JP2006302546A - Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body - Google Patents

Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body Download PDF

Info

Publication number
JP2006302546A
JP2006302546A JP2005119139A JP2005119139A JP2006302546A JP 2006302546 A JP2006302546 A JP 2006302546A JP 2005119139 A JP2005119139 A JP 2005119139A JP 2005119139 A JP2005119139 A JP 2005119139A JP 2006302546 A JP2006302546 A JP 2006302546A
Authority
JP
Japan
Prior art keywords
resistor
resistance value
particle beam
charged particle
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005119139A
Other languages
Japanese (ja)
Inventor
Hideki Abe
秀樹 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005119139A priority Critical patent/JP2006302546A/en
Publication of JP2006302546A publication Critical patent/JP2006302546A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam device of which change of a gain of an operation amplifier of a control circuit is made small by reducing influence of change of environmental temperature. <P>SOLUTION: The amplifying circuit provided to a control means has a resistor body integrated by electrically connecting a first resistor of which rate of change in resistance in a prescribed range of temperature has a first hyperbolic characteristics in positive value direction, and a second resistor of which rate of change in resistance to the temperature has hyperbolic characteristics in negative value direction which is reversed to the first characteristics, and reduces amount of the shift of light axis by an operation amplification. By the above, the gain of the operation amplifier changes in accordance with the change of environmental temperature, and fluctuation of output against the input of the circuit board, on which a plurality of operation amplifier is mounted, is avoided. Further, the output against the input is turned into high precision by mounting the circuit board on the charged particle beam device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、組合せ抵抗体、組合せ抵抗体を用いた増幅回路、該増幅回路を搭載した荷電粒子線装置、及び、組合せ抵抗体の製造方法に関する。   The present invention relates to a combination resistor, an amplifier circuit using the combination resistor, a charged particle beam device equipped with the amplifier circuit, and a method of manufacturing the combination resistor.

近年、荷電粒子線装置、例えば走査型電子顕微鏡(SEM)においてオペアンプ,D/A(ディジタル・トゥ・アナログ)コンバータ,抵抗等を備えた制御回路において、入力に対する出力の高精度化がますます要求されている。例えば、走査型電子顕微鏡のレンズの偏向制御基板においては、入力信号に対する出力信号の高精度化の要求は顕著である。この高精度な出力を実現するために、より高精度な抵抗,オペアンプ等の素子が選択され、これらが用いられて回路基板が設計されている。トランジスタでは、接合容量誤差をなくすために、追加のトランジスタを前者トランジスタの次段に設け、基板の出力の高精度化を図る手法が知られている。抵抗では、所望の抵抗温度特性を得るために、異なる温度特性を有する複数の抵抗を組合わせることが知られている(例えば、特許文献1参照)。また、抵抗の温度依存性を考慮した抵抗のパケージングに関する技術も知られている(例えば、特許文献2,3参照)。   In recent years, in the control circuit equipped with operational amplifiers, D / A (digital to analog) converters, resistors, etc. in charged particle beam equipment such as scanning electron microscopes (SEM), there is an ever-increasing demand for higher output to input accuracy. Has been. For example, in a lens deflection control board of a scanning electron microscope, there is a significant demand for higher accuracy of an output signal with respect to an input signal. In order to realize this high-accuracy output, more accurate elements such as resistors and operational amplifiers are selected, and circuit boards are designed using these elements. In the transistor, a technique is known in which an additional transistor is provided in a stage subsequent to the former transistor in order to eliminate a junction capacitance error, thereby improving the accuracy of the output of the substrate. As for the resistance, it is known to combine a plurality of resistances having different temperature characteristics in order to obtain a desired resistance temperature characteristic (see, for example, Patent Document 1). A technique related to resistance packaging in consideration of temperature dependence of resistance is also known (see, for example, Patent Documents 2 and 3).

特許第3442092号公報Japanese Patent No. 3442092 特開平9−260588号公報JP-A-9-260588 特開平9−283706号公報JP-A-9-283706

オペアンプの場合、使用されている抵抗の温度特性によって、周囲の温度変化によるオペアンプの利得の変化があり、その結果、回路基板の出力がふらつくという問題があった。そこで、周囲の温度に対する抵抗値変化率の小さい抵抗を選定することにより、オペアンプの増幅回路の利得を安定化させることが行われているが、多くの抵抗の温度特性を測定し、その中から周囲の温度に対する抵抗値変化率の小さい抵抗を選定するので、所望の温度特性が低いものを選定できるとは限らず、オペアンプの増幅回路の利得の安定化が必ずしも実現できるものではない。   In the case of an operational amplifier, there is a problem that the gain of the operational amplifier changes due to a change in ambient temperature depending on the temperature characteristics of the resistor used, and as a result, the output of the circuit board fluctuates. Therefore, by selecting a resistor with a small rate of change in resistance value with respect to the ambient temperature, the gain of the amplifier circuit of the operational amplifier is stabilized, but the temperature characteristics of many resistors are measured, and from among them, Since a resistor having a small rate of change in resistance value with respect to the ambient temperature is selected, a resistor having a low desired temperature characteristic cannot always be selected, and stabilization of the gain of the amplifier circuit of the operational amplifier cannot always be realized.

本発明は、周囲の温度変化による影響を少なくして制御回路のオペアンプの利得が少ない荷電粒子線装置を提供することを目的とする。   It is an object of the present invention to provide a charged particle beam apparatus in which the influence of an ambient temperature change is reduced and the gain of an operational amplifier of a control circuit is small.

本発明は、試料表面に荷電粒子線を照射する荷電粒子線照射手段と、前記試料を載置する試料台と、前記試料台を移動する移動手段と、前記荷電粒子線を偏向させる偏向手段と、増幅回路を備え、前記偏向手段を制御する制御手段と、および前記荷電粒子線を前記試料に照射することにより前記試料から発生した二次信号を検出する二次信号検出手段とを備えた荷電粒子線装置において、
前記制御手段に備えた増幅回路は、周囲温度に対する抵抗値変化が第一の特性を有する第一の抵抗と、周囲温度に対する抵抗値変化が第一の特性とは逆の特性を有する第二の抵抗とを電気的に接続し一体化した抵抗体を有して、光軸ずれ量を減らすオペアンプ増幅を行う荷電粒子線装置を提供する。
The present invention includes charged particle beam irradiation means for irradiating a sample surface with a charged particle beam, a sample stage for placing the sample, a moving means for moving the sample stage, and a deflection means for deflecting the charged particle beam. A charging means comprising an amplifier circuit, a control means for controlling the deflection means, and a secondary signal detection means for detecting a secondary signal generated from the sample by irradiating the sample with the charged particle beam. In particle beam equipment,
The amplifier circuit provided in the control means includes a first resistor whose resistance value change with respect to the ambient temperature has a first characteristic, and a second resistor whose resistance value change with respect to the ambient temperature is opposite to the first characteristic. Provided is a charged particle beam device which has an integrated resistor that is electrically connected to a resistor and performs operational amplifier amplification to reduce the amount of optical axis deviation.

本発明によれば、周囲の温度変化によるオペアンプの利得の変化を抑制し、オペアンプを備えた増幅回路の入力に対する出力がふらつかないようにすることができ、入力に対する出力を高精度化する荷電粒子線装置を提供できる。   According to the present invention, it is possible to suppress a change in the gain of the operational amplifier due to a change in ambient temperature, to prevent the output with respect to the input of the amplifier circuit provided with the operational amplifier from wobbling, and to increase the accuracy of the output with respect to the input. A wire device can be provided.

本発明の実施例である荷電粒子線装置は、試料表面に荷電粒子線を照射する荷電粒子線照射手段と、前記試料を載置する試料台と、前記試料台を移動する移動手段と、前記荷電粒子線を偏向させる偏向手段と、増幅回路を備え、前記偏向手段を制御する制御手段と、および前記荷電粒子線を前記試料に照射することにより前記試料から発生した二次信号を検出する二次信号検出手段とを備え、
前記制御手段に備えた増幅回路は、所定の温度範囲で温度に対する抵抗値変化率が第一の正値方向の双曲線特性を有する第一の抵抗と、温度に対する抵抗値変化率が第一の特性とは逆の負値方向の双曲線特性を有する第二の抵抗とを電気的に接続し一体化した抵抗体を有して、光軸ずれ量を減らすオペアンプ増幅を行うことを特徴とする。
A charged particle beam apparatus according to an embodiment of the present invention includes a charged particle beam irradiation unit that irradiates a sample surface with a charged particle beam, a sample stage on which the sample is placed, a moving unit that moves the sample stage, A deflecting unit that deflects a charged particle beam, an amplifier circuit, a control unit that controls the deflecting unit, and a second signal that detects a secondary signal generated from the sample by irradiating the sample with the charged particle beam. A next signal detection means,
The amplifier circuit provided in the control means includes a first resistor having a hyperbolic characteristic in which a resistance value change rate with respect to temperature has a first positive value direction in a predetermined temperature range, and a resistance value change rate with respect to temperature having a first characteristic. And a second resistor having a hyperbola characteristic in the negative value direction opposite to that of the first resistor, and a resistor integrated with the second resistor, and performing operational amplifier amplification to reduce the amount of optical axis deviation.

前記抵抗体は、周囲温度に対する抵抗値変化が零以上の正値の特性をもつ抵抗および零以下の負値をもつ抵抗の組み合わせからなることを特徴とする。   The resistor is composed of a combination of a resistor having a positive value characteristic with a change in resistance value with respect to an ambient temperature and a resistor having a negative value less than or equal to zero.

前記増幅回路は、D/Aコンバータ,オペアンプと共にデジタル−アナログコンバータ回路を構成して、基板上に形成されることを特徴とする。
前記二つの抵抗に設けたリード線をジャンパー線接続したことを特徴とする。
以下、本発明の実施例を図面に基づいて説明する。
The amplifier circuit forms a digital-analog converter circuit together with a D / A converter and an operational amplifier, and is formed on a substrate.
The lead wires provided on the two resistors are connected by jumper wires.
Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明が適用される荷電粒子線装置100の概略構成を示す。
荷電粒子線装置100は、試料表面に荷電粒子線を照射する荷電粒子線照射手段と、前記試料を載置する試料台と、前記試料台を移動する移動手段と、前記荷電粒子線を偏向させる偏向手段と、増幅回路を備え、前記偏向手段を制御する制御手段と、および前記荷電粒子線を前記試料に照射することにより前記試料から発生した二次信号を検出する二次信号検出手段とを備える。以下、詳述する。
FIG. 1 shows a schematic configuration of a charged particle beam apparatus 100 to which the present invention is applied.
The charged particle beam apparatus 100 deflects the charged particle beam by charged particle beam irradiation means for irradiating a sample surface with a charged particle beam, a sample stage for placing the sample, a moving means for moving the sample stage, and the charged particle beam. A deflecting unit, a control unit that includes an amplifier circuit, and controls the deflecting unit; and a secondary signal detecting unit that detects a secondary signal generated from the sample by irradiating the sample with the charged particle beam. Prepare. Details will be described below.

本実施例では、荷電粒子として電子を用い、電子の経路を真空に保つための容器は、図では省略している。図1において、陰極3と第一陽極4の間には、CPU21で制御される高電圧制御電源19により電圧が印加され、所定のエミッション電流が陰極3から引き出される。陰極3と第二陽極5の間にはCPU21で制御される高電圧制御電源19により加速電圧が印加されるため、陰極3から放出された一次電子線6は加速されて後段のレンズ系に進行する。一次電子線6は、集束レンズ制御電源22で制御された集束レンズ7で集束され、絞り板8に設けられた絞り穴で不要な領域が除去される。ここで、アクチュエータ18は絞り板8を駆動するために設けられている。この後、一次電子線6は、対物レンズ制御電源16で制御された対物レンズ9により試料10上に微小スポットとして集束され、偏向コイル11で試料上を二次元的に走査される。偏向コイル11の走査信号は、観察倍率に応じて偏向コイル11により制御される。対物レンズ9より電子源側には二次電子14を検出するための検出器12が配置されている。検出器12により検出された信号は増幅器13により増幅され、一次電子線6の走査と同期してCPU21にて処理され、像表示装置20に試料像として表示される。   In this embodiment, electrons are used as charged particles, and a container for keeping the electron path in a vacuum is not shown in the figure. In FIG. 1, a voltage is applied between the cathode 3 and the first anode 4 by a high voltage control power source 19 controlled by the CPU 21, and a predetermined emission current is drawn from the cathode 3. Since an acceleration voltage is applied between the cathode 3 and the second anode 5 by a high voltage control power source 19 controlled by the CPU 21, the primary electron beam 6 emitted from the cathode 3 is accelerated and proceeds to the lens system at the subsequent stage. To do. The primary electron beam 6 is focused by the focusing lens 7 controlled by the focusing lens control power source 22, and unnecessary areas are removed by the aperture holes provided in the aperture plate 8. Here, the actuator 18 is provided to drive the diaphragm plate 8. Thereafter, the primary electron beam 6 is focused as a minute spot on the sample 10 by the objective lens 9 controlled by the objective lens control power supply 16 and is scanned two-dimensionally on the sample by the deflection coil 11. The scanning signal of the deflection coil 11 is controlled by the deflection coil 11 according to the observation magnification. A detector 12 for detecting secondary electrons 14 is arranged on the electron source side of the objective lens 9. The signal detected by the detector 12 is amplified by the amplifier 13, processed by the CPU 21 in synchronization with the scanning of the primary electron beam 6, and displayed on the image display device 20 as a sample image.

図2を用いて、図1に示した試料上におけるX,Y軸方向の光軸ずれを説明する。周囲温度が変化すると、偏向コイル制御回路17内の基板の各々のオペアンプ1の利得に影響を及ぼしオペアンプ1の出力がふらつく。オペアンプ1のふらつきは、例えば、局所的な入力抵抗である帰還抵抗に対する風のゆらぎからの抵抗値ドリフトによる利得のドリフトが挙げられる。   The optical axis deviation in the X and Y axis directions on the sample shown in FIG. 1 will be described with reference to FIG. When the ambient temperature changes, the gain of each operational amplifier 1 on the substrate in the deflection coil control circuit 17 is affected, and the output of the operational amplifier 1 fluctuates. The fluctuation of the operational amplifier 1 is, for example, a gain drift due to a resistance value drift from a wind fluctuation with respect to a feedback resistance which is a local input resistance.

基板のオペアンプ1からの出力端子からの出力電流が偏向コイル11を通っているので、陰極3から放射された一次電子線6にオペアンプの出力が偏向コイル11の磁場のふらつき誤差として影響を及ぼし、結果として一次電子線6のスポットAに対するスポットBの光軸ずれ量ΔX,ΔYの誤差となる。よって本実施例では、光軸ずれ量ΔX,ΔYを減らすために、例えば後述する図5(b)に示すように、偏向コイル制御回路17内に周囲温度に対する抵抗値変化が第一の特性を有する第一の抵抗と、周囲温度に対する抵抗値変化が第一の特性とは逆の特性を有する第二の抵抗とを電気的に接続し一体化した抵抗体を有して、光軸ずれ量を減らすオペアンプ増幅を行う増幅回路を形成し、基板に設置した。   Since the output current from the output terminal of the operational amplifier 1 on the substrate passes through the deflection coil 11, the output of the operational amplifier affects the primary electron beam 6 radiated from the cathode 3 as a fluctuation error of the magnetic field of the deflection coil 11. As a result, an error of the optical axis deviation amounts ΔX and ΔY of the spot B with respect to the spot A of the primary electron beam 6 results. Therefore, in this embodiment, in order to reduce the optical axis deviation amounts ΔX and ΔY, for example, as shown in FIG. 5B described later, the resistance value change with respect to the ambient temperature has the first characteristic in the deflection coil control circuit 17. A first resistor having a resistor and a second resistor having a resistance value change with respect to the ambient temperature that is opposite to the first property. An amplifier circuit for performing operational amplifier amplification was formed and installed on the substrate.

本実施例では偏向コイル制御回路17の場合を代表例として説明しているが、オペアンプは偏向コイル制御回路17だけでなく、図1に示した高電圧制御電源19、集束レンズ制御電源22、検出器12により検出された信号の増幅器13、対物レンズ制御電源16にも用いられており、適用方法、構成、効果はほぼ同様であるので、省略する。また、これらに用いられている基板を総称して、以下レンズ基板と呼ぶ。   In this embodiment, the case of the deflection coil control circuit 17 is described as a representative example. However, the operational amplifier is not limited to the deflection coil control circuit 17, but the high voltage control power source 19, the focusing lens control power source 22, and the detection shown in FIG. It is also used for the amplifier 13 of the signal detected by the device 12 and the objective lens control power supply 16, and the application method, configuration, and effect are substantially the same, and therefore will be omitted. In addition, the substrates used in these are hereinafter collectively referred to as lens substrates.

上記光軸ずれ量ΔX,ΔYを減らすための構成を図2,図3および図4,図5を用いて説明する。図4,図5は、回路構成を示す制御回路図である。図3(a)は走査型電子顕微鏡のレンズ基板の出力を高精度化した一例である。レンズ基板の出力を高精度化することは偏向コイル11に流れる電流を安定化させ、光軸ずれ量ΔX,ΔYを減らす効果となる。入力端子23に入力された入力信号はD/Aコンバータ24,可変抵抗25,オペアンプ1,抵抗2からなる複数段のデジタル−アナログコンバーターで回路が構成され基板26に半田付けされる。この基板26は固定台27に複数のねじ28,ブッシュ29に固定されている。又、基板26に入力された入力信号からの出力は出力端子31に出力される。さらに基板26は周囲温度を均一化し抵抗2に周囲温度からの影響を少なくするために、すくなくとも1つ以上の冷却ファン30を設置される。   A configuration for reducing the optical axis deviation amounts ΔX and ΔY will be described with reference to FIGS. 2, 3, 4, and 5. 4 and 5 are control circuit diagrams showing circuit configurations. FIG. 3A shows an example in which the output of the lens substrate of the scanning electron microscope is made highly accurate. Increasing the accuracy of the output of the lens substrate has the effect of stabilizing the current flowing in the deflection coil 11 and reducing the optical axis deviation amounts ΔX and ΔY. The input signal inputted to the input terminal 23 is constituted by a multi-stage digital-analog converter including a D / A converter 24, a variable resistor 25, an operational amplifier 1 and a resistor 2, and is soldered to the substrate 26. The substrate 26 is fixed to a fixed base 27 with a plurality of screws 28 and bushes 29. The output from the input signal input to the substrate 26 is output to the output terminal 31. Furthermore, the substrate 26 is provided with at least one cooling fan 30 in order to make the ambient temperature uniform and reduce the influence of the resistor 2 from the ambient temperature.

図3(b)は図3(a)の中で可変抵抗25は周囲温度に対する抵抗値の変化率が抵抗2に比べて数百倍の割合なので、周囲温度に対する抵抗値の変化率が低い新たなデジタルトリマ32を設けている。この際、デジタルトリマ32の初期設定をするためにCPU(1)33を基板26の外部に設けた。   FIG. 3B shows that the variable resistor 25 has a rate of change of the resistance value with respect to the ambient temperature several hundred times that of the resistor 2 in FIG. A digital trimmer 32 is provided. At this time, the CPU (1) 33 was provided outside the substrate 26 in order to perform the initial setting of the digital trimmer 32.

このデジタルトリマ32の代わりに後述する図5(b)に示すように、周囲温度に対する抵抗値変化が第一の特性を有する第一の抵抗と、周囲温度に対する抵抗値変化が第一の特性とは逆の特性を有する第二の抵抗とを電気的に接続し一体化した抵抗体を設置することにより、さらに容易に温度補償することができる。   Instead of the digital trimmer 32, as shown in FIG. 5B, which will be described later, a first resistance whose resistance value change with respect to the ambient temperature has a first characteristic, and a resistance value change with respect to the ambient temperature which is a first characteristic. The temperature compensation can be more easily performed by installing an integrated resistor that is electrically connected to a second resistor having the opposite characteristics.

図4に走査型電子顕微鏡のレンズ回路の制御回路を集積化した一例を示す。図45において、シリコンウエハー34の上にD/Aコンバータ24,オペアンプ1,抵抗2からなる複数段のデジタル−アナログコンバーター回路と、オペアンプ1周囲の抵抗2を温度係数を考慮した新たな抵抗に変更し載せ実装(オンチップ)技術にてパッケージを行なう。尚、複数のD/Aコンバータ24とオペアンプ1の出力調整のための可変抵抗25はシリコンウエハー34外部に設けた。ここで、非接触ICチップ35は各々の組合わせ抵抗の温度係数を保存したもので、温度係数の自動確認ができるものである。   FIG. 4 shows an example in which the control circuit of the lens circuit of the scanning electron microscope is integrated. In FIG. 45, a multi-stage digital-analog converter circuit comprising a D / A converter 24, an operational amplifier 1 and a resistor 2 on a silicon wafer 34, and a resistor 2 around the operational amplifier 1 are changed to new resistors in consideration of the temperature coefficient. Packaging is performed by the on-chip technology. A plurality of D / A converters 24 and a variable resistor 25 for adjusting the output of the operational amplifier 1 are provided outside the silicon wafer 34. Here, the non-contact IC chip 35 stores the temperature coefficient of each combination resistor, and can automatically check the temperature coefficient.

図5は、オペアンプの反転増幅回路の一例を示す回路図である。
図5(a)は従来例を示し、図5(a)においてオペアンプ1にはオペアンプ1の反転増幅機能を実現するために抵抗2が結線されている。この図5(a)においてVinは入力電圧、Voutは出力電圧とすると、Voutは以下のように計算される。
FIG. 5 is a circuit diagram showing an example of an inverting amplifier circuit of an operational amplifier.
FIG. 5A shows a conventional example. In FIG. 5A, a resistor 2 is connected to the operational amplifier 1 in order to realize the inverting amplification function of the operational amplifier 1. In FIG. 5A, when Vin is an input voltage and Vout is an output voltage, Vout is calculated as follows.

Vout=−(R2/R1)*Vin …数1
ここで、R1は第1の抵抗の抵抗値、R2は第2の抵抗の抵抗値である。図5(a)に示した回路に対し、出力電圧Voutを高精度化した本実施例を、図5(b)に示す。図5(b)において、図5(a)のR2に対し、図5(b)のR2′,R2′′が、出力電圧Voutを高精度にするために新しく設けた抵抗の値である。この時の出力電圧は以下のように求められる。
Vout = − (R2 / R1) * Vin (Equation 1)
Here, R1 is the resistance value of the first resistor, and R2 is the resistance value of the second resistor. FIG. 5B shows this embodiment in which the output voltage Vout is made more accurate than the circuit shown in FIG. In FIG. 5B, R2 ′ and R2 ″ in FIG. 5B are resistance values newly provided to make the output voltage Vout highly accurate with respect to R2 in FIG. 5A. The output voltage at this time is obtained as follows.

Vout=−((R2′+R2′′)/R1)*Vin …数2
図5(c)は、抵抗値R1のかわりに抵抗値R1’とR1’’の抵抗を直列に接続して、入力電圧Vinが高精度になるようにした。また、図5(d)は、図5(b)と(c)を組合わせて、図5(a)の抵抗値R1に対してR1’とR1’’、抵抗値R2に対してR2’とR2’’を用いて、入力電圧Vin、出力電圧Voutの両方を高精度化したものである。
Vout = − ((R2 ′ + R2 ″) / R1) * Vin Expression 2
In FIG. 5C, resistances R1 ′ and R1 ″ are connected in series instead of the resistance value R1 so that the input voltage Vin is highly accurate. 5D is a combination of FIGS. 5B and 5C, and R1 ′ and R1 ″ with respect to the resistance value R1 in FIG. 5A, and R2 ′ with respect to the resistance value R2. And R2 ″, both the input voltage Vin and the output voltage Vout are made highly accurate.

図6はそれぞれの抵抗温度曲線の一例を示す特性図である。横軸は抵抗の周囲温度、縦軸は抵抗値の変化率ΔR/R(ppm)である。それぞれの抵抗は、周囲温度25℃を中心に増加、あるいは減少しているが、特性が線対象のもの同士を選択し、前述の数1、数2に対し、R2=R2’+R2’’の条件を満たす抵抗、例えば、R2=10キロオームのものについては、R2'=5キロオーム、R2''=5キロオームの抵抗値を選ぶことにより、全体として抵抗値の変化率ΔR/R=0(零)、すなわち、抵抗値の変化率を相互にキャンセルして、見かけ上周囲温度の影響のない抵抗値となり、温度依存性のない抵抗体を得ることができる。しかしこれは理論値であって、実際には、選定できる抵抗の数に限りがあるため、抵抗値の変化率ΔR/Rは完全にゼロではなく、多少の誤差は生じる。したがって、抵抗値の変化率ができるだけゼロに近いものを選択することが重要である。なお、図5や図6に示した実施例においては、2つの抵抗の組合せを例示したが、数に限定はなく、3つ以上の抵抗の組合せにより出力電圧の高精度化をはかってもよい。   FIG. 6 is a characteristic diagram showing an example of each resistance temperature curve. The horizontal axis represents the resistance ambient temperature, and the vertical axis represents the resistance change rate ΔR / R (ppm). Each resistance increases or decreases around an ambient temperature of 25 ° C., but the characteristics are selected from those of linear objects, and R2 = R2 ′ + R2 ″ with respect to the above-mentioned formulas 1 and 2. For a resistor that satisfies the condition, for example, R2 = 10 kilohms, by selecting a resistance value of R2 ′ = 5 kilohms and R2 ″ = 5 kilohms, the overall resistance value change rate ΔR / R = 0 (zero) In other words, the rate of change of the resistance value is canceled mutually, and the resistance value apparently has no influence of the ambient temperature, and a resistor having no temperature dependency can be obtained. However, this is a theoretical value, and since the number of resistors that can be selected is actually limited, the change rate ΔR / R of the resistance value is not completely zero, and some error occurs. Therefore, it is important to select a resistance value whose rate of change is as close to zero as possible. In the embodiment shown in FIG. 5 and FIG. 6, the combination of two resistors is illustrated, but the number is not limited, and the accuracy of the output voltage may be improved by combining three or more resistors. .

ここで数1において、R1,R2が同じ値で同じ種類の抵抗を用い、数2においてR1,R2′+R2′′が同じ値で同じ種類の抵抗を用いた場合、数1,数2は同じ出力と考えられるが、オペアンプ1の利得に着目すると、周囲温度に対するR1,R2の抵抗値の変化率ΔR1,ΔR2は、数2に比べると数1の方が大きいので、受動素子の中の電子の流れの観点からは、数2の方が優位性がある。上述の実施例においては、高精度化をはかる前の抵抗1つの場合に対してそれを置き換えて2つの抵抗を用いたが、3つ以上を組み合わせることでも、数2のVoutの値を高精度にすることができる。又、R2′とR2′′からなる抵抗は、オペアンプ1にハンダ付けする前に予めパッケージ化しておくことによって、取り扱いを容易にすることができる。   Here, when R1 and R2 are the same value and the same type of resistor is used in Equation 1, and R1 and R2 ′ + R2 ″ are the same value and the same type of resistor is used in Equation 2, Equations 1 and 2 are the same. Although considered as an output, focusing on the gain of the operational amplifier 1, the change rate ΔR1, ΔR2 of the resistance value of R1, R2 with respect to the ambient temperature is larger in Formula 1 than in Formula 2, so the electrons in the passive element From the viewpoint of the flow, the number 2 is superior. In the above-described embodiment, two resistors are used in place of one resistor before achieving high accuracy. However, even when three or more resistors are combined, the value of Vout in Formula 2 is highly accurate. Can be. Further, the resistor composed of R2 ′ and R2 ″ can be easily handled by packaging in advance before soldering to the operational amplifier 1.

本実施例では、周囲温度の変化からオペアンプ利得のための抵抗2に及ぼし、オペアンプ1の周囲の抵抗2を新たな抵抗に変更したが、周囲温度を変化しないよう基板の周囲を容器で囲んで容器内の温度を制御することにより高分解能で測定する方法を以下説明する。   In this embodiment, the change in the ambient temperature affects the resistor 2 for the operational amplifier gain, and the resistor 2 around the operational amplifier 1 is changed to a new resistor. However, the substrate is surrounded by a container so as not to change the ambient temperature. A method for measuring with high resolution by controlling the temperature in the container will be described below.

図7,図8は、電子顕微鏡に用いられるレンズ基板に搭載した抵抗の温度特性を測定する測定室の概略平面図と、温度特性図である。図7(a)において、基板26のまわりを容器36で囲い、容器36内の温度を高精度に管理するための室温センサー37,室温センサー37の信号を取り込める空調器38を設置している。図7(b)に、このようにして容器36内の温度管理をしながら測定した基板26の抵抗の温度特性を示す。図に示す抵抗の温度変化率は、図5(a)に示すような抵抗1個の場合を示しており、基板26のオペアンプに接続された抵抗の変化率は、25℃を基準としてその前後T1からT2の温度範囲では、ほとんどゼロである。したがって、基板26の温度をT1からT2の間に管理できるならば抵抗1個で出力の安定が望めるが、現実には温度管理幅に余裕をもたせるため、図5(b)から(d)に示したような少なくとも2個の抵抗の組合せによる抵抗体を用いるのがよい。このように、この温度T1からT2の間に基板26の周囲温度を管理することにより、オペアンプの利得が安定し、オペアンプ2からなる基板からの出力が安定し、偏向コイル11等に流れる電流が安定し、電子顕微鏡の荷電粒子線の偏向精度等を向上させることができる。上述のような容器36内で抵抗の特性を測定し、データベース化し、複数の抵抗の組合せ表を作成し、一体化の後の抵抗値が周囲温度に対して一定であるような少なくとも2つの抵抗の組合せを求めるようにする。   7 and 8 are a schematic plan view and a temperature characteristic diagram of a measurement chamber for measuring a temperature characteristic of a resistance mounted on a lens substrate used in an electron microscope. In FIG. 7A, the substrate 26 is surrounded by a container 36, a room temperature sensor 37 for managing the temperature in the container 36 with high accuracy, and an air conditioner 38 that can take in the signal of the room temperature sensor 37 are installed. FIG. 7B shows the temperature characteristics of the resistance of the substrate 26 measured in this way while controlling the temperature in the container 36. The temperature change rate of the resistor shown in the figure shows the case of one resistor as shown in FIG. 5A, and the rate of change of the resistance connected to the operational amplifier on the substrate 26 is around 25 ° C. In the temperature range from T1 to T2, it is almost zero. Therefore, if the temperature of the substrate 26 can be managed between T1 and T2, the output can be stabilized with one resistor. However, in reality, there is a margin in the temperature management range, so FIGS. 5 (b) to 5 (d). It is preferable to use a resistor having a combination of at least two resistors as shown. Thus, by controlling the ambient temperature of the substrate 26 between the temperatures T1 and T2, the gain of the operational amplifier is stabilized, the output from the substrate composed of the operational amplifier 2 is stabilized, and the current flowing through the deflection coil 11 and the like is reduced. It is stable and can improve the deflection accuracy of the charged particle beam of the electron microscope. Measure the resistance characteristics in the container 36 as described above, create a database, create a plurality of resistance combination tables, and at least two resistances such that the resistance value after integration is constant with respect to ambient temperature The combination of is calculated.

図8(a)において、電子顕微鏡は測定室39の中に設置され(図示せず)、室温を管理するための室温センサー37,室温センサー37の信号を取り込める空調器38が設置されている。電子顕微鏡で試料の分解能を測定する際、図1に示した電子顕微鏡のCPU21から空調機38にLAN経由で空調機38の設定温度を設定する。   In FIG. 8A, the electron microscope is installed in a measurement chamber 39 (not shown), and a room temperature sensor 37 for managing the room temperature and an air conditioner 38 for taking in the signal of the room temperature sensor 37 are installed. When measuring the resolution of a sample with an electron microscope, the set temperature of the air conditioner 38 is set from the CPU 21 of the electron microscope shown in FIG.

図8(b)は走査型電子顕微鏡内で使用されているオペアンプ1の増幅のために使用されている抵抗2の温度に対する抵抗値の変化率の一例である。所定の温度T1〜T2の間で、室温センサ37で室温の計測をしながら空調機38を調整し、抵抗値の変化率を測定する。図7の場合と同様の理由で、オペアンプ1は温度T1からT2間は抵抗値の変化率が小さいので、各基板からの出力が安定し例えば偏向コイル11の電流が安定する効果により分解能を向上させることができる。尚、オペアンプ1の利得のための複数からなる抵抗2は予めおのおのが周囲温度に対する抵抗値の変化率の特性が異なるのであらかじめデータベース化して統計的に基板出力が最適化されたT1〜T2の値をCUP21で決めても良い。   FIG. 8B is an example of the rate of change of the resistance value with respect to the temperature of the resistor 2 used for amplification of the operational amplifier 1 used in the scanning electron microscope. The air conditioner 38 is adjusted while measuring the room temperature with the room temperature sensor 37 between the predetermined temperatures T1 and T2, and the change rate of the resistance value is measured. For the same reason as in the case of FIG. 7, the operational amplifier 1 has a small change rate in resistance value between temperatures T1 and T2, so that the output from each substrate is stabilized, and the resolution is improved by the effect of stabilizing the current of the deflection coil 11, for example Can be made. It should be noted that a plurality of resistors 2 for the gain of the operational amplifier 1 have different characteristics of the rate of change of the resistance value with respect to the ambient temperature in advance, and therefore the values of T1 to T2 in which the substrate output is statistically optimized in advance by creating a database. May be determined by CUP21.

図9は、抵抗の構成図であって、平面図と正面図で2つの抵抗を一体化した構造の一例を示す。抵抗値R2′′の市販の抵抗2aと、抵抗値R2′の市販の抵抗2bの間を接合部剤を介して接合する。このとき、抵抗の端子が設けられた側とは反対側に接合部剤を設け、2つの抵抗の間に一定間隔を隔てた空間が設けられるようにする。2つの抵抗の接合面全体を接合すると、抵抗単品のときは、抵抗同士が対面しているので、その部分の局所的な温度上昇をもたらし、抵抗値が変化してしまう。この温度上昇を防止するために、一定間隔を隔てて空間を形成して放熱させるようにする。たとえば、放熱面積を広くするために接合部剤の厚さtを薄くするとともに、接合強度を持たせるために平面図では接合部を広くとるとよい。予め抵抗2aと抵抗2bを固定する治具(図示せず)を作成して固定し、両抵抗間に正面から接着剤40を吐出し、正面から見た厚さをtとする。
接着剤の例としては、プリント基板上のジャンパー線固定用の接着剤を用いるとよい結果が得られる。また、両抵抗間の端子を半田付けで接続固定する。抵抗の表面には抵抗値を記載した銘板41を設ける。
FIG. 9 is a configuration diagram of resistors, and shows an example of a structure in which two resistors are integrated in a plan view and a front view. A commercially available resistor 2a having a resistance value R2 ″ and a commercially available resistor 2b having a resistance value R2 ″ are joined via a joining agent. At this time, a bonding agent is provided on the side opposite to the side on which the resistance terminal is provided, and a space is provided between the two resistances with a predetermined interval. When the entire joint surfaces of the two resistors are joined, the resistors are facing each other in the case of a single resistor, and this causes a local temperature rise in that portion and the resistance value changes. In order to prevent this temperature rise, a space is formed at regular intervals to dissipate heat. For example, the thickness t of the bonding agent may be reduced in order to increase the heat radiation area, and the bonding portion may be widened in the plan view in order to provide bonding strength. A jig (not shown) for fixing the resistor 2a and the resistor 2b is prepared and fixed in advance, and the adhesive 40 is discharged from the front surface between both resistors, and the thickness viewed from the front surface is defined as t.
As an example of the adhesive, a good result can be obtained by using an adhesive for fixing jumper wires on a printed circuit board. Also, the terminals between both resistors are connected and fixed by soldering. A name plate 41 on which the resistance value is described is provided on the surface of the resistor.

図10は、温度に対する抵抗値の変化率の一例を示す特性図である。通常、抵抗値は、基準温度の25℃、下方の温度−T3、上方の温度T4の3点で測定され、3点間を双曲線で結んで特性のグラフが作成される。例えば、抵抗値が、R2′、R2′′、R2′1、R2′′1の4種類の抵抗が見出された場合、前述の組合せ表からR2′とR2′′の組合せを選択、あるいは、R2′1とR2′′1の組合せを選択して一体の抵抗とすることにより、個々の抵抗では異なる特性でも一体にすれば同じ特性の抵抗を得ることができる。このようにして一体化した抵抗をオペアンプに接続し、電子顕微鏡のレンズ基板に用いることによって、高精度な制御を行うことができる。   FIG. 10 is a characteristic diagram showing an example of the rate of change of the resistance value with respect to temperature. Usually, the resistance value is measured at three points of a reference temperature of 25 ° C., a lower temperature −T3, and an upper temperature T4, and a graph of characteristics is created by connecting the three points with a hyperbola. For example, when four types of resistance values R2 ′, R2 ″, R2′1, R2 ″ 1 are found, the combination of R2 ′ and R2 ″ is selected from the above combination table, or By selecting a combination of R2′1 and R2 ″ 1 as an integrated resistor, even if the individual resistors have different characteristics, the resistance having the same characteristics can be obtained. By connecting the resistor integrated in this way to the operational amplifier and using it for the lens substrate of the electron microscope, highly accurate control can be performed.

図11は、温度に対する抵抗値の変化率の一例を示す特性図である。電子顕微鏡は、通常温度管理された室内で使用されるので、限られた範囲の温度内で抵抗体の特性を求めれば十分である。例えば、図11において、図10に示した温度−T3からT4の範囲内の温度T5からT6の温度が、電子顕微鏡が使用される環境温度であるとすると、抵抗の温度特性は温度T5からT6の範囲内で所定の特性が得られればよい。このようにして一体化した抵抗をオペアンプに接続し、電子顕微鏡のレンズ基板に用いることによって、高精度な制御を行うことができる。発明者らは、0.6W時の抵抗体の抵抗値20キロオーム、−T3が−55℃、T4が125℃において、温度に対する抵抗値の変化率が0.04ppm/℃以下の抵抗体を得ることができた。   FIG. 11 is a characteristic diagram showing an example of the rate of change of the resistance value with respect to temperature. Since the electron microscope is usually used in a room whose temperature is controlled, it is sufficient to obtain the characteristics of the resistor within a limited temperature range. For example, in FIG. 11, if the temperature T5 to T6 in the range of the temperature −T3 to T4 shown in FIG. 10 is the environmental temperature in which the electron microscope is used, the temperature characteristic of the resistance is the temperature T5 to T6. It suffices if predetermined characteristics are obtained within the above range. By connecting the resistor integrated in this way to the operational amplifier and using it for the lens substrate of the electron microscope, highly accurate control can be performed. The inventors obtained a resistor having a resistance value of 20 kiloohms at 0.6 W, -T3 of -55 ° C., and T4 of 125 ° C., and the rate of change of the resistance value with respect to temperature is 0.04 ppm / ° C. or less. I was able to.

図12は、抵抗を一体化したときの構造の一例を示す構成図で、図12はジャンパー線なしの場合、図13はジャンパー線ありの場合の平面図,正面図,側面図を示す。回路の中で抵抗同士を結線する場合があり、ジャンパー線はそのために設けられている。本実施例では2つの抵抗を、結線部分も含めて一体に樹脂等でモールドしたものであるので、2つの抵抗の間の温度上昇を考慮しなくてもよい場合に用いられる。図12において、各抵抗の端子同士を接合部43で接合するとともに、モールドの上下方向に貫通する端子42a,42bを設け、接合部43と端子42bとを電気的に導通させる。端子42aはダミーである。図13は、図12と同様であるが、端子42bと端子42cとを、接合部43と接合部44でジャンパー線を用いて電気的に接続したものである。図12に示した抵抗体と図13に示した抵抗体は外見が同様であるので、ジャンパー線の有無を明確にするために、表面に銘板を貼ったり、色分けをして区別できるようにする。   FIG. 12 is a block diagram showing an example of the structure when the resistors are integrated. FIG. 12 shows a plan view, a front view, and a side view when there is no jumper wire, and FIG. In some cases, resistors are connected in a circuit, and a jumper wire is provided for this purpose. In the present embodiment, the two resistors are integrally molded with a resin or the like including the connecting portion, and therefore, it is used when it is not necessary to consider the temperature rise between the two resistors. In FIG. 12, the terminals of each resistor are joined together at the joint 43, and terminals 42a and 42b penetrating in the vertical direction of the mold are provided to electrically connect the joint 43 and the terminal 42b. The terminal 42a is a dummy. FIG. 13 is the same as FIG. 12, except that the terminal 42 b and the terminal 42 c are electrically connected using a jumper wire at the joint 43 and the joint 44. The resistor shown in FIG. 12 and the resistor shown in FIG. 13 have the same appearance, so that the nameplate is attached to the surface or the colors are made distinguishable in order to clarify the presence or absence of the jumper wire. .

図14は、2つの抵抗を一体で製造する場合の抵抗値の変化率を示す特性図と構造を示す横断面図である。市販抵抗は図6に示したように、25℃において抵抗値の変化率が0(零)になるように製造される。電子顕微鏡では、温度管理の値が25℃とは限らず、例えば23℃の場合がある。したがって、23℃において抵抗値の変化率が0(零)になるような抵抗を製作する。   FIG. 14 is a characteristic diagram showing a rate of change in resistance value and a cross-sectional view showing the structure when two resistors are manufactured integrally. As shown in FIG. 6, the commercially available resistor is manufactured so that the rate of change of the resistance value becomes 0 (zero) at 25 ° C. In the electron microscope, the temperature control value is not limited to 25 ° C., and may be, for example, 23 ° C. Therefore, a resistor is manufactured so that the rate of change of the resistance value becomes 0 (zero) at 23 ° C.

23℃に厳密に制御された空間において、23℃が見かけ上周囲温度が変化しても抵抗値が一番変動しない点になるように、図13のごとくT3〜T4間での抵抗温度曲線において特性曲線を左方向に微小ずらす製造工程を新たに加える。   In a space strictly controlled to 23 ° C., the resistance temperature curve between T3 and T4 as shown in FIG. 13 is such that 23 ° C. is the point at which the resistance value hardly fluctuates even if the ambient temperature changes apparently. A new manufacturing process that slightly shifts the characteristic curve to the left is added.

抵抗特性を左あるいは右にシフトするためには、予め抵抗温度特性を測定しておき、所望の理想の特性が得られるよう抵抗パッケージの中(あるいは外)に補正の回路を追加すればよい。この補正の回路としては、汎用LSI設計技法を流用して例えば温度センサー,スイッチ,抵抗等からなるデジタルアナログ−デジタル変換回路が考えられる。   In order to shift the resistance characteristic to the left or right, the resistance temperature characteristic is measured in advance, and a correction circuit is added inside (or outside) the resistance package so as to obtain a desired ideal characteristic. As this correction circuit, a digital analog-digital conversion circuit composed of, for example, a temperature sensor, a switch, a resistor, and the like can be considered by diverting a general-purpose LSI design technique.

次に、製造メーカが異なる抵抗の組み合わせの場合でも高精度を実現できる実施例を説明する。   Next, an embodiment will be described in which high accuracy can be realized even when the manufacturer has a combination of different resistors.

図15は抵抗体を製作するための手順を示すフローチャートである。市販の抵抗は製造メーカが様々であり、温度に対する抵抗値の変化率も、測定条件も様々である。したがって、まず、複数の抵抗について(ステップ1)、測定条件を決めて測定する。具体的には、周囲温度T1℃、25℃、T2℃で抵抗値を測定し、コンピュータ等で作成したプログラムを用いて変化率の表の形式のデータベースを作成する(ステップ2)。電子顕微鏡に使用される場合は、図11で説明したように、T1とT2を使用環境温度T5とT6に置き換えても良い。また基準温度25℃を23℃に置き換えても良い。次に、プログラムされた変化率の表を用いて、変化率が相殺される、すなわち変化率ゼロを軸として線対称となる特性の抵抗の組合せをコンピュータに演算させ、選択させる(ステップ3)。選択された抵抗を接合して一体の抵抗体を製作する(ステップ4)。   FIG. 15 is a flowchart showing a procedure for manufacturing a resistor. There are various manufacturers of commercially available resistors, and the rate of change in resistance value with respect to temperature and measurement conditions are also various. Therefore, first, with respect to a plurality of resistors (step 1), measurement conditions are determined and measured. Specifically, resistance values are measured at ambient temperatures T1 ° C., 25 ° C., and T2 ° C., and a database in the form of a change rate table is created using a program created by a computer or the like (step 2). When used in an electron microscope, T1 and T2 may be replaced with operating environment temperatures T5 and T6 as described in FIG. Further, the reference temperature 25 ° C. may be replaced with 23 ° C. Next, using the programmed change rate table, the computer calculates and selects a combination of resistances having characteristics that are offset by the change rate, that is, symmetrical with respect to the zero change rate (step 3). The selected resistors are joined to produce an integral resistor (step 4).

本実施例によればオペアンプの増幅を実現するための抵抗を周囲温度に対する抵抗変化率の特性が異なるものを組み合わせた2つ以上の抵抗に置き換えることで、オペアンプの利得が変化しないため、複数のオペアンプを搭載した回路基板の入力に対する出力のふらつきを防止できる。   According to this embodiment, the gain of the operational amplifier is not changed by replacing the resistance for realizing the amplification of the operational amplifier with two or more resistances having different resistance change rate characteristics with respect to the ambient temperature. It is possible to prevent output fluctuations with respect to the input of a circuit board equipped with an operational amplifier.

荷電粒子線装置の主要構成を示す断面図。Sectional drawing which shows the main structures of a charged particle beam apparatus. 光軸ずれを説明する図。The figure explaining optical axis deviation. 回路構成を示す回路図。The circuit diagram which shows a circuit structure. 回路構成を示す回路図。The circuit diagram which shows a circuit structure. オペアンプの反転増幅回路の一例を示す回路図。The circuit diagram which shows an example of the inverting amplifier circuit of an operational amplifier. 抵抗温度曲線の一例を示す特性図。The characteristic view which shows an example of a resistance temperature curve. 走査型電子顕微鏡に本発明による基板を用いた場合の構成と抵抗の温度特性図。The temperature characteristic figure of a structure at the time of using the board | substrate by this invention for a scanning electron microscope, and resistance. 走査型電子顕微鏡に本発明による基板を用いた場合の構成と抵抗の温度特性図。The temperature characteristic figure of a structure at the time of using the board | substrate by this invention for a scanning electron microscope, and resistance. R2′とR2′′を一体化した抵抗の構成図。The block diagram of the resistance which integrated R2 'and R2' '. 温度に対する抵抗値の変化率の一例を示す特性図。The characteristic view which shows an example of the change rate of the resistance value with respect to temperature. 温度に対する抵抗値の変化率の一例を示す特性図。The characteristic view which shows an example of the change rate of the resistance value with respect to temperature. 抵抗を一体化したときの構造の一例を示す構成図。The block diagram which shows an example of a structure when resistance is integrated. 抵抗を一体化したときの構造の一例を示す構成図。The block diagram which shows an example of a structure when resistance is integrated. 2つの抵抗を一体で製造する場合の抵抗値の変化率を示す特性図と構造を示す横断面図。The characteristic view which shows the change rate of resistance value in the case of manufacturing two resistors integrally, and a transverse cross section which shows a structure. 抵抗の最適マッチングを選ぶ工程の一例を示すフローチャート。The flowchart which shows an example of the process of selecting the optimal matching of resistance.

符号の説明Explanation of symbols

1…オペアンプ、2…抵抗、23…入力端子、24…D/Aコンバータ、25…可変抵抗、26…基板、27…固定台、28…ねじ、29…ブッシュ、30…冷却ファン、31…出力端子、32…デジタルトリマ、33…CPU(1)、35…非接触ICチップ、36…容器、37…室温センサー、38…空調器、39…測定室、40…接着剤、41…銘板、42…リード、43…塩化ニッケルの板、44…接着剤、45…セラミック、100…荷電粒子線装置。
DESCRIPTION OF SYMBOLS 1 ... Operational amplifier, 2 ... Resistance, 23 ... Input terminal, 24 ... D / A converter, 25 ... Variable resistance, 26 ... Substrate, 27 ... Fixing base, 28 ... Screw, 29 ... Bush, 30 ... Cooling fan, 31 ... Output Terminal, 32 ... Digital trimmer, 33 ... CPU (1), 35 ... Non-contact IC chip, 36 ... Container, 37 ... Room temperature sensor, 38 ... Air conditioner, 39 ... Measurement chamber, 40 ... Adhesive, 41 ... Name plate, 42 ... Lead, 43 ... Nickel chloride plate, 44 ... Adhesive, 45 ... Ceramic, 100 ... Charged particle beam device.

Claims (15)

試料表面に荷電粒子線を照射する荷電粒子線照射手段と、前記試料を載置する試料台と、前記試料台を移動する移動手段と、前記荷電粒子線を偏向させる偏向手段と、増幅回路を備え、前記偏向手段を制御する制御手段と、および前記荷電粒子線を前記試料に照射することにより前記試料から発生した二次信号を検出する二次信号検出手段とを備えた荷電粒子線装置において、
前記制御手段に備えた増幅回路は、周囲温度に対する抵抗値変化が第一の特性を有する第一の抵抗と、周囲温度に対する抵抗値変化が第一の特性とは逆の特性を有する第二の抵抗とを電気的に接続し一体化した抵抗体を有して、光軸ずれ量を減らすオペアンプ増幅を行うこと
を特徴とする荷電粒子線装置。
A charged particle beam irradiating means for irradiating the surface of the sample with a charged particle beam; a sample stage for placing the sample; a moving means for moving the sample stage; a deflecting means for deflecting the charged particle beam; and an amplification circuit. A charged particle beam apparatus comprising: control means for controlling the deflection means; and secondary signal detection means for detecting a secondary signal generated from the sample by irradiating the sample with the charged particle beam. ,
The amplifier circuit provided in the control means includes a first resistor whose resistance value change with respect to the ambient temperature has a first characteristic, and a second resistor whose resistance value change with respect to the ambient temperature is opposite to the first characteristic. A charged particle beam apparatus comprising: a resistor that is electrically connected and integrated with a resistor to perform operational amplifier amplification to reduce an optical axis shift amount.
請求項1において、前記抵抗体は、周囲温度に対する抵抗値変化が零以上の正値の特性をもつ抵抗および零以下の負値をもつ抵抗の組み合わせからなることを特徴とする荷電粒子線装置。   2. The charged particle beam device according to claim 1, wherein the resistor comprises a combination of a resistance having a positive value characteristic with a change in resistance value with respect to an ambient temperature and a resistance having a negative value less than or equal to zero. 請求項1において、前記増幅回路は、D/Aコンバータ,オペアンプと共にデジタル−アナログコンバータ回路を構成して、基板上に形成されることを特徴とする荷電粒子線装置。   2. The charged particle beam device according to claim 1, wherein the amplifier circuit forms a digital-analog converter circuit together with a D / A converter and an operational amplifier, and is formed on a substrate. 請求項1において、前記二つの抵抗に設けたリード線をジャンパー線接続したことを特徴とする荷電粒子線装置。   2. The charged particle beam apparatus according to claim 1, wherein the lead wires provided in the two resistors are connected by jumper wires. 試料表面に荷電粒子線を照射する荷電粒子線照射手段と、前記試料を載置する試料台と、前記試料台を移動する移動手段と、前記荷電粒子線を偏向させる偏向手段と、増幅回路を備え、前記偏向手段を制御する制御手段と、および前記荷電粒子線を前記試料に照射することにより前記試料から発生した二次信号を検出する二次信号検出手段とを備えた荷電粒子線装置において、
前記制御手段に備えた増幅回路は、所定の温度範囲で温度に対する抵抗値変化率が第一の正値方向の双曲線特性を有する第一の抵抗と、温度に対する抵抗値変化率が第一の特性とは逆の負値方向の双曲線特性を有する第二の抵抗とを電気的に接続し一体化した抵抗体を有して、光軸ずれ量を減らすオペアンプ増幅を行うこと
を特徴とする荷電粒子線装置。
A charged particle beam irradiating means for irradiating the surface of the sample with a charged particle beam; a sample stage for placing the sample; a moving means for moving the sample stage; a deflecting means for deflecting the charged particle beam; and an amplification circuit. A charged particle beam apparatus comprising: control means for controlling the deflection means; and secondary signal detection means for detecting a secondary signal generated from the sample by irradiating the sample with the charged particle beam. ,
The amplifier circuit provided in the control means includes a first resistor having a hyperbolic characteristic in which a resistance value change rate with respect to temperature has a first positive value direction in a predetermined temperature range, and a resistance value change rate with respect to temperature having a first characteristic. Charged particles characterized by performing an operational amplifier amplification that has a resistor that is electrically connected and integrated with a second resistor having a hyperbolic characteristic in the negative value direction opposite to that of Wire device.
抵抗値の周囲温度に対する変化率が第一の特性を有する第一の抵抗と、該変化率が第二の特性を有する第二の抵抗とを電気的に接続して一体化した抵抗体であって、一体化の後の抵抗値が周囲温度に対して一定であることを特徴とする組合せ抵抗体。   A resistor in which a change rate of the resistance value with respect to the ambient temperature has a first characteristic and a second resistor whose change rate has a second characteristic are electrically connected and integrated. In addition, the combined resistance body is characterized in that the resistance value after integration is constant with respect to the ambient temperature. 請求項6において、前記第一の抵抗と前記第二の抵抗との間を接合部剤を介して一定間隔を隔てて接合したことを特徴とする組合せ抵抗体。   7. The combination resistor according to claim 6, wherein the first resistor and the second resistor are joined to each other at a predetermined interval via a joining agent. 請求項6において、前記第一の抵抗または前記第二の抵抗の端子が設けられた側とは反対側に前記接合部剤が設けられるとともに、前記第一の抵抗と前記第二の抵抗との間に空間が設けられていることを特徴とする組合せ抵抗体。   In Claim 6, While the said junction agent is provided in the opposite side to the side in which the terminal of said 1st resistance or said 2nd resistance was provided, between said 1st resistance and said 2nd resistance A combination resistor having a space between them. 請求項6において、前記第一の抵抗と前記第二の抵抗とを電気的に接続した接続部を含むように樹脂で一体化した構成を備えることを特徴とする組合せ抵抗体。   The combination resistor according to claim 6, comprising a configuration in which the first resistor and the second resistor are integrated with a resin so as to include a connection portion that electrically connects the first resistor and the second resistor. 抵抗値の周囲温度に対する変化率が第一の特性を有する第一の抵抗と、該変化率が第二の特性を有する第二の抵抗とを電気的に接続して一体化するとともに、一体化の後の抵抗値が周囲温度に対して一定である組合せ抵抗体をオペアンプの入力側または出力側または入力側出力側の両方に用いたことを特徴とする組合せ抵抗体を用いた増幅回路。   The first resistance having a change rate of the resistance value with respect to the ambient temperature has the first characteristic and the second resistor having the change characteristic having the second characteristic are electrically connected and integrated, and the integration is performed. An amplifier circuit using a combination resistor, characterized in that a combination resistor whose resistance value is constant with respect to the ambient temperature is used on both the input side, output side, or input side output side of the operational amplifier. 抵抗値の周囲温度に対する変化率が第一の特性を有する第一の抵抗と、該変化率が第二の特性を有する第二の抵抗とを電気的に接続して一体化するとともに、一体化の後の抵抗値が周囲温度に対して一定である組合せ抵抗体をオペアンプの入力側または出力側または入力側出力側の両方に用い、他の素子とともに半導体ウェハへオンチップ化した構成を有することを特徴とする組合せ抵抗体を用いた増幅回路。   The first resistance having a change rate of the resistance value with respect to the ambient temperature has the first characteristic and the second resistor having the change characteristic having the second characteristic are electrically connected and integrated, and the integration is performed. A combination resistor whose resistance value is constant with respect to the ambient temperature is used on both the input side, the output side, or the input side output side of the operational amplifier, and it is configured on-chip on a semiconductor wafer together with other elements. An amplifier circuit using a combination resistor characterized by the above. 荷電粒子を試料上へ収束させるレンズと、前記荷電粒子を偏向させる偏向コイルと、該偏向コイルによる前記荷電粒子の偏向量を制御する偏向コイル制御回路とを備えた荷電粒子線装置において、前記偏向コイル制御回路は、抵抗値の周囲温度に対する変化率が第一の特性を有する第一の抵抗と、該変化率が第二の特性を有する第二の抵抗とを電気的に接続して一体化するとともに、一体化の後の抵抗値が周囲温度に対して一定である組合せ抵抗体をオペアンプの入力側または出力側または入力側出力側の両方に用い、他の素子とともに半導体ウェハへオンチップ化した構成を有する増幅回路を備えたことを特徴とする荷電粒子線装置。   A charged particle beam apparatus comprising: a lens that converges charged particles onto a sample; a deflection coil that deflects the charged particles; and a deflection coil control circuit that controls a deflection amount of the charged particles by the deflection coil. The coil control circuit is formed by electrically connecting a first resistor having a first characteristic with a change rate of the resistance value with respect to an ambient temperature and a second resistor having a second characteristic with the second change rate. In addition, a combination resistor whose resistance value after integration is constant with respect to the ambient temperature is used on the input side, output side, or input side output side of the operational amplifier, and on-chip into the semiconductor wafer together with other elements A charged particle beam device comprising an amplifier circuit having the above configuration. 抵抗値が周囲温度に対して変化する変化率を有する複数の抵抗のうち、少なくとも2つを電気的に接続して一体化した抵抗体の製造方法であって、予め定められた基準温度と、該基準温度より正側および負側の少なくとも3点の温度における前記抵抗値の変化率を測定し、該変化率から一体化の後の抵抗値が周囲温度に対して一定であるような少なくとも2つの抵抗を組合せて一体化することを特徴とする組合せ抵抗体の製造方法。   A resistance manufacturing method in which at least two of a plurality of resistors having a change rate in which a resistance value changes with respect to an ambient temperature is electrically connected and integrated, which is a predetermined reference temperature; The rate of change of the resistance value at the temperature of at least three points on the positive side and the negative side from the reference temperature is measured, and from the rate of change, at least 2 so that the resistance value after integration is constant with respect to the ambient temperature A method of manufacturing a combination resistor, wherein two resistors are combined and integrated. 請求項13において、前記基準温度は前記抵抗体が使用される環境温度に基づいて決められることを特徴とする組合せ抵抗体の製造方法。   14. The method of manufacturing a combined resistor according to claim 13, wherein the reference temperature is determined based on an environmental temperature at which the resistor is used. 請求項13において、測定された前記抵抗値の変化率に基づいて前記複数の抵抗の組合せ表を作成し、一体化の後の抵抗値が周囲温度に対して一定であるような少なくとも2つの抵抗の組合せを求めることを特徴とする組合せ抵抗体の製造方法。

14. The at least two resistors according to claim 13, wherein a combination table of the plurality of resistors is created based on the measured rate of change of the resistance value, and the resistance value after integration is constant with respect to the ambient temperature. A method for manufacturing a combination resistor, characterized in that a combination of the two is obtained.

JP2005119139A 2005-04-18 2005-04-18 Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body Pending JP2006302546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005119139A JP2006302546A (en) 2005-04-18 2005-04-18 Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005119139A JP2006302546A (en) 2005-04-18 2005-04-18 Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body

Publications (1)

Publication Number Publication Date
JP2006302546A true JP2006302546A (en) 2006-11-02

Family

ID=37470619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005119139A Pending JP2006302546A (en) 2005-04-18 2005-04-18 Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body

Country Status (1)

Country Link
JP (1) JP2006302546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054581A (en) * 2007-07-31 2009-03-12 Hitachi High-Technologies Corp Corrector for charged particle beam aberration, and charged particle beam device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210874A (en) * 1988-02-18 1989-08-24 Matsushita Electron Corp Inspecting method for semiconductor device
JPH03129849A (en) * 1989-10-16 1991-06-03 Toyota Autom Loom Works Ltd Transistor with current detecting function
JPH0599755A (en) * 1991-10-04 1993-04-23 Matsushita Electric Works Ltd Processing method for linearizing function of temperature sensor
JP2000134099A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Beam scanning type inspection device
JP2001177063A (en) * 1999-12-16 2001-06-29 Mitsumi Electric Co Ltd Semiconductor device, and amplifying circuit, and active filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210874A (en) * 1988-02-18 1989-08-24 Matsushita Electron Corp Inspecting method for semiconductor device
JPH03129849A (en) * 1989-10-16 1991-06-03 Toyota Autom Loom Works Ltd Transistor with current detecting function
JPH0599755A (en) * 1991-10-04 1993-04-23 Matsushita Electric Works Ltd Processing method for linearizing function of temperature sensor
JP2000134099A (en) * 1998-10-27 2000-05-12 Hitachi Ltd Beam scanning type inspection device
JP2001177063A (en) * 1999-12-16 2001-06-29 Mitsumi Electric Co Ltd Semiconductor device, and amplifying circuit, and active filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054581A (en) * 2007-07-31 2009-03-12 Hitachi High-Technologies Corp Corrector for charged particle beam aberration, and charged particle beam device

Similar Documents

Publication Publication Date Title
US6943507B2 (en) Device and method for controlling focussed electron beams
US7257193B2 (en) X-ray source assembly having enhanced output stability using tube power adjustments and remote calibration
US7589335B2 (en) Charged-particle beam pattern writing method and apparatus and software program for use therein
KR20120080567A (en) Compensated bandgap
EP1677089A1 (en) Integrated pressure sensor and method of manufacture
US6812684B1 (en) Bandgap reference circuit and method for adjusting
JP2006302546A (en) Combined resistor body, amplifying circuit using the same, charged particle beam device, and manufacturing method of the combined resistor body
US10707047B2 (en) Measuring device and measuring method
US6825709B2 (en) Temperature compensation circuit for a hall element
US7602247B2 (en) Variable gain amplifier and AC power supply device using the same
US7675272B2 (en) Output impedance compensation for linear voltage regulators
JP2002519882A (en) Active operating point adjuster for power amplifier
US6456019B1 (en) Real time measurement of leakage current in high voltage electron guns
US20050269483A1 (en) Imaging apparatus and device
JP4920487B2 (en) Reference voltage generator
JP4157410B2 (en) Electron beam drawing device
EP1128548A2 (en) FET bias circuit
US9869582B2 (en) Method and device for control of avalanche photo-diode characteristics for high speed and high gain applications
JP2006166394A (en) Offset compensation circuit of monitoring photodiode
US11532544B2 (en) High frequency module having power amplifier mounted on substrate
US20050052239A1 (en) Amplifier arrangement and control loop having the amplifier arrangement
JP4459524B2 (en) Charged particle beam exposure apparatus and device manufacturing method
US20060028260A1 (en) Logarithmic amplifier with base and emitter in feedback path
JP2001304839A (en) Electron beam length measuring apparatus and length measuring method
JP4505551B2 (en) Electron beam length measuring device and length measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100518