US20100093519A1 - Catalyst, a process for its preparation, and its use - Google Patents
Catalyst, a process for its preparation, and its use Download PDFInfo
- Publication number
- US20100093519A1 US20100093519A1 US12/636,626 US63662609A US2010093519A1 US 20100093519 A1 US20100093519 A1 US 20100093519A1 US 63662609 A US63662609 A US 63662609A US 2010093519 A1 US2010093519 A1 US 2010093519A1
- Authority
- US
- United States
- Prior art keywords
- slurry
- zeolite
- silicate
- catalyst
- clay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000008569 process Effects 0.000 title claims abstract description 29
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000002002 slurry Substances 0.000 claims abstract description 107
- 239000010457 zeolite Substances 0.000 claims abstract description 45
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 41
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 40
- 239000002245 particle Substances 0.000 claims abstract description 36
- 239000004927 clay Substances 0.000 claims abstract description 30
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims abstract description 30
- 229910001593 boehmite Inorganic materials 0.000 claims abstract description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 16
- 239000010703 silicon Substances 0.000 claims abstract description 16
- 239000002253 acid Substances 0.000 claims abstract description 12
- 238000007493 shaping process Methods 0.000 claims abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 18
- 239000000377 silicon dioxide Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 10
- -1 polyorganosiloxanes Chemical compound 0.000 claims description 7
- 235000019353 potassium silicate Nutrition 0.000 claims description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052916 barium silicate Inorganic materials 0.000 claims description 4
- HMOQPOVBDRFNIU-UHFFFAOYSA-N barium(2+);dioxido(oxo)silane Chemical compound [Ba+2].[O-][Si]([O-])=O HMOQPOVBDRFNIU-UHFFFAOYSA-N 0.000 claims description 4
- IJOOHPMOJXWVHK-UHFFFAOYSA-N chlorotrimethylsilane Chemical compound C[Si](C)(C)Cl IJOOHPMOJXWVHK-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 239000000391 magnesium silicate Substances 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- YNEJMXAHJJVUTL-UHFFFAOYSA-N 1-chloro-2,3-dimethylsiline Chemical compound CC1=CC=C[Si](Cl)=C1C YNEJMXAHJJVUTL-UHFFFAOYSA-N 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000004111 Potassium silicate Substances 0.000 claims description 2
- 239000004115 Sodium Silicate Substances 0.000 claims description 2
- 239000004110 Zinc silicate Substances 0.000 claims description 2
- 239000000378 calcium silicate Substances 0.000 claims description 2
- 229910052918 calcium silicate Inorganic materials 0.000 claims description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 claims description 2
- YGZSVWMBUCGDCV-UHFFFAOYSA-N chloro(methyl)silane Chemical compound C[SiH2]Cl YGZSVWMBUCGDCV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 2
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 claims description 2
- 229910052919 magnesium silicate Inorganic materials 0.000 claims description 2
- 235000019792 magnesium silicate Nutrition 0.000 claims description 2
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052913 potassium silicate Inorganic materials 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052917 strontium silicate Inorganic materials 0.000 claims description 2
- QSQXISIULMTHLV-UHFFFAOYSA-N strontium;dioxido(oxo)silane Chemical compound [Sr+2].[O-][Si]([O-])=O QSQXISIULMTHLV-UHFFFAOYSA-N 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 239000005051 trimethylchlorosilane Substances 0.000 claims description 2
- 235000019352 zinc silicate Nutrition 0.000 claims description 2
- XSMMCTCMFDWXIX-UHFFFAOYSA-N zinc silicate Chemical compound [Zn+2].[O-][Si]([O-])=O XSMMCTCMFDWXIX-UHFFFAOYSA-N 0.000 claims 1
- 238000001694 spray drying Methods 0.000 description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 18
- 238000002156 mixing Methods 0.000 description 16
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 16
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 14
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 13
- 239000005995 Aluminium silicate Substances 0.000 description 11
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 11
- 235000012211 aluminium silicate Nutrition 0.000 description 11
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 10
- 235000011114 ammonium hydroxide Nutrition 0.000 description 10
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 10
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 10
- 239000001166 ammonium sulphate Substances 0.000 description 10
- 235000011130 ammonium sulphate Nutrition 0.000 description 10
- 238000004231 fluid catalytic cracking Methods 0.000 description 10
- 229910021529 ammonia Inorganic materials 0.000 description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 8
- 229910052593 corundum Inorganic materials 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910052723 transition metal Inorganic materials 0.000 description 8
- 229910001845 yogo sapphire Inorganic materials 0.000 description 8
- 150000003624 transition metals Chemical class 0.000 description 7
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000003518 caustics Substances 0.000 description 6
- 229910017604 nitric acid Inorganic materials 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910052570 clay Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 150000007522 mineralic acids Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229910002796 Si–Al Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002808 molecular sieve Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 3
- 229910017089 AlO(OH) Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000004113 Sepiolite Substances 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- JLDSOYXADOWAKB-UHFFFAOYSA-N aluminium nitrate Chemical compound [Al+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O JLDSOYXADOWAKB-UHFFFAOYSA-N 0.000 description 2
- 235000012241 calcium silicate Nutrition 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PWZFXELTLAQOKC-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide;tetrahydrate Chemical compound O.O.O.O.[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O PWZFXELTLAQOKC-UHFFFAOYSA-A 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910001701 hydrotalcite Inorganic materials 0.000 description 2
- 229960001545 hydrotalcite Drugs 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052624 sepiolite Inorganic materials 0.000 description 2
- 235000019355 sepiolite Nutrition 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910014571 C—O—Si Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 239000001164 aluminium sulphate Substances 0.000 description 1
- 235000011128 aluminium sulphate Nutrition 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- BUACSMWVFUNQET-UHFFFAOYSA-H dialuminum;trisulfate;hydrate Chemical compound O.[Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O BUACSMWVFUNQET-UHFFFAOYSA-H 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- ZOIVSVWBENBHNT-UHFFFAOYSA-N dizinc;silicate Chemical compound [Zn+2].[Zn+2].[O-][Si]([O-])([O-])[O-] ZOIVSVWBENBHNT-UHFFFAOYSA-N 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229910000271 hectorite Inorganic materials 0.000 description 1
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229940094522 laponite Drugs 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- XCOBTUNSZUJCDH-UHFFFAOYSA-B lithium magnesium sodium silicate Chemical compound [Li+].[Li+].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Na+].[Na+].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3.O1[Si](O2)([O-])O[Si]3([O-])O[Si]1([O-])O[Si]2([O-])O3 XCOBTUNSZUJCDH-UHFFFAOYSA-B 0.000 description 1
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 235000012243 magnesium silicates Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910000275 saponite Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/08—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
- B01J29/084—Y-type faujasite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0045—Drying a slurry, e.g. spray drying
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/08—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
- C10G1/086—Characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G29/00—Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
- C10G29/20—Organic compounds not containing metal atoms
- C10G29/205—Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G35/00—Reforming naphtha
- C10G35/04—Catalytic reforming
- C10G35/06—Catalytic reforming characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/42—Addition of matrix or binder particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
Definitions
- the present invention relates to a process for the preparation of a catalyst, catalysts obtainable by this process, and their use in, e.g., fluid catalytic cracking (FCC).
- FCC fluid catalytic cracking
- a common challenge in the design and production of heterogeneous catalysts is to find a good compromise between the effectiveness and/or accessibility of the active sites and the effectiveness of the immobilising matrix in giving the catalyst particles sufficient physical strength, i.e. attrition resistance.
- U.S. Pat. No. 4,086,187 discloses a process for the preparation of an attrition resistant catalyst by spray-drying an aqueous slurry prepared by mixing (i) a faujasite zeolite with a sodium content of less than 5 wt % with (ii) kaolin, (iii) peptised pseudoboehmite, and (iv) ammonium polysilicate.
- the attrition resistant catalysts according to U.S. Pat. No. 4,206,085 are prepared by spray-drying a slurry prepared by mixing two types of acidified pseudoboehmite, zeolite, alumina, clay, and either ammonium polysilicate or silica sol.
- GB 1 315 553 discloses the preparation of an attrition resistant hydrocarbon conversion catalyst comprising a zeolite, a clay, and an alumina binder.
- the catalyst is prepared by first dry mixing the zeolite and the clay, followed by adding an alumina sol. The resulting mixture is then mixed to a plastic consistency, which requires about 20 minutes of mixing time. In order to form shaped particles, the plastic consistency is either pelletised or extruded, or it is mixed with water and subsequently spray-dried.
- the alumina sol disclosed in this British patent specification comprises aluminium hydroxide and aluminium trichloride in a molar ratio of 4.5 to 7.0 (also called aluminium chlorohydrol).
- U.S. Pat. No. 4,458,023 relates to a similar preparation procedure, which is followed by calcination of the spray-dried particles. During calcination, the aluminium chlorohydrol component is converted into an alumina binder.
- WO 96/09890 discloses a process for the preparation of attrition resistant fluid catalytic cracking catalysts. This process involves the mixing of an aluminium sulphate/silica sol, a clay slurry, a zeolite slurry, and an alumina slurry, followed by spray-drying. During this process, an acid- or alkaline-stable surfactant is added to the silica sol, the clay slurry, the zeolite slurry, the alumina slurry and/or the spray-drying slurry.
- CN 1247885 also relates to the preparation of a spray-dried cracking catalyst.
- This preparation uses a slurry comprising an aluminous sol, pseudoboehmite, a molecular sieve, clay, and an inorganic acid.
- the aluminous sol is added to the slurry before the clay and the inorganic acid are added, and the molecular sieve slurry is added after the inorganic acid has been added.
- pseudoboehmite and aluminium sol are first mixed, followed by addition of the inorganic acid. After acidification, the molecular sieve is added, followed by kaolin.
- WO 02/098563 discloses a process for the preparation of an FCC catalyst having both a high attrition resistance and a high accessibility.
- the catalyst is prepared by slurrying zeolite, clay, and boehmite, feeding the slurry to a shaping apparatus, and shaping the mixture to form particles, characterised in that just before the shaping step the mixture is destabilised.
- This destabilisation is achieved by, e.g., temperature increase, pH increase, pH decrease, or addition of gel-inducing agents such as salts, phosphates, sulphates, and (partially) gelled silica. Before destabilisation any peptisable compounds present in the slurry must have been well peptised.
- the catalyst according to the latter document has a relatively high attrition resistance and accessibility, it has now been found that the accessibility and attrition resistance can be further improved.
- the process according to the invention adds non-peptised quasi-crystalline boehmite (QCB). Acid is only added after QCB addition, i.e. to a slurry that also comprises zeolite and clay.
- QB quasi-crystalline boehmite
- An additional advantage of the process according to the invention is that it enables the formation of catalysts comprising both micro- and quasi-crystalline boehmites with an accessibility and an attrition resistance sufficient for use in FCC.
- Micro-crystalline boehmite (MCB) is a suitable metal passivator, in particular for Ni contaminants.
- MCB-containing FCC catalyst particles has been unsuccessful, because MCB is difficult to bind with conventional FCC-type binders, leading to catalyst particles with unacceptable attrition.
- the invention therefore also relates to FCC catalysts comprising both MCB and QCB.
- boehmite is used in the industry to describe alumina hydrates which exhibit X-ray diffraction (XRD) patterns close to that of aluminium oxide-hydroxide [AlO(OH)]. Further, the term boehmite is generally used to describe a wide range of alumina hydrates which contain different amounts of water of hydration, have different surface areas, pore volumes, specific densities, and exhibit different thermal characteristics upon thermal treatment. Yet their XRD patterns, although they exhibit the characteristic boehmite [AlO(OH)] peaks, usually vary in their widths and can also shift in their location. The sharpness of the XRD peaks and their location have been used to indicate the degree of crystallinity, crystal size, and amount of imperfections.
- XRD X-ray diffraction
- boehmite aluminas there are two categories of boehmite aluminas: quasi-crystalline boehmites (QCBs) and micro-crystalline boehmites (MCBs).
- QCBs quasi-crystalline boehmites
- MBs micro-crystalline boehmites
- quasi-crystalline boehmites are also referred to as pseudo-boehmites and gelatinous boehmites.
- these QCBs have higher surface areas, larger pores and pore volumes, and lower specific densities than MCBs. They disperse easily in water or acids, have smaller crystal sizes than MCBs, and contain a larger number of water molecules of hydration.
- the extent of hydration of QCBs can have a wide range of values, for example from about 1.4 up to about 2 moles of water per mole of Al, intercalated usually orderly or otherwise between the octahedral layers.
- DTG differential thermographimetry
- the XRD Patterns of QCBs show quite broad peaks and their half-widths (i.e. the widths of the peaks at half-maximum intensity) are indicative of the crystal sizes as well as the degree of crystal perfection.
- QCBs Some typical commercially available QCBs are Pural®, Catapal®, and Versal® products.
- Microcrystalline boehmites are distinguished from the QCBs by their high degree of crystallinity, relatively large crystal size, very low surface areas, and high densities. Contrary to QCBs, MCBs show XRD patterns with higher peak intensities and very narrow half-widths. This is due to their relatively small number of intercalated water molecules, large crystal sizes, the higher degree of crystallization of the bulk material, and the smaller amount of crystal imperfections. Typically, the number of water molecules intercalated can vary in the range from about 1 up to about 1.4 per mole of Al.
- a typical commercially available MCB is Sasol's P-200®.
- MCBs and QCBs are characterised by powder X-ray reflections.
- the ICDD contains entries for boehmite and confirms that reflections corresponding to the (020), (021), and (041) planes would be present. For copper radiation, such reflections would appear at 14, 28, and 38 degrees 2-theta. The exact position of the reflections depends on the extent of crystallinity and the amount of water intercalated: as the amount of intercalated water increases, the (020) reflection moves to lower values, corresponding to greater d-spacings. Nevertheless, lines close to the above positions would be indicative of the presence of one or more types of boehmite phases.
- Suitable zeolites to be present in the slurry of step a) include zeolites such as Y-zeolites—including HY, USY, RE-Y, dealuminated Y, and RE-USY—zeolite beta, ZSM-5, phosphorus-activated ZSM-5, ion-exchanged ZSM-5, MCM-22, and MCM-36, metal-exchanged zeolites, ITQs, SAPOs, ALPOs, and mixtures thereof.
- Y-zeolites including HY, USY, RE-Y, dealuminated Y, and RE-USY—zeolite beta, ZSM-5, phosphorus-activated ZSM-5, ion-exchanged ZSM-5, MCM-22, and MCM-36, metal-exchanged zeolites, ITQs, SAPOs, ALPOs, and mixtures thereof.
- Suitable clays include kaolin, bentonite, saponite, sepiolite, attapulgite, laponite, hectorite, English clay, anionic clays such as hydrotalcite, and heat- or chemically treated clays such as meta-kaolin.
- the slurry of step a) is prepared by suspending clay, zeolite, and non-peptised QCB in water.
- other components may be added, such as other alumina sources—like MCB, aluminium chlorohydrol, aluminium nitrate, Al 2 O 3 , and Al(OH) 3 -anionic clays (e.g.
- hydrotalcite smectites, sepiolite, barium titanate, calcium titanate, calcium silicates, magnesium silicates, magnesium titanate, mixed metal oxides, layered hydroxy salts, additional zeolites, magnesium oxide, bases or salts, and/or metal additives such as compounds containing an alkaline earth metal (for instance Mg, Ca, and Ba), a Group IIIA transition metal, a Group IVA transition metal (e.g. Ti, Zr), a Group VA transition metal (e.g. V, Nb), a Group VIA transition metal (e.g. Cr, Mo, W), a Group VIIA transition metal (e.g. Mn), a Group VIIIA transition metal (e.g.
- an alkaline earth metal for instance Mg, Ca, and Ba
- a Group IIIA transition metal e.g. Ti, Zr
- a Group VA transition metal e.g. V, Nb
- a Group VIA transition metal e.g. Cr, Mo, W
- a Group IB transition metal e.g. Cu
- a Group IIB transition metal e.g. Zn
- a lanthanide e.g. La, Ce
- An especially preferred component is MCB, because that results in the preparation of a catalyst comprising both MCB and QCB.
- the clay, zeolite, non-peptised QCB, and optional other components can be slurried by adding them to water as dry solids.
- slurries containing the individual materials are mixed to form the slurry according to step a). It is also possible to add some of the materials as slurries and others as dry solids.
- any order of addition may be used.
- the optional other components can be added to the slurry together with, prior to or subsequent to the addition of the zeolite, the clay, and the non-peptised QCB.
- the slurry preferably comprises 10 to 70 wt %, more preferably 15 to 50 wt %, and most preferably 15 to 40 wt % of zeolite.
- the slurry preferably comprises 5 to 70 wt %, more preferably 10 to 60 wt %, and most preferably 10 to 50 wt % of clay.
- the slurry preferably comprises 1 to 50 wt %, more preferably 2 to 40 wt %, and most preferably 3 to 40 wt % of non-peptised QCB.
- the slurry also comprises 1 to 25 wt %, and most preferably 5 to 25 wt % of MCB.
- the solids content of the slurry preferably is 10-30 wt %, more preferably 15-30 wt %, and most preferably 15-25 wt %.
- a monovalent acid is added to the suspension, causing digestion.
- Both organic and inorganic monovalent acids can be used, or a mixture thereof.
- suitable monovalent acids are formic acid, acetic acid, propionic acid, nitric acid, and hydrochloric acid.
- the acid is added to the slurry in an amount sufficient to obtain a pH lower than 7, more preferably between 0.2 and 5, most preferably between 3 and 4.
- the slurry may be stirred, milled, grinded, high-shear mixed, or treated with ultrasound waves.
- Suitable silicon sources to be added in step c) include (poly)silicic acid, sodium silicate, sodium-free silicon sources, and organic silicon sources.
- suitable sodium-free silicon sources are potassium silicate, lithium silicate, calcium silicate, magnesium silicate, barium silicate, strontium silicate, zinc silicate, phosphorus silicate; and barium silicate.
- suitable organic silicon sources are silicones (polyorganosiloxanes such as polymethylphenylsiloxane and polydimethylsiloxane) and other compounds containing Si—O—C—O—Si structures, and precursors thereof such as methyl chlorosilane, dimethyl chlorosiline, trimethyl chlorosilane, and mixtures thereof.
- the silicon source is preferably added in an amount of 1-35 wt %, more preferably 4-18 wt %, based on dry solids content and calculated as SiO 2 .
- no silicon source is present in the slurry of step a). This prevents the formation of Si—Al cogels even more.
- Suitable shaping methods include spray-drying, pulse drying, pelletising, extrusion (optionally combined with kneading), beading, or any other conventional shaping method used in the catalyst and absorbent fields or combinations thereof.
- a preferred shaping method is spray-drying. If the catalyst is shaped by spray-drying, the inlet temperature of the spray-dryer preferably ranges from 300 to 600° C. and the outlet temperature preferably ranges from 105 to 200° C.
- the time period between the addition of the silicon source and shaping preferably is 30 minutes or less, more preferably less than 5 minutes, and most preferably less than 3 minutes.
- the pH of the slurry to be spray-dried preferably is above 3, more preferably above 3.5, even more preferably above 4, and most preferably about 4.5 or higher.
- the pH of the slurry preferably is not higher than 7, because slurries with a higher pH can be difficult to handle.
- the pH can be adjusted by adding a base (e.g. NaOH or NH 4 OH) to the slurry just before spray-drying.
- a base e.g. NaOH or NH 4 OH
- the catalyst so obtained has exceptionally good attrition resistance and accessibility. Therefore, the invention also relates to a catalyst obtainable by the process according to the invention.
- the invention further relates to a catalyst comprising both MCB and QCB.
- a catalyst comprising both MCB and QCB.
- such a catalyst comprises 1-50 wt %, most preferably 3-40 wt % of QCB, and preferably 1-25, most preferably 5-25 wt % of MCB (calculated as oxides).
- This catalyst further comprises silica, zeolite, and clay.
- silica, zeolite, and clay are present in preferred amounts of 1-25 wt % silica, 5-50 wt % zeolite, and balance clay.
- FCC catalysts can be used as FCC catalysts, FCC additives—such as SO x reduction additives, NO x reduction additives, CO combustion additives, ZSM-5 additives, or sulphur in gasoline reduction additives—in hydroprocessing catalysts, alkylation catalysts, reforming catalysts, gas-to-liquid conversion catalysts, coal conversion catalysts, hydrogen manufacturing catalysts, and automotive catalysts.
- FCC additives such as SO x reduction additives, NO x reduction additives, CO combustion additives, ZSM-5 additives, or sulphur in gasoline reduction additives—in hydroprocessing catalysts, alkylation catalysts, reforming catalysts, gas-to-liquid conversion catalysts, coal conversion catalysts, hydrogen manufacturing catalysts, and automotive catalysts.
- the invention therefore also relates to the use of these catalyst obtainable by the process of the invention as catalyst or additive in fluid catalytic cracking, hydroprocessing, alkylation, reforming, gas-to-liquid conversion, coal conversion, and hydrogen manufacturing, and as automotive catalyst.
- the accessibility of the catalysts prepared according to the Examples below was measured by adding 1 g of the catalyst to a stirred vessel containing 50 g of a 15 g/l Kuwait vacuum gas oil (KVGO) in toluene solution.
- the solution was circulated between the vessel and a spectrophotometer, in which process the KVGO-concentration was continuously measured.
- the accessibility of the catalysts to KVGO was quantified by the Akzo Accessibility Index (AAI).
- AAI Akzo Accessibility Index
- the relative concentration of KVGO in the solution was plotted against the square root of time.
- the MI is defined as the initial slope of this graph:
- t is the time (in minutes) and C 0 and C t denote the concentrations of high-molecular weight compound in the solvent at the start of the experiment and at time t, respectively.
- the attrition resistance of the catalysts was measured by the standard Attrition Test.
- the catalyst bed resides on an attrition plate with three nozzles.
- the attrition plate is situated within an attrition tube which is at ambient temperature. Air is forced to the nozzles and the resulting jets bring about upward transport of catalyst particles and generated fines.
- On top of the attrition tube is a separation chamber where the flow dissipates, and most particles larger than about 16 microns fall back into the attrition tube. Smaller particles are collected in a collection bag.
- This test is conducted after calcination of the catalyst samples at 600° C., and it is first run for 5 hours and the weight percentage of fines collected in the collection bag, based on an imaginary intake of 50 grams, is determined. This is the initial attrition. The test is then conducted for another 15 hours and the weight percentage of fines in this time period (5-20 hours) is determined. This is the inherent attrition.
- the Attrition Index (AI) is the extrapolated wt % fines after 25 hours. So, the more attrition resistant the catalyst is, the lower the AI value.
- a slurry was prepared by mixing 60.6 kg of a zeolite Y slurry (29.7 wt % solids) with 23.3 kg of a microcrystalline boehmite slurry (23.2 wt % Al 2 O 3 ), 16.2 kg of a kaolin slurry (85.3 wt % solids), 14.2 kg of slurry containing non-peptised pseudoboehmite (71.9 wt % Al 2 O 3 ), and 48.9 kg water. HNO 3 was added to the resulting slurry until the pH was 3.3.
- a silica sol was made in a pipeline mixer (5,900 rpm) by mixing diluted water glass (DWG) with H 2 SO 4 .
- the weight ratio DWG/H 2 SO 4 was 2.9.
- silica sol and the slurry prepared above were pumped to a mixing vessel (1450 rpm), resulting in a slurry of 21 wt % solids.
- the silica sol was pumped to this vessel with a flow of 0.88 kg/min; the slurry was pumped with a flow of 2.12 kg/min.
- the resulting slurry which had a pH of about 2.5, was then fed to a spray-dryer with a flow of 3.0 kg/min, an inlet temperature of 300° C., an outlet temperature of 125° C., and a nozzle pressure of 40 bar.
- the spray-dried particles had a d50 of about 75 microns.
- the particles contained 30 wt % zeolite, 17 wt % QCB, 9 wt % MCB, 21 wt % silica, and balance kaolin.
- Sample A1 was made exactly as above;
- Sample B1 was obtained by adding caustic to the slurry just before spray-drying, thereby arriving at a pH of 3.8;
- Sample C1 was obtained by adding caustic to the slurry just before spray-drying, thereby arriving at a pH of 4.2;
- Sample D1 was obtained by adding caustic to the slurry just before spray-drying, thereby arriving at a pH of 4.6.
- a slurry was prepared by mixing 66.445 kg of a zeolite Y slurry. (27.1 wt % solids) with 25.851 kg of a microcrystalline boehmite slurry (23.2 wt % Al 2 O 3 ), 24.619 kg of a kaolin slurry (85.3 wt % solids), 8.054 kg of slurry containing non-peptised pseudoboehmite (74.5 wt % Al 2 O 3 ), and 48.9 kg water. To the resulting slurry, 5.6 kg HNO3 were added until the pH was 3.3.
- a silica sol was made in a pipeline mixer (5,900 rpm) by mixing diluted water glass (DWG) with H 2 SO 4 .
- the weight ratio DWG/H 2 SO 4 was 2.92.
- silica sol and the slurry prepared above were pumped to a mixing vessel (1,450 rpm), resulting in a slurry of 25 wt % solids.
- the silica sol was pumped to this vessel with a flow of 0.75 kg/min; the slurry was pumped with a flow of 2.25 kg/min.
- the resulting slurry which had a pH of about 2.5, was then fed to a spray-dryer with a flow of 3.0 kg/min, an inlet temperature of 300° C., an outlet temperature of 1.25° C., and a nozzle pressure of 40 bar.
- the spray-dried particles had a d50 of about 75 microns.
- the particles contained 30 wt % zeolite, 10 wt % QCB, 10 wt % MCB, 15 wt % silica, and balance kaolin.
- Sample A2 was made exactly as above;
- Sample B2 was obtained by adding caustic to the slurry just before spray-drying, thereby arriving at a pH of 3.8;
- CC1 and CD1 Two comparative samples (CC1 and CD1) were made by the same procedure by increasing the pH to 4.2 (CC1) and 4.6 (CD1) just before spray-drying, except that peptised pseudoboehmite (peptised with nitric acid) was used.
- the samples were subsequently washed in order to reduce their sodium content to below 0.5 wt % (as Na 2 O) by re-slurrying 12 kg of the particles in a 40-litre ammonia solution at pH 5.0.
- the particles were filtered and washed with a 30-litre ammonia solution containing 420 g ammonium sulphate and a pH of 8.3, re-slurried again in a 30-litre ammonia solution at pH 7.8, and filtered and washed again with a 30-litre ammonia solution containing 420 g ammonium sulphate at pH 8.3.
- the particles were washed with water and subsequently flash-calcined (outlet gas temperature 150° C.).
- Attrition Index (AI) and Akzo Accessibility Index (AAI) were measured for all the above samples: see Table 1. This Table also indicates the ratio AAI/AI. It is clear that the catalysts prepared according to the process of the present invention have a lower attrition (i.e. a higher attrition resistance) and a higher AAI/AI ratio.
- Sample C2 was obtained by adding caustic to the slurry just before spray-drying, thereby arriving at a pH of 4.2;
- Sample D2 was obtained by adding caustic to the slurry just before spray-drying, thereby arriving at a pH of 4.6.
- CB2 and CE2 Two comparative samples (CB2 and CE2) were made by the same procedure by increasing the pH to 3.8 (CB2) or 5 (CE2) just before spray-drying, except that peptised pseudoboehmite was used.
- the samples were subsequently washed in order to reduce their sodium content to below 0.5 wt % (as Na 2 O) by re-slurrying 12 kg of the particles in a 40-litre ammonia solution at pH 5.0.
- the particles were filtered and washed with a 30-litre ammonia solution containing 420 g ammonium sulphate and a pH of 8.3, reslurried again in a 30-litre ammonia solution at pH 7.8, and filtered and washed again with a 30-litre ammonia solution containing 420 g ammonium sulphate at pH 8.3.
- the particles were washed with water and subsequently flash-calcined (outlet gas temperature 150° C.).
- AI Attrition Index
- AAI Akzo Accessibility Index
- a slurry was prepared by mixing 10.4 kg of a zeolite Y slurry (23.1 wt % solids) with kg of a kaolin slurry (86 wt % solids), 16.8 kg of slurry containing non peptised pseudoboehmite (17.3 wt % Al 2 O 3 ), and 0.92 kg water. To the resulting slurry, HNO3 was added until the pH was 3.3.
- a silica sol was made in a pipeline mixer (5,900 rpm) by mixing diluted water glass (DWG) with H 2 SO 4 .
- the weight ratio DWG/H 2 SO 4 was 2.3.
- silica sol and the slurry prepared above were pumped to a mixing vessel (1450 rpm), resulting in a slurry of 25 wt % solids.
- the silica sol was pumped to this vessel with a flow of 0.75 kg/min; the slurry was pumped with a flow of 0.93 kg/min.
- the resulting slurry which had a pH of about 2.5, was then fed to a spray-dryer with a flow of 3.0 kg/min, an inlet temperature of 500° C., an outlet temperature of 120° C., and a nozzle pressure of 40 bar.
- the spray-dried particles had a d50 of about 65 microns.
- the particles contained 24 wt % zeolite, 29 wt % QCB, 4 wt % silica, and balance kaolin.
- Sample B3 was obtained by adding ammonia to the slurry just before spray-drying, thereby arriving at a pH of 3.6;
- Sample C3 was obtained by adding ammonia to the slurry just before spray-drying, thereby arriving at a pH of 3.9;
- Sample D3 was obtained by adding ammonia to the slurry just before spray-drying, thereby arriving at a pH of 4.2.
- Sample E3 was obtained by adding ammonia to the slurry just before spray-drying, thereby arriving at a pH of 5.0.
- the samples were subsequently washed in order to reduce their sodium content to below 0.5 wt % (as Na 2 O) by re-slurrying 2 kg of the particles in hot water and ammonia solution at pH 5.0.
- 200 g of ammonium sulphate were added to this slurry.
- the particles were then filtered and washed.
- the filter cake was re-slurried in hot water with 200 g ammonium sulphate, filtered, washed, and re-slurried in ammonium sulphate again.
- the particles were filtered and washed with hot water and ammonia at a pH between 8.0 and 8.5. After a last filtration, the particles were tray-dried in an oven.
- Table 3 lists the AI, AAI, and the ratio AAI/AI for these catalysts. Comparison of the results for D3 and E3 with those of CD3 and CE3 illustrates the positive effect of the process of the invention on the accessibility of the catalysts, without giving in on attrition resistance. Further, the accessibility increases with the pH before spray-drying.
- a slurry was prepared by mixing 8 kg of a zeolite Y slurry (25 wt % solids) with 4.17 kg of a kaolin slurry (86 wt % solids), 5 kg micro-crystalline boehmite (25 wt % Al 2 O 3 ), 13.3 kg of slurry containing non-peptised pseudoboehmite (17.3 wt % Al 2 O 3 ), and 0.92 kg water. To the resulting slurry, HNO3 was added until the pH was 3.3.
- a silica sol was made in a pipeline mixer (5,900 rpm) by mixing diluted water glass (DWG) with H 2 SO 4 .
- the weight ratio DWG/H 2 SO 4 was 2.36.
- silica sol and the slurry prepared above were pumped to a mixing vessel (1450 rpm), resulting in a slurry of 25 wt % solids.
- the silica sol was pumped to this vessel with a flow of 0.112 kg/min; the slurry was pumped with a flow of 0.888 kg/min.
- Ammonia was added to the slurry.
- the slurry was then fed to a spray-dryer with a flow of 3.0 kg/min, an inlet temperature of 500° C., an outlet temperature of 120° C., and a nozzle pressure of 40 bar.
- the spray-dried particles had a d50 of about 65 microns.
- the particles contained 20 wt % zeolite, 24 wt % QCB, 14 wt % MCB, 6 wt % silica, and balance kaolin.
- Sample A4 was obtained by adding ammonia to the slurry just before spray-drying in such an amount as to reach a pH of 4.2;
- Sample B4 was obtained by adding ammonia to the slurry just before spray-drying in such an amount as to reach a pH of 5.0;
- CB4 One comparative sample (CB4) was made by the same procedure by increasing the pH to 5 just before spray-drying, except that peptised pseudoboehmite was used.
- the samples were subsequently washed in order to reduce their sodium content to below 0.5 wt % (as Na 2 O) by re-slurrying 2 kg of the particles in hot water and ammonia solution at pH 5.0.
- 200 g of ammonium sulphate were added to this slurry.
- the particles were then filtered and washed.
- the filter cake was re-slurried in hot water with 200 g ammonium sulphate, filtered, washed, and re-slurried in ammonium sulphate again.
- the particles were filtered and washed with hot water and ammonia at a pH between 8.0 and 8.5. After a last filtration, the particles were tray-dried in an oven.
- Table 4 lists the AI, AAI, and the ratio AAI/AI for these catalysts. It clearly shows the positive effect of the process of the invention on the accessibility of these catalysts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/636,626 US20100093519A1 (en) | 2004-12-21 | 2009-12-11 | Catalyst, a process for its preparation, and its use |
US13/172,149 US9534177B2 (en) | 2004-12-21 | 2011-06-29 | Catalyst, a process for its preparation, and its use |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63744704P | 2004-12-21 | 2004-12-21 | |
EP05075578.4 | 2005-03-09 | ||
EP05075578 | 2005-03-09 | ||
PCT/EP2005/056984 WO2006067155A2 (en) | 2004-12-21 | 2005-12-20 | Attrition-resisitant catalyst, a process for its preparation and its use |
US12/636,626 US20100093519A1 (en) | 2004-12-21 | 2009-12-11 | Catalyst, a process for its preparation, and its use |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/056984 Continuation WO2006067155A2 (en) | 2004-12-21 | 2005-12-20 | Attrition-resisitant catalyst, a process for its preparation and its use |
US11722250 Continuation | 2005-12-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/172,149 Continuation US9534177B2 (en) | 2004-12-21 | 2011-06-29 | Catalyst, a process for its preparation, and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100093519A1 true US20100093519A1 (en) | 2010-04-15 |
Family
ID=34938092
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/636,626 Abandoned US20100093519A1 (en) | 2004-12-21 | 2009-12-11 | Catalyst, a process for its preparation, and its use |
US13/172,149 Active 2026-02-19 US9534177B2 (en) | 2004-12-21 | 2011-06-29 | Catalyst, a process for its preparation, and its use |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/172,149 Active 2026-02-19 US9534177B2 (en) | 2004-12-21 | 2011-06-29 | Catalyst, a process for its preparation, and its use |
Country Status (6)
Country | Link |
---|---|
US (2) | US20100093519A1 (ja) |
EP (1) | EP1824599B1 (ja) |
JP (1) | JP5255844B2 (ja) |
CN (1) | CN101115560B (ja) |
CA (1) | CA2593919C (ja) |
WO (1) | WO2006067155A2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9381502B2 (en) | 2004-12-21 | 2016-07-05 | Albemarle Netherlands, B.V. | FCC catalyst, its preparation and use |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7838708B2 (en) | 2001-06-20 | 2010-11-23 | Grt, Inc. | Hydrocarbon conversion process improvements |
RU2366642C2 (ru) | 2003-07-15 | 2009-09-10 | Джи Ар Ти, Инк. | Синтез углеводородов |
US20050171393A1 (en) | 2003-07-15 | 2005-08-04 | Lorkovic Ivan M. | Hydrocarbon synthesis |
US20060100469A1 (en) | 2004-04-16 | 2006-05-11 | Waycuilis John J | Process for converting gaseous alkanes to olefins and liquid hydrocarbons |
US20080275284A1 (en) | 2004-04-16 | 2008-11-06 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
US8173851B2 (en) | 2004-04-16 | 2012-05-08 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US8642822B2 (en) | 2004-04-16 | 2014-02-04 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor |
US7674941B2 (en) | 2004-04-16 | 2010-03-09 | Marathon Gtf Technology, Ltd. | Processes for converting gaseous alkanes to liquid hydrocarbons |
US7244867B2 (en) | 2004-04-16 | 2007-07-17 | Marathon Oil Company | Process for converting gaseous alkanes to liquid hydrocarbons |
CN101395088B (zh) | 2006-02-03 | 2012-04-04 | Grt公司 | 轻气体与卤素的分离方法 |
EA020442B1 (ru) | 2006-02-03 | 2014-11-28 | ДжиАрТи, ИНК. | Способ превращения углеводородного сырья (варианты) и система для его осуществления |
JP2010528054A (ja) | 2007-05-24 | 2010-08-19 | ジーアールティー インコーポレイテッド | 可逆的なハロゲン化水素の捕捉及び放出を組み込んだ領域反応器 |
US8282810B2 (en) | 2008-06-13 | 2012-10-09 | Marathon Gtf Technology, Ltd. | Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery |
US8415517B2 (en) | 2008-07-18 | 2013-04-09 | Grt, Inc. | Continuous process for converting natural gas to liquid hydrocarbons |
JP5445779B2 (ja) * | 2009-09-24 | 2014-03-19 | 一般財団法人石油エネルギー技術センター | 炭化水素油の接触分解触媒及びその製造方法、並びに炭化水素油の接触分解方法 |
US8367884B2 (en) | 2010-03-02 | 2013-02-05 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8198495B2 (en) | 2010-03-02 | 2012-06-12 | Marathon Gtf Technology, Ltd. | Processes and systems for the staged synthesis of alkyl bromides |
US8815050B2 (en) | 2011-03-22 | 2014-08-26 | Marathon Gtf Technology, Ltd. | Processes and systems for drying liquid bromine |
US8436220B2 (en) | 2011-06-10 | 2013-05-07 | Marathon Gtf Technology, Ltd. | Processes and systems for demethanization of brominated hydrocarbons |
US8829256B2 (en) | 2011-06-30 | 2014-09-09 | Gtc Technology Us, Llc | Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons |
US8802908B2 (en) | 2011-10-21 | 2014-08-12 | Marathon Gtf Technology, Ltd. | Processes and systems for separate, parallel methane and higher alkanes' bromination |
US9193641B2 (en) | 2011-12-16 | 2015-11-24 | Gtc Technology Us, Llc | Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems |
CA3032811A1 (en) | 2016-08-04 | 2018-02-08 | Albemarle Corporation | Fcc catalyst with more than one silica, its preparation and use |
EP3737499A1 (en) | 2018-01-12 | 2020-11-18 | Albemarle Corporation | Fcc catalyst prepared by a process involving more than one silica material |
EP3737500B1 (en) * | 2018-01-12 | 2024-08-28 | Ketjen Limited Liability Company | Process for making an fcc catalyst with enhanced mesoporosity |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5194243A (en) * | 1983-09-22 | 1993-03-16 | Aluminum Company Of America | Production of aluminum compound |
US6036847A (en) * | 1996-03-26 | 2000-03-14 | W. R. Grace & Co.-Conn. | Compositions for use in catalytic cracking to make reduced sulfur content gasoline |
US6214211B1 (en) * | 1998-04-21 | 2001-04-10 | Idemitsu Kosan Co., Ltd | Catalytic cracking catalyst |
US6555496B1 (en) * | 1999-08-11 | 2003-04-29 | Akzo Nobel N.V. | Micro-crystalline boehmites containing additives |
US20040266608A1 (en) * | 2003-05-30 | 2004-12-30 | China Petroleum & Chemical Corporation | Molecular sieve-containing catalyst for cracking hydrocarbons and a method for preparing the same |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2179967B1 (ja) * | 1972-04-13 | 1978-03-03 | Norton Co | |
EP0669761A3 (en) | 1994-02-23 | 1999-03-03 | Hitachi, Ltd. | Television signal receiving apparatus incorporating an information retrieving and reproducing apparatus |
US5482521A (en) * | 1994-05-18 | 1996-01-09 | Mobil Oil Corporation | Friction modifiers and antiwear additives for fuels and lubricants |
JP3363010B2 (ja) * | 1995-12-15 | 2003-01-07 | 触媒化成工業株式会社 | 炭化水素接触分解用触媒組成物の製造方法 |
US6022471A (en) * | 1996-10-15 | 2000-02-08 | Exxon Research And Engineering Company | Mesoporous FCC catalyst formulated with gibbsite and rare earth oxide |
CN1081218C (zh) * | 1998-09-17 | 2002-03-20 | 中国石油化工集团公司 | 一种石油裂化催化剂的制备方法 |
CN1119390C (zh) * | 1999-04-09 | 2003-08-27 | 中国石油化工集团公司 | 一种石油烃类裂化催化剂的制备方法 |
CN1247460C (zh) * | 1999-08-11 | 2006-03-29 | 阿尔伯麦尔荷兰公司 | 含有添加剂的准晶体勃姆石的制备方法 |
EP1264635A1 (en) * | 2001-06-05 | 2002-12-11 | Akzo Nobel N.V. | Process for the production of catalysts with improved accessibility |
KR20050085754A (ko) * | 2002-12-18 | 2005-08-29 | 알베마를 네덜란드 비.브이. | 촉매 미소구체를 제조하는 방법 |
-
2005
- 2005-12-20 CN CN2005800477664A patent/CN101115560B/zh active Active
- 2005-12-20 JP JP2007546087A patent/JP5255844B2/ja active Active
- 2005-12-20 EP EP05823836.1A patent/EP1824599B1/en active Active
- 2005-12-20 WO PCT/EP2005/056984 patent/WO2006067155A2/en active Application Filing
- 2005-12-20 CA CA2593919A patent/CA2593919C/en active Active
-
2009
- 2009-12-11 US US12/636,626 patent/US20100093519A1/en not_active Abandoned
-
2011
- 2011-06-29 US US13/172,149 patent/US9534177B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5194243A (en) * | 1983-09-22 | 1993-03-16 | Aluminum Company Of America | Production of aluminum compound |
US6036847A (en) * | 1996-03-26 | 2000-03-14 | W. R. Grace & Co.-Conn. | Compositions for use in catalytic cracking to make reduced sulfur content gasoline |
US6214211B1 (en) * | 1998-04-21 | 2001-04-10 | Idemitsu Kosan Co., Ltd | Catalytic cracking catalyst |
US6555496B1 (en) * | 1999-08-11 | 2003-04-29 | Akzo Nobel N.V. | Micro-crystalline boehmites containing additives |
US20040266608A1 (en) * | 2003-05-30 | 2004-12-30 | China Petroleum & Chemical Corporation | Molecular sieve-containing catalyst for cracking hydrocarbons and a method for preparing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9381502B2 (en) | 2004-12-21 | 2016-07-05 | Albemarle Netherlands, B.V. | FCC catalyst, its preparation and use |
Also Published As
Publication number | Publication date |
---|---|
JP5255844B2 (ja) | 2013-08-07 |
CA2593919C (en) | 2015-11-24 |
WO2006067155A2 (en) | 2006-06-29 |
CN101115560B (zh) | 2012-09-19 |
US20110263412A1 (en) | 2011-10-27 |
US9534177B2 (en) | 2017-01-03 |
EP1824599A2 (en) | 2007-08-29 |
EP1824599B1 (en) | 2020-06-17 |
WO2006067155A3 (en) | 2006-08-24 |
JP2008537505A (ja) | 2008-09-18 |
CN101115560A (zh) | 2008-01-30 |
CA2593919A1 (en) | 2006-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9534177B2 (en) | Catalyst, a process for its preparation, and its use | |
US9381502B2 (en) | FCC catalyst, its preparation and use | |
US11926796B2 (en) | FCC catalyst with more than one silica, its preparation and use | |
EP3737500B1 (en) | Process for making an fcc catalyst with enhanced mesoporosity | |
US12083501B2 (en) | FCC catalyst prepared by a process involving more than one silica material | |
WO2023278581A1 (en) | Fcc catalyst with ultrastable zeolite and transitional alumina and its use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALBEMARLE NETHERLANDS B.V.,NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BABITZ, SCOTT MICHAEL;REEL/FRAME:024323/0139 Effective date: 20091124 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |