US20100021282A1 - Side-Channel Pump - Google Patents

Side-Channel Pump Download PDF

Info

Publication number
US20100021282A1
US20100021282A1 US12/513,629 US51362907A US2010021282A1 US 20100021282 A1 US20100021282 A1 US 20100021282A1 US 51362907 A US51362907 A US 51362907A US 2010021282 A1 US2010021282 A1 US 2010021282A1
Authority
US
United States
Prior art keywords
impeller
housing
channel
pump
pocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/513,629
Other languages
English (en)
Inventor
Eberhard Geissel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Assigned to CONTINENTAL AUTOMOTIVE GMBH reassignment CONTINENTAL AUTOMOTIVE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEISSEL, EBERHARD
Publication of US20100021282A1 publication Critical patent/US20100021282A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/002Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/188Rotors specially for regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow

Definitions

  • the invention relates to a side-channel pump for pumping a medium from an inlet channel to an outlet channel having a driven impeller that is rotatable in a pump housing, at least one ring of rotor chambers arranged in one of the end faces of the impeller, at least one partially annular channel arranged in the pump housing opposite the ring of rotor chambers and extending from the inlet channel to the outlet channel, with an edge arranged on the end face of the impeller radially outside the ring of rotor chambers, a section of the pump housing located opposite the edge, and an annular gap arranged between the edge of the impeller and the section of the pump housing.
  • the pump housing is composed of two housing parts which are held at a distance from one another by an intermediate ring having dimensions corresponding to a height of an impeller.
  • the distance between the impeller and the pump housing is usually only a few hundredths of a millimeter. This, however, gives rise to the danger of the impeller rubbing against the pump housing, leading to increased friction and a reduction in the efficiency of the side-channel pump.
  • the danger of the impeller rubbing is increased by manufacturing tolerances and by axial forces acting on the impeller. Such forces acting on the impeller are produced, for example, if the inlet channel is arranged on one end face of the impeller and the outlet channel on the other end face of the impeller.
  • the invention is based on developing a side-channel pump such that it largely avoids the impeller rubbing against the pump housing.
  • an annular gap has at least one pocket for receiving the pumped medium, the at least one pocket formed by an increase in the distance of the edge of the impeller from the section of the pump housing located opposite thereto.
  • a plurality of pockets distributed around the circumference of the annular gap and spaced from one another, contribute to providing especially reliable support of the impeller forces.
  • tilting of the impeller is reduced if the pockets are arranged on both end faces of the impeller.
  • the pockets are arranged on each side of the impeller.
  • feeding of the pockets with the pumped medium from the radially outer circumferential gap between impeller and pump housing is implemented if the pockets extend from the edge of the impeller until beyond the radial boundary of the impeller.
  • This radially outer peripheral gap between pump housing and impeller is constantly filled with the pumped medium through leakage.
  • An intermediate pressure, which is lower than a pressure, inside the pump and greater than the intake pressure prevails constantly in the radially outer circumferential gap.
  • the intermediate pressure differs at almost all angular positions along the partially annular channel from the pressure in the annular gap between impeller and pump housing. The intermediate pressure is therefore especially suited to compensating tilting moments on the impeller.
  • the impeller has a hydraulic bearing by which it automatically adjusts the distance from the pump housing when the pockets are arranged as recesses in the impeller.
  • pockets are arranged as recesses in the pump housing.
  • tilting moments induced in the impeller by the arrangement of the inlet channel and the outlet channel is compensated by an irregular arrangement of the pockets around the circumference of the impeller.
  • pockets may be arranged both in the impeller and in the pump housing.
  • FIG. 1 is a longitudinal section through a side-channel pump according to the invention with adjacent regions of an electric motor;
  • FIG. 2 is a sectional representation through the inventive side-channel pump from FIG. 1 along the line II-II;
  • FIG. 3 is a longitudinal section through a further embodiment of an inventive side-channel pump.
  • FIG. 1 is a longitudinal section through a side-channel pump 1 with adjacent regions of an electric motor 2 .
  • the side-channel pump 1 has an impeller 4 which is rotatable in a pump housing 3 .
  • the impeller 4 is arranged on a shaft 5 of the electric motor 2 .
  • the pump housing 3 has two housing parts 7 , 7 ′ which are spaced apart by an annular element 6 , and a casing 8 .
  • the dimensions of the annular element 6 are such that the housing parts 7 , 7 ′ are located opposite the end faces of the impeller 4 with a small clearance.
  • the casing 8 holds the side-channel pump 1 in a specified position with respect to the electric motor 2 and tensions the housing parts 7 , 7 ′, of the pump housing 3 against the annular element 6 .
  • An inlet channel 9 is arranged in one of the housing parts 7 , while the other housing part 7 ′ has an outlet channel 10 .
  • the inlet channel 9 and the outlet channel 10 are each connected to respective partially annular channels in 11 , 12 arranged in the housing parts 7 , 7 ′.
  • the impeller 4 has rings of rotor chambers 13 , 14 delimited by guide vanes.
  • the partially annular channels 11 , 12 form, with the rotor chambers 13 , 14 , a pumping chamber leading from the inlet channel 9 to the outlet channel 10 for pumping a medium when the impeller 4 is driven.
  • the impeller 4 has an edge 15 on its end face in its radially outer region, as viewed from the rotor chambers 13 , 14 .
  • the side-channel pump 1 has a circumferential gap 16 filled by leakage with the medium to be pumped.
  • the side-channel pump 1 has an annular gap 18 with widened portions 19 .
  • the widened portions 19 are produced by pockets 20 arranged in the pump housing 3 .
  • the widened portions 19 extend from the end-face edge 15 of the impeller 4 up to the circumferential gap 16 . It is thereby ensured that the pockets 20 are filled constantly with the medium to be pumped.
  • FIG. 2 shows, in a sectional representation through the side-channel pump 1 from FIG. 1 along the line II-II.
  • there are a total of three pockets 20 are arranged around the circumference of the impeller 4 , using the example of one of the housing parts 7 ′.
  • the radially outer boundary of the impeller 4 is shown by a broken line in the drawing.
  • FIG. 3 is another embodiment of the inventive side-channel pump 1 , which differs from that in FIGS. 1 and 2 in that pockets 21 of the annular gap are arranged in an impeller 22 .
  • housing parts 23 , 23 ′ of the side-channel pump 1 have no recesses.
  • the side-channel pump 1 is otherwise constructed as described with reference to FIGS. 1 and 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
US12/513,629 2006-11-15 2007-11-14 Side-Channel Pump Abandoned US20100021282A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102006053933A DE102006053933A1 (de) 2006-11-15 2006-11-15 Seitenkanalpumpe
DE102006053933.8 2006-11-15
PCT/EP2007/062316 WO2008058983A1 (fr) 2006-11-15 2007-11-14 Pompe à canal latéral

Publications (1)

Publication Number Publication Date
US20100021282A1 true US20100021282A1 (en) 2010-01-28

Family

ID=39110595

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/513,629 Abandoned US20100021282A1 (en) 2006-11-15 2007-11-14 Side-Channel Pump

Country Status (7)

Country Link
US (1) US20100021282A1 (fr)
EP (1) EP2054627A1 (fr)
JP (1) JP4852153B2 (fr)
KR (1) KR20090082921A (fr)
CN (1) CN101548109B (fr)
DE (1) DE102006053933A1 (fr)
WO (1) WO2008058983A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120051887A1 (en) * 2009-05-20 2012-03-01 Edwards Limited Side-channel pump with axial gas bearing
US20130163255A1 (en) * 2011-12-23 2013-06-27 Lg Display Co., Ltd. Organic light emitting display device and method for fabricating the same
US9249806B2 (en) 2011-02-04 2016-02-02 Ti Group Automotive Systems, L.L.C. Impeller and fluid pump
US20180142779A1 (en) * 2016-11-21 2018-05-24 Preh Gmbh Actuating device for an electro-mechanical or hydro-mechanical motor vehicle transmission system, especially of an agricultural commercial vehicle
US9989061B2 (en) 2012-12-18 2018-06-05 Robert Bosch Gmbh Geometry for the compensation of axial gaps arising in electric pumps

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211791A (ja) * 1983-05-18 1984-11-30 Hitachi Ltd 渦流れ形ポンプ
US4678395A (en) * 1984-07-23 1987-07-07 Friedrich Schweinfurter Regenerative pump with force equalization
US5310308A (en) * 1993-10-04 1994-05-10 Ford Motor Company Automotive fuel pump housing with rotary pumping element
US5429476A (en) * 1992-12-22 1995-07-04 Robert Bosch Gmbh Fuel pump
US5516259A (en) * 1994-04-02 1996-05-14 Robert Bosch Gmbh Aggregate for feeding fuel from supply tank to internal combustion engine of motor vehicle
US5904468A (en) * 1996-08-28 1999-05-18 Robert Bosch Gmbh Flow pump, especially for supplying fuel from a fuel tank of a motor vehicle
US6231300B1 (en) * 1996-04-18 2001-05-15 Mannesmann Vdo Ag Peripheral pump
US20020004001A1 (en) * 2000-04-20 2002-01-10 Mannesmann Vdo Ag Feed pump
US20020021975A1 (en) * 2000-06-21 2002-02-21 Mannesmann Vdo Side-channel pump
US6547515B2 (en) * 2001-01-09 2003-04-15 Walbro Corporation Fuel pump with vapor vent
US6669437B2 (en) * 2001-10-04 2003-12-30 Visteon Global Technologies, Inc. Regenerative fuel pump with leakage prevent grooves

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719609A1 (de) * 1997-05-09 1998-11-12 Bosch Gmbh Robert Aggregat zum Fördern von Kraftstoff aus einem Vorratsbehälter zur Brennkraftmaschine eines Kraftfahrzeuges
CN1356477A (zh) * 2001-12-27 2002-07-03 万进光 一种电动燃油泵的端面流通式叶轮
DE10246694B4 (de) * 2002-10-07 2016-02-11 Continental Automotive Gmbh Seitenkanalpumpe
CN2713185Y (zh) * 2004-07-22 2005-07-27 薛肇江 电动燃油叶轮泵叶轮

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211791A (ja) * 1983-05-18 1984-11-30 Hitachi Ltd 渦流れ形ポンプ
US4678395A (en) * 1984-07-23 1987-07-07 Friedrich Schweinfurter Regenerative pump with force equalization
US5429476A (en) * 1992-12-22 1995-07-04 Robert Bosch Gmbh Fuel pump
US5310308A (en) * 1993-10-04 1994-05-10 Ford Motor Company Automotive fuel pump housing with rotary pumping element
US5516259A (en) * 1994-04-02 1996-05-14 Robert Bosch Gmbh Aggregate for feeding fuel from supply tank to internal combustion engine of motor vehicle
US6231300B1 (en) * 1996-04-18 2001-05-15 Mannesmann Vdo Ag Peripheral pump
US5904468A (en) * 1996-08-28 1999-05-18 Robert Bosch Gmbh Flow pump, especially for supplying fuel from a fuel tank of a motor vehicle
US20020004001A1 (en) * 2000-04-20 2002-01-10 Mannesmann Vdo Ag Feed pump
US20020021975A1 (en) * 2000-06-21 2002-02-21 Mannesmann Vdo Side-channel pump
US6547515B2 (en) * 2001-01-09 2003-04-15 Walbro Corporation Fuel pump with vapor vent
US6669437B2 (en) * 2001-10-04 2003-12-30 Visteon Global Technologies, Inc. Regenerative fuel pump with leakage prevent grooves

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120051887A1 (en) * 2009-05-20 2012-03-01 Edwards Limited Side-channel pump with axial gas bearing
US9086071B2 (en) * 2009-05-20 2015-07-21 Edwards Limited Side-channel pump with axial gas bearing
US9127685B2 (en) 2009-05-20 2015-09-08 Edwards Limited Regenerative vacuum pump with axial thrust balancing means
US9249806B2 (en) 2011-02-04 2016-02-02 Ti Group Automotive Systems, L.L.C. Impeller and fluid pump
US20130163255A1 (en) * 2011-12-23 2013-06-27 Lg Display Co., Ltd. Organic light emitting display device and method for fabricating the same
US9989061B2 (en) 2012-12-18 2018-06-05 Robert Bosch Gmbh Geometry for the compensation of axial gaps arising in electric pumps
US20180142779A1 (en) * 2016-11-21 2018-05-24 Preh Gmbh Actuating device for an electro-mechanical or hydro-mechanical motor vehicle transmission system, especially of an agricultural commercial vehicle

Also Published As

Publication number Publication date
WO2008058983A1 (fr) 2008-05-22
DE102006053933A1 (de) 2008-05-21
JP4852153B2 (ja) 2012-01-11
CN101548109B (zh) 2012-06-06
EP2054627A1 (fr) 2009-05-06
KR20090082921A (ko) 2009-07-31
CN101548109A (zh) 2009-09-30
JP2010509543A (ja) 2010-03-25

Similar Documents

Publication Publication Date Title
US5158440A (en) Integrated centrifugal pump and motor
US20100021282A1 (en) Side-Channel Pump
US7217084B2 (en) Automotive fuel pump with pressure balanced impeller
AU2020223675A1 (en) Pump for conveying a fluid
US6540474B2 (en) Side-channel pump
US8672658B2 (en) Vane pump with improved rotor and vane extension ring
EP3896288A1 (fr) Pompe centrifuge pour transporter un fluide
US6893206B2 (en) Multi-stage fuel pump
JP2009174448A (ja) 流体ポンプ
US6499941B1 (en) Pressure equalization in fuel pump
US20140169960A1 (en) Fuel pump
US6942446B2 (en) Feed pump
US7632060B2 (en) Fuel pump having dual flow channel
AU8907591A (en) Integrated centrifugal pump and motor
US7179066B2 (en) Electric motor fuel pump
US10233881B2 (en) Fuel pump
US7267524B2 (en) Fuel pump having single sided impeller
US20100189543A1 (en) Fuel Pump
CA2859250C (fr) Pompe a canaux progressive
KR102617553B1 (ko) 다단펌프의 밸런스장치
EP4067662A1 (fr) Ensemble pour compenser les forces axiales dans une machine à flux rotatif et une pompe centrifuge à plusieurs étages
US9022742B2 (en) Blade shroud for fluid element
WO2023161391A1 (fr) Pompe centrifuge à étages multiples comprenant un ensemble de compensation de forces axiales
US20110182756A1 (en) Multi-Phase Pump
JP3843961B2 (ja) 燃料ポンプ

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL AUTOMOTIVE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GEISSEL, EBERHARD;REEL/FRAME:022640/0972

Effective date: 20090417

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION