US20090298414A1 - Precision apparatus having a movable member, an air slit and a vacuum duct - Google Patents

Precision apparatus having a movable member, an air slit and a vacuum duct Download PDF

Info

Publication number
US20090298414A1
US20090298414A1 US11/721,556 US72155605A US2009298414A1 US 20090298414 A1 US20090298414 A1 US 20090298414A1 US 72155605 A US72155605 A US 72155605A US 2009298414 A1 US2009298414 A1 US 2009298414A1
Authority
US
United States
Prior art keywords
bridge element
air duct
air
duct
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/721,556
Inventor
Antonius Maria Rijken
Martinus Antonius Maria Cuppen
Hendrik Jan Eggink
Bjorn Antonius Henri Nijland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Assigned to KONINKLIJKE PHILIPS ELECTRONICS N V reassignment KONINKLIJKE PHILIPS ELECTRONICS N V ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUPPEN, MARTINUS ANTONIUS MARIA, EGGINK, HENDRIK JAN, NIJLAND, BJORN ANTONIUS HENRI, RIJKEN, ANTONIUS MARIA
Publication of US20090298414A1 publication Critical patent/US20090298414A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools

Definitions

  • the invention relates to a precision apparatus having a movable member, moving in a bridge element arranged perpendicular to the movement of the moveable element, said bridge element comprising an air slit and an exhaust.
  • Machine tools and multi-axis machinery require a high standard precision in line with the development of high precision engineering.
  • High precision in manufacturing can only be accomplished if it is possible to measure and calculate accurately the errors of machine components.
  • Measurement machines as well as manufacturing machines typically have an XY stage for precision movement.
  • Such types of devices typically comprise a bridge element which moves in one direction (often called the Y-direction) along a working table.
  • a movable element e.g. a measurement device or manufacturing device, is moved along the bridge element.
  • the ‘individual machine fault’ of an individual machine is measured with (often) laser measurement tools and stored. Then all kind of efforts are made to keep conditions the same, so that the ‘individual machine fault’ stays the same. This requires a very good control over conditions such as temperature and humidity, the use of often (very) expensive materials such as Zerodur and invar to reduce as much as possible any deviation of the established ‘individual machine fault’. Even then, the measurement procedure has to be regularly repeated after any service activity that could have affected the configuration.
  • the precision with which the machinery operates is to a large degree dependent on the stability of conditions. In particular temperature variations may influence the precision of measurements and or manufacturing.
  • the presence of all kinds of moving parts (to move the movable element) and electronic devices, for instance to activate or control parts of the movable element, may influence the temperature. It is known to provide an air slit in the bridge (or X-module) and an exhaust, through which an underpressure can be provided inside the bridge. The presence of the underpressure draws air from outside the bridge element into the bridge element, having a cooling and stabilizing effect on the temperature and possibly also humidity inside the bridge element.
  • the apparatus in accordance with the invention is characterised in that the bridge element comprises a primary air duct, substantially extending along the length of the bridge element, which primary air duct is provided with apertures, evenly distributed along the length of the bridge element, said evenly apertures forming a passage to a secondary air duct, also substantially extending along the length of the bridge element, through which secondary air duct, in operation air is drawn through the air slit.
  • the primary air duct has a smoothing effect on the pressure in the secondary air duct, i.e. the pressure in the secondary air duct is made more uniform. Consequently a more uniform flow of air through the slit is provided, enabling a better control of temperature.
  • the primary duct is provided with an exhaust pipe at opposite sides, seen along the length of the bridge element, of the primary air duct. Drawing air at both sides has a further smoothing effect on the air pressure.
  • the secondary air duct at least partially encases the primary air duct and the primary air duct is provided with two opposing surfaces, each provided with apertures, evenly distributed along the length of the bridge element, to provide an upward and downward air flow in the secondary air duct.
  • Such upward and downward air flows improve the cooling efficiency of the air flow in the secondary air duct.
  • FIG. 1 is a schematic drawing of a precision apparatus, in this example an x-y moving machine.
  • FIG. 2 illustrates in more detail a part of such an apparatus.
  • FIG. 3 illustrates in cross-section a detail of an apparatus in accordance with the invention
  • FIG. 4 illustrates in perspective an inner view of a bridge element of or for an apparatus in accordance with the invention.
  • FIG. 5 illustrates in perspective an outer view of a bridge element of or for an apparatus in accordance with the invention.
  • FIG. 1 is a schematic drawing of a x-y moving machine 1 .
  • the machine has a bridge element 2 for moving a part A over a table B in two perpendicular directions x and y.
  • Such machine may be any kind of precision machinery.
  • Machine tools and multi-axis machinery require a high standard precision in line with the development of high precision engineering. High precision in manufacturing can only be accomplished if it is possible to measure and calculate accurately the errors of machine components.
  • the moving part A moves along the bridge element. The precision with which measurements are taken, or objects manufactured is dependent on the accuracy with which the part A moves in bridge element 2 .
  • bridge element 2 Inside the bridge element the presence of all kinds of moving parts (to move the movable element) and electronic devices, for instance to activate or control parts of the movable element may influence the temperature. It is known to provide an air slit in the bridge (or X-module) and a vacuum duct, through which an underpressure can be provided inside the bridge. The presence of the underpressure draws air form outside the bridge into the bridge, having a cooling and stabilizing effect on the temperature and possibly also humidity inside the bridge element. Bridge element 2 is provided with an air slit. Inside the bridge element 2 underpressure is created which generates an inward air flow through the slit S.
  • FIG. 2 shows in somewhat more detail a bridge element with an exhaust E for pumping air by which an underpressure in bridge element 2 is created.
  • FIG. 3 shows in cross section a bridge element for an apparatus in accordance with the invention.
  • the bridge element comprises a primary, inner duct 21 to which the exhaust E is connected.
  • the bridge element also comprises a secondary duct 22 through which secondary duct air is drawn through the slit S.
  • the primary duct comprises, substantially evenly distributed along the length of the bridge element, apertures 21 a and 21 b . In simple embodiments only one of these rows of apertures may be provided. These apertures form the airflow connection between the primary and the secondary ducts 21 , 22 . Due to the presence of the evenly distributed apertures, the pressure in the secondary duct is made more uniform.
  • the primary duct 21 comprises, as is shown in FIG. 3 , apertures in two opposing surfaces of the primary duct.
  • the secondary duct at least partially encases the primary duct, so that an upward and downward air flow is created. This increases the uniformity of the pressure and the stability of temperature.
  • the primary air duct comprises an upward extending part 21 c to force the air flow upward, and also, preferably an downward extending part 21 d to force the air flow downward.
  • FIG. 4 shows a perspective inner view of the bridge element shown in FIG. 3 .
  • FIG. 5 shows a perspective outer view of the same bridge element.
  • a preferred embodiment namely one wherein an exhaust (E 1 , E 2 ) is provided at both ends of the bridge element, is shown in FIG. 5 . This improves uniformity of pressure.
  • a precision apparatus has a movable member (A), moving in a bridge element ( 2 ) arranged perpendicular to the movement of the moveable element.
  • the bridge element comprising an air slit (S) and a exhaust (E).
  • the bridge element ( 2 ) comprises a primary air duct ( 21 ), substantially extending along the length of the bridge element, which primary air duct is provided with apertures ( 21 a , 21 b ),
  • the apertures ( 21 a , 21 b ) are evenly distributed along the length of the bridge element, and form an air flow passage to a secondary air duct ( 22 ), also substantially extending along the length of the bridge element.
  • the effect is a more evenly distribution of pressure and air flow through the slit.
  • the row(s) of apertures may be in the form of a single slit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Air-Flow Control Members (AREA)

Abstract

A precision apparatus has a movable member (A), moving in a bridge element (2) arranged perpendicular to the movement of the moveable element. The bridge element comprising an air slit (S) and a exhaust (E). The bridge element (2) comprises a primary air duct (21), substantially extending along the length of the bridge element, which primary air duct is provided with apertures (21 a , 21 b), The apertures (21 a , 21 b) are evenly distributed along the length of the bridge element, and form an air flow passage to a secondary air duct (22), also substantially extending along the length of the bridge element Through the secondary air duct in operation air is drawn through the air slit (S).

Description

  • The invention relates to a precision apparatus having a movable member, moving in a bridge element arranged perpendicular to the movement of the moveable element, said bridge element comprising an air slit and an exhaust.
  • Machine tools and multi-axis machinery require a high standard precision in line with the development of high precision engineering. High precision in manufacturing can only be accomplished if it is possible to measure and calculate accurately the errors of machine components. Measurement machines as well as manufacturing machines typically have an XY stage for precision movement.
  • Such types of devices typically comprise a bridge element which moves in one direction (often called the Y-direction) along a working table. A movable element, e.g. a measurement device or manufacturing device, is moved along the bridge element.
  • Typically the ‘individual machine fault’ of an individual machine is measured with (often) laser measurement tools and stored. Then all kind of efforts are made to keep conditions the same, so that the ‘individual machine fault’ stays the same. This requires a very good control over conditions such as temperature and humidity, the use of often (very) expensive materials such as Zerodur and invar to reduce as much as possible any deviation of the established ‘individual machine fault’. Even then, the measurement procedure has to be regularly repeated after any service activity that could have affected the configuration. The precision with which the machinery operates is to a large degree dependent on the stability of conditions. In particular temperature variations may influence the precision of measurements and or manufacturing.
  • Various techniques to ensure that the conditions are controlled as good as possible are known. The most important conditions are those of temperature and humidity. A good and accurate control of these parameters is required to ensure a good precision.
  • Inside the bridge element the presence of all kinds of moving parts (to move the movable element) and electronic devices, for instance to activate or control parts of the movable element, may influence the temperature. It is known to provide an air slit in the bridge (or X-module) and an exhaust, through which an underpressure can be provided inside the bridge. The presence of the underpressure draws air from outside the bridge element into the bridge element, having a cooling and stabilizing effect on the temperature and possibly also humidity inside the bridge element.
  • However, although such an air flow does provide for some stabilisation of the temperature inside the bridge element, the air flow through the slit may show variations. Such variations in air flow may lead to variations in temperature and thereby to variations in precision.
  • It is an object of the invention to provide a precision apparatus as described in the opening paragraph with an improved control of the flow through the slit.
  • To this end the apparatus in accordance with the invention is characterised in that the bridge element comprises a primary air duct, substantially extending along the length of the bridge element, which primary air duct is provided with apertures, evenly distributed along the length of the bridge element, said evenly apertures forming a passage to a secondary air duct, also substantially extending along the length of the bridge element, through which secondary air duct, in operation air is drawn through the air slit.
  • When the air is drawn through the slit in prior art devices, often a pressure drop occurs over the slit, i.e. those parts of the slit close to the point where the air is drawn experience a higher air flow, than points further away from the point where air is drawn. In the invention, the primary air duct has a smoothing effect on the pressure in the secondary air duct, i.e. the pressure in the secondary air duct is made more uniform. Consequently a more uniform flow of air through the slit is provided, enabling a better control of temperature.
  • In preferred embodiments the primary duct is provided with an exhaust pipe at opposite sides, seen along the length of the bridge element, of the primary air duct. Drawing air at both sides has a further smoothing effect on the air pressure.
  • In preferred embodiments, the secondary air duct at least partially encases the primary air duct and the primary air duct is provided with two opposing surfaces, each provided with apertures, evenly distributed along the length of the bridge element, to provide an upward and downward air flow in the secondary air duct. Such upward and downward air flows improve the cooling efficiency of the air flow in the secondary air duct.
  • These and further aspects of the invention will be explained in greater detail by way of example and with reference to the accompanying drawings, in which
  • FIG. 1 is a schematic drawing of a precision apparatus, in this example an x-y moving machine.
  • FIG. 2 illustrates in more detail a part of such an apparatus.
  • FIG. 3 illustrates in cross-section a detail of an apparatus in accordance with the invention
  • FIG. 4 illustrates in perspective an inner view of a bridge element of or for an apparatus in accordance with the invention.
  • FIG. 5 illustrates in perspective an outer view of a bridge element of or for an apparatus in accordance with the invention.
  • The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the present invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiment set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.
  • FIG. 1 is a schematic drawing of a x-y moving machine 1. The machine has a bridge element 2 for moving a part A over a table B in two perpendicular directions x and y. Such machine may be any kind of precision machinery. Machine tools and multi-axis machinery require a high standard precision in line with the development of high precision engineering. High precision in manufacturing can only be accomplished if it is possible to measure and calculate accurately the errors of machine components. The moving part A moves along the bridge element. The precision with which measurements are taken, or objects manufactured is dependent on the accuracy with which the part A moves in bridge element 2.
  • Often the ‘individual machine fault’ of the individual machine with (often) laser measurement tools and store it. Then all kind of efforts are made to keep conditions the same, so that the ‘individual machine fault’ stays the same. This requires a very good control over conditions such as temperature and humidity, the use of often (very) expensive materials such as Zerodur and invar to reduce as much as possible any deviation of the established ‘individual machine fault’.
  • Various techniques to ensure that the conditions are controlled as good as possible are known. The most important conditions are those of temperature and humidity. A good and accurate control of these parameters is required to ensure a good precision.
  • Inside the bridge element the presence of all kinds of moving parts (to move the movable element) and electronic devices, for instance to activate or control parts of the movable element may influence the temperature. It is known to provide an air slit in the bridge (or X-module) and a vacuum duct, through which an underpressure can be provided inside the bridge. The presence of the underpressure draws air form outside the bridge into the bridge, having a cooling and stabilizing effect on the temperature and possibly also humidity inside the bridge element. Bridge element 2 is provided with an air slit. Inside the bridge element 2 underpressure is created which generates an inward air flow through the slit S.
  • FIG. 2 shows in somewhat more detail a bridge element with an exhaust E for pumping air by which an underpressure in bridge element 2 is created.
  • However, when the air is drawn through the slit S, often a pressure drop occurs over the slit S, i.e. those parts of the slit S close to the exhaust point E where the air is drawn experience a higher air flow, than points further away from the point where air is drawn. The stabilising effect of the air flow is thereby not uniform, which may lead to non-uniformity in temperature.
  • FIG. 3 shows in cross section a bridge element for an apparatus in accordance with the invention. The bridge element comprises a primary, inner duct 21 to which the exhaust E is connected. The bridge element also comprises a secondary duct 22 through which secondary duct air is drawn through the slit S. The primary duct comprises, substantially evenly distributed along the length of the bridge element, apertures 21 a and 21 b. In simple embodiments only one of these rows of apertures may be provided. These apertures form the airflow connection between the primary and the secondary ducts 21, 22. Due to the presence of the evenly distributed apertures, the pressure in the secondary duct is made more uniform.
  • Preferably the primary duct 21 comprises, as is shown in FIG. 3, apertures in two opposing surfaces of the primary duct. Preferably the secondary duct at least partially encases the primary duct, so that an upward and downward air flow is created. This increases the uniformity of the pressure and the stability of temperature. Preferably the primary air duct comprises an upward extending part 21 c to force the air flow upward, and also, preferably an downward extending part 21 d to force the air flow downward.
  • FIG. 4 shows a perspective inner view of the bridge element shown in FIG. 3.
  • FIG. 5 shows a perspective outer view of the same bridge element. A preferred embodiment, namely one wherein an exhaust (E1, E2) is provided at both ends of the bridge element, is shown in FIG. 5. This improves uniformity of pressure.
  • In short the present invention can be described by:
  • A precision apparatus has a movable member (A), moving in a bridge element (2) arranged perpendicular to the movement of the moveable element. The bridge element comprising an air slit (S) and a exhaust (E). The bridge element (2) comprises a primary air duct (21), substantially extending along the length of the bridge element, which primary air duct is provided with apertures (21 a, 21 b), The apertures (21 a, 21 b) are evenly distributed along the length of the bridge element, and form an air flow passage to a secondary air duct (22), also substantially extending along the length of the bridge element. Through the secondary air duct in operation air is drawn through the air slit (S).
  • The effect is a more evenly distribution of pressure and air flow through the slit.
  • It will be clear that within the framework of the invention many variations are possible. It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. The invention resides in each and every novel characteristic feature and each and every combination of characteristic features. Reference numerals in the claims do not limit their protective scope. Use of the verb “to comprise” and its conjugations does not exclude the presence of elements other than those stated in the claims. Use of the article “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • For instance the there may be one or more rows of apertures in the primary duct. The row(s) of apertures may be in the form of a single slit.

Claims (5)

1. A precision apparatus having a movable member (A), moving in a bridge element (2) arranged perpendicular to the movement of the moveable element, said bridge element comprising an air slit (S) and a exhaust (E), wherein the bridge element (2) comprises a primary air duct (21), substantially extending along the length of the bridge element, which primary air duct is provided with apertures (21 a, 21 b), evenly distributed along the length of the bridge element, said evenly distributed apertures forming an air flow passage to a secondary air duct (22), also substantially extending along the length of the bridge element, through which secondary air duct, in operation air is drawn through the air slit (S).
2. A precision apparatus as claimed in claim 1, wherein the primary duct (21) is provided with an exhaust pipe (E1, E2) at opposite sides, seen along the length of the bridge element, of the primary air duct.
3. A precision apparatus as claimed in claim 1, wherein the secondary air duct (22) at least partially encases the primary air duct (21) and the primary air duct is provided with two opposing surfaces, each provided with apertures (21 a, 21 b), evenly distributed along the length of the bridge element, to provide an upward and downward air flow in the secondary air duct (22).
4. A precision apparatus as claimed in claim 1, wherein the primary duct (21) comprises an upwardly extending part (21 c).
5. A precision apparatus as claimed in claim 1, wherein the primary duct comprises a downwardly extending part (21 d).
US11/721,556 2004-12-21 2005-12-14 Precision apparatus having a movable member, an air slit and a vacuum duct Abandoned US20090298414A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04106767 2004-12-21
EP04106767.9 2004-12-21
PCT/IB2005/054238 WO2006067687A1 (en) 2004-12-21 2005-12-14 Precision apparatus having a movable member, an air slit and a vacuum duct

Publications (1)

Publication Number Publication Date
US20090298414A1 true US20090298414A1 (en) 2009-12-03

Family

ID=36035683

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/721,556 Abandoned US20090298414A1 (en) 2004-12-21 2005-12-14 Precision apparatus having a movable member, an air slit and a vacuum duct

Country Status (9)

Country Link
US (1) US20090298414A1 (en)
EP (1) EP1838494B1 (en)
JP (1) JP2008524007A (en)
KR (1) KR20070095902A (en)
CN (1) CN101084089A (en)
AT (1) ATE431221T1 (en)
DE (1) DE602005014509D1 (en)
TW (1) TW200628259A (en)
WO (1) WO2006067687A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140010611A1 (en) * 2012-07-05 2014-01-09 Toshiba Kikai Kabushiki Kaisha Precision machine tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115869A1 (en) * 2017-07-14 2019-01-17 Homag Gmbh Clamping device with excavating function
CN107511688A (en) * 2017-10-20 2017-12-26 湖南国汇新材料有限公司 A kind of cast mineral lathe and its method of work with constant temperature water circulation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184643A (en) * 1981-04-03 1982-11-13 Mitsubishi Heavy Ind Ltd Preventive method for thermal deformation in the structure of a machine tool
JPH06155228A (en) * 1992-11-26 1994-06-03 Okuma Mach Works Ltd Machine tool
JP2001148588A (en) * 1999-11-24 2001-05-29 Olympus Optical Co Ltd Heat dissipating unit for machine tool
US6675549B1 (en) * 2000-10-04 2004-01-13 Makino Milling Machine Co., Ltd Processing machine installation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184643A (en) * 1981-04-03 1982-11-13 Mitsubishi Heavy Ind Ltd Preventive method for thermal deformation in the structure of a machine tool
JPH06155228A (en) * 1992-11-26 1994-06-03 Okuma Mach Works Ltd Machine tool
JP2001148588A (en) * 1999-11-24 2001-05-29 Olympus Optical Co Ltd Heat dissipating unit for machine tool
US6675549B1 (en) * 2000-10-04 2004-01-13 Makino Milling Machine Co., Ltd Processing machine installation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140010611A1 (en) * 2012-07-05 2014-01-09 Toshiba Kikai Kabushiki Kaisha Precision machine tool
US9511465B2 (en) * 2012-07-05 2016-12-06 Toshiba Kikai Kabushiki Kaisha Precision machine tool
US10252391B2 (en) 2012-07-05 2019-04-09 Toshiba Kikai Kabushiki Kaisha Precision machine tool

Also Published As

Publication number Publication date
DE602005014509D1 (en) 2009-06-25
JP2008524007A (en) 2008-07-10
KR20070095902A (en) 2007-10-01
EP1838494A1 (en) 2007-10-03
EP1838494B1 (en) 2009-05-13
CN101084089A (en) 2007-12-05
ATE431221T1 (en) 2009-05-15
TW200628259A (en) 2006-08-16
WO2006067687A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
CN108563917B (en) A kind of turbine disc mortise crack propagation modeling part design method
US7420168B2 (en) Scanning electron microscope and CD measurement calibration standard specimen
JP6150632B2 (en) Ion beam measuring apparatus and ion beam measuring method
US20090298414A1 (en) Precision apparatus having a movable member, an air slit and a vacuum duct
JP2006040930A (en) Apparatus and method of automatically prepairing recipe
US20060123889A1 (en) Immersion lithography proximity sensor having a nozzle shroud with flow curtain
KR20060118428A (en) Pattern recognition and metrology structure for an x-initiative layout design
CN111103768B (en) Method for reducing poor focusing of wafer edge
JP2021526314A (en) Contactless support platform
US20090067764A1 (en) Fluid bearing structure and assembly method for fluid bearing structure
US10989235B2 (en) Inlet flow measurement structure for an industrial gas turbine
US20060147130A1 (en) Gas bearing system
Tortonese et al. 100-nm-pitch standard characterization for metrology applications
US20230194384A1 (en) Component testing
CN108595841B (en) Method for establishing vent hole flow model
JPWO2016009491A1 (en) Inspection method
CN106524899B (en) A kind of gantry type image measuring instrument
CN114485393B (en) Picture card tool and calibration method
CN220671579U (en) Drainage device and testing device
JP5131569B2 (en) Thermal clean chamber
EP1604557A1 (en) Method for determining the position of a vacuum pipette
KR20230071947A (en) Cooling chamber test system for semiconductor manufacturing and test method
KR100273294B1 (en) Mark formation structure for focus management of semiconductor mask
KR101654556B1 (en) The measurenent device and measurenent method of motion error in linear stage
JP2006302546A (en) Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION