVLFPUSM-KLRNGDHRSA-N 3,7,12-trioxo-5beta-cholanic acid Chemical compound C1CC(=O)C[C@H]2CC(=O)[C@H]3[C@@H]4CC[C@H]([C@@H](CCC(O)=O)C)[C@@]4(C)C(=O)C[C@@H]3[C@]21C OHXPGWPVLFPUSM-KLRNGDHRSA-N 0.000 description 1
- AKUVRZKNLXYTJX-UHFFFAOYSA-N 3-benzylazetidine Chemical compound C=1C=CC=CC=1CC1CNC1 AKUVRZKNLXYTJX-UHFFFAOYSA-N 0.000 description 1
- LZFSKNPPWIFMFL-UHFFFAOYSA-N 4-[4-[4-chloro-3-(trifluoromethyl)phenyl]-4-hydroxypiperidin-1-yl]-1-(4-fluorophenyl)butan-1-one Chemical compound C1CC(O)(C=2C=C(C(Cl)=CC=2)C(F)(F)F)CCN1CCCC(=O)C1=CC=C(F)C=C1 LZFSKNPPWIFMFL-UHFFFAOYSA-N 0.000 description 1
- WZRJTRPJURQBRM-UHFFFAOYSA-N 4-amino-n-(5-methyl-1,2-oxazol-3-yl)benzenesulfonamide;5-[(3,4,5-trimethoxyphenyl)methyl]pyrimidine-2,4-diamine Chemical compound O1C(C)=CC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 WZRJTRPJURQBRM-UHFFFAOYSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-UHFFFAOYSA-N 9-fluoro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid Chemical compound FC1=CC(C(C(C(O)=O)=C2)=O)=C3N2C(C)COC3=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-UHFFFAOYSA-N 0.000 description 1
- 108010042708 Acetylmuramyl-Alanyl-Isoglutamine Proteins 0.000 description 1
- 239000000275 Adrenocorticotropic Hormone Substances 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 102000015427 Angiotensins Human genes 0.000 description 1
- 108010064733 Angiotensins Proteins 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 239000004184 Avoparcin Substances 0.000 description 1
- MBUVEWMHONZEQD-UHFFFAOYSA-N Azeptin Chemical compound C1CN(C)CCCC1N1C(=O)C2=CC=CC=C2C(CC=2C=CC(Cl)=CC=2)=N1 MBUVEWMHONZEQD-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000606126 Bacteroidaceae Species 0.000 description 1
- SPFYMRJSYKOXGV-UHFFFAOYSA-N Baytril Chemical compound C1CN(CC)CCN1C(C(=C1)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 SPFYMRJSYKOXGV-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 102400000748 Beta-endorphin Human genes 0.000 description 1
- 101800005049 Beta-endorphin Proteins 0.000 description 1
- 241000131482 Bifidobacterium sp. Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 108010051479 Bombesin Proteins 0.000 description 1
- 102000013585 Bombesin Human genes 0.000 description 1
- 101001011741 Bos taurus Insulin Proteins 0.000 description 1
- VOVIALXJUBGFJZ-KWVAZRHASA-N Budesonide Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@@H]2[C@@H]1[C@@H]1C[C@H]3OC(CCC)O[C@@]3(C(=O)CO)[C@@]1(C)C[C@@H]2O VOVIALXJUBGFJZ-KWVAZRHASA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- KSIYPKPZIBBUFR-LJNLPFSOSA-N CSCC[C@H](NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1)C(C)C)C(=O)NCC(=O)N[C@@H](Cc1ccccc1)C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(N)=O Chemical compound CSCC[C@H](NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](Cc1ccccc1)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](Cc1c[nH]c2ccccc12)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1)C(C)C)C(=O)NCC(=O)N[C@@H](Cc1ccccc1)C(=O)NCC(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(N)=O KSIYPKPZIBBUFR-LJNLPFSOSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- GNWUOVJNSFPWDD-XMZRARIVSA-M Cefoxitin sodium Chemical compound [Na+].N([C@]1(OC)C(N2C(=C(COC(N)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)CC1=CC=CS1 GNWUOVJNSFPWDD-XMZRARIVSA-M 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- QMBJSIBWORFWQT-DFXBJWIESA-N Chlormadinone acetate Chemical compound C1=C(Cl)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 QMBJSIBWORFWQT-DFXBJWIESA-N 0.000 description 1
- 102400000888 Cholecystokinin-8 Human genes 0.000 description 1
- 101800005151 Cholecystokinin-8 Proteins 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- 241000193464 Clostridium sp. Species 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 239000000055 Corticotropin-Releasing Hormone Substances 0.000 description 1
- ITRJWOMZKQRYTA-RFZYENFJSA-N Cortisone acetate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)COC(=O)C)(O)[C@@]1(C)CC2=O ITRJWOMZKQRYTA-RFZYENFJSA-N 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 108010092160 Dactinomycin Proteins 0.000 description 1
- MQJKPEGWNLWLTK-UHFFFAOYSA-N Dapsone Chemical compound C1=CC(N)=CC=C1S(=O)(=O)C1=CC=C(N)C=C1 MQJKPEGWNLWLTK-UHFFFAOYSA-N 0.000 description 1
- 108010000437 Deamino Arginine Vasopressin Proteins 0.000 description 1
- 108010092674 Enkephalins Proteins 0.000 description 1
- 241000587112 Enterobacteriaceae sp. Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- VMZUTJCNQWMAGF-UHFFFAOYSA-N Etizolam Chemical compound S1C(CC)=CC2=C1N1C(C)=NN=C1CN=C2C1=CC=CC=C1Cl VMZUTJCNQWMAGF-UHFFFAOYSA-N 0.000 description 1
- 241001267419 Eubacterium sp. Species 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- IECPWNUMDGFDKC-UHFFFAOYSA-N Fusicsaeure Natural products C12C(O)CC3C(=C(CCC=C(C)C)C(O)=O)C(OC(C)=O)CC3(C)C1(C)CCC1C2(C)CCC(O)C1C IECPWNUMDGFDKC-UHFFFAOYSA-N 0.000 description 1
- 102400000921 Gastrin Human genes 0.000 description 1
- 108010052343 Gastrins Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- AIJTTZAVMXIJGM-UHFFFAOYSA-N Grepafloxacin Chemical compound C1CNC(C)CN1C(C(=C1C)F)=CC2=C1C(=O)C(C(O)=O)=CN2C1CC1 AIJTTZAVMXIJGM-UHFFFAOYSA-N 0.000 description 1
- 101000741445 Homo sapiens Calcitonin Proteins 0.000 description 1
- 101000976075 Homo sapiens Insulin Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 1
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 1
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 1
- 241000186610 Lactobacillus sp. Species 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- URLZCHNOLZSCCA-VABKMULXSA-N Leu-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 URLZCHNOLZSCCA-VABKMULXSA-N 0.000 description 1
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 description 1
- OJMMVQQUTAEWLP-UHFFFAOYSA-N Lincomycin Natural products CN1CC(CCC)CC1C(=O)NC(C(C)O)C1C(O)C(O)C(O)C(SC)O1 OJMMVQQUTAEWLP-UHFFFAOYSA-N 0.000 description 1
- NPPQSCRMBWNHMW-UHFFFAOYSA-N Meprobamate Chemical compound NC(=O)OCC(C)(CCC)COC(N)=O NPPQSCRMBWNHMW-UHFFFAOYSA-N 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- MVTQIFVKRXBCHS-SMMNFGSLSA-N N-[(3S,6S,12R,15S,16R,19S,22S)-3-benzyl-12-ethyl-4,16-dimethyl-2,5,11,14,18,21,24-heptaoxo-19-phenyl-17-oxa-1,4,10,13,20-pentazatricyclo[20.4.0.06,10]hexacosan-15-yl]-3-hydroxypyridine-2-carboxamide (10R,11R,12E,17E,19E,21S)-21-hydroxy-11,19-dimethyl-10-propan-2-yl-9,26-dioxa-3,15,28-triazatricyclo[23.2.1.03,7]octacosa-1(27),6,12,17,19,25(28)-hexaene-2,8,14,23-tetrone Chemical compound CC(C)[C@H]1OC(=O)C2=CCCN2C(=O)c2coc(CC(=O)C[C@H](O)\C=C(/C)\C=C\CNC(=O)\C=C\[C@H]1C)n2.CC[C@H]1NC(=O)[C@@H](NC(=O)c2ncccc2O)[C@@H](C)OC(=O)[C@@H](NC(=O)[C@@H]2CC(=O)CCN2C(=O)[C@H](Cc2ccccc2)N(C)C(=O)[C@@H]2CCCN2C1=O)c1ccccc1 MVTQIFVKRXBCHS-SMMNFGSLSA-N 0.000 description 1
- 108020001621 Natriuretic Peptide Proteins 0.000 description 1
- 102000004571 Natriuretic peptide Human genes 0.000 description 1
- 102400001103 Neurotensin Human genes 0.000 description 1
- 101800001814 Neurotensin Proteins 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 239000004100 Oxytetracycline Substances 0.000 description 1
- 102400000050 Oxytocin Human genes 0.000 description 1
- 101800000989 Oxytocin Proteins 0.000 description 1
- XNOPRXBHLZRZKH-UHFFFAOYSA-N Oxytocin Natural products N1C(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CC(C)C)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C(C(C)CC)NC(=O)C1CC1=CC=C(O)C=C1 XNOPRXBHLZRZKH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241001112694 Peptococcaceae Species 0.000 description 1
- 108010005991 Pork Regular Insulin Proteins 0.000 description 1
- MWQCHHACWWAQLJ-UHFFFAOYSA-N Prazepam Chemical compound O=C1CN=C(C=2C=CC=CC=2)C2=CC(Cl)=CC=C2N1CC1CC1 MWQCHHACWWAQLJ-UHFFFAOYSA-N 0.000 description 1
- LCQMZZCPPSWADO-UHFFFAOYSA-N Reserpilin Natural products COC(=O)C1COCC2CN3CCc4c([nH]c5cc(OC)c(OC)cc45)C3CC12 LCQMZZCPPSWADO-UHFFFAOYSA-N 0.000 description 1
- QEVHRUUCFGRFIF-SFWBKIHZSA-N Reserpine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cc(OC)cc3 QEVHRUUCFGRFIF-SFWBKIHZSA-N 0.000 description 1
- PPTYJKAXVCCBDU-UHFFFAOYSA-N Rohypnol Chemical compound N=1CC(=O)N(C)C2=CC=C([N+]([O-])=O)C=C2C=1C1=CC=CC=C1F PPTYJKAXVCCBDU-UHFFFAOYSA-N 0.000 description 1
- SMTZFNFIKUPEJC-UHFFFAOYSA-N Roxane Chemical compound CC(=O)OCC(=O)NCCCOC1=CC=CC(CN2CCCCC2)=C1 SMTZFNFIKUPEJC-UHFFFAOYSA-N 0.000 description 1
- 108010086019 Secretin Proteins 0.000 description 1
- 102100037505 Secretin Human genes 0.000 description 1
- 108010087230 Sincalide Proteins 0.000 description 1
- 102000013275 Somatomedins Human genes 0.000 description 1
- 108010056088 Somatostatin Proteins 0.000 description 1
- 102000005157 Somatostatin Human genes 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 241000194022 Streptococcus sp. Species 0.000 description 1
- 108010053950 Teicoplanin Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- GXBMIBRIOWHPDT-UHFFFAOYSA-N Vasopressin Natural products N1C(=O)C(CC=2C=C(O)C=CC=2)NC(=O)C(N)CSSCC(C(=O)N2C(CCC2)C(=O)NC(CCCN=C(N)N)C(=O)NCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(CCC(N)=O)NC(=O)C1CC1=CC=CC=C1 GXBMIBRIOWHPDT-UHFFFAOYSA-N 0.000 description 1
- 108010004977 Vasopressins Proteins 0.000 description 1
- 102000002852 Vasopressins Human genes 0.000 description 1
- 241001331543 Veillonella sp. Species 0.000 description 1
- 239000004188 Virginiamycin Substances 0.000 description 1
- 108010080702 Virginiamycin Proteins 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000005012 alkyl thioether group Chemical group 0.000 description 1
- 229940086845 allopurinol 100 mg Drugs 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229960003022 amoxicillin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229940035678 anti-parkinson drug Drugs 0.000 description 1
- 230000001754 anti-pyretic effect Effects 0.000 description 1
- 239000002221 antipyretic Substances 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- KBZOIRJILGZLEJ-LGYYRGKSSA-N argipressin Chemical compound C([C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@@H](C(N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)=O)N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(N)=O)C1=CC=CC=C1 KBZOIRJILGZLEJ-LGYYRGKSSA-N 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 229950001335 avoparcin Drugs 0.000 description 1
- 108010053278 avoparcin Proteins 0.000 description 1
- 235000019377 avoparcin Nutrition 0.000 description 1
- JWFVWARSGMYXRN-HTQQBIQNSA-N avoparcin Chemical compound O([C@H]1[C@H](C(N[C@H](C(=O)N[C@H]2C(=O)N[C@H]3C(=O)N[C@H](C(N[C@H](C4=CC(O)=CC(O)=C4C=4C(O)=CC=C3C=4)C(O)=O)=O)CC3=C(O[C@@H]4O[C@@H](C)[C@H](O)[C@H](N)C4)C=C(C(=C3)Cl)OC=3C=C2C=C(C=3O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@@H]2O[C@@H](C)[C@H](O)[C@H](N)C2)OC2=CC=C1C=C2)C=1C=CC(O)=CC=1)=O)NC(=O)[C@@H](NC)C=1C=CC(O[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)=CC=1)[C@@H]1O[C@@H](CO)[C@H](O)[C@@H](O)[C@H]1O JWFVWARSGMYXRN-HTQQBIQNSA-N 0.000 description 1
- 229960004574 azelastine Drugs 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960002529 benzbromarone Drugs 0.000 description 1
- WHQCHUCQKNIQEC-UHFFFAOYSA-N benzbromarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(Br)=C(O)C(Br)=C1 WHQCHUCQKNIQEC-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- WOPZMFQRCBYPJU-NTXHZHDSSA-N beta-endorphin Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CCSC)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)[C@@H](C)O)C1=CC=CC=C1 WOPZMFQRCBYPJU-NTXHZHDSSA-N 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 239000003613 bile acid Substances 0.000 description 1
- 239000003833 bile salt Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 description 1
- IXIBAKNTJSCKJM-BUBXBXGNSA-N bovine insulin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 IXIBAKNTJSCKJM-BUBXBXGNSA-N 0.000 description 1
- 229960004436 budesonide Drugs 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 229960002092 busulfan Drugs 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- PPKJUHVNTMYXOD-PZGPJMECSA-N c49ws9n75l Chemical compound O=C([C@@H]1N(C2=O)CC[C@H]1S(=O)(=O)CCN(CC)CC)O[C@H](C(C)C)[C@H](C)\C=C\C(=O)NC\C=C\C(\C)=C\[C@@H](O)CC(=O)CC1=NC2=CO1.N([C@@H]1C(=O)N[C@@H](C(N2CCC[C@H]2C(=O)N(C)[C@@H](CC=2C=CC(=CC=2)N(C)C)C(=O)N2C[C@@H](CS[C@H]3C4CCN(CC4)C3)C(=O)C[C@H]2C(=O)N[C@H](C(=O)O[C@@H]1C)C=1C=CC=CC=1)=O)CC)C(=O)C1=NC=CC=C1O PPKJUHVNTMYXOD-PZGPJMECSA-N 0.000 description 1
- 229960003773 calcitonin (salmon synthetic) Drugs 0.000 description 1
- 229960000772 camostat Drugs 0.000 description 1
- FSEKIHNIDBATFG-UHFFFAOYSA-N camostat mesylate Chemical compound CS([O-])(=O)=O.C1=CC(CC(=O)OCC(=O)N(C)C)=CC=C1OC(=O)C1=CC=C([NH+]=C(N)N)C=C1 FSEKIHNIDBATFG-UHFFFAOYSA-N 0.000 description 1
- FPPNZSSZRUTDAP-UWFZAAFLSA-N carbenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)C(C(O)=O)C1=CC=CC=C1 FPPNZSSZRUTDAP-UWFZAAFLSA-N 0.000 description 1
- 229960003669 carbenicillin Drugs 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960005361 cefaclor Drugs 0.000 description 1
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 description 1
- 229960004841 cefadroxil Drugs 0.000 description 1
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 description 1
- MLYYVTUWGNIJIB-BXKDBHETSA-N cefazolin Chemical compound S1C(C)=NN=C1SCC1=C(C(O)=O)N2C(=O)[C@@H](NC(=O)CN3N=NN=C3)[C@H]2SC1 MLYYVTUWGNIJIB-BXKDBHETSA-N 0.000 description 1
- 229960001139 cefazolin Drugs 0.000 description 1
- 229960002100 cefepime Drugs 0.000 description 1
- 229960004261 cefotaxime Drugs 0.000 description 1
- AZZMGZXNTDTSME-JUZDKLSSSA-M cefotaxime sodium Chemical compound [Na+].N([C@@H]1C(N2C(=C(COC(C)=O)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 AZZMGZXNTDTSME-JUZDKLSSSA-M 0.000 description 1
- 229960002682 cefoxitin Drugs 0.000 description 1
- 229960000466 cefpirome Drugs 0.000 description 1
- DKOQGJHPHLTOJR-WHRDSVKCSA-N cefpirome Chemical compound N([C@@H]1C(N2C(=C(C[N+]=3C=4CCCC=4C=CC=3)CS[C@@H]21)C([O-])=O)=O)C(=O)\C(=N/OC)C1=CSC(N)=N1 DKOQGJHPHLTOJR-WHRDSVKCSA-N 0.000 description 1
- 229960000484 ceftazidime Drugs 0.000 description 1
- NMVPEQXCMGEDNH-TZVUEUGBSA-N ceftazidime pentahydrate Chemical compound O.O.O.O.O.S([C@@H]1[C@@H](C(N1C=1C([O-])=O)=O)NC(=O)\C(=N/OC(C)(C)C(O)=O)C=2N=C(N)SC=2)CC=1C[N+]1=CC=CC=C1 NMVPEQXCMGEDNH-TZVUEUGBSA-N 0.000 description 1
- 229960004755 ceftriaxone Drugs 0.000 description 1
- VAAUVRVFOQPIGI-SPQHTLEESA-N ceftriaxone Chemical compound S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)\C(=N/OC)C=2N=C(N)SC=2)CC=1CSC1=NC(=O)C(=O)NN1C VAAUVRVFOQPIGI-SPQHTLEESA-N 0.000 description 1
- 238000010609 cell counting kit-8 assay Methods 0.000 description 1
- 229940106164 cephalexin Drugs 0.000 description 1
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- JQXXHWHPUNPDRT-YOPQJBRCSA-N chembl1332716 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CCN(C)CC1 JQXXHWHPUNPDRT-YOPQJBRCSA-N 0.000 description 1
- DDPFHDCZUJFNAT-PZPWKVFESA-N chembl2104402 Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1N=CNC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CCCCCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 DDPFHDCZUJFNAT-PZPWKVFESA-N 0.000 description 1
- DDTDNCYHLGRFBM-YZEKDTGTSA-N chembl2367892 Chemical compound CC(=O)N[C@H]1[C@@H](O)[C@H](O)[C@H](CO)O[C@H]1O[C@@H]([C@H]1C(N[C@@H](C2=CC(O)=CC(O[C@@H]3[C@H]([C@H](O)[C@H](O)[C@@H](CO)O3)O)=C2C=2C(O)=CC=C(C=2)[C@@H](NC(=O)[C@@H]2NC(=O)[C@@H]3C=4C=C(O)C=C(C=4)OC=4C(O)=CC=C(C=4)[C@@H](N)C(=O)N[C@H](CC=4C=C(Cl)C(O5)=CC=4)C(=O)N3)C(=O)N1)C(O)=O)=O)C(C=C1Cl)=CC=C1OC1=C(O[C@H]3[C@H]([C@@H](O)[C@H](O)[C@H](CO)O3)NC(C)=O)C5=CC2=C1 DDTDNCYHLGRFBM-YZEKDTGTSA-N 0.000 description 1
- AOXOCDRNSPFDPE-UKEONUMOSA-N chembl413654 Chemical compound C([C@H](C(=O)NCC(=O)N[C@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](C)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H]1N(CCC1)C(=O)CNC(=O)[C@@H](N)CCC(O)=O)C1=CC=C(O)C=C1 AOXOCDRNSPFDPE-UKEONUMOSA-N 0.000 description 1
- 108010089807 chitosanase Proteins 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 229960001616 chlormadinone acetate Drugs 0.000 description 1
- 229960001657 chlorpromazine hydrochloride Drugs 0.000 description 1
- TZFWDZFKRBELIQ-UHFFFAOYSA-N chlorzoxazone Chemical compound ClC1=CC=C2OC(O)=NC2=C1 TZFWDZFKRBELIQ-UHFFFAOYSA-N 0.000 description 1
- 229960003633 chlorzoxazone Drugs 0.000 description 1
- BHQCQFFYRZLCQQ-OELDTZBJSA-N cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 239000002812 cholic acid derivative Substances 0.000 description 1
- 150000001842 cholic acids Chemical class 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960001380 cimetidine Drugs 0.000 description 1
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- 229950002165 clofluperol Drugs 0.000 description 1
- 229960003120 clonazepam Drugs 0.000 description 1
- DGBIGWXXNGSACT-UHFFFAOYSA-N clonazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1Cl DGBIGWXXNGSACT-UHFFFAOYSA-N 0.000 description 1
- 229960003326 cloxacillin Drugs 0.000 description 1
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 description 1
- 229940047766 co-trimoxazole Drugs 0.000 description 1
- 206010009887 colitis Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000003218 coronary vasodilator agent Substances 0.000 description 1
- 229960003290 cortisone acetate Drugs 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960000860 dapsone Drugs 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 229960002997 dehydrocholic acid Drugs 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 229960004281 desmopressin Drugs 0.000 description 1
- NFLWUMRGJYTJIN-NXBWRCJVSA-N desmopressin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSCCC(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(N)=O)=O)CCC(=O)N)C1=CC=CC=C1 NFLWUMRGJYTJIN-NXBWRCJVSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- NIJJYAXOARWZEE-UHFFFAOYSA-N di-n-propyl-acetic acid Natural products CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 description 1
- 229960003529 diazepam Drugs 0.000 description 1
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 description 1
- KPHWPUGNDIVLNH-UHFFFAOYSA-M diclofenac sodium Chemical compound [Na+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KPHWPUGNDIVLNH-UHFFFAOYSA-M 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229960003722 doxycycline Drugs 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 108700032313 elcatonin Proteins 0.000 description 1
- 229960000756 elcatonin Drugs 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229960000740 enrofloxacin Drugs 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- CHNUOJQWGUIOLD-NFZZJPOKSA-N epalrestat Chemical compound C=1C=CC=CC=1\C=C(/C)\C=C1/SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-NFZZJPOKSA-N 0.000 description 1
- 229950010170 epalrestat Drugs 0.000 description 1
- CHNUOJQWGUIOLD-UHFFFAOYSA-N epalrestate Natural products C=1C=CC=CC=1C=C(C)C=C1SC(=S)N(CC(O)=O)C1=O CHNUOJQWGUIOLD-UHFFFAOYSA-N 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- HAPOVYFOVVWLRS-UHFFFAOYSA-N ethosuximide Chemical compound CCC1(C)CC(=O)NC1=O HAPOVYFOVVWLRS-UHFFFAOYSA-N 0.000 description 1
- 229960002767 ethosuximide Drugs 0.000 description 1
- 229960004404 etizolam Drugs 0.000 description 1
- 229940083698 famotidine 10 mg Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- 229960000961 floxuridine Drugs 0.000 description 1
- 229960002200 flunitrazepam Drugs 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- PGBHMTALBVVCIT-VCIWKGPPSA-N framycetin Chemical compound N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CN)O2)N)O[C@@H]1CO PGBHMTALBVVCIT-VCIWKGPPSA-N 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 229960004675 fusidic acid Drugs 0.000 description 1
- IECPWNUMDGFDKC-MZJAQBGESA-N fusidic acid Chemical compound O[C@@H]([C@@H]12)C[C@H]3\C(=C(/CCC=C(C)C)C(O)=O)[C@@H](OC(C)=O)C[C@]3(C)[C@@]2(C)CC[C@@H]2[C@]1(C)CC[C@@H](O)[C@H]2C IECPWNUMDGFDKC-MZJAQBGESA-N 0.000 description 1
- 230000030136 gastric emptying Effects 0.000 description 1
- 229960004580 glibenclamide Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- ZNNLBTZKUZBEKO-UHFFFAOYSA-N glyburide Chemical compound COC1=CC=C(Cl)C=C1C(=O)NCCC1=CC=C(S(=O)(=O)NC(=O)NC2CCCCC2)C=C1 ZNNLBTZKUZBEKO-UHFFFAOYSA-N 0.000 description 1
- 229960000642 grepafloxacin Drugs 0.000 description 1
- 229960003878 haloperidol Drugs 0.000 description 1
- 229940045644 human calcitonin Drugs 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- PBGKTOXHQIOBKM-FHFVDXKLSA-N insulin (human) Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 PBGKTOXHQIOBKM-FHFVDXKLSA-N 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 229960002479 isosorbide Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229960004502 levodopa Drugs 0.000 description 1
- 229960003376 levofloxacin Drugs 0.000 description 1
- 229960005287 lincomycin Drugs 0.000 description 1
- OJMMVQQUTAEWLP-KIDUDLJLSA-N lincomycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@@H](C)O)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 OJMMVQQUTAEWLP-KIDUDLJLSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229960004391 lorazepam Drugs 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000001525 mentha piperita l. herb oil Substances 0.000 description 1
- 229960004815 meprobamate Drugs 0.000 description 1
- 229960002260 meropenem Drugs 0.000 description 1
- DMJNNHOOLUXYBV-PQTSNVLCSA-N meropenem Chemical compound C=1([C@H](C)[C@@H]2[C@H](C(N2C=1C(O)=O)=O)[C@H](O)C)S[C@@H]1CN[C@H](C(=O)N(C)C)C1 DMJNNHOOLUXYBV-PQTSNVLCSA-N 0.000 description 1
- KBOPZPXVLCULAV-UHFFFAOYSA-N mesalamine Chemical compound NC1=CC=C(O)C(C(O)=O)=C1 KBOPZPXVLCULAV-UHFFFAOYSA-N 0.000 description 1
- 229960004963 mesalazine Drugs 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 229940042016 methacycline Drugs 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 210000000110 microvilli Anatomy 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229960000758 moperone Drugs 0.000 description 1
- AGAHNABIDCTLHW-UHFFFAOYSA-N moperone Chemical compound C1=CC(C)=CC=C1C1(O)CCN(CCCC(=O)C=2C=CC(F)=CC=2)CC1 AGAHNABIDCTLHW-UHFFFAOYSA-N 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 229960003128 mupirocin Drugs 0.000 description 1
- 229930187697 mupirocin Natural products 0.000 description 1
- DDHVILIIHBIMQU-YJGQQKNPSA-L mupirocin calcium hydrate Chemical compound O.O.[Ca+2].C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1.C[C@H](O)[C@H](C)[C@@H]1O[C@H]1C[C@@H]1[C@@H](O)[C@@H](O)[C@H](C\C(C)=C\C(=O)OCCCCCCCCC([O-])=O)OC1 DDHVILIIHBIMQU-YJGQQKNPSA-L 0.000 description 1
- BSOQXXWZTUDTEL-ZUYCGGNHSA-N muramyl dipeptide Chemical compound OC(=O)CC[C@H](C(N)=O)NC(=O)[C@H](C)NC(=O)[C@@H](C)O[C@H]1[C@H](O)[C@@H](CO)O[C@@H](O)[C@@H]1NC(C)=O BSOQXXWZTUDTEL-ZUYCGGNHSA-N 0.000 description 1
- 239000000692 natriuretic peptide Substances 0.000 description 1
- ZBGPYVZLYBDXKO-HILBYHGXSA-N netilmycin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@]([C@H](NC)[C@@H](O)CO1)(C)O)NCC)[C@H]1OC(CN)=CC[C@H]1N ZBGPYVZLYBDXKO-HILBYHGXSA-N 0.000 description 1
- PCJGZPGTCUMMOT-ISULXFBGSA-N neurotensin Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 PCJGZPGTCUMMOT-ISULXFBGSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- AIKVCUNQWYTVTO-UHFFFAOYSA-N nicardipine hydrochloride Chemical compound Cl.COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 AIKVCUNQWYTVTO-UHFFFAOYSA-N 0.000 description 1
- 229960002289 nicardipine hydrochloride Drugs 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 nifedipine Drugs 0.000 description 1
- KJONHKAYOJNZEC-UHFFFAOYSA-N nitrazepam Chemical compound C12=CC([N+](=O)[O-])=CC=C2NC(=O)CN=C1C1=CC=CC=C1 KJONHKAYOJNZEC-UHFFFAOYSA-N 0.000 description 1
- 229960001454 nitrazepam Drugs 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- 229960001699 ofloxacin Drugs 0.000 description 1
- 229940080130 omeprazole 10 mg Drugs 0.000 description 1
- 229960000625 oxytetracycline Drugs 0.000 description 1
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 description 1
- 235000019366 oxytetracycline Nutrition 0.000 description 1
- XNOPRXBHLZRZKH-DSZYJQQASA-N oxytocin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CSSC[C@H](N)C(=O)N1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(N)=O)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 XNOPRXBHLZRZKH-DSZYJQQASA-N 0.000 description 1
- 229960001723 oxytocin Drugs 0.000 description 1
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229940056360 penicillin g Drugs 0.000 description 1
- 235000019477 peppermint oil Nutrition 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 229960002292 piperacillin Drugs 0.000 description 1
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- DWHGNUUWCJZQHO-ZVDZYBSKSA-M potassium;(2s,5r,6r)-6-[[(2r)-2-amino-2-(4-hydroxyphenyl)acetyl]amino]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;(2r,3z,5r)-3-(2-hydroxyethylidene)-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate Chemical compound [K+].[O-]C(=O)[C@H]1C(=C/CO)/O[C@@H]2CC(=O)N21.C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 DWHGNUUWCJZQHO-ZVDZYBSKSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960004856 prazepam Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- FKNXQNWAXFXVNW-BLLLJJGKSA-N procaterol Chemical compound N1C(=O)C=CC2=C1C(O)=CC=C2[C@@H](O)[C@@H](NC(C)C)CC FKNXQNWAXFXVNW-BLLLJJGKSA-N 0.000 description 1
- 229960002288 procaterol Drugs 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 229960005206 pyrazinamide Drugs 0.000 description 1
- IPEHBUMCGVEMRF-UHFFFAOYSA-N pyrazinecarboxamide Chemical compound NC(=O)C1=CN=CC=N1 IPEHBUMCGVEMRF-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000007660 quinolones Chemical class 0.000 description 1
- 108010071077 quinupristin-dalfopristin Proteins 0.000 description 1
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 description 1
- 229960000620 ranitidine Drugs 0.000 description 1
- 108091006082 receptor inhibitors Proteins 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 229960003147 reserpine Drugs 0.000 description 1
- BJOIZNZVOZKDIG-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC(OC)=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 BJOIZNZVOZKDIG-MDEJGZGSSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- MDMGHDFNKNZPAU-UHFFFAOYSA-N roserpine Natural products C1C2CN3CCC(C4=CC=C(OC)C=C4N4)=C4C3CC2C(OC(C)=O)C(OC)C1OC(=O)C1=CC(OC)=C(OC)C(OC)=C1 MDMGHDFNKNZPAU-UHFFFAOYSA-N 0.000 description 1
- 229960003287 roxatidine acetate Drugs 0.000 description 1
- 229960005224 roxithromycin Drugs 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 108010068072 salmon calcitonin Proteins 0.000 description 1
- 229960002101 secretin Drugs 0.000 description 1
- OWMZNFCDEHGFEP-NFBCVYDUSA-N secretin human Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(N)=O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)C1=CC=CC=C1 OWMZNFCDEHGFEP-NFBCVYDUSA-N 0.000 description 1
- 229960002959 sincalide Drugs 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- OABYVIYXWMZFFJ-ZUHYDKSRSA-M sodium glycocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 OABYVIYXWMZFFJ-ZUHYDKSRSA-M 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- AEQFSUDEHCCHBT-UHFFFAOYSA-M sodium valproate Chemical compound [Na+].CCCC(C([O-])=O)CCC AEQFSUDEHCCHBT-UHFFFAOYSA-M 0.000 description 1
- 229940084026 sodium valproate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 description 1
- 229960000553 somatostatin Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- DZZWHBIBMUVIIW-DTORHVGOSA-N sparfloxacin Chemical compound C1[C@@H](C)N[C@@H](C)CN1C1=C(F)C(N)=C2C(=O)C(C(O)=O)=CN(C3CC3)C2=C1F DZZWHBIBMUVIIW-DTORHVGOSA-N 0.000 description 1
- 229960004954 sparfloxacin Drugs 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000002294 steroidal antiinflammatory agent Substances 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 229960001940 sulfasalazine Drugs 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 150000003456 sulfonamides Chemical class 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 229940020707 synercid Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 229960001674 tegafur Drugs 0.000 description 1
- WFWLQNSHRPWKFK-ZCFIWIBFSA-N tegafur Chemical compound O=C1NC(=O)C(F)=CN1[C@@H]1OCCC1 WFWLQNSHRPWKFK-ZCFIWIBFSA-N 0.000 description 1
- 229960001608 teicoplanin Drugs 0.000 description 1
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229960000278 theophylline Drugs 0.000 description 1
- OHKOGUYZJXTSFX-KZFFXBSXSA-N ticarcillin Chemical compound C=1([C@@H](C(O)=O)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)C=CSC=1 OHKOGUYZJXTSFX-KZFFXBSXSA-N 0.000 description 1
- 229960004659 ticarcillin Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 229960005294 triamcinolone Drugs 0.000 description 1
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 description 1
- 229960002341 trifluperidol Drugs 0.000 description 1
- GPMXUUPHFNMNDH-UHFFFAOYSA-N trifluperidol Chemical compound C1CC(O)(C=2C=C(C=CC=2)C(F)(F)F)CCN1CCCC(=O)C1=CC=C(F)C=C1 GPMXUUPHFNMNDH-UHFFFAOYSA-N 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- 229960003726 vasopressin Drugs 0.000 description 1
- 229960003842 virginiamycin Drugs 0.000 description 1
- 235000019373 virginiamycin Nutrition 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5084—Mixtures of one or more drugs in different galenical forms, at least one of which being granules, microcapsules or (coated) microparticles according to A61K9/16 or A61K9/50, e.g. for obtaining a specific release pattern or for combining different drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/2072—Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
- A61K9/2086—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
- A61K9/209—Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2886—Dragees; Coated pills or tablets, e.g. with film or compression coating having two or more different drug-free coatings; Tablets of the type inert core-drug layer-inactive layer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/06—Antigout agents, e.g. antihyperuricemic or uricosuric agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- the delayed release system uses an acrylic or cellulosic enteric coating material and dissolves on pH change. Because of ease of preparation, many reports on this system have been made. Taking the system using the acrylic enteric coating material Eudragit S as an example, many reports can be found, such as those by Behringer, Manchester University, Saale Co., and the like. However, the group from Manchester University reported at AAPS in 1993 that for such enterically-coated systems, the timing of drug release is determined by the transit of the system in the gastrointestinal tract rather than a pH change and, therefore, the specificity to the colon is low. Further, it is very likely that the other similar delayed release systems are also unsuccessful in colon-specific drug release.
- enterobacteria located in the lower gastrointestinal tract.
- This system is classified into three categories: (1) those utilizing degradation of azoaromatic polymers by an azo-reductase produced from enterobacteria as reported in Saffran et al., Science, 233:1081-1084 (1986) and Kopecek et al., Pharmaceutical Research, 9:1540-1545 (1992); (2) those utilizing degradation of polysaccharides by ⁇ -galactosidase of enterobacteria as reported in Japanese Patent Application No.
- the system using a polysaccharide is considered to cause no safety concerns because a material that has been taken as dietary fiber is used.
- the polysaccharide pectin is not only slowly degraded by enterobacteria, but the drug is released at a point in time prior to the arrival of the system in the colon. Therefore, this system appears to be ineffective as a colon-specific drug release system.
- the drug release in artificial intestinal juice was found to be uncontrolled and non-specific (see, Japanese Patent Application No. 5-50863).
- the present invention provides an oral multiple drug release composition, the composition comprising:
- the present invention provides an oral multiple drug release composition, the composition comprising:
- the present invention provides an oral multiple drug release composition, the composition comprising:
- compositions described above release the drug contained in the drug core in the colon through the production by enterobacteria of an organic acid from the saccharide that dissolves the organic acid-soluble polymer.
- the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
- the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
- the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
- the present invention provides a method for providing a multiple drug release profile in a subject, the method comprising:
- FIG. 3 shows a diagram of a multiple release tablet of the present invention which contains a separate drug layer.
- FIG. 9 shows a manufacturing flowchart for producing the colon-targeted tablet in the capsule of FIG. 5 .
- FIG. 11 shows a comparison of the in vivo drug release profile ( FIG. 11A ) and the pharmacokinetic profile ( FIG. 11B ) of a standard colon drug delivery system versus the multiple drug release system of the present invention.
- multiple drug release system or “multiple drug release composition” refers to either a multiple-pulsated drug release system wherein the drug is released as pulses at multiple sites in the gastrointestinal tract (e.g., stomach, small intestine, and colon) or a sustained drug release system wherein the continued release of drug occurs at multiple sites in the gastrointestinal tract as the system transits through the gastrointestinal tract and lasts for a period of from about 0.5 hours to about 24 hours.
- multiple release or “multiple drug release” refers to either the multiple-pulsated drug release or the sustained drug release that is provided by a multiple drug release system.
- the present invention provides novel compositions and methods for the multiple release of a drug in the gastrointestinal tract of a subject through the use of an oral multiple drug release system.
- the drug release system provides, for example, site-specific release of the drug to both the upper and lower gastrointestinal tract in the form of multiple controlled doses for long-lasting efficacy, thereby reducing the drug dosing frequency.
- the drug release can be sustained release, pulsated release, or a combination of sustained release and pulsated release.
- the systems of the present invention provide the advantage of delivering the drug to more than one specific site in the gastrointestinal tract.
- the multiple release of the drug facilitates its site-specific absorption and maintains its efficacy such as for example for a prolonged period of time (e.g., about 24 hours), resulting in the use of less amounts of the drug.
- the site-specific release of the drug permits the delivery of a high concentration of the drug to multiple sites in the gastrointestinal tract where it can be efficiently absorbed while avoiding unfavorable side-effects.
- Preferred candidates for pulsated-release can be, for instance, an ion channel blocker (e.g., omeprazole) or a H 2 receptor inhibitor (e.g., famotidine), which have short biological half-lives but a long duration in their pharmacological action.
- ion channel blocker e.g., omeprazole
- H 2 receptor inhibitor e.g., famotidine
- Such drugs would be better designed in a multiple pulsated release formulation to maximize their pharmacological effects.
- FIG. 1 shows a diagram of the multiple release system 100 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives.
- the present invention provides an oral drug delivery system 100 .
- the drug delivery system provides for the multiple release of a drug in the gastrointestinal tract.
- the system 100 comprises a drug core 105 , which includes a mixture of a first drug 106 and a saccharide 107 , such as lactulose.
- the system 100 includes an organic acid-soluble polymer 110 , wherein the drug core 105 is coated by the organic acid-soluble polymer 110 .
- the system 100 includes a water-permeable, release-controlling polymer 111 , wherein the organic acid-soluble polymer 110 is coated by the water-permeable, release-controlling polymer 111 .
- the system 100 further includes an enteric coat 120 .
- the enteric coat 120 comprises a mixture of an enteric coating polymer 122 and a second drug 125 , wherein the water-permeable, release-controlling polymer 111 is coated by the enteric coat 120 .
- the system 100 releases the second drug 125 contained in the enteric coat 120 in the small intestine and then releases the first drug 106 contained in the drug core 105 in the colon through the production by enterobacteria of an organic acid from the saccharide 107 that dissolves the organic acid-soluble polymer 110 .
- the first drug 106 and the second drug 125 are either the same drug or are different drugs. In certain other instances, the first drug 106 and/or the second drug 125 is a combination of at least two drugs. In one embodiment, the first drug 106 and the second drug 125 are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H 2 -receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- a proton pump inhibitor a peptide, a protein, a hormone, an anti-inflammatory agent, an antit
- the drug is a proton pump inhibitor.
- Suitable proton pump inhibitors include, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- the drug core 105 and/or the enteric coat 120 further comprise a buffering agent. With proton pump inhibitors, the pulsated release pattern is preferred.
- the saccharide 107 is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof.
- the saccharide 107 is lactulose.
- the saccharide 107 is present in an amount of from about 10% to about 90% w/w.
- the organic acid-soluble polymer 110 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof.
- the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E).
- the organic acid-soluble polymer 110 is present in an amount of from about 2.5% to about 40.0% w/w.
- the organic acid-soluble polymer 110 dissolves at a pH lower than about 6.
- the water-permeable, release-controlling polymer 111 is selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof.
- the water-permeable, release-controlling polymer 111 is HPMC.
- the enteric coating polymer 122 is selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof.
- the system 100 further comprises an outer drug coat having a third drug, wherein the enteric coat 120 is coated by the outer drug coat and the system 100 releases the third drug contained in the outer drug coat in the stomach.
- the outer drug coat further comprises a buffering agent.
- the system 100 is in the form of a tablet or granule.
- the present invention provides an oral drug delivery system 100 , wherein the drug core comprises a mixture of a first proton pump inhibitor and lactulose, the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer, the water-permeable, release-controlling polymer is HPMC, and the enteric coat comprises a mixture of an enteric coating polymer and a second proton pump inhibitor.
- the drug core comprises a mixture of a first proton pump inhibitor and lactulose
- the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer
- the water-permeable, release-controlling polymer is HPMC
- the enteric coat comprises a mixture of an enteric coating polymer and a second proton pump inhibitor.
- the system continues through the small intestine and into the colon.
- the organic acid-soluble polymer which dissolves at a pH lower than about 6, swells and allows enough water to permeate into the drug core to dissolve the saccharide present therein.
- the dissolved saccharide diffuses through the organic acid-soluble polymer into the lumen of the colon, where it is now accessible to enterobacteria.
- the enterobacteria then enzymatically degrade the saccharide into an organic acid, thereby lowering the pH of that area of the colon to a pH lower than about 6.
- the lowered pH surrounding the system dissolves the organic acid-soluble polymer and releases the first drug contained in the drug core in the colon.
- the system shown in FIG. 2 provides an immediate site-specific release of drug in the small intestine and a later site-specific release of drug in the colon. While the initial release of drug in the small intestine provides an effective, therapeutic level of drug, the subsequent pulse of drug in the colon maintains and can sustain an effective drug level for up to about 24 hours after administration.
- Such drug delivery systems permit a more controlled and consistent pharmacological effect for drugs for a longer duration, without unwanted side-effects.
- the multiple release systems of the present invention provide for the long-lasting efficacy of drugs such as proton pump inhibitors, whose pharmacological effects decline significantly after half a day following their administration.
- FIG. 3 shows a diagram of the multiple release system 300 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives.
- the present invention provides an oral drug delivery system 300 .
- the drug delivery system provides for the multiple release of a drug in the gastrointestinal tract.
- the system 300 includes a drug core 302 comprising a first drug 304 and a saccharide 310 .
- the system 300 also includes an organic acid-soluble polymer 311 , wherein the drug core 302 is coated by the organic acid-soluble polymer 311 .
- the system 300 further includes a drug layer 315 comprising a second drug 317 , wherein the organic acid-soluble polymer 311 is coated by the drug layer 315 .
- the system 300 comprises a drug core 302 including a first drug 304 and a saccharide 310 , wherein the first drug 304 is coated by a saccharide 310 .
- a water-permeable, release-controlling polymer can be included in the drug core 302 as a layer in-between the first drug 304 and the saccharide 310 to, e.g., permit the sustained release of the first drug 304 and/or to prevent any interaction between the first drug 304 and the saccharide 310 .
- This drug core 302 is then coated by the organic acid-soluble polymer 311 , followed by the drug layer 315 , then the water-permeable, release-controlling polymer 325 , and then the enteric coat 350 .
- a water-permeable, release-controlling polymer can be admixed with the first drug 304 , and, optionally, coated by the same or different water-permeable, release-controlling polymer.
- the organic acid-soluble polymer 311 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof.
- the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E).
- the organic acid-soluble polymer 311 is present in an amount of from about 2.5% to about 40.0% w/w.
- the organic acid-soluble polymer 311 dissolves at a pH lower than about 6.
- the system 300 is in the form of a tablet or granule.
- the present invention provides an oral drug delivery system 300 , wherein the drug core comprises a mixture of a first proton pump inhibitor and lactulose, the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer, the drug layer comprises a second proton pump inhibitor, the water-permeable, release-controlling polymer is HPMC, and the enteric coat comprises an enteric coating polymer.
- the drug core comprises a mixture of a first proton pump inhibitor and lactulose
- the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer
- the drug layer comprises a second proton pump inhibitor
- the water-permeable, release-controlling polymer is HPMC
- the enteric coat comprises an enteric coating polymer.
- FIG. 4 shows a diagram of the multiple release system 400 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives.
- the system 400 further includes a water-permeable, release-controlling polymer 425 , wherein the organic acid-soluble polymer 420 is coated by the water-permeable, release-controlling polymer 425 .
- the system 400 includes an enteric coat 430 .
- the enteric coat 430 comprises a mixture of an enteric coating polymer 432 and a second drug 435 , wherein the water-permeable, release-controlling polymer 425 is coated by the enteric coat 430 .
- the system 400 releases the second drug 435 contained in the enteric coat 430 in the small intestine and then releases the first drug 406 contained in the drug core 405 in the colon through the production by enterobacteria of an organic acid from the saccharide 417 that dissolves the organic acid-soluble polymer 420 .
- the drug is a proton pump inhibitor such as, for example, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- the drug core 405 and/or the enteric coat 430 further comprise a buffering agent.
- the organic acid-soluble polymer 420 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof.
- the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E).
- the organic acid-soluble polymer 420 is present in an amount of from about 2.5% to about 40.0% w/w. In a preferred embodiment, the organic acid-soluble polymer 420 dissolves at a pH lower than about 6.
- the water-permeable, release-controlling polymers 408 and/or 425 are selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof.
- HPMC hydroxypropylmethylcellulose
- the water-permeable, release-controlling polymer 408 and/or 425 is HPMC.
- system 400 further comprises an outer drug coat having a third drug, wherein the enteric coat 430 is coated by the outer drug coat and the system 400 releases the third drug contained in the outer drug coat in the stomach.
- the outer drug coat further comprises a buffering agent.
- the system 400 is in the form of a tablet or granule.
- the second component B comprises a drug core 515 , which includes a second drug 516 and a saccharide 518 , such as lactulose, wherein the second drug 516 is coated by the saccharide 518 using a compressed coating manufacturing process.
- a water-permeable, release-controlling polymer is included in the drug core 515 as a layer in-between the second drug 516 and the saccharide 518 .
- the drug core 515 comprises a mixture of the second drug 516 and the saccharide 518 .
- the second component B also includes an organic acid-soluble polymer 520 , wherein the saccharide 518 is coated by the organic acid-soluble polymer 520 .
- the drug is a proton pump inhibitor.
- Suitable proton pump inhibitors include, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- the drug core 505 of the first component A and/or the drug core 515 of the second component B further comprise a buffering agent.
- the saccharide 518 is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof.
- the saccharide 518 is lactulose.
- the saccharide 518 is present in an amount of from about 10% to about 90% w/w.
- the organic acid-soluble polymer 520 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof.
- the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E).
- the organic acid-soluble polymer 520 is present in an amount of from about 2.5% to about 40.0% w/w.
- the organic acid-soluble polymer 520 dissolves at a pH lower than about 6.
- the water-permeable, release-controlling polymers 507 and/or 525 are selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof.
- the water-permeable, release-controlling polymer 507 and/or 525 is HPMC.
- the enteric coat 530 in the second component B comprises a mixture of the enteric coating polymer 532 and a third drug.
- the enteric coat 530 further comprises a buffering agent.
- the first component A, the second component B, or the combination thereof further comprises an outer drug coat having a third drug, wherein the enteric coats 508 and/or 530 are further coated by the outer drug coat and the system 500 releases the third drug contained in the outer drug coat in the stomach.
- the outer drug coat further comprises a buffering agent.
- the present invention provides methods for the multiple release of drugs in the gastrointestinal tract by orally administering to a subject any of the above-described multiple release systems.
- the first drug and the second drug are the same drug and the concentration of the first drug and the second drug in the plasma is sustained for a period of about 24 hours following administration.
- an oral drug formulation comprising:
- the oral drug delivery systems of the present invention are comprised of the following elements: at least one drug, a saccharide, an organic acid-soluble polymer, a water-permeable, release-controlling polymer, and an enteric coat. Each of these elements will be described in greater detail below.
- any drug having a pharmaceutical, pharmacological, or therapeutic effect is suitable for use in the systems of the present invention.
- Representative drugs include, but are not limited to, proton pump inhibitors, peptides, proteins, hormones, anti-inflammatory agents, antitussive expectorants, vasodilators, analgesics, histamine H 2 -receptor antagonists, antibiotics, antiepileptic agents, antigout agents, antitumor agents, antidiabetic agents, antipsychotic agents, prostatomegaly agents, antiasthma agents, drugs with short pharmacokinetic half-lives, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- other active agents that are efficiently absorbed by both the upper and lower gastrointestinal tract are suitable for use in the present invention.
- Suitable proton pump inhibitors include, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. With proton pump inhibitors, the pulsated release pattern is preferred.
- Suitable antibiotics include, without limitation, tetracycline, oxytetracycline, metacycline, doxycycline, minocycline, erythromycin, lincomycin, penicillin G, clindamycin, kanamycin, chloramphenicol, fradiomycin, streptomycin, norfloxacin, ciprofloxacin, ofloxacin, grepafloxacin, levofloxacin, sparfloxacin, ampicillin, carbenicillin, methicillin, cephalosporins, vancomycin, bacitracin, gentamycin, fusidic acid, ciprofloxin and other quinolones, sulfonamides, trimethoprim, dapsone, isoniazid, teicoplanin, avoparcin, synercid, virginiamycin, piperacillin, ticarcillin, cefepime, cefpirome, rifampicin, pyr
- Suitable antigout agents include, without limitation, allopurinol, colchicines, benzbromarone, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antidiabetic agents include, without limitation, glibenclamide, epalrestat, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable prostatomegaly agents include, without limitation, chlormadinone acetate, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antiasthma agents include, without limitation, azelastine, procaterol, terrenadine, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- the pH of the system can be adjusted at the time of drug dissolution, e.g., by incorporating a buffering agent such as an organic acid or a basic substance into one or more drug-containing layers.
- the organic acids include citric acid and tartaric acid
- the basic substances include solid bases (e.g., MgO), basic amino-sugars (e.g., meglumine), and basic amino acids (e.g., lysine and arginine).
- Such buffering agents can be mixed with the drug and saccharide to form the drug core, with the drug to form the drug layer, with the drug to form the outer drug coat, or with the enteric coating polymer and the drug to form the enteric coat.
- a dissolution aid can be added.
- Any dissolution aid is suitable for use, as long as it is pharmaceutically acceptable.
- examples include, without limitation, nonionic surface active agents such as sucrose fatty acid esters, glycerol fatty acid esters, sorbitan fatty acid esters (e.g., sorbitan trioleate), polyethylene glycol, polyoxyethylene hydrogenated castor oil, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl ethers, methoxypolyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyethylene glycol fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene alkyl thioethers, polyoxyethylene polyoxypropylene copolymers, polyoxyethylene glycerol fatty acid esters, pentaerythritol fatty acid esters, propylene glycol monofatty acid esters, polyoxyethylene propylene glycol
- nonionic surface active agents such as suc
- the amount of water which is required to dissolve a 1 g portion of saccharide is preferably less than about 5 ml; that is, saccharides having a water solubility of higher than about 20% weight/volume (w/v) are preferred.
- saccharides include, without limitation, lactulose, raffinose, cellobiose, stachyose, fructooligosaccharides (i.e., synthetic disaccharides which show a high rate of degradation by enterobacteria), combinations thereof, and derivatives thereof (e.g., sugar alcohols such as mannitol, sorbitol, xylitol, and maltitol).
- the fructooligosaccharides preferably include lactosucrose, such as Nyuka Oligo LS-55p (Hayashibara Syoji K.K.).
- lactosucrose such as Nyuka Oligo LS-55p (Hayashibara Syoji K.K.).
- other carbohydrates are also suitable for use in the systems of the present invention.
- Saccharides which are degraded by digestive enzymes or directly absorbed from the gastrointestinal tract can be employed in a similar manner. Such saccharides are prevented from degradation in the stomach by the presence of an enteric coat and are prevented from degradation in the small intestine by the presence of an organic acid-soluble polymer coat. Examples of saccharides of this type include, without limitation, sucrose, glucose, xylose, fructose, maltose, galactose, and combinations thereof.
- saccharide is suitable for degradation by enterobacteria to produce an organic acid.
- the saccharide is present in an amount of from about 1% to about 99.9% w/w, preferably from about 5% to about 99.9% w/w, and more preferably from about 10% to about 90% w/w.
- the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E).
- the organic acid-soluble polymer is present in an amount of from about 1% to about 50% w/w, preferably from about 2.5% to about 40% w/w.
- Suitable examples of water permeable, release-controlling polymers include, without limitation, a copolymer of ethyl acrylate, methyl methacrylate, and trimethylammonioethyl methacrylate chloride (e.g., Eudragit R S; Röhm GmbH), ethyl cellulose (e.g., Ethocel; Dow Chemical Co., Ltd.), hydroxypropyl-methylcellulose (HPMC) (e.g., TC-5; Shin-Etsu Chemical Co., Ltd.), hydroxypropylcellulose (e.g., HPC; Nippon Soda Co., Ltd.), polyethylene oxide, polyvinylpyrrolidone, and combinations thereof.
- a copolymer of ethyl acrylate, methyl methacrylate, and trimethylammonioethyl methacrylate chloride e.g., Eudragit R S; Röhm GmbH
- ethyl cellulose e.g.,
- the enteric coating polymer is a methyl methacrylate-methacrylic acid (1:1) copolymer (e.g., Eudragit L).
- the polymer can further comprise a plasticizer such as triacetin, Macrogol 400, triethyl citrate, Tween 80, castor oil, etc., as well as minerals such as magnesium silicate hydroxide (i.e., talc).
- the enteric coating polymer is present in an amount of from about 1% to about 50% w/w, preferably from about 1% to about 20% w/w, more preferably from about 1% to about 10% w/w.
- the enteric coat comprises an enteric coating polymer (e.g., Eudragit L100), triethyl citrate, magnesium silicate hydroxide (i.e., talc), and optionally, a drug and a buffering agent.
- enteric coating polymer e.g., Eudragit L100
- triethyl citrate e.g., triethyl citrate
- magnesium silicate hydroxide i.e., talc
- optionally, a drug and a buffering agent e.g., talc
- the system can be provided in any dosage form suitable for oral administration such as a tablet, a capsule, a pellet, a granule, fine granules, a lozenge, and a powder.
- a dosage form suitable for oral administration such as a tablet, a capsule, a pellet, a granule, fine granules, a lozenge, and a powder.
- the system is administered in the form of a tablet or capsule.
- enterobacteria Bacteria which live within the body are abundant in the oral cavity, rare in the stomach due to the acidicity, and also scarce in the upper part of the small intestine. The level of enterobacteria increases drastically in the order of the ileum, the cecum, and the colon. It has been reported that saccharides which remain undigested are degraded by enterobacteria residing in the part of the gastrointestinal tract from the cecum to the ascending colon, making that part weakly acidic (e.g., pH of about 5) (Davis, Novel Drug Delivery and its Therapeutic Application , p. 89-101, Eds. L. F. Prescott, W. S. Nimmo; John Willey & Sons, New York).
- the variation is limited to specific enterobacteria and is not so large that all the microbial flora contributing to degradation of saccharides cannot be detected.
- enterobacteria absorb and metabolize saccharides, various organic acids are generated.
- the organic acids generated include acetic acid, propionic acid, and butyric acid, and vary according to the saccharide substrate. These organic acids are absorbed from the intestinal tract and become an energy source.
- the enterobacteria Bifidobacterium, Lactobacillus , and Streptococcus present in the lower gastrointestinal tract (i.e., the colon), are mainly responsible for degrading saccharides such as lactulose (i.e., a synthetic disaccharide) to produce an organic acid such as lactic acid, acetic acid, etc.
- lactulose i.e., a synthetic disaccharide
- Diabetics show a slight reduction in Bifidobacterium and Streptococcus , but this does not seem to have large influence on the degradation of lactulose as no change was observed in Lactobacillus .
- Raffinose, cellobiose, stachyose, maltose, and fructooligosaccharides are rapidly degraded by the main microbial flora in the colon similarly to lactulose, although they are degraded by slightly different enterobacteria. Accordingly, slight variations in the microbial flora of the colon will not affect the degradation of these saccharides.
- the organic acid which is generated by the action of enterobacteria serves to decrease the pH of the system, thereby dissolving the organic acid-soluble polymer coat on the drug core as well as contributing to the enhancement of drug absorption in the colon.
- FIG. 6 shows a manufacturing flowchart for producing the spray-coated tablet of FIG. 1 .
- a first drug is mixed with a saccharide (e.g., lactulose), and optionally, a buffering agent, to produce a homogeneous mixture that forms the drug core of the tablet.
- An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core.
- the organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water.
- the drug core of the tablet is formed by spraying a saccharide coat onto the first drug, followed by the spraying of an organic acid-soluble polymer coat.
- a water-permeable, release-controlling polymer can optionally be included as a coat for the drug core.
- an under coat comprising a water-permeable, release-controlling polymer (e.g., HPMC) is sprayed onto the organic acid-soluble polymer coat.
- the under coat is prepared, e.g., by dissolving HPMC in ethanol.
- an enteric coat prepared by dissolving a mixture of an enteric coating polymer material and a second drug in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown in FIG. 1 .
- FIG. 7 shows a manufacturing flowchart for producing the spray-coated tablet of FIG. 3 .
- a first drug is mixed with a saccharide (e.g., lactulose), and optionally, a buffering agent, to produce a homogeneous mixture that forms the drug core of the tablet.
- An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core.
- the organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water.
- the drug core of the tablet is formed by spraying a saccharide coat onto the first drug, followed by the spraying of an organic acid-soluble polymer coat.
- a water-permeable, release-controlling polymer can optionally be included as a coat for the drug core.
- a drug layer comprising a second drug is sprayed onto the organic acid-soluble polymer coat.
- the drug layer is prepared, e.g., by dissolving the second drug with NaOH, crospovidone, and HPMC in ethanol.
- the drug layer is then sprayed with an under coat comprising a water-permeable, release-controlling polymer (e.g., HPMC).
- the under coat is prepared, e.g., by dissolving HPMC in ethanol.
- an enteric coat prepared by dissolving an enteric coating polymer material in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown in FIG. 3 .
- FIG. 8 shows a manufacturing flowchart for producing the compressed-coated tablet of FIG. 4 .
- a first drug is optionally mixed with a buffering agent to produce a homogeneous mixture.
- a saccharide (e.g., lactulose) layer is then compressed onto the first drug to form the drug core of the tablet.
- the saccharide layer is prepared, e.g., by dissolving lactulose and HPMC in ethanol and water.
- a water-permeable, release-controlling polymer e.g., HPMC
- An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core.
- the organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water.
- An under coat comprising a water-permeable, release-controlling polymer e.g., HPMC
- HPMC water-permeable, release-controlling polymer
- the under coat is prepared, e.g., by dissolving HPMC in ethanol.
- an enteric coat prepared by dissolving a mixture of an enteric coating polymer material and a second drug in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown in FIG. 4 .
- FIG. 9 shows a manufacturing flowchart for producing the colon-targeted tablet (B) in the capsule of FIG. 5 .
- a first drug is optionally mixed with a buffering agent to produce a homogeneous mixture.
- a saccharide (e.g., lactulose) layer is then compressed onto the first drug to form the drug core of the tablet.
- the saccharide layer is prepared, e.g., by dissolving lactulose and HPMC in ethanol and water.
- a water-permeable, release-controlling polymer e.g., HPMC
- a dual release tablet for delivering two 10 mg pulses of the histamine H 2 -receptor antagonist famotidine (total 20 mg per day) can be formulated using a spray-coated tablet manufacturing process.
- the tabletting pressure is about 350 kg/punch.
- the initial release of drug is provided by the enteric coat.
- the formulation contains:
- Drug core Famotidine 10 mg Lactulose 100 mg Total: 110 mg
- the drug core is first coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water), based on the gained weight of the drug core, and then coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater.
- Eudragit E100 e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water
- HPMC e.g., 5% HPMC 2910 in an aqueous solution
- a dual release tablet for delivering two 50 mg pulses of the antibiotic minocycline (total 100 mg per day) can be formulated using a spray-coated tablet manufacturing process.
- the tabletting pressure is about 350 kg/punch.
- the initial release of drug is provided by a separate drug layer.
- the formulation contains:
- Drug core Minocycline hydrochloride 50 mg Lactulose 50 mg Total: 100 mg
- the drug core is first coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water) and then coated with HPMC containing 50 mg of minocycline hydrochloride.
- the drug core tablet is subsequently coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater.
- the tablet is coated with from about 5% to about 10% w/w of Eudragit L100 and optionally additives (e.g., 6% Eudragit L100, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention.
- the tablet has a diameter of about 6 mm.
- Drug core Allopurinol 100 mg Lactulose 100 mg Meglumine 20 mg Total: 220 mg
- the drug core is first coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water) and then coated with HPMC containing 100 mg allopurinol.
- the drug core tablet is subsequently coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater.
- the tablet is coated with from about 5% to about 10% w/w of Eudragit L100 and optionally additives (e.g., 6% Eudragit L100, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention.
- the tablet has a diameter of from about 7 to about 9 min.
- a dual release tablet for delivering two 10 mg pulses of the proton pump inhibitor omeprazole (total 20 mg per day) can be formulated using a compressed-coated tablet manufacturing process.
- the tabletting pressure is about 350 kg/punch.
- the initial release of drug is provided by the enteric coat.
- the formulation contains:
- Drug core Omeprazole 10 mg Lactulose 100 mg MgO 10 mg Total: 120 mg
- the tablet is coated with from about 5% to about 10% w/w of Eudragit L100 containing 10 mg of omeprazole and optionally a buffering agent and other additives (e.g., 6% Eudragit L100, 10 mg of omeprazole, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention.
- the tablet has a diameter of about 6 mm.
- MgO magnesium oxide
- MgO magnesium oxide
- the pH of the system can be adjusted at the time of drug dissolution, e.g., by incorporating a buffering agent such as an organic acid or a basic substance into one or more drug-containing layers.
- the organic acids include citric acid and tartaric acid
- the basic substances include solid bases (e.g., MgO), basic amino-sugars (e.g., meglumine), and basic amino acids (e.g., lysine and arginine).
- a dual release capsule for delivering two 10 mg pulses of the proton pump inhibitor omeprazole can be formulated using a manufacturing process that produces a capsule containing both a spray-coated enteric coated tablet and a compressed-coated colon-targeted tablet.
- the initial release of drug is provided by the enteric coated tablet.
- Each drug core contains 10 mg of the proton pump inhibitor omeprazole, for the release of a total of 20 mg per day.
- the manufacturing process for the colon-targeted compressed-coated tablet is similar to that described in Example 4. However, the enteric coat may or may not contain drug.
- the enteric coated tablet is prepared by spray-coating a layer of HPMC onto the drug core followed by an enteric coat layer. Both tablets are then encapsulated to produce a capsule suitable for oral administration.
- FIG. 10 A representative pharmacokinetic profile for a capsule within the scope of the present invention using acetaminophen as a model drug for dog studies is shown in FIG. 10 .
- the initial release of drug from the enteric coated tablet provides a steady concentration of drug in the plasma from about 0.5 hours to about 6 hours following administration.
- the subsequent release of drug from the colon-targeted tablet sustains the concentration of drug in the plasma for up to about 12 hours following administration.
- the concentration of drug in the plasma can be sustained for about 24 hours or more for drugs with longer half-lives (t 1/2 ).
- the proton pump inhibitor in the formulations of Examples of 4 and 5 can be replaced with other proton pump inhibitors such as lansoprazole, pantoprazole, esomeprazole rabeprazole, and combinations thereof.
- This example illustrates a comparison of the in vivo drug release and pharmacokinetic profiles of a standard colon drug delivery system versus the multiple drug release system of the present invention.
Landscapes
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Diabetes (AREA)
- Pain & Pain Management (AREA)
- Rheumatology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Endocrinology (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Psychiatry (AREA)
- Physical Education & Sports Medicine (AREA)
- Emergency Medicine (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention provides compositions and methods for the multiple release of a drug in the gastrointestinal tract of a subject through the use of an oral multiple drug release system. The system provides site-specific release of the drug to both the small intestine and the colon in the form of multiple controlled doses for long-lasting efficacy, thereby reducing the drug dosing frequency.
Description
- The present application claims priority to U.S. Provisional Application No. 60/540,682, filed Jan. 29, 2004, and is a division of U.S. application Ser. No. 11/046,517, filed Jan. 27, 2005, which are herein incorporated by reference in their entirety for all purposes.
- In the past decade, rapid development has occurred in the field of drug delivery and release. In particular, a number of drug delivery and release systems have been developed that influence the control of drug release.
- For the topical treatment of diseases and disorders such as ulcerative colitis, drug release in the colon of the gastrointestinal tract topically accumulates the drug in a high concentration without involving absorption in the small intestine, which leads to the reduction of systemic side effects and is obviously favorable for the improvement of a therapeutic effect. Considering a systemic drug, on the other hand, release in the colon is disadvantageous in that the colon is shorter and poorer in development of microvilli than the small intestine and therefore has a smaller surface area available for absorption and is less permeable to a polar compound. However, the average retention time in the ascending colon is about 3 hours in younger people and about 10 hours in older people (Hongo et al., NICHIHEIKATSUKINSHI, 24:55-60 (1988)), which is equal to or even longer than that in the small intestine (about 3 to 4 hours), and it means a long, effective absorption time. Considering the aspect of the colon as a site of administration of peptide or protein-based drugs, the colon is advantageous in that no digestive enzymes are secreted and that the peptidase activity of the membrane of the large intestine is lower than that of the small intestine (Kopecek et al., Proc. Int. Symp. Control. Rel. Bioact. Mat., 17:130-131 (1990)). Therefore, drug release in the colon is expected to give improved systemic bioavailability.
- A large number of preparations targeting the lower part of the gastrointestinal tract, especially the colon, have been reported. These systems are roughly divided into four types: (1) a delayed release system designed to release a drug in accordance with a change in pH; (2) a timed-release system designed to release a drug after a predetermined time; (3) a microflora enzyme system making use of the abundant enterobacteria in the lower part of the gastrointestinal tract; and (4) a system making use of a lectin-like substance specific to the large intestine.
- The delayed release system uses an acrylic or cellulosic enteric coating material and dissolves on pH change. Because of ease of preparation, many reports on this system have been made. Taking the system using the acrylic enteric coating material Eudragit S as an example, many reports can be found, such as those by Behringer, Manchester University, Saale Co., and the like. However, the group from Manchester University reported at AAPS in 1993 that for such enterically-coated systems, the timing of drug release is determined by the transit of the system in the gastrointestinal tract rather than a pH change and, therefore, the specificity to the colon is low. Further, it is very likely that the other similar delayed release systems are also unsuccessful in colon-specific drug release.
- The timed-release system is represented by the Time Erosion System (TES) from Fujisawa Pharmaceutical Co., Ltd. and Pulsincap from H. P. Scherer. According to these systems, the site of drug release is determined by the time of transit of the system in the gastrointestinal tract, which makes it difficult to target the release of a drug in the lower gastrointestinal tract. Since the transit of the system in the gastrointestinal tract is largely influenced by the gastric emptying time, some systems can be made with an enteric coating. Nevertheless, it is difficult to release a drug specifically in the colon, considering that the transit time of the system in the small intestine displays both intra- and inter-variation and also largely varies according to the disease or disorder to be treated.
- Of particular interest is the system using the enterobacteria located in the lower gastrointestinal tract. This system is classified into three categories: (1) those utilizing degradation of azoaromatic polymers by an azo-reductase produced from enterobacteria as reported in Saffran et al., Science, 233:1081-1084 (1986) and Kopecek et al., Pharmaceutical Research, 9:1540-1545 (1992); (2) those utilizing degradation of polysaccharides by β-galactosidase of enterobacteria as reported in Japanese Patent Application No. 5-50863 and Bauer et al., Pharmaceutical Research, 10:5218 (1993); and (3) those utilizing degradation of chitosan by chitosanase as reported in Japanese Patent Application No. 4-217924 and Japanese Patent Application No. 4-225922. However, degradation of an azoaromatic polymer by enterobacteria is slow (Kopecek et al., supra) and may produce a harmful substance, making it unsuitable for long-term use. In fact, such a system containing insulin, when administered to beagle dogs, only achieved low efficacy (Saffran et al., Biochemical Society Transactions, 18:752-754 (1990)). The system using a polysaccharide is considered to cause no safety concerns because a material that has been taken as dietary fiber is used. However, according to a study performed by Cook et al., Pharmaceutical Research, 10:S223 (1993), the polysaccharide pectin is not only slowly degraded by enterobacteria, but the drug is released at a point in time prior to the arrival of the system in the colon. Therefore, this system appears to be ineffective as a colon-specific drug release system. Similarly, the drug release in artificial intestinal juice was found to be uncontrolled and non-specific (see, Japanese Patent Application No. 5-50863).
- The system utilizing a lectin-like substance present in the large intestine has been reported in Kopecek et al., Proc. Int. Symp. Control. Rel. Bioact. Mat., 17:130-131 (1990). This technique relates to a polymeric system prepared by binding fucose and a drug to a polymer via an azo bond, utilizing a lectin-like substance present in the large intestine for fucose recognition, and controlling the transit of the system in the colon so as to let the system release the drug by the action of an azo-reductase. However, the fucose-recognizing lectin is specific only to guinea pigs. Therefore, the technique cannot be applied directly to humans.
- As a result, none of the various systems described above for colonic drug release is satisfactory for providing site-specific drug release to the colon.
- Another disadvantage of the various systems described above is the lack of sufficient pharmacological effects of the drug in the second half of the day from a system taken only once daily, especially for drugs where prolonged and consistent efficacy is required for effective treatment of a disease or disorder. In particular, delivery systems containing drugs that are quickly eliminated from plasma or have site-specific absorption patterns are confronted with the difficulty of maintaining effective levels over the period of a full day following oral administration. In general, such systems necessitate a dosing regimen where a patient is administered the drug at least twice a day. However, the inconvenience associated with multiple daily administrations, especially among children, leads to patient non-compliance and results in the ineffective treatment of a disease or disorder. As such, none of the above-described systems is suitable for providing sustained, site-specific drug release.
- Thus, there is a need to develop a drug delivery system for the release of a drug in the gastrointestinal tract that provides, for example: (1) long-lasting drug efficacy (e.g., sustained release for about 24 hours); (2) site-specific delivery to multiple release sites (e.g., drug release in both the small intestine and colon); (3) reduced dosing frequency; and (4) drug release that is independent of the transit time of the system through the gastrointestinal tract. The present invention satisfies these and other needs.
- The present invention provides novel compositions and methods for the multiple release of a drug in the gastrointestinal tract of a subject through the use of an oral multiple drug release system. The drug release system provides, for example, site-specific release of the drug to both the upper and lower gastrointestinal tract in the form of multiple controlled doses for long-lasting efficacy, thereby reducing the drug dosing frequency. The release of the drug can be sustained, pulsated, or a combination thereof.
- As such, in one aspect, the present invention provides an oral multiple drug release composition, the composition comprising:
-
- (a) a drug core comprising a first drug and a saccharide;
- (b) an organic acid-soluble polymer, wherein the drug core is coated by the organic acid-soluble polymer;
- (c) a water-permeable, release-controlling polymer, wherein the organic acid-soluble polymer is coated by the water-permeable, release-controlling polymer; and
- (d) an enteric coat comprising a mixture of an enteric coating polymer and a second drug, wherein the water-permeable, release-controlling polymer is coated by the enteric coat,
wherein the composition releases the second drug in the small intestine and the first drug in the colon.
- In another aspect, the present invention provides an oral multiple drug release composition, the composition comprising:
-
- (a) a drug core comprising a first drug and a saccharide;
- (b) an organic acid-soluble polymer, wherein the drug core is coated by the organic acid-soluble polymer;
- (c) a drug layer comprising a second drug, wherein the organic acid-soluble polymer is coated by the drug layer;
- (d) a water-permeable, release-controlling polymer, wherein the drug layer is coated by the water-permeable, release-controlling polymer; and
- (e) an enteric coat comprising an enteric coating polymer, wherein the water-permeable, release-controlling polymer is coated by the enteric coat,
wherein the composition releases the second drug in the small intestine and the first drug in the colon.
- In yet another aspect, the present invention provides an oral multiple drug release composition, the composition comprising:
-
- (a) a drug core comprising a first drug;
- (b) a saccharide, wherein the drug core is coated by the saccharide;
- (c) an organic acid-soluble polymer, wherein the saccharide is coated by the organic acid-soluble polymer;
- (d) a water-permeable, release-controlling polymer, wherein the organic acid-soluble polymer is coated by the water-permeable, release-controlling polymer; and
- (e) an enteric coat comprising a mixture of an enteric coating polymer and a second drug, wherein the water-permeable, release-controlling polymer is coated by the enteric coat,
wherein the composition releases the second drug in the small intestine and the first drug in the colon.
- In still yet another aspect, the present invention provides an oral multiple drug release composition, the composition comprising:
-
- a first component, the first component comprising:
- (a) a drug core comprising a first drug;
- (b) a water-permeable, release-controlling polymer, wherein the drug core is coated by the water-permeable, release-controlling polymer; and
- (c) an enteric coat comprising an enteric coating polymer, wherein the water-permeable, release-controlling polymer is coated by the enteric coat; and
- a second component, the second component comprising:
- (a) a drug core comprising a second drug and a saccharide;
- (b) an organic acid-soluble polymer, wherein the drug core is coated by the organic acid-soluble polymer; and
- (c) an enteric coat comprising an enteric coating polymer, wherein the organic acid-soluble polymer is coated by the enteric coat,
wherein the first component releases the first drug in the small intestine and the second component releases the second drug in the colon.
- a first component, the first component comprising:
- Without being bound to any particular theory, the compositions described above release the drug contained in the drug core in the colon through the production by enterobacteria of an organic acid from the saccharide that dissolves the organic acid-soluble polymer.
- In a further aspect, the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
-
- orally administering to a subject a composition comprising:
- (a) a drug core comprising a first drug and a saccharide;
- (b) an organic acid-soluble polymer, wherein the drug core is coated by the organic acid-soluble polymer;
- (c) a water-permeable, release-controlling polymer, wherein the organic acid-soluble polymer is coated by the water-permeable, release-controlling polymer; and
- (d) an enteric coat comprising a mixture of an enteric coating polymer and a second drug, wherein the water-permeable, release-controlling polymer is coated by the enteric coat,
wherein the composition releases the second drug in the small intestine and the first drug in the colon.
- orally administering to a subject a composition comprising:
- In another aspect, the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
-
- orally administering to a subject a composition comprising:
- (a) a drug core comprising a first drug and a saccharide;
- (b) an organic acid-soluble polymer, wherein the drug core is coated by the organic acid-soluble polymer;
- (c) a drug layer comprising a second drug, wherein the organic acid-soluble polymer is coated by the drug layer;
- (d) a water-permeable, release-controlling polymer, wherein the drug layer is coated by the water-permeable, release-controlling polymer; and
- (e) an enteric coat comprising an enteric coating polymer, wherein the water-permeable, release-controlling polymer is coated by the enteric coat,
wherein the composition releases the second drug in the small intestine and the first drug in the colon.
- orally administering to a subject a composition comprising:
- In yet another aspect, the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
-
- orally administering to a subject a composition comprising:
- (a) a drug core comprising a first drug;
- (b) a saccharide, wherein the drug core is coated by the saccharide;
- (c) an organic acid-soluble polymer, wherein the saccharide is coated by the organic acid-soluble polymer;
- (d) a water-permeable, release-controlling polymer, wherein the organic acid-soluble polymer is coated by the water-permeable, release-controlling polymer; and
- (e) an enteric coat comprising a mixture of an enteric coating polymer and a second drug, wherein the water-permeable, release-controlling polymer is coated by the enteric coat,
- wherein the composition releases the second drug in the small intestine and the first drug in the colon.
- orally administering to a subject a composition comprising:
- In still yet another aspect, the present invention provides a method for the multiple release of a drug in the gastrointestinal tract, the method comprising:
-
- orally administering to a subject a composition comprising:
- a first component, the first component comprising:
- (a) a drug core comprising a first drug;
- (b) a water-permeable, release-controlling polymer, wherein the drug core is coated by the water-permeable, release-controlling polymer; and
- (c) an enteric coat comprising an enteric coating polymer, wherein the water-permeable, release-controlling polymer is coated by the enteric coat; and
- a second component, the second component comprising:
- (a) a drug core comprising a second drug and a saccharide;
- (b) an organic acid-soluble polymer, wherein the drug core is coated by the organic acid-soluble polymer; and
- (c) an enteric coat comprising an enteric coating polymer, wherein the organic acid-soluble polymer is coated by the enteric coat,
wherein the first component releases the first drug in the small intestine and the second component releases the second drug in the colon.
- a first component, the first component comprising:
- orally administering to a subject a composition comprising:
- In a further aspect, the present invention provides a method for providing a multiple drug release profile in a subject, the method comprising:
-
- administering to the subject an oral drug formulation comprising:
- (a) a first drug, wherein the first drug is released in the small intestine from about 0.5 hours to about 2 hours following administration; and
- (b) a second drug, wherein the second drug is released in the colon from about 6 hours to about 12 hours following administration.
- administering to the subject an oral drug formulation comprising:
- Other objects, features, and advantages of the present invention will be apparent to one of skill in the art from the following detailed description and figures.
-
FIG. 1 shows a diagram of a multiple release tablet of the present invention. -
FIG. 2 shows a diagram of a multiple drug release system of the present invention as the system passes through the gastrointestinal tract. -
FIG. 3 shows a diagram of a multiple release tablet of the present invention which contains a separate drug layer. -
FIG. 4 shows a diagram of a multiple release tablet of the present invention comprising a compressed saccharide layer. -
FIG. 5 shows a diagram of a capsule of the present invention which contains an enteric coated tablet and a colon-targeted tablet. -
FIG. 6 shows a manufacturing flowchart for producing the multiple release tablet ofFIG. 1 . -
FIG. 7 shows a manufacturing flowchart for producing the multiple release tablet ofFIG. 3 . -
FIG. 8 shows a manufacturing flowchart for producing the multiple release tablet ofFIG. 4 . -
FIG. 9 shows a manufacturing flowchart for producing the colon-targeted tablet in the capsule ofFIG. 5 . -
FIG. 10 shows a representative pharmacokinetic profile for the capsule of the present invention which contains an enteric coated tablet and a colon-targeted tablet. -
FIG. 11 shows a comparison of the in vivo drug release profile (FIG. 11A ) and the pharmacokinetic profile (FIG. 11B ) of a standard colon drug delivery system versus the multiple drug release system of the present invention. - As used herein, the following terms have the meanings ascribed to them unless specified otherwise.
- The terms “system” and “composition” are used interchangeably herein to refer to an oral multiple drug release composition of the present invention.
- The term “lower gastrointestinal tract” refers to the part of the gastrointestinal tract from the ileum to the colon. The term “colon” refers to the part of the large intestine from the cecum to the rectum. The term “cecum” refers to a cecal pouch at the beginning of the large intestine into which the ileum opens from one side and which is continuous with the colon. The term “upper gastrointestinal tract” refers to the part of the gastrointestinal tract from the stomach to the jejunum. The term “small intestine” refers to the part of the intestine that lies between the stomach and colon, and consists of the duodenum, jejunum, and ileum.
- The term “multiple drug release system” or “multiple drug release composition” refers to either a multiple-pulsated drug release system wherein the drug is released as pulses at multiple sites in the gastrointestinal tract (e.g., stomach, small intestine, and colon) or a sustained drug release system wherein the continued release of drug occurs at multiple sites in the gastrointestinal tract as the system transits through the gastrointestinal tract and lasts for a period of from about 0.5 hours to about 24 hours. The term “multiple release” or “multiple drug release” refers to either the multiple-pulsated drug release or the sustained drug release that is provided by a multiple drug release system.
- The term “drug core” refers to the innermost layer of the multiple release system of the present invention and comprises one of the following: (1) a first drug; (2) a mixture of a first drug and a saccharide; or (3) a first drug and a saccharide, wherein the first drug is coated by the saccharide. Optionally, the drug core can be coated by a water-permeable, release-controlling polymer such as HPMC. Optionally, the drug core can contain a buffering agent.
- The present invention provides novel compositions and methods for the multiple release of a drug in the gastrointestinal tract of a subject through the use of an oral multiple drug release system. The drug release system provides, for example, site-specific release of the drug to both the upper and lower gastrointestinal tract in the form of multiple controlled doses for long-lasting efficacy, thereby reducing the drug dosing frequency. In certain aspects, the drug release can be sustained release, pulsated release, or a combination of sustained release and pulsated release.
- In particular, for drugs with either short or long local and/or pharmacological activity after administration, the systems of the present invention provide the advantage of delivering the drug to more than one specific site in the gastrointestinal tract. As such, the multiple release of the drug facilitates its site-specific absorption and maintains its efficacy such as for example for a prolonged period of time (e.g., about 24 hours), resulting in the use of less amounts of the drug. Further, the site-specific release of the drug permits the delivery of a high concentration of the drug to multiple sites in the gastrointestinal tract where it can be efficiently absorbed while avoiding unfavorable side-effects.
- The systems of the present invention exploit the advantages of a colon-specific drug delivery system, which for example utilize the colonic enterobacteria and their corresponding enzymatic activities, and incorporate additional drug layers for multiple release at specific sites in the gastrointestinal tract. As such, the systems provide the release of drug, first in the small intestine, and then in the colon. The first drug release in the small intestine establishes an effective level of drug, while the second drug release in the colon maintains the effective level of drug for about 24 hours following administration. Since the degradation of polysaccharides by enterobacteria occurs only in the colon, this assures that the dissolution of the organic acid-soluble polymer and the second drug release only occurs once the system has reached the colon.
- The drug release patterns in the present invention can be designed either as a pulsated release, sustained release, or combinations thereof. The actual design of any particular drug will depend in-part on the pharmacodynamic (i.e., duration of activity) and/or the pharmacokinetic (i.e., elimination half-life from plasma) relationship of the particular drug. For example, in the case of a drug requiring a 24-hour efficacy in its pharmacological effect, the drug would be beneficial and advantageous to the patient if the design and delivery of such drug is sustained-release. A drug such as acyclovir with a biological half-life of 2.5 hours would be a good candidate, for instance, to be a sustained-release dose compared to its current 5 times per day dose. Preferred candidates for pulsated-release can be, for instance, an ion channel blocker (e.g., omeprazole) or a H2 receptor inhibitor (e.g., famotidine), which have short biological half-lives but a long duration in their pharmacological action. Such drugs would be better designed in a multiple pulsated release formulation to maximize their pharmacological effects.
-
FIG. 1 shows a diagram of themultiple release system 100 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives. - In one aspect, with reference to
FIG. 1 , the present invention provides an oraldrug delivery system 100. Preferably, the drug delivery system provides for the multiple release of a drug in the gastrointestinal tract. In one embodiment, thesystem 100 comprises adrug core 105, which includes a mixture of a first drug 106 and a saccharide 107, such as lactulose. Thesystem 100 includes an organic acid-soluble polymer 110, wherein thedrug core 105 is coated by the organic acid-soluble polymer 110. In this embodiment, thesystem 100 includes a water-permeable, release-controllingpolymer 111, wherein the organic acid-soluble polymer 110 is coated by the water-permeable, release-controllingpolymer 111. Thesystem 100 further includes anenteric coat 120. Theenteric coat 120 comprises a mixture of an enteric coating polymer 122 and a second drug 125, wherein the water-permeable, release-controllingpolymer 111 is coated by theenteric coat 120. In operation, thesystem 100 releases the second drug 125 contained in theenteric coat 120 in the small intestine and then releases the first drug 106 contained in thedrug core 105 in the colon through the production by enterobacteria of an organic acid from the saccharide 107 that dissolves the organic acid-soluble polymer 110. - In an alternative embodiment, the
system 100 comprises adrug core 105 including a first drug 106 and a saccharide 107, wherein the first drug 106 is coated by a saccharide 107. Optionally, a water-permeable, release-controlling polymer can be included in thedrug core 105 as a layer in-between the first drug 106 and the saccharide 107 to, e.g., permit the sustained release of the first drug 106 and/or to prevent any interaction between the first drug 106 and the saccharide 107. Thisdrug core 105 is then coated by the organic acid-soluble polymer 110, followed by the water-permeable, release-controllingpolymer 111, and then theenteric coat 120. Alternatively, a water-permeable, release-controlling polymer can be admixed with the first drug 106, and, optionally, coated by the same or different water-permeable, release-controlling polymer. - In certain instances, the first drug 106 and the second drug 125 are either the same drug or are different drugs. In certain other instances, the first drug 106 and/or the second drug 125 is a combination of at least two drugs. In one embodiment, the first drug 106 and the second drug 125 are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H2-receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. Preferably, the drug is a proton pump inhibitor. Suitable proton pump inhibitors include, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. In an additional embodiment, the
drug core 105 and/or theenteric coat 120 further comprise a buffering agent. With proton pump inhibitors, the pulsated release pattern is preferred. - In another embodiment, the saccharide 107 is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof. In a preferred embodiment, the saccharide 107 is lactulose. In certain instances, the saccharide 107 is present in an amount of from about 10% to about 90% w/w. In yet another embodiment, the organic acid-
soluble polymer 110 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof. Preferably, the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E). In certain instances, the organic acid-soluble polymer 110 is present in an amount of from about 2.5% to about 40.0% w/w. In a preferred embodiment, the organic acid-soluble polymer 110 dissolves at a pH lower than about 6. - In still yet another embodiment, the water-permeable, release-controlling
polymer 111 is selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof. In a preferred embodiment, the water-permeable, release-controllingpolymer 111 is HPMC. In a further embodiment, the enteric coating polymer 122 is selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof. - In certain instances, the
system 100 further comprises an outer drug coat having a third drug, wherein theenteric coat 120 is coated by the outer drug coat and thesystem 100 releases the third drug contained in the outer drug coat in the stomach. In one embodiment, the outer drug coat further comprises a buffering agent. In a preferred embodiment, thesystem 100 is in the form of a tablet or granule. - In a particularly preferred embodiment, the present invention provides an oral
drug delivery system 100, wherein the drug core comprises a mixture of a first proton pump inhibitor and lactulose, the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer, the water-permeable, release-controlling polymer is HPMC, and the enteric coat comprises a mixture of an enteric coating polymer and a second proton pump inhibitor. -
FIG. 2 shows a diagram of a particular embodiment of the multiple drug release system of the present invention as the system passes through the gastrointestinal tract. In this diagram, the system comprises a drug core (C), which includes a first drug and the saccharide lactulose. An organic acid-soluble polymer (B) coats the drug core, and an enteric coat (A) comprising an enteric coating polymer and a second drug coats the organic acid-soluble polymer. The enteric coat protects the system as it transits through the acidic (i.e., pH 1-3.5) environment of the stomach. However, upon reaching the less acidic (i.e., pH 6-7) environment of the small intestine, the enteric coat dissolves, thereby releasing the second drug into the small intestine. In fasted humans, this initial release of drug occurs at about 0.5 to about 1 hour after administration. In fed humans, this initial release of drug occurs at about 1.5 to about 2 hours after administration. - Following the dissolution of the enteric coat and the initial release of drug, the system continues through the small intestine and into the colon. During this transit, the organic acid-soluble polymer, which dissolves at a pH lower than about 6, swells and allows enough water to permeate into the drug core to dissolve the saccharide present therein. The dissolved saccharide diffuses through the organic acid-soluble polymer into the lumen of the colon, where it is now accessible to enterobacteria. The enterobacteria then enzymatically degrade the saccharide into an organic acid, thereby lowering the pH of that area of the colon to a pH lower than about 6. The lowered pH surrounding the system dissolves the organic acid-soluble polymer and releases the first drug contained in the drug core in the colon. In fasted humans, this subsequent release of drug occurs at about 6 to about 9 hours after administration. In fed humans, this subsequent release of drug occurs at about 7 to about 10 hours after administration. Complete disintegration of the drug core occurs within the colon at about 8 to about 10 hours after administration in fasted humans and about 9 to about 11 hours after administration in fed humans. Therefore, as the timing of drug release in the gastrointestinal tract varies depending on whether a subject has consumed food, the drug release profile can be changed by fasting or feeding the subject prior to system administration.
- As such, the system shown in
FIG. 2 provides an immediate site-specific release of drug in the small intestine and a later site-specific release of drug in the colon. While the initial release of drug in the small intestine provides an effective, therapeutic level of drug, the subsequent pulse of drug in the colon maintains and can sustain an effective drug level for up to about 24 hours after administration. Such drug delivery systems permit a more controlled and consistent pharmacological effect for drugs for a longer duration, without unwanted side-effects. In particular, the multiple release systems of the present invention provide for the long-lasting efficacy of drugs such as proton pump inhibitors, whose pharmacological effects decline significantly after half a day following their administration. -
FIG. 3 shows a diagram of themultiple release system 300 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives. - In another aspect, with reference to
FIG. 3 , the present invention provides an oraldrug delivery system 300. Preferably, the drug delivery system provides for the multiple release of a drug in the gastrointestinal tract. Thesystem 300 includes adrug core 302 comprising a first drug 304 and a saccharide 310. Thesystem 300 also includes an organic acid-soluble polymer 311, wherein thedrug core 302 is coated by the organic acid-soluble polymer 311. Thesystem 300 further includes adrug layer 315 comprising a second drug 317, wherein the organic acid-soluble polymer 311 is coated by thedrug layer 315. In addition, thesystem 300 includes a water-permeable, release-controllingpolymer 325, wherein thedrug layer 315 is coated by the water-permeable, release-controllingpolymer 325. Thesystem 300 further includes an enteric coat 350 comprising an enteric coating polymer 355, wherein the water-permeable, release-controllingpolymer 325 is coated by the enteric coat 350. In operation, thesystem 300 releases the second drug 317 contained in thedrug layer 315 in the small intestine and then releases the first drug 304 contained in thedrug core 302 in the colon through the production by enterobacteria of an organic acid from the saccharide 310 that dissolves the organic acid-soluble polymer 311. - In an alternative embodiment, the
system 300 comprises adrug core 302 including a first drug 304 and a saccharide 310, wherein the first drug 304 is coated by a saccharide 310. Optionally, a water-permeable, release-controlling polymer can be included in thedrug core 302 as a layer in-between the first drug 304 and the saccharide 310 to, e.g., permit the sustained release of the first drug 304 and/or to prevent any interaction between the first drug 304 and the saccharide 310. Thisdrug core 302 is then coated by the organic acid-soluble polymer 311, followed by thedrug layer 315, then the water-permeable, release-controllingpolymer 325, and then the enteric coat 350. Alternatively, a water-permeable, release-controlling polymer can be admixed with the first drug 304, and, optionally, coated by the same or different water-permeable, release-controlling polymer. - In certain instances, the first drug 304 and the second drug 317 are either the same drug or are different drugs. In certain other instances, the first drug 304 and/or the second drug 317 is a combination of at least two drugs. In one embodiment, the first drug 304 and the second drug 317 are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H2-receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. Preferably, the drug is a proton pump inhibitor including, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. In an additional embodiment, the
drug core 302 and/or thedrug layer 315 further comprise a buffering agent. - In another embodiment, the saccharide 310 is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof. In a preferred embodiment, the saccharide 310 is lactulose. In certain instances, the saccharide 310 is present in an amount of from about 10% to about 90% w/w. In yet another embodiment, the organic acid-
soluble polymer 311 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof. Preferably, the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E). In certain instances, the organic acid-soluble polymer 311 is present in an amount of from about 2.5% to about 40.0% w/w. In a preferred embodiment, the organic acid-soluble polymer 311 dissolves at a pH lower than about 6. - In still yet another embodiment, the water-permeable, release-controlling
polymer 325 is selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof. In a preferred embodiment, the water-permeable, release-controllingpolymer 325 is HPMC. In a further embodiment, the enteric coating polymer 355 is selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof. - In certain instances, the enteric coat 350 comprises a mixture of the enteric coating polymer 355 and a third drug. In an additional embodiment, the enteric coat 350 further comprises a buffering agent. In an alternative embodiment, the
system 300 further comprises an outer drug coat having a third drug, wherein the enteric coat 350 is coated by the outer drug coat and thesystem 300 releases the third drug contained in the outer drug coat in the stomach. In a further embodiment, the outer drug coat further comprises a buffering agent. - In a preferred embodiment, the
system 300 is in the form of a tablet or granule. - In a particularly preferred embodiment, the present invention provides an oral
drug delivery system 300, wherein the drug core comprises a mixture of a first proton pump inhibitor and lactulose, the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer, the drug layer comprises a second proton pump inhibitor, the water-permeable, release-controlling polymer is HPMC, and the enteric coat comprises an enteric coating polymer. -
FIG. 4 shows a diagram of themultiple release system 400 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives. - In yet another aspect, with reference to
FIG. 4 , the present invention provides an oraldrug delivery system 400. Preferably, the drug delivery system provides for the multiple release of a drug in the gastrointestinal tract. In one embodiment, thesystem 400 comprises adrug core 405, which includes a first drug 406 coated by a water-permeable, release-controllingpolymer 408, and further coated by asaccharide 417, such as lactulose, using a compressed coating manufacturing process. Thesystem 400 also includes an organic acid-soluble polymer 420, wherein thedrug core 405 is coated by the organic acid-soluble polymer 420. Thesystem 400 further includes a water-permeable, release-controllingpolymer 425, wherein the organic acid-soluble polymer 420 is coated by the water-permeable, release-controllingpolymer 425. In addition, thesystem 400 includes anenteric coat 430. Theenteric coat 430 comprises a mixture of an enteric coating polymer 432 and a second drug 435, wherein the water-permeable, release-controllingpolymer 425 is coated by theenteric coat 430. In operation, thesystem 400 releases the second drug 435 contained in theenteric coat 430 in the small intestine and then releases the first drug 406 contained in thedrug core 405 in the colon through the production by enterobacteria of an organic acid from thesaccharide 417 that dissolves the organic acid-soluble polymer 420. - In certain instances, the first drug 406 and the second drug 435 are either the same drug or are different drugs. In certain other instances, the first drug 406 and/or the second drug 435 is a combination of at least two drugs. In one embodiment, the first drug 406 and the second drug 435 are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H2-receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. Preferably, the drug is a proton pump inhibitor such as, for example, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. In an additional embodiment, the
drug core 405 and/or theenteric coat 430 further comprise a buffering agent. - In another embodiment, the
saccharide 417 is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof. In a preferred embodiment, thesaccharide 417 is lactulose. In certain instances, thesaccharide 417 is present in an amount of from about 10% to about 90% w/w. In yet another embodiment, the organic acid-soluble polymer 420 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof. Preferably, the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E). In certain instances, the organic acid-soluble polymer 420 is present in an amount of from about 2.5% to about 40.0% w/w. In a preferred embodiment, the organic acid-soluble polymer 420 dissolves at a pH lower than about 6. - In still yet another embodiment, the water-permeable, release-controlling
polymers 408 and/or 425 are selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof. Preferably, the water-permeable, release-controllingpolymer 408 and/or 425 is HPMC. In a further embodiment, the enteric coating polymer 432 is selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof. - In certain instances, the
system 400 further comprises an outer drug coat having a third drug, wherein theenteric coat 430 is coated by the outer drug coat and thesystem 400 releases the third drug contained in the outer drug coat in the stomach. In an additional embodiment, the outer drug coat further comprises a buffering agent. In a preferred embodiment, thesystem 400 is in the form of a tablet or granule. -
FIG. 5 shows a diagram of themultiple release system 500 of the present invention. This diagram is merely an illustration and should not limit the scope of the claims herein. One of ordinary skill in the art will recognize other variations, modifications, and alternatives. - In still yet another aspect, with reference to
FIG. 5 , the present invention provides an oraldrug delivery system 500. Preferably, the drug delivery system provides for the multiple release of a drug in the gastrointestinal tract. Thesystem 500 has two components: a first component A (i.e., enteric coated tablet) and a second component B (i.e., colon-targeted tablet). In one embodiment, the first component A comprises adrug core 505, which includes a first drug 506. Thedrug core 505 is coated by a water-permeable, release-controllingpolymer 507. The first component A also includes anenteric coat 508 comprising an enteric coating polymer 509, wherein the water-permeable, release-controllingpolymer 507 is coated by theenteric coat 508. - In another embodiment, the second component B comprises a
drug core 515, which includes a second drug 516 and asaccharide 518, such as lactulose, wherein the second drug 516 is coated by thesaccharide 518 using a compressed coating manufacturing process. Optionally, a water-permeable, release-controlling polymer is included in thedrug core 515 as a layer in-between the second drug 516 and thesaccharide 518. In an alternative embodiment, thedrug core 515 comprises a mixture of the second drug 516 and thesaccharide 518. The second component B also includes an organic acid-soluble polymer 520, wherein thesaccharide 518 is coated by the organic acid-soluble polymer 520. The second component B further includes a water-permeable, release-controllingpolymer 525, wherein the organic acid-soluble polymer 520 is coated by the water-permeable, release-controllingpolymer 525. In addition, the second component B includes anenteric coat 530. Theenteric coat 530 comprises an enteric coating polymer 532, wherein the water-permeable, release-controllingpolymer 525 is coated by theenteric coat 530. In operation, thesystem 500 releases the first drug 506 contained in thedrug core 505 of the first component A in the small intestine and then releases the second drug 516 contained in thedrug core 515 of the second component B in the colon through the production by enterobacteria of an organic acid from thesaccharide 518 that dissolves the organic acid-soluble polymer 520. In a preferred embodiment, the first and second components are inside a capsule. - In certain instances, the first drug 506 and the second drug 516 are either the same drug or are different drugs. In certain other instances, the first drug 506 and/or the second drug 516 is a combination of at least two drugs. In one embodiment, the first drug 506 and the second drug 516 are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H2-receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. Preferably, the drug is a proton pump inhibitor. Suitable proton pump inhibitors include, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. In an additional embodiment, the
drug core 505 of the first component A and/or thedrug core 515 of the second component B further comprise a buffering agent. - In another embodiment, the
saccharide 518 is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof. In a preferred embodiment, thesaccharide 518 is lactulose. In certain instances, thesaccharide 518 is present in an amount of from about 10% to about 90% w/w. In yet another embodiment, the organic acid-soluble polymer 520 is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof. Preferably, the dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E). In a further embodiment, the organic acid-soluble polymer 520 is present in an amount of from about 2.5% to about 40.0% w/w. In a preferred embodiment, the organic acid-soluble polymer 520 dissolves at a pH lower than about 6. - In yet another embodiment, the water-permeable, release-controlling
polymers 507 and/or 525 are selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof. In a preferred embodiment, the water-permeable, release-controllingpolymer 507 and/or 525 is HPMC. In a further embodiment, theenteric coating polymers 508 and/or 530 are selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof. - In certain instances, the
enteric coat 530 in the second component B comprises a mixture of the enteric coating polymer 532 and a third drug. In an additional embodiment, theenteric coat 530 further comprises a buffering agent. In an alternative embodiment, the first component A, the second component B, or the combination thereof further comprises an outer drug coat having a third drug, wherein theenteric coats 508 and/or 530 are further coated by the outer drug coat and thesystem 500 releases the third drug contained in the outer drug coat in the stomach. In another embodiment, the outer drug coat further comprises a buffering agent. - In further aspects, the present invention provides methods for the multiple release of drugs in the gastrointestinal tract by orally administering to a subject any of the above-described multiple release systems. Preferably, the first drug and the second drug are the same drug and the concentration of the first drug and the second drug in the plasma is sustained for a period of about 24 hours following administration.
- In another aspect, the present invention provides a method for providing a multiple drug release profile in a subject, the method comprising:
- administering to the patient an oral drug formulation comprising:
-
- (a) a first drug, wherein the first drug is released in the small intestine from about 0.5 hours to about 2 hours following administration; and
- (b) a second drug, wherein the second drug is released in the colon from about 6 hours to about 12 hours following administration.
- The oral drug delivery systems of the present invention are comprised of the following elements: at least one drug, a saccharide, an organic acid-soluble polymer, a water-permeable, release-controlling polymer, and an enteric coat. Each of these elements will be described in greater detail below.
- Any drug having a pharmaceutical, pharmacological, or therapeutic effect is suitable for use in the systems of the present invention. Representative drugs include, but are not limited to, proton pump inhibitors, peptides, proteins, hormones, anti-inflammatory agents, antitussive expectorants, vasodilators, analgesics, histamine H2-receptor antagonists, antibiotics, antiepileptic agents, antigout agents, antitumor agents, antidiabetic agents, antipsychotic agents, prostatomegaly agents, antiasthma agents, drugs with short pharmacokinetic half-lives, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. In addition to these drugs, other active agents that are efficiently absorbed by both the upper and lower gastrointestinal tract are suitable for use in the present invention.
- Suitable proton pump inhibitors include, without limitation, omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof. With proton pump inhibitors, the pulsated release pattern is preferred.
- Suitable peptides, proteins, and hormones include, without limitation, insulin, calcitonin, angiotensin, vasopressin, desmopressin, LH-RH (luteinizing hormone-releasing hormone), somatostatin, glucagon, oxytocin, gastrin, ciclosporin, somatomedin, secretin, h-ANP (human artial natriuretic peptide), ACTH (adrenocorticotropic hormone), MSH (melanocyte-stimulating hormone), β-endorphin, muramyl dipeptide, enkephalin, neurotensin, bombesin, VIP (vasoacive intestinal polypeptide), CCK-8 (cholecystokinin-8), PTH (parathyroid hormone), CGRP (calcitonin gene-related peptide), TRH (thyrotropin-releasing hormone), endocerine, hGH (human growth hormone), cytokines (e.g., interleukin, interferon, colony-stimulating factor, and tumor necrosis factor), testosterone, methyltestosterone, progesterone, estradiol, derivatives thereof, and combinations thereof.
- The above peptides, proteins, and hormones include not only naturally occurring substances but pharmacologically active derivatives thereof and analogues thereof. For example, calcitonin includes not only naturally occurring products such as salmon calcitonin, human calcitonin, porcine calcitonin, eel calcitonin, and fowl calcitonin, but also includes analogues, such as [Asul,7]-eel calcitonin (Elcatonin). Further, insulin includes human insulin, porcine insulin, bovine insulin, as well as their analogues, such as recombinant insulin.
- Suitable anti-inflammatory agents include, without limitation, drugs that are effective against diseases and disorders of the gastrointestinal tract, such as Crohn's disease, ulcerative colitis, irritable colitis, and colon cancer. Examples of such drugs include salazosulfapyridine, 5-aminosalicylic acid, cortisone acetate, triamcinolone, dexamethasone, budesonide, tegafur, fluorouracil, derivatives thereof, and combinations thereof. Steroidal and non-steroidal anti-inflammatory agents are also within the scope of the present invention.
- Other drugs suitable for use in the present invention include antitussive expectorants such as theophylline; vasodilators such as nicardipine hydrochloride and nifedipine; coronary vasodilators such as isosorbide nitrite; and antipyretic analgesics such as acetaminophen, indomethacin, hydrocortisone, ibuprofen, salazopyrin, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable histamine H2-receptor antagonists include, without limitation, famotidine, cimetidine, ranitidine, roxatidine acetate, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antibiotics include, without limitation, tetracycline, oxytetracycline, metacycline, doxycycline, minocycline, erythromycin, lincomycin, penicillin G, clindamycin, kanamycin, chloramphenicol, fradiomycin, streptomycin, norfloxacin, ciprofloxacin, ofloxacin, grepafloxacin, levofloxacin, sparfloxacin, ampicillin, carbenicillin, methicillin, cephalosporins, vancomycin, bacitracin, gentamycin, fusidic acid, ciprofloxin and other quinolones, sulfonamides, trimethoprim, dapsone, isoniazid, teicoplanin, avoparcin, synercid, virginiamycin, piperacillin, ticarcillin, cefepime, cefpirome, rifampicin, pyrazinamide, enrofloxacin, amikacin, netilmycin, imipenem, meropenem, inezolidcefuroxime, ceftriaxone, cefadroxil, cefazoline, ceftazidime, cefotaxime, roxithromycin, cefaclor, cefalexin, cefoxitin, amoxicillin, co-amoxiclav, mupirocin, cloxacillin, co-trimoxazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antiepileptic agents include, without limitation, ethosuximide, sodium valproate, acetazolamide, meprobamate, and the like, as well as antiparkinsonism drugs such as chlorzoxazone, levodopa, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antigout agents include, without limitation, allopurinol, colchicines, benzbromarone, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antitumor agents include, without limitation, 5-fluorouracil, uracil, cytarabine, floxuridine, busulfan, actinomycin, bleomycin, mitomycin, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antidiabetic agents include, without limitation, glibenclamide, epalrestat, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antipsychotic agents include, without limitation, emonaprode, diazepam, nitrazepam, flunitrazepam, lorazepam, prazepam, fluidiazepam, clonazepam, chlorpromazine hydrochloride, reserpine, clofluperol, trifluperidol, haloperidol, moperone, bromperidom, etizolam, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable prostatomegaly agents include, without limitation, chlormadinone acetate, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- Suitable antiasthma agents include, without limitation, azelastine, procaterol, terrenadine, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
- In order to make these drugs more easily absorbable in the colon, one or more pharmaceutically acceptable additives can be added to the drug. Suitable additives include, without limitation, surface active agents such as sucrose fatty acid esters (e.g., Sugar Ester L1695, produced by Mitsubishi Chemical Foods Co., Ltd.), sodium laurylsulfate, polyoxyethylene hydrogenated castor oil (e.g., HCO-60), and polyoxyethylene sorbitan higher fatty acid esters (e.g., Tween 80); cholic acids and salts thereof such as sodium glycocholate and chenodeoxycholic acid; organic acids and salts thereof such as citric acid, tartaric acid, benzoic acid, and capric acid; dissolution aids such as β-cyclodextrin; pH adjusters such as sodium citrate, meglumine, and MgO; trypsin inhibitors such as camostat mesilate; enzyme inhibitors such as aprotinin; anti-inflammatory agents such as salicylic acid, aspirin, sodium dichlofenac; aromas such as peppermint oil; and antibiotics such as bacitracin and amphotericin B.
- Regardless of whether a drug is acidic or basic, the pH of the system can be adjusted at the time of drug dissolution, e.g., by incorporating a buffering agent such as an organic acid or a basic substance into one or more drug-containing layers. The organic acids include citric acid and tartaric acid, and the basic substances include solid bases (e.g., MgO), basic amino-sugars (e.g., meglumine), and basic amino acids (e.g., lysine and arginine). Such buffering agents can be mixed with the drug and saccharide to form the drug core, with the drug to form the drug layer, with the drug to form the outer drug coat, or with the enteric coating polymer and the drug to form the enteric coat.
- For a drug that has low solubility at
pH 6 or lower, a dissolution aid can be added. Any dissolution aid is suitable for use, as long as it is pharmaceutically acceptable. Examples include, without limitation, nonionic surface active agents such as sucrose fatty acid esters, glycerol fatty acid esters, sorbitan fatty acid esters (e.g., sorbitan trioleate), polyethylene glycol, polyoxyethylene hydrogenated castor oil, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl ethers, methoxypolyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyethylene glycol fatty acid esters, polyoxyethylene alkylamines, polyoxyethylene alkyl thioethers, polyoxyethylene polyoxypropylene copolymers, polyoxyethylene glycerol fatty acid esters, pentaerythritol fatty acid esters, propylene glycol monofatty acid esters, polyoxyethylene propylene glycol monofatty acid esters, polyoxyethylene sorbitol fatty acid esters, fatty acid alkylolamides, and alkylamine oxides; bile acid and salts thereof (e.g., chenodeoxycholic acid, cholic acid, deoxycholic acid, dehydrocholic acid and salts thereof, and glycine or taurine conjugate thereof); ionic surface active agents such as sodium laurylsulfate, fatty acid soaps, alkylsulfonates, alkylphosphates, ether phosphates, fatty acid salts of basic amino acids; triethanolamine soap, and alkyl quaternary ammonium salts; and amphoteric surface active agents such as betaines and aminocarboxylic acid salts. - The saccharides used in the present invention, which are degraded by enterobacteria in the lower gastrointestinal tract to generate an organic acid, are not limited by whether they are monosaccharides or polysaccharides as long as they are rapidly degraded by enterobacteria to produce the organic acid. Disaccharides or polysaccharides which are not degraded by digestive enzymes in the gastrointestinal tract or not absorbed directly from the gastrointestinal tract are preferred. It is preferable for the saccharide to be rapidly dissolved and degraded to produce the organic acid. Accordingly, those saccharides having high water solubility are preferred. Specifically, the amount of water which is required to dissolve a 1 g portion of saccharide is preferably less than about 5 ml; that is, saccharides having a water solubility of higher than about 20% weight/volume (w/v) are preferred. Examples of such saccharides include, without limitation, lactulose, raffinose, cellobiose, stachyose, fructooligosaccharides (i.e., synthetic disaccharides which show a high rate of degradation by enterobacteria), combinations thereof, and derivatives thereof (e.g., sugar alcohols such as mannitol, sorbitol, xylitol, and maltitol). The fructooligosaccharides preferably include lactosucrose, such as Nyuka Oligo LS-55p (Hayashibara Syoji K.K.). In addition to saccharides, other carbohydrates are also suitable for use in the systems of the present invention.
- Saccharides which are degraded by digestive enzymes or directly absorbed from the gastrointestinal tract can be employed in a similar manner. Such saccharides are prevented from degradation in the stomach by the presence of an enteric coat and are prevented from degradation in the small intestine by the presence of an organic acid-soluble polymer coat. Examples of saccharides of this type include, without limitation, sucrose, glucose, xylose, fructose, maltose, galactose, and combinations thereof.
- Any amount of saccharide is suitable for degradation by enterobacteria to produce an organic acid. In particular, the saccharide is present in an amount of from about 1% to about 99.9% w/w, preferably from about 5% to about 99.9% w/w, and more preferably from about 10% to about 90% w/w.
- Any organic acid-soluble polymer material is suitable for use in the systems of the present invention as long as it is pharmaceutically acceptable. Polymers which dissolve at a pH lower than about 6 are preferable, and those that dissolve at about pH 5.5 or lower are more preferable. Specific examples of such polymers include, without limitation, a dimethylaminoethyl methacrylate-methyl methacrylate copolymer such as a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E), polyvinyl acetal diethylaminoacetate (e.g., AEA; Sankyo Co., Ltd.), chitosan, and combinations thereof. Preferably, the organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer (e.g., Eudragit E). The organic acid-soluble polymer is present in an amount of from about 1% to about 50% w/w, preferably from about 2.5% to about 40% w/w.
- The water permeable, release-controlling polymer material serves as a barrier layer between the organic acid-soluble polymer coat and the enteric coat to prevent any interaction between these polymer coats. The polymer can also serve as a protecting layer for controlling the release of the organic acid-generating saccharide from the drug core or for preventing diffusion of the drug(s) therein. Suitable examples of water permeable, release-controlling polymers include, without limitation, a copolymer of ethyl acrylate, methyl methacrylate, and trimethylammonioethyl methacrylate chloride (e.g., Eudragit R S; Röhm GmbH), ethyl cellulose (e.g., Ethocel; Dow Chemical Co., Ltd.), hydroxypropyl-methylcellulose (HPMC) (e.g., TC-5; Shin-Etsu Chemical Co., Ltd.), hydroxypropylcellulose (e.g., HPC; Nippon Soda Co., Ltd.), polyethylene oxide, polyvinylpyrrolidone, and combinations thereof. Preferably, the water permeable, release-controlling polymer is hydroxypropylmethylcellulose. The polymer can further comprise a plasticizer such as triacetin,
Macrogol 400, triethyl citrate,Tween 80, castor oil, etc. The water permeable, release-controlling polymer is present in an amount of from about 1% to about 50% w/w, preferably from about 1% to about 20% w/w, and more preferably from about 1% to about 10% w/w. - The enteric coating polymer material, i.e., the polymer which does not dissolve in the stomach but in the small intestine, can be any pharmaceutically-acceptable polymer material. In particular, polymer materials which dissolve at a pH of about 6 or higher are preferred. Examples of suitable enteric coating polymers include, without limitation, a methyl methacrylate-methacrylic acid (1:1) copolymer (e.g., Eudragit L; Röhm & Haas Co.), a methyl methacrylate-methacrylic acid (2:1) copolymer (e.g., Eudragit S; Röhm & Haas Co.), an ethyl acrylate-methacrylic acid (1:1) copolymer (e.g., Eudragit LD-55; Röhm & Haas Co.), hydroxypropylmethylcellulose phthalate (JPXII), cellulose acetate phthalate (JPXII), shellac (JPXII), and combinations thereof. Preferably, the enteric coating polymer is a methyl methacrylate-methacrylic acid (1:1) copolymer (e.g., Eudragit L). The polymer can further comprise a plasticizer such as triacetin,
Macrogol 400, triethyl citrate,Tween 80, castor oil, etc., as well as minerals such as magnesium silicate hydroxide (i.e., talc). The enteric coating polymer is present in an amount of from about 1% to about 50% w/w, preferably from about 1% to about 20% w/w, more preferably from about 1% to about 10% w/w. In a preferred embodiment, the enteric coat comprises an enteric coating polymer (e.g., Eudragit L100), triethyl citrate, magnesium silicate hydroxide (i.e., talc), and optionally, a drug and a buffering agent. - In addition to the elements described above, the oral drug delivery systems of the present invention can also comprise pharmaceutically acceptable excipients such as carriers, binders, stabilizers, bulking agents, preserving agents (e.g., methyl-, ethyl-, and propyl-hydroxy-benzoates, butylated hydroxytoluene, butylated hydroxyanisole), sweetening agents, flavoring agents, coloring agents, lubricating agents, wetting agents, emulsifying agents, solubilizing agents, suspending agents, and disintegrating agents (e.g., crospovidone, croscarmellose sodium). The system can be provided in any dosage form suitable for oral administration such as a tablet, a capsule, a pellet, a granule, fine granules, a lozenge, and a powder. Preferably, the system is administered in the form of a tablet or capsule.
- Bacteria which live within the body are abundant in the oral cavity, rare in the stomach due to the acidicity, and also scarce in the upper part of the small intestine. The level of enterobacteria increases drastically in the order of the ileum, the cecum, and the colon. It has been reported that saccharides which remain undigested are degraded by enterobacteria residing in the part of the gastrointestinal tract from the cecum to the ascending colon, making that part weakly acidic (e.g., pH of about 5) (Davis, Novel Drug Delivery and its Therapeutic Application, p. 89-101, Eds. L. F. Prescott, W. S. Nimmo; John Willey & Sons, New York).
- A remarkable feature observed is an increase in anaerobic bacteria from the ileum to the colon. In humans, Bacteroidaceae, Bifidobacterium sp., Eubacterium sp., Clostridium sp., and Peptococcaceae constitute the main microbial flora, but Enterobacteriaceae sp., Streptococcus sp., Lactobacillus sp., and Veillonella sp. are also present. The intestinal microbial flora does not change within a healthy individual but varies among individuals or with stress, diet, or disease. The variation is limited to specific enterobacteria and is not so large that all the microbial flora contributing to degradation of saccharides cannot be detected. When the enterobacteria absorb and metabolize saccharides, various organic acids are generated. The organic acids generated include acetic acid, propionic acid, and butyric acid, and vary according to the saccharide substrate. These organic acids are absorbed from the intestinal tract and become an energy source.
- The enterobacteria Bifidobacterium, Lactobacillus, and Streptococcus, present in the lower gastrointestinal tract (i.e., the colon), are mainly responsible for degrading saccharides such as lactulose (i.e., a synthetic disaccharide) to produce an organic acid such as lactic acid, acetic acid, etc. Diabetics show a slight reduction in Bifidobacterium and Streptococcus, but this does not seem to have large influence on the degradation of lactulose as no change was observed in Lactobacillus. Raffinose, cellobiose, stachyose, maltose, and fructooligosaccharides are rapidly degraded by the main microbial flora in the colon similarly to lactulose, although they are degraded by slightly different enterobacteria. Accordingly, slight variations in the microbial flora of the colon will not affect the degradation of these saccharides.
- Without being bound to any particular theory, the organic acid which is generated by the action of enterobacteria serves to decrease the pH of the system, thereby dissolving the organic acid-soluble polymer coat on the drug core as well as contributing to the enhancement of drug absorption in the colon.
-
FIG. 6 shows a manufacturing flowchart for producing the spray-coated tablet ofFIG. 1 . In one embodiment, a first drug is mixed with a saccharide (e.g., lactulose), and optionally, a buffering agent, to produce a homogeneous mixture that forms the drug core of the tablet. An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core. The organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water. In an alternative embodiment, the drug core of the tablet is formed by spraying a saccharide coat onto the first drug, followed by the spraying of an organic acid-soluble polymer coat. A water-permeable, release-controlling polymer (e.g., HPMC) can optionally be included as a coat for the drug core. In both embodiments, an under coat comprising a water-permeable, release-controlling polymer (e.g., HPMC) is sprayed onto the organic acid-soluble polymer coat. The under coat is prepared, e.g., by dissolving HPMC in ethanol. Finally, an enteric coat, prepared by dissolving a mixture of an enteric coating polymer material and a second drug in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown inFIG. 1 . -
FIG. 7 shows a manufacturing flowchart for producing the spray-coated tablet ofFIG. 3 . In one embodiment, a first drug is mixed with a saccharide (e.g., lactulose), and optionally, a buffering agent, to produce a homogeneous mixture that forms the drug core of the tablet. An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core. The organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water. In an alternative embodiment, the drug core of the tablet is formed by spraying a saccharide coat onto the first drug, followed by the spraying of an organic acid-soluble polymer coat. A water-permeable, release-controlling polymer (e.g., HPMC) can optionally be included as a coat for the drug core. In both embodiments, a drug layer comprising a second drug is sprayed onto the organic acid-soluble polymer coat. The drug layer is prepared, e.g., by dissolving the second drug with NaOH, crospovidone, and HPMC in ethanol. The drug layer is then sprayed with an under coat comprising a water-permeable, release-controlling polymer (e.g., HPMC). The under coat is prepared, e.g., by dissolving HPMC in ethanol. Finally, an enteric coat, prepared by dissolving an enteric coating polymer material in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown inFIG. 3 . -
FIG. 8 shows a manufacturing flowchart for producing the compressed-coated tablet ofFIG. 4 . In one embodiment, a first drug is optionally mixed with a buffering agent to produce a homogeneous mixture. A saccharide (e.g., lactulose) layer is then compressed onto the first drug to form the drug core of the tablet. The saccharide layer is prepared, e.g., by dissolving lactulose and HPMC in ethanol and water. A water-permeable, release-controlling polymer (e.g., HPMC) can optionally be included in the drug core as an under coat in between the first drug and the saccharide. An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core. The organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water. An under coat comprising a water-permeable, release-controlling polymer (e.g., HPMC) is then sprayed onto the organic acid-soluble polymer coat. The under coat is prepared, e.g., by dissolving HPMC in ethanol. Finally, an enteric coat, prepared by dissolving a mixture of an enteric coating polymer material and a second drug in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown inFIG. 4 . -
FIG. 9 shows a manufacturing flowchart for producing the colon-targeted tablet (B) in the capsule ofFIG. 5 . In one embodiment, a first drug is optionally mixed with a buffering agent to produce a homogeneous mixture. A saccharide (e.g., lactulose) layer is then compressed onto the first drug to form the drug core of the tablet. The saccharide layer is prepared, e.g., by dissolving lactulose and HPMC in ethanol and water. A water-permeable, release-controlling polymer (e.g., HPMC) can optionally be included in the drug core as an under coat in between the first drug and the saccharide. An organic acid-soluble polymer (e.g., Eudragit E) coat is then sprayed onto the drug core. The organic acid-soluble polymer coat is prepared, e.g., by dissolving Eudragit E and HPMC in ethanol and water. An under coat comprising a water-permeable, release-controlling polymer (e.g., HPMC) is sprayed onto the organic acid-soluble polymer coat. The under coat is prepared, e.g., by dissolving HPMC in ethanol. Finally, an enteric coat, prepared by dissolving an enteric coating polymer material in ethanol and water, is sprayed onto the tablet under coat to produce the multiple drug release tablet as shown inFIG. 5 . - The following examples are offered to illustrate, but not to limit, the claimed invention.
- A dual release tablet for delivering two 10 mg pulses of the histamine H2-receptor antagonist famotidine (total 20 mg per day) can be formulated using a spray-coated tablet manufacturing process. The tabletting pressure is about 350 kg/punch. The initial release of drug is provided by the enteric coat. The formulation contains:
-
Drug core: Famotidine 10 mg Lactulose 100 mg Total: 110 mg - Famotidine (t1/2=3 hrs.), lactulose, and optionally other additives are mixed to prepare the drug core. The drug core is first coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water), based on the gained weight of the drug core, and then coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater. The drug core tablet is subsequently coated with from about 5% to about 10% w/w of Eudragit L100 containing 10 mg of famotidine and optionally a buffering agent and other additives (e.g., 6% Eudragit L100, 10 mg of famotidine, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention. The tablet has a diameter of about 6 mm.
- A dual release tablet for delivering two 50 mg pulses of the antibiotic minocycline (total 100 mg per day) can be formulated using a spray-coated tablet manufacturing process. The tabletting pressure is about 350 kg/punch. The initial release of drug is provided by a separate drug layer. The formulation contains:
-
Drug core: Minocycline hydrochloride 50 mg Lactulose 50 mg Total: 100 mg - Minocycline hydrochloride (t1/2=9.5 hrs.), lactulose, and optionally other additives are mixed to prepare the drug core. The drug core is first coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water) and then coated with HPMC containing 50 mg of minocycline hydrochloride. The drug core tablet is subsequently coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater. Finally, the tablet is coated with from about 5% to about 10% w/w of Eudragit L100 and optionally additives (e.g., 6% Eudragit L100, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention. The tablet has a diameter of about 6 mm.
- A dual release tablet for delivering two 100 mg pulses of the antigout agent allopurinol (total 200 mg per day) can be formulated using a spray-coated tablet manufacturing process. The tabletting pressure is about 350 kg/punch. The initial release of drug is provided by a separate drug layer. The formulation contains:
-
Drug core: Allopurinol 100 mg Lactulose 100 mg Meglumine 20 mg Total: 220 mg - Allopurinol (t1/2=1.6 hrs.), lactulose, meglumine (for neutralization), and optionally other additives are mixed to prepare the drug core. The drug core is first coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water) and then coated with HPMC containing 100 mg allopurinol. The drug core tablet is subsequently coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater. Finally, the tablet is coated with from about 5% to about 10% w/w of Eudragit L100 and optionally additives (e.g., 6% Eudragit L100, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention. The tablet has a diameter of from about 7 to about 9 min.
- A dual release tablet for delivering two 10 mg pulses of the proton pump inhibitor omeprazole (total 20 mg per day) can be formulated using a compressed-coated tablet manufacturing process. The tabletting pressure is about 350 kg/punch. The initial release of drug is provided by the enteric coat. The formulation contains:
-
Drug core: Omeprazole 10 mg Lactulose 100 mg MgO 10 mg Total: 120 mg - Omeprazole (t1/2=1.8 hrs.), lactulose, MgO, and optionally other additives are mixed to prepare the drug core. First, the drug core is coated with from about 1-2% w/w of HPMC by means of a Hi-coater. The lactulose layer is then placed onto the drug core tablet using a compressed coating machine The tablet is subsequently coated with about 10% w/w of Eudragit E100 (e.g., 9.5% w/w of Eudragit E100 in a 71:29 mixture of ethyl alcohol:water) and then coated with a layer of from about 1% to about 10% w/w of HPMC (e.g., 5% HPMC 2910 in an aqueous solution) by means of a Hi-coater. Finally, the tablet is coated with from about 5% to about 10% w/w of Eudragit L100 containing 10 mg of omeprazole and optionally a buffering agent and other additives (e.g., 6% Eudragit L100, 10 mg of omeprazole, 1% triethyl citrate, and 3% talc in a 71:29 mixture of ethyl alcohol:water) to obtain the multiple-pulsated drug release tablet of the present invention. The tablet has a diameter of about 6 mm.
- In certain instances, MgO (magnesium oxide) is used as a buffering agent in formulations with drugs that are unstable under acidic conditions to adjust the pH such that an alkaline environment is maintained inside the tablet. As described above, regardless of whether a drug is acidic or basic, the pH of the system can be adjusted at the time of drug dissolution, e.g., by incorporating a buffering agent such as an organic acid or a basic substance into one or more drug-containing layers. The organic acids include citric acid and tartaric acid, and the basic substances include solid bases (e.g., MgO), basic amino-sugars (e.g., meglumine), and basic amino acids (e.g., lysine and arginine).
- A dual release capsule for delivering two 10 mg pulses of the proton pump inhibitor omeprazole (total 20 mg per day) can be formulated using a manufacturing process that produces a capsule containing both a spray-coated enteric coated tablet and a compressed-coated colon-targeted tablet. The initial release of drug is provided by the enteric coated tablet. Each drug core contains 10 mg of the proton pump inhibitor omeprazole, for the release of a total of 20 mg per day. The manufacturing process for the colon-targeted compressed-coated tablet is similar to that described in Example 4. However, the enteric coat may or may not contain drug. The enteric coated tablet is prepared by spray-coating a layer of HPMC onto the drug core followed by an enteric coat layer. Both tablets are then encapsulated to produce a capsule suitable for oral administration.
- A representative pharmacokinetic profile for a capsule within the scope of the present invention using acetaminophen as a model drug for dog studies is shown in
FIG. 10 . The initial release of drug from the enteric coated tablet provides a steady concentration of drug in the plasma from about 0.5 hours to about 6 hours following administration. The subsequent release of drug from the colon-targeted tablet sustains the concentration of drug in the plasma for up to about 12 hours following administration. However, one skilled in the art will recognize that the concentration of drug in the plasma can be sustained for about 24 hours or more for drugs with longer half-lives (t1/2). - The proton pump inhibitor in the formulations of Examples of 4 and 5 can be replaced with other proton pump inhibitors such as lansoprazole, pantoprazole, esomeprazole rabeprazole, and combinations thereof.
- This example illustrates a comparison of the in vivo drug release and pharmacokinetic profiles of a standard colon drug delivery system versus the multiple drug release system of the present invention.
- As shown in
FIG. 11A , a standard colon drug delivery system only begins to release drug in the gastrointestinal tract about 8 hours following administration. By contrast, the multiple drug release system of the present invention provides an initial release of drug in the small intestine starting at about 1 hour following oral administration and a subsequent release of drug in the colon starting at about 11 following oral administration. As a result, the release of drug is sustained for a longer period of time (e.g., about 24 hours). -
FIG. 11B shows the level of drug in the plasma at certain time points following administration of either a standard colon delivery system or the multiple drug release system of the present invention. Upon administration of a standard colon delivery system, the presence of drug in the plasma is only detected after about 8 hours. By contrast, upon administration of the multiple drug release system of the present invention, the concentration of drug in the plasma begins to increase after about 1 hour, reaches a steady level at about 3 hours, and maintains a constant level of drug in the plasma for about 24 hours or more. As a result, the concentration of drug in the plasma is sustained for a longer period of time (e.g., about 24 hours). - All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Claims (50)
1. An oral multiple drug release composition, said composition comprising:
(a) a drug core comprising a first drug and a saccharide;
(b) an organic acid-soluble polymer, wherein said drug core is coated by said organic acid-soluble polymer;
(c) a drug layer comprising a second drug, wherein said organic acid-soluble polymer is coated by said drug layer;
(d) a water-permeable, release-controlling polymer, wherein said drug layer is coated by said water-permeable, release-controlling polymer; and
(e) an enteric coat comprising an enteric coating polymer, wherein said water-permeable, release-controlling polymer is coated by said enteric coat,
wherein said composition releases said second drug in the small intestine and said first drug in the colon.
2. The composition of claim 1 , wherein said drug core comprises a mixture of said first drug and said saccharide.
3. The composition of claim 1 , wherein said first drug is coated by said saccharide.
4. The composition of claim 3 , further comprising a water-permeable, release-controlling polymer as a layer in between said first drug and said saccharide, admixed with said first drug, or a combination thereof.
5. The composition of claim 1 , wherein said first drug and said second drug are the same drug.
6. The composition of claim 1 , wherein said first drug and said second drug are different drugs.
7. The composition of claim 1 , wherein said first drug is a combination of at least two drugs.
8. The composition of claim 1 , wherein said first drug and said second drug are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H2-receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
9. The composition of claim 8 , wherein said proton pump inhibitor is selected from the group consisting of omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
10. The composition of claim 1 , wherein said drug core further comprises a buffering agent.
11. The composition of claim 1 , wherein said drug layer further comprises a buffering agent.
12. The composition of claim 1 , wherein said saccharide is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof.
13. The composition of claim 12 , wherein said saccharide is lactulose.
14. The composition of claim 12 , wherein said saccharide is present in an amount of from about 10% to about 90% w/w.
15. The composition of claim 1 , wherein said organic acid-soluble polymer is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof.
16. The composition of claim 15 , wherein said dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer.
17. The composition of claim 15 , wherein said organic acid-soluble polymer is present in an amount of from about 2.5% to about 40.0% w/w.
18. The composition of claim 15 , wherein said organic acid-soluble polymer dissolves at a pH lower than about 6.
19. The composition of claim 1 , wherein said water-permeable, release-controlling polymer is selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof.
20. The composition of claim 19 , wherein said water-permeable, release-controlling polymer is HPMC.
21. The composition of claim 1 , wherein said enteric coating polymer is selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof.
22. The composition of claim 1 , wherein said enteric coat comprises a mixture of said enteric coating polymer and a third drug.
23. The composition of claim 1 , further comprising an outer drug coat having a third drug, wherein said enteric coat is coated by said outer drug coat and said composition releases said third drug in the stomach.
24. The composition of claim 1 , wherein said composition is in the form of a tablet or granule.
25. The composition of claim 1 , wherein said drug core comprises a mixture of a first proton pump inhibitor and lactulose, said organic acid-soluble polymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer, said drug layer comprises a second proton pump inhibitor, said water-permeable, release-controlling polymer is HPMC, and said enteric coat comprises an enteric coating polymer.
26. An oral multiple drug release composition, said composition comprising:
a first component, said first component comprising:
(a) a drug core comprising a first drug;
(b) a water-permeable, release-controlling polymer, wherein said drug core is coated by said water-permeable, release-controlling polymer; and
(c) an enteric coat comprising an enteric coating polymer, wherein said water-permeable, release-controlling polymer is coated by said enteric coat; and
a second component, said second component comprising:
(a) a drug core comprising a second drug and a saccharide;
(b) an organic acid-soluble polymer, wherein said drug core is coated by said organic acid-soluble polymer; and
(c) an enteric coat comprising an enteric coating polymer, wherein said organic acid-soluble polymer is coated by said enteric coat,
wherein said first component releases said first drug in the small intestine and said second component releases said second drug in the colon.
27. The composition of claim 26 , wherein said first and second components are inside a capsule.
28. The composition of claim 26 , wherein said drug core in said second component comprises a mixture of said second drug and said saccharide.
29. The composition of claim 26 , wherein said second drug is coated by said saccharide.
30. The composition of claim 29 , further comprising a water-permeable, release-controlling polymer as a layer in between said second drug and said saccharide, admixed with said second drug, or a combination thereof.
31. The composition of claim 26 , wherein said second component further comprises a water-permeable, release-controlling polymer, and wherein said organic acid-soluble polymer is coated by said water-permeable, release-controlling polymer
32. The composition of claim 26 , wherein said first drug and said second drug are the same drug.
33. The composition of claim 26 , wherein said first drug and said second drug are different drugs.
34. The composition of claim 26 , wherein said second drug is a combination of at least two drugs.
35. The composition of claim 26 , wherein said first drug and said second drug are independently selected from the group consisting of a proton pump inhibitor, a peptide, a protein, a hormone, an anti-inflammatory agent, an antitussive expectorant, a vasodilator, an analgesic, a histamine H2-receptor antagonist, an antibiotic, an antiepileptic agent, an antigout agent, an antitumor agent, an antidiabetic agent, an antipsychotic agent, a prostatomegaly agent, an antiasthma agent, a drug with a short pharmacokinetic half-life, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
36. The composition of claim 35 , wherein said proton pump inhibitor is selected from the group consisting of omeprazole, esomeprazole, lansoprazole, rabeprazole, pantoprazole, pharmaceutically acceptable salts thereof, derivatives thereof, and combinations thereof.
37. The composition of claim 26 , wherein said drug core in said first component further comprises a buffering agent.
38. The composition of claim 26 , wherein said drug core in said second component further comprises a buffering agent.
39. The composition of claim 26 , wherein said saccharide is selected from the group consisting of lactulose, raffinose, cellobiose, stachyose, fructoligosaccharide, sucrose, glucose, xylose, fructose, mannitol, maltose, galactose, and combinations thereof.
40. The composition of claim 39 , wherein said saccharide is lactulose.
41. The composition of claim 39 , wherein said saccharide is present in an amount of from about 10% to about 90% w/w.
42. The composition of claim 26 , wherein said organic acid-soluble polymer is selected from the group consisting of a dimethylaminoethyl methacrylate-methyl methacrylate copolymer, a polyvinyl acetal diethylaminoacetate, chitosan, and combinations thereof.
43. The composition of claim 42 , wherein said dimethylaminoethyl methacrylate-methyl methacrylate copolymer is a dimethylaminoethyl methacrylate-methyl methacrylate-butyl methacrylate copolymer.
44. The composition of claim 42 , wherein said organic acid-soluble polymer is present in an amount of from about 2.5% to about 40.0% w/w.
45. The composition of claim 42 , wherein said organic acid-soluble polymer dissolves at a pH lower than about 6.
46. The composition of claim 26 , wherein said water-permeable, release-controlling polymer is selected from the group consisting of a copolymer of ethyl acrylate, methyl methyacrylate, and trimethylammonioethyl methacrylate chloride, ethyl cellulose, hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose, polyethylene oxide, polyvinylpyrrolidone, and combinations thereof.
47. The composition of claim 46 , wherein said water-permeable, release-controlling polymer is HPMC.
48. The composition of claim 26 , wherein said enteric coating polymer is selected from the group consisting of a methyl methacrylate-methylacrylate acid (1:1) copolymer, a methyl methacrylate-methacrylate acid (2:1) copolymer, an ethyl acrylate-methacrylic acid (1:1) copolymer, hydroxypropylmethylcellulose phthalate, cellulose acetate phthalate, shellac, and combinations thereof.
49. The composition of claim 26 , wherein said enteric coat in said second component comprises a mixture of said enteric coating polymer and a third drug.
50. The composition of claim 26 , wherein said first component, second component, or a combination thereof further comprises an outer drug coat having a third drug, wherein said enteric coat is coated by said outer drug coat and said composition releases said third drug in the stomach.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/688,818 US20100183713A1 (en) | 2004-01-29 | 2010-01-15 | Gastrointestinal-specific multiple drug release system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US54068204P | 2004-01-29 | 2004-01-29 | |
US11/046,517 US7670624B2 (en) | 2004-01-29 | 2005-01-27 | Gastrointestinal-specific multiple drug release system |
US12/688,818 US20100183713A1 (en) | 2004-01-29 | 2010-01-15 | Gastrointestinal-specific multiple drug release system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/046,517 Division US7670624B2 (en) | 2004-01-29 | 2005-01-27 | Gastrointestinal-specific multiple drug release system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100183713A1 true US20100183713A1 (en) | 2010-07-22 |
Family
ID=34829805
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/046,517 Expired - Fee Related US7670624B2 (en) | 2004-01-29 | 2005-01-27 | Gastrointestinal-specific multiple drug release system |
US12/688,818 Abandoned US20100183713A1 (en) | 2004-01-29 | 2010-01-15 | Gastrointestinal-specific multiple drug release system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/046,517 Expired - Fee Related US7670624B2 (en) | 2004-01-29 | 2005-01-27 | Gastrointestinal-specific multiple drug release system |
Country Status (3)
Country | Link |
---|---|
US (2) | US7670624B2 (en) |
JP (1) | JP2007519741A (en) |
WO (1) | WO2005072397A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8747893B2 (en) * | 2012-03-30 | 2014-06-10 | Morishita Jintan Co., Ltd. | Capsule which disintegrates specifically in the large intestine |
CN104739798A (en) * | 2013-12-26 | 2015-07-01 | 康普药业股份有限公司 | Busulfan sustained release tablet and preparation method thereof |
US9132095B2 (en) | 2011-02-11 | 2015-09-15 | Zx Pharma, Llc | Multiparticulate L-menthol formulations and related methods |
US9192583B2 (en) | 2013-04-23 | 2015-11-24 | Zx Pharma, Llc | Enteric coated multiparticulate composition with proteinaceous subcoat |
US9220686B2 (en) | 2011-02-11 | 2015-12-29 | Zx Pharma, Llc | Multiparticulate L-menthol formulations and related methods |
US9393279B2 (en) | 2011-02-11 | 2016-07-19 | Zx Pharma, Llc | Enteric coated multiparticulate controlled release peppermint oil composition and related methods |
US9522119B2 (en) | 2014-07-15 | 2016-12-20 | Isa Odidi | Compositions and methods for reducing overdose |
US10716761B2 (en) | 2017-07-24 | 2020-07-21 | Alcresta Therapeutics, Inc. | Ingestible medical delivery devices |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1319655B1 (en) | 2000-11-15 | 2003-10-23 | Eurand Int | PANCREATIC ENZYME MICROSPHERES WITH HIGH STABILITY AND RELATIVE PREPARATION METHOD. |
DE10333443A1 (en) * | 2003-07-23 | 2005-02-10 | Goldschmidt Ag | Emulsifier for low-viscosity W / O emulsions based on partially crosslinked polyglycerol esters of polyhydroxystearic acid |
TW200534879A (en) * | 2004-03-25 | 2005-11-01 | Bristol Myers Squibb Co | Coated tablet formulation and method |
TWI354569B (en) * | 2004-05-28 | 2011-12-21 | Bristol Myers Squibb Co | Coated tablet formulation and method |
AR051654A1 (en) * | 2004-11-04 | 2007-01-31 | Astrazeneca Ab | NEW FORMULATIONS OF MODIFIED RELEASE PELLETS FOR PROTON PUMP INHIBITORS |
AR052225A1 (en) * | 2004-11-04 | 2007-03-07 | Astrazeneca Ab | FORMULATIONS OF MODIFIED RELEASE TABLETS FOR INHIBITORS OF THE PUMP OF PROTONS |
NZ555693A (en) | 2004-12-27 | 2010-10-29 | Eisai R&D Man Co Ltd | Matrix type sustained-release preparation containing donepezil |
CA2613178A1 (en) * | 2005-07-15 | 2007-01-25 | Kissei Pharmaceutical Co., Ltd. | Sustained release preparation |
WO2007063552A1 (en) * | 2005-12-02 | 2007-06-07 | Lupin Limited | Stable taste masked formulations of cephalosporins |
GB0606212D0 (en) * | 2006-03-28 | 2006-05-10 | Karobio Ab | Pharmaceutical compositions |
RU2316328C1 (en) * | 2006-05-30 | 2008-02-10 | Государственное образовательное учреждение дополнительного профессионального образования Санкт-Петербургская медицинская академия последипломного образования Федерального агентства по здравоохранению и социальному развитию | Method for correction of partial age androgen deficiency (padam) and preparative formulation of testosterone or its pharmacologically acceptable derivatives for its realization |
DE102006035549A1 (en) * | 2006-07-27 | 2008-01-31 | Evonik Röhm Gmbh | Pharmaceutical form with at least two-layer separating layer |
US20080194307A1 (en) * | 2007-02-13 | 2008-08-14 | Jeff Sanger | Sports-based game of chance |
AU2012202620B2 (en) * | 2007-02-20 | 2014-03-20 | Allergan Therapeutics LLC | Stable digestive enzyme compositions |
JP5966202B2 (en) * | 2007-02-20 | 2016-08-10 | アラガン ファーマシューティカルズ インターナショナル リミテッド | Stable digestive enzyme composition |
US20120027855A1 (en) * | 2007-07-06 | 2012-02-02 | Lupin Limited | Pharmaceutical compositions for gastrointestinal drug delivery |
WO2009048073A1 (en) * | 2007-10-09 | 2009-04-16 | Takeda Pharmaceutical Company Limited | Method of coating granules |
SI2057984T1 (en) * | 2007-11-09 | 2010-04-30 | Acino Pharma Ag | Retard tablets with hydromorphon |
US10087493B2 (en) | 2008-03-07 | 2018-10-02 | Aptalis Pharma Canada Ulc | Method for detecting infectious parvovirus in pharmaceutical preparations |
EP2263661A4 (en) * | 2008-03-28 | 2011-07-06 | Lintec Corp | Oral preparation |
RU2410100C2 (en) * | 2009-03-30 | 2011-01-27 | Александр Владимирович Диковский | Pharmaceutical composition of proton pump inhibitor and prebiotic for treating gastric and duodenal ulcers |
EP2570120B1 (en) | 2010-06-08 | 2017-10-25 | Kobe Gakuin Educational Foundation | Coated particle and method for producing coated particle |
US20120039999A1 (en) * | 2010-08-11 | 2012-02-16 | Ashish Chatterji | Pharmaceutical compositions of metabotropic glutamate 5 receptor (mglu5) antagonists |
AU2011309763B2 (en) | 2010-10-01 | 2015-08-13 | Allergan Therapeutics LLC | Enteric coated, low- strength pancrelipase formulations |
RU2619215C2 (en) * | 2010-11-08 | 2017-05-12 | Альбирео Аб | Pharmaceutical combination comprising ibat-inhibitor and bile acid binder |
US9532952B2 (en) | 2011-01-28 | 2017-01-03 | Physician's Seal, LLC | Controlled-release compositions of melatonin combined with sedative and/or analgesic ingredients |
WO2012103411A2 (en) | 2011-01-28 | 2012-08-02 | Zx Pharma, Llc | Controlled-release melatonin composition and related methods |
RU2602183C2 (en) | 2011-08-08 | 2016-11-10 | Апталис Фарма Лтд. | Method for dissolution testing of solid compositions containing digestive enzymes |
AU2012305915B2 (en) * | 2011-09-07 | 2017-09-07 | Roland Saur-Brosch | Formulation for the controlled release of one or several substances in the digestive tract of a mammal |
CA2882730C (en) * | 2012-08-22 | 2019-12-31 | Xenoport, Inc. | Oral dosage forms of methyl hydrogen fumarate and prodrugs thereof |
EP2887934A1 (en) | 2012-08-22 | 2015-07-01 | XenoPort, Inc. | Methods of administering monomethyl fumarate and prodrugs thereof having reduced side effects |
EP2906202A4 (en) * | 2012-10-15 | 2016-04-27 | Isa Odidi | Oral drug delivery formulations |
WO2014096982A1 (en) | 2012-12-21 | 2014-06-26 | Wockhardt Limited | Stable pharmaceutical compositions of saxagliptin or salts thereof |
WO2014096983A1 (en) | 2012-12-21 | 2014-06-26 | Wockhardt Limited | Stable pharmaceutical compositions of saxagliptin or salts thereof |
WO2014160633A1 (en) | 2013-03-24 | 2014-10-02 | Xenoport, Inc. | Pharmaceutical compositions of dimethyl fumarate |
US10184121B2 (en) | 2013-06-28 | 2019-01-22 | Allergan Pharmaceuticals International Limited | Methods for removing viral contaminants from pancreatic extracts |
CN106163544A (en) | 2013-08-09 | 2016-11-23 | 阿勒根制药国际有限公司 | Be suitable to enteral digestive enzyme compositions |
JP2016534133A (en) | 2013-09-06 | 2016-11-04 | ゼノポート,インコーポレイティド | Crystal form of (N, N-diethylcarbamoyl) methyl methyl (2E) but-2-ene-1,4-dioate, its synthesis and use |
KR101410859B1 (en) * | 2013-10-14 | 2014-07-01 | (주) 포스텍글로벌 | Coated Granule Fertilizer Preventing Floating in Water and Manufacturing Method thereof |
US9999672B2 (en) | 2014-03-24 | 2018-06-19 | Xenoport, Inc. | Pharmaceutical compositions of fumaric acid esters |
WO2015157428A1 (en) * | 2014-04-08 | 2015-10-15 | Mayo Foundation For Medical Education And Research | Ingestible capsule |
KR101877350B1 (en) * | 2016-10-28 | 2018-08-09 | 한미약품 주식회사 | Combined capsules containing esomeprazole and a process for the preparation thereof |
MA47106A (en) | 2016-12-21 | 2019-10-30 | Amgen Inc | ANTI-TNF ALPHA ANTIBODY FORMULATIONS |
JP2023553010A (en) | 2020-12-03 | 2023-12-20 | バテル・メモリアル・インスティテュート | Polymeric nanoparticle and DNA nanostructure compositions and methods for non-viral delivery |
EP4320233A4 (en) | 2021-04-07 | 2025-08-13 | Battelle Memorial Institute | Rapid design, build, test, and learn technologies for identifying and deploying nonviral carriers |
CN115715184A (en) * | 2021-06-23 | 2023-02-24 | 赛乐医药科技有限公司 | Ticagrelor oral dosage form and preparation method thereof |
TW202506097A (en) * | 2023-03-31 | 2025-02-16 | 大陸商南京三迭紀醫藥科技有限公司 | Oral drug dosage forms for colon delivery and methods of use and making thereof |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431338A (en) * | 1963-09-10 | 1969-03-04 | Hoffmann La Roche | Coated dosage form adapted to oral emetine or dehydroemetine therapy |
US4642903A (en) * | 1985-03-26 | 1987-02-17 | R. P. Scherer Corporation | Freeze-dried foam dosage form |
US4808416A (en) * | 1985-09-12 | 1989-02-28 | Laboratories Delagrange | Preparation of a slow-release drug |
US4863744A (en) * | 1984-09-17 | 1989-09-05 | Alza Corporation | Intestine drug delivery |
US4968508A (en) * | 1987-02-27 | 1990-11-06 | Eli Lilly And Company | Sustained release matrix |
US5501861A (en) * | 1992-01-29 | 1996-03-26 | Takeda Chemical Industries, Ltd. | Fast dissolving tablet and its production |
US5525634A (en) * | 1990-05-04 | 1996-06-11 | Perio Products, Ltd. | Colonic drug delivery system |
US5614503A (en) * | 1993-11-12 | 1997-03-25 | Aronex Pharmaceuticals, Inc. | Amphipathic nucleic acid transporter |
US5654004A (en) * | 1992-11-06 | 1997-08-05 | Hisamitsu Pharmaceutical Co., Inc. | Oral pharmaceutical preparation releasable in the lower digestive tract |
US5656294A (en) * | 1995-06-07 | 1997-08-12 | Cibus Pharmaceutical, Inc. | Colonic delivery of drugs |
US5714679A (en) * | 1996-10-02 | 1998-02-03 | Nichols; Steven J. | Portable apparatus for testing an internal combustion engine |
US5736388A (en) * | 1994-12-30 | 1998-04-07 | Chada; Sunil | Bacteriophage-mediated gene transfer systems capable of transfecting eukaryotic cells |
US5834186A (en) * | 1992-12-04 | 1998-11-10 | Innovir Laboratories, Inc. | Regulatable RNA molecule |
US5840322A (en) * | 1996-12-19 | 1998-11-24 | Ramot-University Authority For Applied Research & Industrial Devel. Ltd. | Anti-oral-microbial adhesion fraction derived from vaccinium |
US5854038A (en) * | 1993-01-22 | 1998-12-29 | University Research Corporation | Localization of a therapeutic agent in a cell in vitro |
US5855914A (en) * | 1988-09-27 | 1999-01-05 | Takeda Chemical Industries, Ltd. | Granules having core and their production |
US5874415A (en) * | 1992-12-31 | 1999-02-23 | Dana-Farber Cancer Institute, Inc. | Enhancer sequence for modulating expression in epithelial cells |
US5958453A (en) * | 1996-10-31 | 1999-09-28 | Takeda Chemical Industries, Ltd. | Solid pharmaceutical preparation with improved buccal disintegrability and/or dissolubility |
US6004582A (en) * | 1997-05-30 | 1999-12-21 | Laboratorios Phoenix U.S.A, Inc. | Multi-layered osmotic device |
US6096722A (en) * | 1990-08-14 | 2000-08-01 | Isis Pharmaceuticals Inc. | Antisense modulation of cell adhesion molecule expression and treatment of cell adhesion molecule-associated diseases |
US6151525A (en) * | 1997-11-07 | 2000-11-21 | Medtronic, Inc. | Method and system for myocardial identifier repair |
US6180621B1 (en) * | 1996-05-09 | 2001-01-30 | Sankyo Company, Limited | Method and treatment using 1-methylcarbapenem derivatives as an anti-helicobacter pylori agent |
US6214378B1 (en) * | 1996-08-02 | 2001-04-10 | Hisamitsu Pharmaceutical Co., Inc. | Capsules for oral preparations and capsule preparations for oral administration |
US20020035357A1 (en) * | 2000-01-14 | 2002-03-21 | Joaquina Faour | Osmotic device within an osmotic device |
US6368629B1 (en) * | 1994-04-22 | 2002-04-09 | Yamanouchi Pharmaceutical Company Ltd. | Colon-specific drug release system |
US6569456B2 (en) * | 2000-01-13 | 2003-05-27 | Osmotica Corp. | Osmotic device containing diltiazem and an ACE inhibitor or diuretic |
US6586004B2 (en) * | 1997-05-27 | 2003-07-01 | Takeda Chemical Industries, Ltd. | Solid preparation |
US6794367B1 (en) * | 1998-05-19 | 2004-09-21 | Hisamitsu Pharmaceutical, Inc. | Solid preparations for oral administration of drugs relating to genes |
US20050008702A1 (en) * | 2003-05-22 | 2005-01-13 | Joaquina Faour | Rupturing controlled release device having a preformed passageway |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2792862B2 (en) * | 1988-07-30 | 1998-09-03 | 寛治 高田 | Oral enteric formulation |
US5079018A (en) | 1989-08-14 | 1992-01-07 | Neophore Technologies, Inc. | Freeze dry composition and method for oral administration of drugs, biologicals, nutrients and foodstuffs |
IT1246382B (en) | 1990-04-17 | 1994-11-18 | Eurand Int | METHOD FOR THE TARGETED AND CONTROLLED DELIVERY OF DRUGS IN THE INTESTINE AND PARTICULARLY IN THE COLON |
HU210497B (en) | 1990-05-04 | 1995-04-28 | Perio Prod Ltd | Process for production of modified pectin |
JPH064531B2 (en) | 1990-06-04 | 1994-01-19 | アイセロ化学株式会社 | Colon disintegrating hard capsule |
JPH0466538A (en) | 1990-07-04 | 1992-03-02 | Suntory Ltd | Antiulcer agent |
JPH05310558A (en) | 1992-05-07 | 1993-11-22 | Lion Corp | Solid preparation composition |
JP3059004B2 (en) | 1992-09-18 | 2000-07-04 | ダイセル化学工業株式会社 | Low-substituted hydroxypropylcellulose having high solubility in aqueous alkali solution and method for producing the same |
JPH06218028A (en) | 1992-10-02 | 1994-08-09 | Eisai Co Ltd | Method and apparatus for molding wet-processed tablet, and the wet-processed tablet |
JPH06305962A (en) | 1993-04-21 | 1994-11-01 | Taisho Pharmaceut Co Ltd | Atopic dermatitis therapeutic agent |
JP3502951B2 (en) | 1993-07-06 | 2004-03-02 | 大正製薬株式会社 | Hyperlipidemia treatment |
WO1995010264A1 (en) * | 1993-10-12 | 1995-04-20 | Tokyo Tanabe Company Limited | Tablet containing enteric granules |
AU699715B2 (en) | 1994-01-31 | 1998-12-10 | Astellas Pharma Inc. | Intrabuccally dissolving compressed moldings and production process thereof |
JPH1135451A (en) | 1994-07-27 | 1999-02-09 | Yamanouchi Pharmaceut Co Ltd | Intraoral dissolving type tablet and its production |
JPH08310969A (en) | 1995-05-22 | 1996-11-26 | Lion Corp | Solid pharmaceutical composition and its preparation |
JPH0948726A (en) | 1995-08-07 | 1997-02-18 | Tanabe Seiyaku Co Ltd | Orally rapidly disintegrating preparation and method for producing the same |
JPH0971523A (en) | 1995-09-07 | 1997-03-18 | Riyuukakusan:Kk | Tablet quickly disintegrating in oral cavity |
AU713462B2 (en) | 1996-07-12 | 1999-12-02 | Daiichi Pharmaceutical Co., Ltd. | Quickly disintegrable compression-molded materials and process for producing the same |
AU741242B2 (en) * | 1997-05-20 | 2001-11-29 | Ludwig Institute For Cancer Research | Smad2 phosphorylation and interaction with Smad4 |
JP4939680B2 (en) | 1997-05-27 | 2012-05-30 | 武田薬品工業株式会社 | Solid preparation |
JP3591801B2 (en) | 1997-06-19 | 2004-11-24 | 田辺製薬株式会社 | Manufacturing method of oral disintegrating preparation |
JP4196417B2 (en) | 1997-06-27 | 2008-12-17 | 大正製薬株式会社 | Intraoral rapidly disintegrating tablet and method for producing the same |
US6235311B1 (en) * | 1998-03-18 | 2001-05-22 | Bristol-Myers Squibb Company | Pharmaceutical composition containing a combination of a statin and aspirin and method |
GT199900061A (en) | 1998-05-15 | 2000-10-14 | Pfizer | PHARMACEUTICAL FORMULATIONS. |
US6312728B1 (en) * | 1998-07-07 | 2001-11-06 | Cascade Development, Inc. | Sustained release pharmaceutical preparation |
US20060182802A1 (en) | 1998-07-28 | 2006-08-17 | Toshihiro Shimizu | Rapidly disintegrable solid preparation |
JP2000178183A (en) | 1998-12-17 | 2000-06-27 | Lion Corp | Solid pharmaceutical preparation and its production |
DE19956486A1 (en) * | 1999-11-24 | 2001-06-21 | Lohmann Therapie Syst Lts | Multi-layer preparation for the controlled, pulsed delivery of active ingredients |
US20050020282A1 (en) * | 2001-05-21 | 2005-01-27 | Ashutosh Pande | Virtual satellite position system server |
EP1430888A1 (en) | 2001-09-28 | 2004-06-23 | Sanwa Kagaku Kenkyusho Co., Ltd. | Press-coated molded article undergoing quick disintegration |
-
2005
- 2005-01-27 US US11/046,517 patent/US7670624B2/en not_active Expired - Fee Related
- 2005-01-28 JP JP2006551492A patent/JP2007519741A/en active Pending
- 2005-01-28 WO PCT/US2005/002679 patent/WO2005072397A2/en active Application Filing
-
2010
- 2010-01-15 US US12/688,818 patent/US20100183713A1/en not_active Abandoned
Patent Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3431338A (en) * | 1963-09-10 | 1969-03-04 | Hoffmann La Roche | Coated dosage form adapted to oral emetine or dehydroemetine therapy |
US4863744A (en) * | 1984-09-17 | 1989-09-05 | Alza Corporation | Intestine drug delivery |
US4642903A (en) * | 1985-03-26 | 1987-02-17 | R. P. Scherer Corporation | Freeze-dried foam dosage form |
US4808416A (en) * | 1985-09-12 | 1989-02-28 | Laboratories Delagrange | Preparation of a slow-release drug |
US4968508A (en) * | 1987-02-27 | 1990-11-06 | Eli Lilly And Company | Sustained release matrix |
US5855914A (en) * | 1988-09-27 | 1999-01-05 | Takeda Chemical Industries, Ltd. | Granules having core and their production |
US5525634A (en) * | 1990-05-04 | 1996-06-11 | Perio Products, Ltd. | Colonic drug delivery system |
US5525634B1 (en) * | 1990-05-04 | 2000-01-18 | Perio Prod Ltd | Colonic drug delivery system |
US5866619A (en) * | 1990-05-04 | 1999-02-02 | Perio Products Ltd. | Colonic drug delivery system |
US6096722A (en) * | 1990-08-14 | 2000-08-01 | Isis Pharmaceuticals Inc. | Antisense modulation of cell adhesion molecule expression and treatment of cell adhesion molecule-associated diseases |
US5501861A (en) * | 1992-01-29 | 1996-03-26 | Takeda Chemical Industries, Ltd. | Fast dissolving tablet and its production |
US5654004A (en) * | 1992-11-06 | 1997-08-05 | Hisamitsu Pharmaceutical Co., Inc. | Oral pharmaceutical preparation releasable in the lower digestive tract |
US5834186A (en) * | 1992-12-04 | 1998-11-10 | Innovir Laboratories, Inc. | Regulatable RNA molecule |
US5874415A (en) * | 1992-12-31 | 1999-02-23 | Dana-Farber Cancer Institute, Inc. | Enhancer sequence for modulating expression in epithelial cells |
US5854038A (en) * | 1993-01-22 | 1998-12-29 | University Research Corporation | Localization of a therapeutic agent in a cell in vitro |
US5614503A (en) * | 1993-11-12 | 1997-03-25 | Aronex Pharmaceuticals, Inc. | Amphipathic nucleic acid transporter |
US6368629B1 (en) * | 1994-04-22 | 2002-04-09 | Yamanouchi Pharmaceutical Company Ltd. | Colon-specific drug release system |
US20020044975A1 (en) * | 1994-04-22 | 2002-04-18 | Shunsuke Watanabe | Colon-specific drug release system |
US5736388A (en) * | 1994-12-30 | 1998-04-07 | Chada; Sunil | Bacteriophage-mediated gene transfer systems capable of transfecting eukaryotic cells |
US5656294A (en) * | 1995-06-07 | 1997-08-12 | Cibus Pharmaceutical, Inc. | Colonic delivery of drugs |
US6180621B1 (en) * | 1996-05-09 | 2001-01-30 | Sankyo Company, Limited | Method and treatment using 1-methylcarbapenem derivatives as an anti-helicobacter pylori agent |
US6214378B1 (en) * | 1996-08-02 | 2001-04-10 | Hisamitsu Pharmaceutical Co., Inc. | Capsules for oral preparations and capsule preparations for oral administration |
US5714679A (en) * | 1996-10-02 | 1998-02-03 | Nichols; Steven J. | Portable apparatus for testing an internal combustion engine |
US6248357B1 (en) * | 1996-10-31 | 2001-06-19 | Takeda Chemical Industries, Ltd. | Solid pharmaceutical preparation with improved buccal disintegrability and/or dissolubility |
US5958453A (en) * | 1996-10-31 | 1999-09-28 | Takeda Chemical Industries, Ltd. | Solid pharmaceutical preparation with improved buccal disintegrability and/or dissolubility |
US5840322A (en) * | 1996-12-19 | 1998-11-24 | Ramot-University Authority For Applied Research & Industrial Devel. Ltd. | Anti-oral-microbial adhesion fraction derived from vaccinium |
US6586004B2 (en) * | 1997-05-27 | 2003-07-01 | Takeda Chemical Industries, Ltd. | Solid preparation |
US6004582A (en) * | 1997-05-30 | 1999-12-21 | Laboratorios Phoenix U.S.A, Inc. | Multi-layered osmotic device |
US6151525A (en) * | 1997-11-07 | 2000-11-21 | Medtronic, Inc. | Method and system for myocardial identifier repair |
US6794367B1 (en) * | 1998-05-19 | 2004-09-21 | Hisamitsu Pharmaceutical, Inc. | Solid preparations for oral administration of drugs relating to genes |
US6569456B2 (en) * | 2000-01-13 | 2003-05-27 | Osmotica Corp. | Osmotic device containing diltiazem and an ACE inhibitor or diuretic |
US20020035357A1 (en) * | 2000-01-14 | 2002-03-21 | Joaquina Faour | Osmotic device within an osmotic device |
US20050008702A1 (en) * | 2003-05-22 | 2005-01-13 | Joaquina Faour | Rupturing controlled release device having a preformed passageway |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9668982B2 (en) | 2011-02-11 | 2017-06-06 | Zx Pharma, Llc | Preventing whisker growth from an L-menthol composition |
US11779547B2 (en) | 2011-02-11 | 2023-10-10 | Société des Produits Nestlé S.A. | Multiparticulate L-menthol formulations and related methods |
US9132095B2 (en) | 2011-02-11 | 2015-09-15 | Zx Pharma, Llc | Multiparticulate L-menthol formulations and related methods |
US11207276B2 (en) | 2011-02-11 | 2021-12-28 | Société des Produits Nestlé S.A. | Multiparticulate L-menthol formulations and related methods |
US9220686B2 (en) | 2011-02-11 | 2015-12-29 | Zx Pharma, Llc | Multiparticulate L-menthol formulations and related methods |
US9393279B2 (en) | 2011-02-11 | 2016-07-19 | Zx Pharma, Llc | Enteric coated multiparticulate controlled release peppermint oil composition and related methods |
US9707260B2 (en) | 2011-02-11 | 2017-07-18 | Zx Pharma, Llc | Enteric coated multiparticulate controlled release peppermint oil composition and related methods |
US8747893B2 (en) * | 2012-03-30 | 2014-06-10 | Morishita Jintan Co., Ltd. | Capsule which disintegrates specifically in the large intestine |
US10420730B2 (en) | 2013-04-23 | 2019-09-24 | Zx Pharma, Llc | L-menthol dosage forms having a proteinaceous coating for enhanced storage stability |
US11207273B2 (en) | 2013-04-23 | 2021-12-28 | Société des Produits Nestlé S.A. | Method of making an L-menthol dosage form |
US11826475B2 (en) | 2013-04-23 | 2023-11-28 | Société des Produits Nestlé S.A. | Enteric coated multiparticulate compositions with a proteinaceous subcoat |
US9572782B2 (en) | 2013-04-23 | 2017-02-21 | Zx Pharma, Llc | Enteric coated multiparticulate composition with proteinaceous subcoat |
US9717696B2 (en) | 2013-04-23 | 2017-08-01 | ZxPharma, LLC | Enteric coated multiparticulate composition with proteinaceous coating for improved storage stability |
US9192583B2 (en) | 2013-04-23 | 2015-11-24 | Zx Pharma, Llc | Enteric coated multiparticulate composition with proteinaceous subcoat |
CN104739798A (en) * | 2013-12-26 | 2015-07-01 | 康普药业股份有限公司 | Busulfan sustained release tablet and preparation method thereof |
US10293046B2 (en) | 2014-07-15 | 2019-05-21 | Intellipharmaceutics Corp. | Compositions and methods for reducing overdose |
US9522119B2 (en) | 2014-07-15 | 2016-12-20 | Isa Odidi | Compositions and methods for reducing overdose |
US10653776B2 (en) | 2014-07-15 | 2020-05-19 | Intellipharmaceutics Corp. | Compositions and methods for reducing overdose |
US9700515B2 (en) | 2014-07-15 | 2017-07-11 | Isa Odidi | Compositions and methods for reducing overdose |
US9801939B2 (en) | 2014-07-15 | 2017-10-31 | Isa Odidi | Compositions and methods for reducing overdose |
US9700516B2 (en) | 2014-07-15 | 2017-07-11 | Isa Odidi | Compositions and methods for reducing overdose |
US10716761B2 (en) | 2017-07-24 | 2020-07-21 | Alcresta Therapeutics, Inc. | Ingestible medical delivery devices |
US11478431B2 (en) | 2017-07-24 | 2022-10-25 | Alcresta Therapeutics, Inc. | Ingestible medical delivery devices |
Also Published As
Publication number | Publication date |
---|---|
US7670624B2 (en) | 2010-03-02 |
JP2007519741A (en) | 2007-07-19 |
WO2005072397A2 (en) | 2005-08-11 |
US20050208133A1 (en) | 2005-09-22 |
WO2005072397A3 (en) | 2006-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7670624B2 (en) | Gastrointestinal-specific multiple drug release system | |
US6368629B1 (en) | Colon-specific drug release system | |
US8323689B2 (en) | Solid oral dosage form containing an enhancer | |
EP1154761B1 (en) | Solid oral dosage form containing an enhancer | |
EP2007397B1 (en) | Solid oral dosage form containing an enhancer | |
US7008640B2 (en) | Pharmaceutical composition for oral use with improved absorption | |
US20070292512A1 (en) | Solid Oral Dosage Form Containing an Enhancer | |
US20070148228A1 (en) | Solid oral dosage form containing an enhancer | |
CA2187741C (en) | Colon-specific drug release system | |
JP2006219502A (en) | Colon-specific drug release system | |
JP4599714B2 (en) | Oral absorption improving pharmaceutical composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |