US20090291134A1 - Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases - Google Patents

Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases Download PDF

Info

Publication number
US20090291134A1
US20090291134A1 US12/470,219 US47021909A US2009291134A1 US 20090291134 A1 US20090291134 A1 US 20090291134A1 US 47021909 A US47021909 A US 47021909A US 2009291134 A1 US2009291134 A1 US 2009291134A1
Authority
US
United States
Prior art keywords
endoxifen
composition
acid
disease
tamoxifen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/470,219
Other languages
English (en)
Inventor
Ateeq Ahmad
Shoukath M. Ali
Moghis U. Ahmad
Saifuddin Sheikh
Imran Ahmad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jina Pharmaceuticals Inc
Original Assignee
Jina Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2007/085443 external-priority patent/WO2008070463A2/en
Application filed by Jina Pharmaceuticals Inc filed Critical Jina Pharmaceuticals Inc
Priority to US12/470,219 priority Critical patent/US20090291134A1/en
Assigned to JINA PHARMACEUTICALS, INC. reassignment JINA PHARMACEUTICALS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AHMAD, ATEEQ, AHMAD, IMRAN, AHMAD, MOGHIS U., ALI, SHOUKATH M., SHEIKH, SAIFUDDIN
Publication of US20090291134A1 publication Critical patent/US20090291134A1/en
Priority to JP2012512075A priority patent/JP2012527484A/ja
Priority to MX2011012409A priority patent/MX2011012409A/es
Priority to US13/321,767 priority patent/US20120164075A1/en
Priority to PCT/US2010/035852 priority patent/WO2010135703A2/en
Priority to CA2757838A priority patent/CA2757838C/en
Priority to EP10778503.2A priority patent/EP2432462A4/de
Priority to US16/376,053 priority patent/US20190231687A1/en
Priority to US17/023,208 priority patent/US11672758B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/138Aryloxyalkylamines, e.g. propranolol, tamoxifen, phenoxybenzamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to the use of endoxifen in the treatment of mammalian diseases.
  • the invention also relates to liposomes and other formulations such as complexes, vesicles, emulsions, micelles and mixed micelles of endoxifen, methods of preparation, and uses, e.g., in the treatment of human and animal breast diseases.
  • the invention in particular relates to compositions comprising endoxifen-lipid complexes, methods of preparation, and their use for the treatment of breast diseases, in particular benign and malignant breast disease, enhancing disease regression and reducing risk of patients developing breast cancer.
  • This invention further relates to the endoxifen and compositions comprising endoxifen in the treatment of psychiatric and neurodegenerative diseases.
  • the present invention further relates to the use of compositions comprising endoxifen in the treatment of bipolar disease, schizophrenia, multiple sclerosis (MS), Alzheimer disease, Parkinson disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), and epilepsy
  • MS multiple sclerosis
  • ALS amyotrophic lateral sclerosis
  • the invention still further relates to methods of preparing endoxifen and use of endoxifen prepared by inventive method in the treatment of human and animal diseases.
  • breast cancer Every year more than 210,000 women in the United States develop breast cancer. One in eight women in the US will develop breast cancer during their lives. Approximately 70 percent of breast cancers are fueled by estrogen, and many are treated with tamoxifen, a drug designed to block the effects of estrogen in breast tissue.
  • Tamoxifen is an anti-estrogenic drug prescribed for long-term, low dose therapy of breast cancer. It has been widely used for more than 30 years for the endocrine treatment of all stages of hormone receptor-positive breast cancer (1, 2). Tamoxifen has also been approved for the prevention of breast cancer (3).
  • one of the adverse events associated with tamoxifen is hot flashes. The risk of hot flashes is two to three-folds higher among women who take tamoxifen than it is for those who do not (4, 5).
  • Selective serotonin-reuptake inhibitor (SSRI) antidepressants are prescribed to treat hot flashes.
  • SSRIs such as paroxetine and fluoxetine
  • cytochrome P450 (CYP) 2D6 an enzyme that is important for the metabolism of many drugs, including tamoxifen (5).
  • CYP2D6 cytochrome P450
  • CYP2D6 genetic polymorphism affecting its expression and function (7).
  • the understanding of tamoxifen metabolism and effect has changed clinical practice through the wide spread recognition that the co-prescription of drugs that inhibit CYP2D6 may compromise tamoxifen efficacy.
  • Bipolar disorder is a chronic mental illness that is associated with a substantial risk of suicide among those affected (8).
  • Lithium and valproate are widely used as mood stabilizers in bipolar disorder, however, a substantial minority of patients fails to respond, or respond only partially, to these agents (8). Therefore, the development of novel therapeutic agents with a quicker, more potent, and more specific mode(s) of action with fewer side effects are required.
  • Tamoxifen is a selective estrogen receptor modulator (SERM).
  • SERM selective estrogen receptor modulator
  • psychiatric diseases e.g., bipolar disorder, schizophrenia
  • neurodegenerative conditions e.g., multiple sclerosis, Parkinson disease, Alzheimer disease, and stroke.
  • PLC protein kinase C
  • Tamoxifen use also showed improvement in manic symptoms in patients with schizoaffective disorder (12), and several neuroprotective effects of tamoxifen have been documented (13, 14).
  • tamoxifen may have neurotrophic effects, e.g., by increasing synaptic density and stimulating neurite outgrowth (13).
  • the efficacy of treatment using tamoxifen can be compromised by other drugs or by mutations that disrupt the metabolism of the drug.
  • the present invention provides methods and compositions for the syntheses and use of active agents such as anticancer agents and agents for treatment of psychiatric and neurodegenerative conditions.
  • the present invention relates to methods and compositions related to the formulations and uses of endoxifen, particularly in applications related to the treatment or prevention of cancer, and in the treatment and prevention of psychiatric and neurodegenerative disease.
  • compositions of the present invention can be employed to treat psychiatric and neurodegenerative diseases.
  • the compositions of the present invention may be administered to a patient diagnosed with bipolar disorder or manic disorder.
  • the exemplary examples of psychiatric and neurodegenerative diseases treatable by the present inventive compositions include but not limited to bipolar disorder, Alzheimer's disease, Parkinson's disease, multiple sclerosis diseases, epilepsy, and the like.
  • ENDOXIFEN (4-hydroxy N-desmethyl tamoxifen) is an active metabolite of the marketed drug tamoxifen for the treatment of breast cancer. Tamoxifen is extensively metabolized by cytochrome P450 (CYP) enzymes CYP3A4 and CYP2D6 into active metabolites including 4-hydroxy tamoxifen and 4-hydroxy-N-desmethyl tamoxifen (endoxifen) ( FIG. 3 ).
  • CYP cytochrome P450
  • endoxifen as a therapeutic agent e.g., for cancer, and psychiatric and neurodegenerative diseases has significant advantages compared to use of the mother compound tamoxifen, which requires metabolic activation by cytochrome P450 (CYP) enzymes whose actions are variable because of genetic polymorphism and inhibition via drug-drug interaction.
  • CYP cytochrome P450
  • the present invention provides a method of treating a disease, comprising, preparing a composition comprising a therapeutically active amount of endoxifen and administering the composition.
  • the endoxifen is a free base, or is in the form of a salt.
  • the endoxifen is in the form of a salt selected from the group of salts consisting of citrate, acetate, formate, sulfonate, oxalate, succinate, tartarate, trifluoroacetate, methane sulfonate, phosphate, sulfate, chloride, bromide, iodide, and lactate.
  • the salt is in the form of citrate.
  • the endoxifen is predominantly in a form selected from the group consisting of E-isomer, Z-isomer, and a mixture of E- and Z-isomer.
  • method comprises preparing a complex comprising an anticancer or an psychiatric therapeutic drug and at least one lipid.
  • the drug is endoxifen.
  • the compounds of the invention are not complexed with a lipid.
  • the compound is in the form of a free base or is in the form of a salt.
  • the present invention provides methods of preparing endoxifen, comprising reacting a compound of Formula 5 with acid, wherein the compound of formula 5 has the structure:
  • the compound of Formula 5 is prepared by reacting compound of formula 4
  • the compound of Formula 3 is prepared by reacting compound of Formula 1
  • the present invention provides methods of purifying the endoxifen as described above, comprising crystallizing the endoxifen and/or chromatographically treating said endoxifen to produce a purified preparation of endoxifen, wherein the purified preparation of endoxifen contains predominantly E-isomer, predominantly Z-isomer, or mixture of E- and Z-isomers of endoxifen.
  • the invention provides endoxfen preparations comprising at least one lipid.
  • the at least one lipid is selected from the group consisting of egg phosphatidylcholine (EPC), egg phosphatidylglycerol (EPG), soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), dimyristoylphosphatidylcholine (DMPC), dimyristoylphosphatidylglycerol (DMPG), dipalmitoylphosohatidylcholine (DPPC), disteroylphosphatidylglycerol (DSPG), dipalmitoylphosphatidylglycerol (DMPG), cholesterol (Chol), cholesterol sulfate and its salts (CS), cholesterol hemisuccinate and its salts (Chems), cholesterol phosphate and its salts (CP), cholesterylphosphocholine and other hydroxycholesterol or amino cholesterol
  • a composition according to the present invention comprises endoxifen, cholesterol and/or cholesterol derivatives, and one or more phospholipids.
  • the composition comprises a cholesterol derivative, and the cholesterol derivative is cholesteryl sulfate.
  • at least one of the phospholipids is hydrogenated soy phosphatidylcholine or soy phosphatidylcholine.
  • the composition comprises a form selected from the group consisting of powder, solution, emulsion, micelle, liposome, lipidic particle, gel, and paste form.
  • the preparing of the composition comprising a complex comprises preparing said complex in a lyophilized form.
  • the preparing the complex in a lyophilized form comprises using a cryoprotectant, wherein said cryoprotectant comprises one or more sugars selected from the group consisting of trehalose, maltose, lactose, sucrose, glucose, and dextran.
  • the composition comprises a tablet or a filled capsule, wherein said tablet or filled capsule optionally comprises an enteric coating material.
  • the disease is caused by cancer or by cancer-causing agents, while in some embodiments, the disease is benign breast disease.
  • the administering comprises oral, intravenous, subcutaneous, percutaneous, parenteral, intraperitoneal, rectal, vaginal, and/or topical delivery said composition to said subject.
  • the composition comprises a penetration enhancer, wherein said penetration enhancer comprises at least one saturated or unsaturated fatty acid ester.
  • the composition comprising endoxifen is formulated in a hydroalcoholic gel, a hydroalcoholic solution, a patch, a cream, an emulsion, a lotion, an ointment, a powder or an oil.
  • the composition comprising endoxifen is formulated in a hydroalcoholic composition containing a penetration enhancer, an aqueous vehicle, an alcoholic vehicle and a gelling agent.
  • the hydroalcoholic composition comprises a neutralizing agent.
  • the hydroalcoholic composition comprises endoxifen at about 0.01% to 0.20% by weight; isopropyl myristate at about 0.1% to 2.0%, preferably 0.5% to 2.0% by weight; alcohol at about 50.0% to 80.0%, preferably about 60.0% to 75.0% by weight; aqueous vehicle at about 20.0% to 60.0%, preferably 25.0% to 50.0% by weight; and gelling agent at about 1.0% to 10.0%, preferably about 0.5% to 5.0% by weight.
  • the wherein the percentage of components is weight to weight of the composition.
  • the alcohol is ethanol or isopropanol, and constitutes in absolute form.
  • the aqueous vehicle is a phosphate buffered solution.
  • the gelling agent is selected from the group consisting of polyacrylic acid, hydroxypropylcellulose and a cellulose derivative other than hydroxypropylcellulose.
  • the hydroalcoholic composition further comprises a neutralizing agent, wherein said neutralizing agent is selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, aminomethylpropanol, arginine, trolamine, and tromethamine, and wherein said neutralizing agent exists at a neutralizing agent/gelling agent ratio of about 1:1 to about 4:1.
  • a neutralizing agent selected from the group consisting of sodium hydroxide, potassium hydroxide, ammonium hydroxide, aminomethylpropanol, arginine, trolamine, and tromethamine
  • the invention provides methods of delivering endoxifen, comprising: providing any of the above described compositions and delivering the composition so as to expose the composition to a cell.
  • the cell is in vivo.
  • the host is a mammal.
  • the present invention also provides methods of inhibiting hormone-dependent breast carcinoma in a mammal comprising administering any of the above compositions to the mammal.
  • the present invention further provides methods of inhibiting a cancer in a mammal, said cancer including, but not limited to, lung cancer, colon cancer, breast cancer, leukemia, renal cancer, melanoma, cancer or the central nervous system, and prostate cancer in a mammal; the method comprising administering any of the above compositions to said mammal (e.g., a human).
  • a mammal e.g., a human
  • compositions comprising a therapeutically active amount of a complex comprising endoxifen and at least one lipid, wherein said endoxifen is a free base or is in the form of a salt.
  • the composition comprising endoxifen is formulated in a hydroalcoholic gel, a hydroalcoholic solution, a patch, a cream, an emulsion, a lotion, an ointment, a powder or an oil.
  • the composition comprising endoxifen is formulated in a hydroalcoholic composition containing a penetration enhancer, an aqueous vehicle, an alcoholic vehicle and a gelling agent.
  • the hydroalcoholic composition comprises a neutralizing agent.
  • the hydroalcoholic composition comprises endoxifen at about 0.01% to 0.20% by weight; isopropyl myristate at about 0.1% to 2.0%, preferably 0.5% to 2.0% by weight; alcohol at about 50.0% to 80.0%, preferably about 60.0% to 75.0% by weight; aqueous vehicle at about 20.0% to 60.0%, preferably 25.0% to 50.0% by weight; and gelling agent at about 1.0% to 10.0%, preferably about 0.5% to 5.0% by weight.
  • the wherein the percentage of components is weight to weight of the composition.
  • the present invention provides methods of treating or preventing a condition in a subject (e.g., cancer, or a psychiatric or neurodegenerative condition) comprising administering a pharmaceutical preparation comprising a therapeutically effective amount of endoxifen.
  • a condition in a subject e.g., cancer, or a psychiatric or neurodegenerative condition
  • administering a pharmaceutical preparation comprising a therapeutically effective amount of endoxifen.
  • endoxifen compositions for psychiatric and neurodegenerative therapy is not limited to a particular disease or route of administration.
  • the invention provides methods and compositions for treating bipolar disorder, while in other embodiments, the invention provides methods and compositions for treating multiple sclerosis, schizophrenia, Alzheimers' disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and epilepsy.
  • a pharmaceutical preparation of the present invention further comprises a second therapeutic agent.
  • the second therapeutic is a known therapeutic agent for treatment of the condition.
  • the second therapeutic agent is a known therapeutic for the treatment of bipolar disorder, manic disorder, or depression, e.g., lithium, a selective serotonin reuptake inhibitor, a serotonin and norepinephrine reuptake inhibitor, a dopamine reuptake inhibitor, a tetracyclic antidepressant, a combined reuptake inhibitor, a receptor blocker, tricyclic antidepressant, and a monoamine oxidase inhibitor.
  • the known therapeutic for the treatment of a psychiatric or neurodegenerative condition is selected from the group consisting of citalopram, escitalopram, fluoxetine, paroxetine, sertraline, duloxetine, venlafaxine, bupropion, mirtazapine, trazodone, tefazodone, maprotiline, amitriptyline, amoxapine, desipramine, doxepin, imipramine, nortriptyline, protriptyline, trimipramine, phenelzine, tranylcypromine, isocarboxazid, and selegilin.
  • the second therapeutic is a known therapeutic agent for treatment of anxiety, such as a benzodiazepine, a beta-blocker, and a non-benzodiazepine hypnotic.
  • the therapeutic for the treatment of anxiety is selected from the group consisting of diazepam, nitrazepam, alprazolam, bromazepam, chlordiazepoxide, chlorazepate, lorazepam, oxazepam, flunitrazepam, flurazepam, loprazolam, lormetazepam, and temazepam, buspirone, meprobamate, zalepon, zolpidem, zopiclone, chloral hydrate, triclofos, clomethizole, and meprobamate.
  • FIG. 1 diagrams compound I.
  • FIG. 2 diagrams embodiments for synthesis of compounds 3, 5, and I.
  • FIG. 3 shows a schematic diagram of metabolism of tamoxifen into endoxifen (4-hydroxy-N-desmethyl tamoxifen).
  • FIG. 4 shows a schematic representation of a PKC pathway.
  • FIG. 5 shows a graph comparing inhibition of PKC activity by endoxifen and tamoxifen.
  • the terms “host,” “subject” and “patient” refer to any animal, including but not limited to, human and non-human animals (e.g., dogs, cats, cows, horses, sheep, poultry, fish, crustaceans, etc.) that is studied, analyzed, tested, diagnosed or treated.
  • human and non-human animals e.g., dogs, cats, cows, horses, sheep, poultry, fish, crustaceans, etc.
  • the terms “host,” “subject” and “patient” are used interchangeably, unless indicated otherwise.
  • subject at risk of cancer refers to a subject identified as being at risk for developing cancer, e.g., by prior health history, genetic data, etc.
  • anticancer drug refers to an agent used to treat or prevent cancer.
  • agents include, but are not limited to, small molecules, drugs, antibodies, pharmaceuticals, and the like.
  • the terms “subject having depression” or “subject displaying signs or symptoms or pathology indicative of depression” or “subjects suspected of displaying signs or symptoms or pathology indicative of depression” refer to a subject that is identified as having or likely to have depression based on known depression signs, symptoms and pathology.
  • the terms “subject at risk of displaying pathology indicative of depression” and “subject at risk of depression” refer to a subject identified as being at risk for developing depression.
  • the terms “subject having bipolar disorder” or “subject displaying signs or symptoms or pathology indicative of bipolar disorder” or “subjects suspected of displaying signs or symptoms or pathology indicative of bipolar disorder” refer to a subject that is identified as having or likely to have bipolar disorder based on known depression signs, symptoms and pathology.
  • the terms “subject at risk of displaying pathology indicative of bipolar disorder” and “subject at risk of bipolar disorder” refer to a subject identified as being at risk for developing bipolar disorder.
  • anti-antidepressant refers to an agent used to treat or prevent depression.
  • agents include, but are not limited to, small molecules, drugs, antibodies, pharmaceuticals, and the like.
  • anxiolytic refers to an agent used to treat or prevent anxiety.
  • agents include, but are not limited to, small molecules, drugs, antibodies, pharmaceuticals, and the like.
  • the terms “subject having anxiety” or “subject displaying signs or symptoms or pathology indicative of anxiety” or “subjects suspected of displaying signs or symptoms or pathology indicative of anxiety” refer to a subject that is identified as having or likely to have anxiety based on known anxiety signs, symptoms and pathology.
  • the terms “subject at risk of displaying pathology indicative of anxiety” and “subject at risk of anxiety” refer to a subject identified as being at risk for developing anxiety.
  • cognitive function generally refers to the ability to think, reason, concentrate, or remember. Accordingly, the term “decline in cognitive function” refers to the deterioration of lack of ability to think, reason, concentrate, or remember.
  • an effective amount refers to the amount of an active composition (e.g., a pharmaceutical compound or composition provided as a component in a lipid or other formulation) sufficient to produce a selected effect, e.g., to effect beneficial or desired results.
  • an effective amount of a PKC inhibitor is an amount of the inhibitor sufficient to reduce PKC activity, as determined, e.g., by observation of an in vivo effect associated with reduced PKC activity, or by use of an in vitro assay.
  • An effective amount can be administered in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route.
  • the administration may be in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route. The term is not limited to any particular level of activity.
  • agent and “compound” are used herein interchangeably to refer to any atom, molecule, mixture, or more complex composition having an attributed feature.
  • an “active agent” or “active compound” refers to any atom, molecule, preparation, mixture, etc., that, upon administration or application, causes a beneficial, desired, or expected result.
  • treating includes administering therapy to prevent, cure, or alleviate/prevent the symptoms associated with, a specific disorder, disease, injury or condition.
  • treatment encompasses the improvement and/or reversal of the symptoms of disease (e.g., cancer, bipolar disorder, Parkinson's disease, etc.), or reduction of risk of occurrence of disease.
  • a compound which causes an improvement in any parameter associated with disease when used in the screening methods of the instant invention may thereby be identified as a therapeutic compound.
  • treatment refers to both therapeutic treatment and prophylactic or preventative measures.
  • compositions and methods of the present invention include those already with a disease and/or disorder (e.g., cancer, psychiatric or neurodegenerative disease, or symptoms or pathologies consistent with these conditions) as well as those in which a disease and/or disorder is to be prevented (e.g., using a prophylactic treatment of the present invention).
  • a disease and/or disorder e.g., cancer, psychiatric or neurodegenerative disease, or symptoms or pathologies consistent with these conditions
  • a disease and/or disorder e.g., cancer, psychiatric or neurodegenerative disease, or symptoms or pathologies consistent with these conditions
  • a disease and/or disorder e.g., cancer, psychiatric or neurodegenerative disease, or symptoms or pathologies consistent with these conditions
  • the term “at risk for disease” refers to a subject (e.g., a human) that is predisposed to experiencing a particular disease.
  • This predisposition may be genetic (e.g., a particular genetic tendency to experience the disease, such as heritable disorders), or due to other factors (e.g., age, weight, environmental conditions, exposures to detrimental compounds present in the environment, etc.).
  • factors e.g., age, weight, environmental conditions, exposures to detrimental compounds present in the environment, etc.
  • the term “suffering from disease” refers to a subject (e.g., a human) that is experiencing a particular disease. It is not intended that the present invention be limited to any particular signs or symptoms, nor disease. Thus, it is intended that the present invention encompasses subjects that are experiencing any range of disease (e.g., from sub-clinical manifestation to full-blown disease) wherein the subject exhibits at least some of the indicia (e.g., signs and symptoms) associated with the particular disease.
  • disease and “pathological condition” are used interchangeably to describe a state, signs, and/or symptoms that are associated with any impairment of the normal state of a living animal or of any of its organs or tissues that interrupts or modifies the performance of normal functions, and may be a response to environmental factors (such as emotional trauma, physical trauma, malnutrition, industrial hazards, or climate), to specific infective agents (such as worms, bacteria, or viruses), to inherent defect of the organism (such as various genetic anomalies, or to combinations of these and other factors.
  • environmental factors such as emotional trauma, physical trauma, malnutrition, industrial hazards, or climate
  • specific infective agents such as worms, bacteria, or viruses
  • inherent defect of the organism such as various genetic anomalies, or to combinations of these and other factors.
  • the term “administration” refers to the act of giving a drug, prodrug, or other active agent, or therapeutic treatment (e.g., compositions of the present invention) to a physiological system (e.g., a subject or in vivo, in vitro, or ex vivo cells, tissues, and organs).
  • a physiological system e.g., a subject or in vivo, in vitro, or ex vivo cells, tissues, and organs.
  • exemplary routes of administration to the human body can be through the eyes (ophthalmic), mouth (oral), skin (transdermal), nose (nasal), lungs (inhalant), rectal, vaginal, oral mucosa (buccal), ear, by injection (e.g., intravenously, subcutaneously, intratumorally, intraperitoneally, etc.) and the like.
  • Administration may be in one or more administrations, applications or dosages, and is not intended to be limited to a particular administration route.
  • co-administration refers to the administration of at least two agent(s) (e.g., two separate lipid compositions, containing different active compounds) or therapies to a subject.
  • endoxifen may be co-administered with a second therapeutic, e.g., a known therapeutic for the treatment of a disease or condition, e.g., depression.
  • the co-administration of two or more agents or therapies is concurrent.
  • a first agent/therapy is administered prior to a second agent/therapy.
  • the appropriate dosage for co-administration can be readily determined by one skilled in the art.
  • the respective agents or therapies are administered at lower dosages than appropriate for their administration alone.
  • co-administration is especially desirable in embodiments where the co-administration of the agents or therapies lowers the requisite dosage of a potentially harmful (e.g., toxic) agent(s).
  • a “known therapeutic” compound or agent includes a therapeutic compound that has been shown (e.g., through animal trials or prior experience with administration to humans) to have a particular therapeutic effect in a treatment.
  • a known therapeutic compound is not limited to a compound having a particular level of effectiveness in the treatment or prevention of a disease (e.g., bipolar disorder, depression or anxiety).
  • bipolar disorder therapeutic agents include but are not limited to lithium, including salts available under the generic names of lithium carbonate and lithium citrate (e.g., ESKALITH, LITHOBID, LITHANE, LITHONATE, LITHOTABS, CIBALITH-S), and anticonvulsants such as valproate or valproic acid (DEPAKOTE), lamotrigine (LAMICTAL), carbamazepine (TEGRETOL), and oxcarbazepine (TRILEPTAL).
  • examples of other compounds also finding use in combination with endoxifen in the methods of the invention include gabapentin (NEUROTONIN) and topiramate (TOPAMAX).
  • SSRIs selective serotonin reuptake inhibitors
  • CELEXA citalopram
  • LEXAPRO escitalopram
  • fluoxetine PROZAC, PROZAC WEEKLY
  • paroxetine PAXIL, PAXIL CR
  • ZOLOFT sertraline
  • serotonin and norepinephrine reuptake inhibitors SNRIs, e.g., duloxetine (CYMBALTA) and venlafaxine (EFFEXOR, EFFEXOR XR)
  • NDRIs e.g., bupropion (WELLBUTRIN, WELLBUTRIN SR, WELLBUTRIN XL)
  • tetracyclic antidepressants e.g., mirtazapine (REMERON, REMERON SOLTAB
  • anxiolytic therapeutic agents include, but are not limited, benzodiazepines (e.g., diazepam (VALIUM), nitrazepam (MOGADON), alprazolam (XANAX), bromazepam (LEXOTAN), chlordiazepoxide (LIBRIUM), chlorazepate (TRANXENE), lorazepam (ATIVAN), oxazepam, flunitrazepam (ROHYPNOL), flurazepam (DALMANE), loprazolam, lormetazepam, and temazepam); non-benzodiazepine agents (e.g., buspirone (BUSPAR), beta-blockers, and meprobamate (EQUAGESIC)); and non-benzodiazepine hypnotics (e.g., zalepon (SONATA), zolpidem (STILLNOCT), zopiclone (ZIMOVANE), chloral hydrate,
  • the term “toxic” refers to any detrimental or harmful effects on a subject, a cell, or a tissue as compared to the same cell or tissue prior to the administration of the toxicant.
  • the term “pharmaceutically purified” refers to a composition of sufficient purity or quality of preparation for pharmaceutical use.
  • the term “purified” refers to a treatment of a starting composition to remove at least one other component (e.g., another component from a starting composition (e.g., plant or animal tissue, an environmental sample etc.), a contaminant, a synthesis precursor, or a byproduct, etc.), such that the ratio of the purified component to the removed component is greater than in the starting composition.
  • a starting composition e.g., plant or animal tissue, an environmental sample etc.
  • a contaminant e.g., a synthesis precursor, or a byproduct, etc.
  • composition refers to the combination of an active agent (e.g., an active pharmaceutical compound) with a carrier, inert or active (e.g., a phospholipid), making the composition especially suitable for diagnostic or therapeutic use in vitro, in vivo or ex vivo.
  • an active agent e.g., an active pharmaceutical compound
  • a carrier e.g., inert or active
  • active e.g., a phospholipid
  • compositions that do not substantially produce adverse reactions, e.g., toxic, allergic, or immunological reactions, when administered to a subject.
  • topically refers to application of the compositions of the present invention to the surface of the skin and mucosal cells and tissues (e.g., alveolar, buccal, lingual, masticatory, or nasal mucosa, and other tissues and cells which line hollow organs or body cavities).
  • mucosal cells and tissues e.g., alveolar, buccal, lingual, masticatory, or nasal mucosa, and other tissues and cells which line hollow organs or body cavities.
  • the term “pharmaceutically acceptable carrier” refers to any of the standard pharmaceutical carriers including, but not limited to, phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents, any and all solvents, dispersion media, coatings, sodium lauryl sulfate, isotonic and absorption delaying agents, disintigrants (e.g., potato starch or sodium starch glycolate), and the like.
  • the compositions also can include stabilizers and preservatives. For examples of carriers, stabilizers, and adjuvants.
  • compositions of the present invention may be formulated for horticultural or agricultural use.
  • Such formulations include dips, sprays, seed dressings, stem injections, sprays, and mists.
  • the term “pharmaceutically acceptable salt” refers to any salt (e.g., obtained by reaction with an acid or a base) of a compound of the present invention that is physiologically tolerated in the target subject (e.g., a mammalian subject, and/or in vivo or ex vivo, cells, tissues, or organs). “Salts” of the compounds of the present invention may be derived from inorganic or organic acids and bases.
  • acids include, but are not limited to, hydrochloric, hydrobromic, sulfuric, nitric, perchloric, fumaric, maleic, phosphoric, glycolic, lactic, salicylic, succinic, toluene-p-sulfonic, tartaric, acetic, citric, methanesulfonic, ethanesulfonic, formic, benzoic, malonic, sulfonic, naphthalene-2-sulfonic, benzenesulfonic acid, and the like.
  • Other acids such as oxalic, while not in themselves pharmaceutically acceptable, may be employed in the preparation of salts useful as intermediates in obtaining the compounds of the invention and their pharmaceutically acceptable acid addition salts.
  • bases include, but are not limited to, alkali metal (e.g., sodium) hydroxides, alkaline earth metal (e.g., magnesium) hydroxides, ammonia, and compounds of formula NW 4 + , wherein W is C 1-4 alkyl, and the like.
  • alkali metal e.g., sodium
  • alkaline earth metal e.g., magnesium
  • W is C 1-4 alkyl
  • salts include, but are not limited to: acetate, adipate, alginate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, citrate, camphorate, camphorsulfonate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, fumarate, flucoheptanoate, glycerophosphate, hemisulfate, heptanoate, hexanoate, chloride, bromide, iodide, 2-hydroxyethanesulfonate, lactate, maleate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, oxalate, palmoate, pectinate, persulfate, phenylpropionate, picrate, pivalate, propionate, succinate, tartrate, thiocyanate, tosy
  • salts include anions of the compounds of the present invention compounded with a suitable cation such as Na + , NH 4 + , and NW 4 + (wherein W is a C 1-4 alkyl group), and the like.
  • a suitable cation such as Na + , NH 4 + , and NW 4 + (wherein W is a C 1-4 alkyl group), and the like.
  • salts of the compounds of the present invention are contemplated as being pharmaceutically acceptable.
  • salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
  • salts of the compounds of the present invention are contemplated as being pharmaceutically acceptable.
  • salts of acids and bases that are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound.
  • hydroalcoholic as used in reference to a substance or composition indicates that said substance or composition comprises both water and alcohol.
  • gelling agent refers to a composition that, when dissolved, suspended or dispersed in a fluid (e.g., an aqueous fluid such as water or a buffer solution), forms a gelatinous semi-solid (e.g., a lubricant gel).
  • a fluid e.g., an aqueous fluid such as water or a buffer solution
  • gelling agents include but are not limited to hydroxyethyl cellulose, hydroxymethyl cellulose, hydroxypropyl guar, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose, carbomer, alginate, gelatin, and poloxamer.
  • the term “dried” as used in reference to a composition refers to removing the solvent component or components to levels that no longer support chemical reactions.
  • the term is also used in reference to a composition that has been dried (e.g., a dried preparation or dried composition).
  • a composition may be “dried” while still having residual solvent or moisture content after, e.g., lyophilization, or that a dried composition may, after the end of a drying process, absorb moisture hygroscopically, e.g., from the atmosphere.
  • the term “dried” encompasses a composition with increased moisture content due to hygroscopic absorption.
  • the term “protective agent” refers to a composition or compound that protects the activity or integrity of an active agent (e.g., an anticancer drug or a psychiatric or neurodegenerative disease drug) when the active agent is exposed to certain conditions (e.g., drying, freezing).
  • an active agent e.g., an anticancer drug or a psychiatric or neurodegenerative disease drug
  • a protective agent protects an active agent during a freezing process (i.e., it is a “cryoprotectant”).
  • protective agents include but are not limited to non-fat milk solids, trehalose, glycerol, betaine, sucrose, glucose, lactose, dextran, polyethylene glycol, sorbitol, mannitol, poly vinyl propylene, potassium glutamate, monosodium glutamate, Tween 20 detergent, Tween 80 detergent, and an amino acid hydrochloride.
  • excipient refers to an inactive ingredient (i.e., not pharmaceutically active) added to a preparation of an active ingredient.
  • the gelling and protective agents described herein may be referred to generally as “excipients.”
  • kits refers to any delivery system for delivering materials.
  • delivery systems include systems that allow for the storage, transport, or delivery of reaction reagents and/or supporting materials (e.g., buffers, written instructions for performing the assay etc.) from one location to another.
  • enclosures e.g., boxes
  • fragmented kit refers to delivery systems comprising two or more separate containers that each contains a subportion of the total kit components. The containers may be delivered to the intended recipient together or separately.
  • a first container may contain an agent for use in an assay, while a second container contains standards for comparison to test compounds.
  • fragment kit is intended to encompass kits containing Analyte Specific Reagents (ASR's) regulated under section 520(e) of the Federal Food, Drug, and Cosmetic Act, but are not limited thereto. Indeed, any delivery system comprising two or more separate containers that each contains a subportion of the total kit components are included in the term “fragmented kit.”
  • a “combined kit” refers to a delivery system containing all of the components of a reaction assay in a single container (e.g., in a single box housing each of the desired components).
  • kit includes both fragmented and combined kits.
  • the present invention provides medical uses for compositions containing endoxifen.
  • This invention further relates to endoxifen and compositions comprising endoxifen in the treatement of psychiatric and neurodegenerative diseases.
  • the present invention relates to the use of compositions comprising endoxifen in the treatment of bipolar disease, schizophrenia, multiple sclerosis (MS), Alzheimer disease, Parkinson disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), and epilepsy.
  • the invention still further relates to methods of preparing endoxifen and use of endoxifen prepared by inventive method in the treatment of human and animal diseases.
  • Endoxifen is generated via CYP3A4-mediated N-demethylation and CYP2D6 mediated hydroxylation of tamoxifen (see, e.g., FIG. 3 ).
  • CYP3A4-mediated N-demethylation and CYP2D6 mediated hydroxylation of tamoxifen see, e.g., FIG. 3 .
  • any drug that can be substrate of CYP3A4 or CYP2D6 e.g., SSRIs
  • endoxifen has been shown to be anti-estrogenic in breast cancer cells and to be more potent than tamoxifen.
  • endoxifen is present in higher concentration (12.4 ng/mL) than 4-OH-tamoxifen (1 ng/mL) in the human plasma.
  • the majority of genes affected by endoxifen are estrogen-regulated genes (15, 16).
  • Use of endoxifen e.g., in place of tamoxifen, avoids several metabolic steps that rely on CYP2D6.
  • endoxifen inhibits PKC and thus finds use in the treatment of psychiatric and neurodegenerative diseases, e.g. in the treatment of bipolar disorder. While not limiting the invention to any particular mode or mechanism of action, the effects observed are consistent with the observation that lithium and valproate, the most commonly used treatments for bipolar disorder, are known to provide the therapeutic effect via attenuation of PKC activity.
  • ENDOXIFEN (4-hydroxy N-desmethyl tamoxifen) is an active metabolite of the marketed drug tamoxifen for the treatment of breast cancer. Tamoxifen is extensively metabolized by cytochrome P450 (CYP) enzymes CYP3A4 and CYP2D6 into active metabolites including 4-hydroxy tamoxifen and 4-hydroxy-N-desmethyl tamoxifen (endoxifen) ( FIG. 1 ).
  • CYP cytochrome P450
  • endoxifen as a therapeutic agent for psychiatric and neurodegenerative diseases will have a significant advantage over the mother compound tamoxifen which requires metabolic activation by cytochrome P450 (CYP) enzymes whose actions are variable because of genetic polymorphism and inhibition via drug-drug interaction.
  • CYP cytochrome P450
  • Bipolar disorder is a chronic mental illness that is associated with a substantial risk of suicide among those affected (8).
  • Lithium and valproate are widely used as mood stabilizers in bipolar disorder, however, a substantial minority of patients fails to respond, or respond only partially, to these agents (8). Therefore, the development of novel therapeutic agents with a quicker, more potent, and more specific mode(s) of action with fewer side effects are required.
  • PKC Protein kinase C
  • Tamoxifen is the only compound with documented and appreciable central nervous system (CNS) PKC inhibitory activity that can be administered peripherally and has been approved for human.
  • CNS central nervous system
  • tamoxifen attenuated amphetamine-induced manic behavior (9).
  • PKC signaling may play an important role in the pathophysiology and treatment of bipolar disorder.
  • a preliminary double-blind, controlled clinical trial showed greater antimanic effects with tamoxifen than with placebo (18). More recently two groups have convincingly confirmed in double-blind, placebo controlled studies that PKC inhibitor tamoxifen demonstrated antimanic properties and was well tolerated (10, 11).
  • Schizophrenia is a mental illness characterized by episodic symptoms such as delusions, hallucinations, paranoia and psychosis and may include persistent symptoms such as flattened affect, impaired attention, social withdrawal and cognitive impairment (19).
  • Epidemiologic and clinical evidence suggests an influence of estrogens on incidence and consity of schizophrenia. Although early studies suggested the incidence of schizophrenia in men and women was about equal more recent studies indicate incidence rates are higher in men (20).
  • Estrogen acts as a protective factor in women; the age of onset of schizophrenia is significantly later in women than in men, with a second peak of onset larger and later in women after 40-45 years of age. Furthermore, levels of psychopathology fluctuate with phases of the menstrual cycle (21). In women with schizophrenia, relapse rates are higher when estrogen levels are low during the menstrual cycle, whereas relapse is low when estrogen levels are high (22). Higher rates of relapse in women with schizophrenia are also observed during the postpartum period (low estrogens), whereas relapse is low during pregnancy (high estrogens). On the other hand, men with schizophrenia have an earlier age of onset, are admitted to hospital earlier and demonstrate a more typical picture and poorer prognosis than women.
  • adjunctive estradiol was associated with an improvement in symptoms of psychosis in a premenopausal woman with schizophrenia
  • adjunctive raloxifene was associated with an improvement in cognitive functioning in a postmenopausal woman with schizophrenia
  • adjunctive tamoxifen was associated with an improvement in symptoms of mania in a woman with schizoaffective disorder.
  • MS Multiple sclerosis
  • TNF- ⁇ tumor necrosis factor- ⁇
  • IFN- ⁇ interferon- ⁇
  • metalloproteinases mediate much of the immunopathology, resulting in the destruction of the myelin sheath and subsequent neurological dysfunction
  • Selective estrogen receptor modulators could provide an alternative therapeutic strategy, because they behave as estrogen agonists in some tissues, but are either inert or behave like estrogen antagonists in other tissues (26).
  • raloxifene a SERM that is approved for the treatment of osteoporosis, behaves as an estrogen in bone, whereas it acts as an estrogen antagonist in breast tissue and in the uterus (27).
  • tamoxifen and raloxifene were investigated. Both tamoxifen and raloxifene suppressed myelin antigen specific T-cell proliferation.
  • tamoxifen was more effective in this regard.
  • Alzheimer disease is one of the most common neurodegenerative disorders and the most common form of dementia in the elderly. Estrogen appears possess a protective role in the prevention of Alzheimer disease. It may exert several neuroprotective effects on the aging brain, including inhibition of ⁇ -amyloid plaque formation, stimulation of cholinergic activity, reduction of oxidative stress-related cell damage, and protection against vascular risk. Post-menopausal hormone replacement therapy reduces the risk of developing dementia by approximately 30%. Likewise, patients on raloxifene for osteoporosis had a 33% reduction in risk of mild cognitive impairment and half the relative risk of developing Alzheimer disease, suggesting SERMs' role in prevention of age-related neurodegenerative disorders (29).
  • Parkinson disease is another common degenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra of the midbrain leading to depletion of dopamine (30).
  • Normal dopamine transmission can be restored by the administration of pharmacological agents, levodopa or dopamine agonists.
  • adverse motor complications eventually appear including motor fluctuations and dyskinesias.
  • Protein kinase C may accelerate the onset of levodopa-associated motor changes (31).
  • Tamoxifen could act as a PKC antagonist and in rats and non-human primates reverses the shortening of beneficial response of chronic levodopa therapy (32).
  • tamoxifen co-administered with levodopa to Parkinsonian monkeys significantly attenuated levodopa-induced dyskinesias by 61% (32).
  • tamoxifen In addition to its action via PKC, tamoxifen has multiple metabolic effects including a neuroprotective function (33). Tamoxifen has also been shown to stimulate dopamine release. Overall, this evidence suggests that tamoxifen may have a role in inhibiting the unwanted motor disorders seen with chronic levodopa administration in PD and possibly have a role in chemoprevention of neurodegenerative disorders.
  • the present invention provides compositions and methods for delivering endoxifen of Formula I, e.g., to a mammalian host.
  • endoxifen is an E-isomer, while in other embodiments, it is a Z-isomer, while it is still in other embodiments, it is a mixture of E- and Z-isomers
  • An example of the present invention includes endoxifen, analogues of endoxifen, and derivatives of endoxifen, including but not limited to endoxifen, tamoxifen, and 4-hydroxytamoxifen.
  • the present invention also find use with other antineoplastic agents such as paclitaxel, docetaxel, melphalan, chlormethine, extramustinephosphate, uramustine, ifosfamide, mannomustine, trifosfamide, streptozotocin, mitobronitol, mitoxantrone, methotrexate, fluorouracil, cytarabine, tegafur, idoxide, taxol, paclitaxel, daunomycin, daunorubicin, bleomycin, amphotericin, carboplatin, cisplatin, BCNU, vincristine, camptothecin, SN-38, doxorubicin, and etop
  • Endoxifen of Formula I can be prepared by any desired method for use in the treatments of the present invention but, in some embodiments, the present invention provides particular methods for the preparation of endoxifen.
  • One preferred method of the present invention is set forth in FIG. 2 .
  • 4-bromophenol 1 is reacted with 3,4-dihydropyran 2 in the present of acid (e.g., sulfuric acid and the like), to give compound 3.
  • acid e.g., sulfuric acid and the like
  • Compound 3 is then reacted with magnesium turning in a suitable anhydrous solvent (e.g., tetrahydrofuran and the like).
  • a mixture of E- and Z-isomers of endoxifen can be separated to provide the purified preparations of E- and Z-isomer of endoxifen.
  • the separation of E- and Z-isomers of endoxifen in the present invention can be done, e.g., by crystallization, or purification by liquid column chromatography (LC), or high pressure liquid column chromatography (HPLC).
  • Suitable solvents that can be employed in present invention for the separation of E- and Z-isomers of endoxifen include but are not limited to hexanes, heptanes, and the like, benzene; toluene; ethyl acetate; acetonitrile; chlorinating solvents such as methylene chloride, chloroform, 1,2-dichloromethane, and the like, ketones, (e.g., acetone, 2-butanone, and the like), ethers such as diethyl ether, diisopropyl ether, methyl butyl ether, and tetrahydrofuran, alcohols such as methanol, ethyl alcohol, and isopropyl alcohol, and the like, and water.
  • chlorinating solvents such as methylene chloride, chloroform, 1,2-dichloromethane, and the like, ketones, (e.g., acetone, 2-butanone, and the like),
  • a solvent for crystallization can be used as a single solvent, or as mixture of solvents such as hexane-ethyl acetate, chloroform-acetone, chloroform-methanol, dichloromethane-methanol, and the like.
  • solvents such as hexane-ethyl acetate, chloroform-acetone, chloroform-methanol, dichloromethane-methanol, and the like.
  • ratios of one solvent to another are e.g., in a range such as 9:1 to 1:9, (e.g., 8:2, 7:3; 6:4; 5:5; 4:6; 3:7; 2:8; 1:9, and the like.)
  • mixtures for use in the present invention are not limited to these ratios, or to mixtures comprising only two solvents.
  • Solvents that find use in the preparation of endoxifen according to the present invention include but are not limited to tetrahydrofuran, dichloromethane, chloroform, 1,2-dichloroethane, acetonitrile, N,N′-dimethylformamide, dimethylsulfoxide, toluene, pyridine, methanol, ethanol, isopropanol, acetone, 2-butanone, hexane, heptane, pentane, ethyl acetate, and the like.
  • Acids that find use in the preparation of endoxifen according to the present invention include, but are not limited to, sulfuric acid, hydrochloric acid, acetic acid, trifluoroacetic acid, phosphoric acid, p-toluenesulfonic acid, methanesulfonic acid, nitric acid, and the like.
  • Intermediates and final products of the present invention can be purified by column chromatography using a single or a mixture of common organic solvents such as hexane pentane, heptane, ethyl acetate, methylene chloride, chloroform, methanol, acetone, and the like.
  • intermediates and final product of the present invention may, in some embodiments, be purified by crystallization.
  • Solvents that find use in the crystallization of intermediates and products include but are not limited to hydrocarbons such as pentanes, hexanes, heptanes, and the like, benzene; toluene; ethyl acetate; acetonitrile; chlorinating solvents such as methylene chloride, chloroform, 1,2-dichloromethane, and the like; ketones, for example, acetone, 2-butanone, and the like; ethers such as diethyl ether, diisopropyl ether, methyl butyl ether, tetrahydrofuran; alcohols such as methanol, ethyl alcohol, isopropyl alcohol, and the like.
  • a solvent for crystallization can be used as a single solvent or mixture of solvents.
  • Exemplary mixtures include, e.g., hexane-ethyl acetate, chloroform-acetone, chloroform-methanol, dichloromethane-methanol, and the like.
  • examples of ratios of one solvent to another are e.g., in a range such as 9:1 to 1:9, (e.g., 8:2, 7:3; 6:4; 5:5; 4:6; 3:7; 2:8; 1:9, and the like.)
  • mixtures for use in the present invention are not limited to these ratios, or to mixtures comprising only two solvents.
  • One object of the present invention is to provide E-endoxifen or Z-endoxifen with at least 80% purity, such as at least 90% pure or at least 95% pure or at least 98% pure or at least 99% pure or at least 100% pure.
  • Another object of the present invention is to provide solubilized endoxifen in, e.g., aqueous acid.
  • Suitable acids for solubilizing endoxifen include but are not limited to formic acid, acetic acid, propionic acid, butyric acid, trifluoroacetic acid, lactic acid, tartaric acid, oxalic acid, malonic acid, succinic acid, and the like.
  • the pH of the acidic solution comprising endoxifen can be adjusted with suitable base or buffers.
  • base and buffers include but are not limited to sodium hydroxide, sodium acetate, sodium lactate, sodium succinate, sodium monophosphate, sodium diphosphate, sodium triphosphate, sodium oxalate, sodium tartarate, ammonium hydroxide, ammonium acetate, and the like.
  • a co-solvent can also be used to solubilize endoxifen.
  • co-solvent include but are not limited to ethanol, isopropanol, detergents such as Tween 20 and Polysorbate, and the like
  • the pH of a composition containing endoxifen according to the present invention are between about 4.0 and about 8.0, and preferably between about 5.0 and about 8.0, and most preferably between about 5.5 and about 7.5.
  • the present invention relates to compositions and methods for delivery of endoxifen or endoxifen-lipid complexes to a mammalian host.
  • Any suitable amount of endoxifen can be used in complex formation.
  • Suitable amounts of endoxifen are those amounts that can be stably incorporated into the complexes of the present invention.
  • the inventive composition comprises a lipid complex with endoxifen in which the complex desirably contains lipid or a mixture of lipids.
  • Complexes can be in the form, e.g., of micelles, vesicles or emulsions without exclusion of other forms.
  • the micelles of the present invention can be in the form of monomeric, dimeric, polymeric or mixed micelles.
  • the complexes including micelles and emulsions are predominately in the size range of 50 nm-20 micron, preferably in size range of 50 nm-5 micron.
  • the active agent can be bound to the lipid by covalent, hydrophobic, electrostatic, hydrogen, or other bonds, and is considered bound even where the drug is simply entrapped within the interior of lipid structures.
  • Endoxifen-lipid complexes may contain e.g., cholesterols or cholesterol derivatives or a mixture of cholesterol and cholesterol derivatives.
  • Cholesterol derivatives that find use in the present invention include cholesteryl hemisuccinate, cholesteryl succinate, cholesteryl oleate, cholesteryl linoleate, cholesteryl eicosapentenoate, cholesteryl linolenate, cholesteryl arachidonate, cholesteryl palmitate, cholesteryl stearate, cholesteryl myristate, polyethylene glycol derivatives of cholesterol (cholesterol-PEG), water soluble cholesterol (for example, cholesterol methyl- ⁇ -cyclodextrin), coprostanol, cholestanol, or cholestane, cholic acid, cortisol, corticosterone or hydrocortisone and 7-dehydrocholesterol.
  • compositions also include ⁇ -, ⁇ -, ⁇ -tocopherols, vitamin E, calciferol, organic acid derivatives of ⁇ -, ⁇ -, ⁇ -tocopherols, such as ⁇ -tocopherol hemisuccinate (THS), ⁇ -tocopherol succinate and/or mixtures thereof.
  • ⁇ -, ⁇ -, ⁇ -tocopherols vitamin E, calciferol, organic acid derivatives of ⁇ -, ⁇ -, ⁇ -tocopherols, such as ⁇ -tocopherol hemisuccinate (THS), ⁇ -tocopherol succinate and/or mixtures thereof.
  • endoxifen-lipid complexes of the present invention contain sterols.
  • Sterols that find use in the present invention include ⁇ -sitosterol, stigmasterol, stigmastanol, lanosterol, a-spinasterol, lathosterol, campesterol and/or mixtures thereof.
  • Compositions of the present invention also include endoxifen complexes with free and/or salts or esters of fatty acid.
  • Preferred fatty acids range from those with carbon chain lengths of about C 2 to C 34 , preferably between about C 4 and about C 24 , and include tetranoic acid (C 4:0 ), pentanoic acid (C 5:0 ), hexanoic acid (C 6:0 ), heptanoic acid (C 7:0 ), octanoic acid (C 8:0 ), nonanoic acid (C 9:0 ), decanoic acid (C 10:0 ), undecanoic acid (C 11:0 ), dodecanoic acid (C 12:0 ), tridecanoic acid (C 13:0 ), tetradecanoic (myristic) acid (C 14:0 ), pentadecanoic acid (C 15:0 ), hexadecanoic (palmatic) acid (C 16:
  • fatty acids also can be employed in the compositions.
  • saturated fatty acids such as ethanoic (or acetic) acid, propanoic (or propionic) acid, butanoic (or butyric) acid, hexacosanoic (or cerotic) acid, octacosanoic (or montanic) acid, triacontanoic (or melissic) acid, dotriacontanoic (or lacceroic) acid, tetratriacontanoic (or gheddic) acid, pentatriacontanoic (or ceroplastic) acid, and the like; monoethenoic unsaturated fatty acids such as trans-2-butenoic (or crotonic) acid, cis-2-butenoic (or isocrotonoic) acid, 2-hexenoic (or isohydrosorbic) acid, 4-decanoic (or obtusilic) acid
  • endoxifen-lipid complexes contain phospholipids.
  • Any suitable phospholipids or mixture of phospholipids can be used.
  • phospholipids can be obtained from natural sources or chemically synthesized.
  • Suitable phospholipids include but are not limited to phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS), phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidic acid (PA), sphingomyelin and the like, either used separately or in combination.
  • Phosphatidylglycerols may be having short chain or long chain, saturated or unsaturated such as dimyristoylphosphatidylglycerol, dioleoylphosphatidylglycerol, distearoylphosphatidylglycerol, dipalmitoylphosphatidylglycerol, diarachidonoylphosphatidylglycerol, short chain phosphatidylglycerol (C 6 -C 8 ), and mixtures thereof.
  • phosphatidylcholines examples include dimyristoylphophatidylcholine, distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dioleoylphosphatidylcholine, diarachidonoylphosphatidylcholine, egg phosphatidylcholine, soy phosphatidylcholine or hydrogenated soy phosphatidylcholine can be used, as can mixtures thereof.
  • the present invention provides compositions comprising endoxifen and derivatives of mono-, di- and tri-glycerides.
  • glycerides include 1-oleoyl-glycerol (monoolein) and 1,2-dioctanoyl-sn-glycerol.
  • Another aspect of the invention provides forming complexes of endoxifen with functionalized phospholipids including but not limited to phosphatidylethanolamine, preferably dioleoylphosphatidylethanolamine, phosphatidylthioethanol, N-biotinylphosphatidylethanolamine and phosphatidylethylene glycol.
  • phosphatidylethanolamine preferably dioleoylphosphatidylethanolamine, phosphatidylthioethanol, N-biotinylphosphatidylethanolamine and phosphatidylethylene glycol.
  • Another aspect of the invention provides forming complexes of endoxifen with carbohydrate-based lipids.
  • carbohydrate-based lipids include but are not limited to galactolipids, mannolipids, galactolecithin and the like.
  • endoxifen-lipid complexes comprise sterols.
  • Sterols finding use in the present invention include but are not limited to ⁇ -sitosterol, stigmasterol, stigmastanol, lanosterol, ⁇ -spinasterol, lathosterol, campesterol and/or mixtures thereof.
  • Guggulipid is a natural substance derived from the mukul myrrh tree.
  • the mukul myrrh gives off a sticky resin, which is processed to obtain guggulipid.
  • This extract has been used for thousands of years in Aryuvedic medicine to treat arthritis and obesity.
  • the guggulipid is a source of sterol compounds such as Z- and E-guggulsterones, generally present in an amount of at least 2.5% (10).
  • Z and E-Guggulsterones can be synthesized chemically and thus can be used in drug formulations where the need is to have pure forms of these sterones. See, e.g., U.S. Application Ser. No. 60/856,952, filed Nov. 6, 2006, and PCT/US07/83832, filed Nov. 6, 2007, both incorporated herein by reference.
  • Yet another aspect of the invention provides forming complexes of endoxifen with derivatives of phospholipids such as pegylated phospholipids.
  • derivatives of phospholipids such as pegylated phospholipids.
  • pegylated lipids finding use in the present invention include but are not limited to the polyethylene glycol (Pegylated, PEG) derivatives of distearoylphosphatidylglycerol, dimyristoylphosphatidylglycerol, dioleoylphosphatidylglycerol and the like.
  • compositions comprising endoxifen and polyethyleneglycol (PEG) and one or more lipids.
  • PEG polyethyleneglycol
  • compositions comprising endoxifen complexes with one or more lipids.
  • examples include but are not limited to compositions comprising endoxifen, cholesterol or cholesterol derivatives and one or more phospholipids.
  • Other examples of compositions include endoxifen, ⁇ -sitosterol, and one or more phospholipids.
  • compositions of the present invention comprise endoxifen, and hydrogenated soy phosphatidylcholine or soy phosphatidylcholine.
  • Polyethylene glycol includes polymers of lower alkylene oxide, in particular ethylene oxide (polyethylene glycols) having an esterifiable hydroxyl group at least at one end of the polymer molecule, as well as derivatives of such polymers having esterifiable carboxy groups.
  • Polyethylene glycols of an average molecular weight ranging from 200-20,000 are preferred; those having an average molecular weight ranging from 500-2000 are particularly preferred.
  • Another aspect of the invention provides forming complexes of endoxifen with carbohydrate-based lipids.
  • carbohydrate-based lipids include but are not limited to galactolipids, mannolipids, galactolecithin and the like.
  • a complex comprising endoxifen and preferably endoxifen in water at a concentration of about 0.5 mg/mL to about 25 mg/mL, such as between 1 mg/mL and about 20 mg/mL or between 1 mg/mL and 10 mg/mL, more preferably between 1 mg/mL and 5 mg/mL.
  • compositions of the present invention contain about 2.5% to about 90% of total lipid, preferably about 2.5 to about 50% weight of total lipid or more, preferably about 10% to about 50% weight of total lipid.
  • compositions of the present invention preferably contain endoxifen, and lipid(s) in mole ratio between 1:1 to 1:100 such as in between 1:1 and 1:20 molar ratio or in between 1:1 and 1:30 molar ratio or in between 1:1 and 1:40 molar ratio or in between 1:1 and 1:50 molar ratio, in between 1:1 and 1:60 molar ratio, in between 1:1 and 1:70 molar ratios, and in between 1:1 and 1:80 molar ratios, and 1:90 molar ratios.
  • Ratios recited herein e.g., mole ratios of components in a composition
  • a range of ratios of about 1:10 to 1:90 encompasses not only 1:11, 1:25, 1:89, etc., but includes, without limitation, any ratio at or between about 1:10 to 1:90 (e.g., 1:53.637).
  • compositions of the present invention preferably contain endoxifen and hydrogenated soy phosphatidylcholine, or soy phosphatidylcholine, and cholesterol or cholesterol derivative.
  • Such composition includes endoxifen and cholesterol or cholesterol derivative preferably in from about 1:1-1:5 mole ratio, and more preferably at about 1:1 mole ratio to about 1:2 mole ratio.
  • Yet another aspect of the invention is to form complexes of endoxifen with derivatives of phospholipids, such as pegylated phospholipids.
  • derivatives of phospholipids such as pegylated phospholipids.
  • examples include but are not limited to the polyethylene glycol (PEG) derivatives of distearoylphosphatidylglycerol, dimyristoylphosphatidylglycerol, dioleoylphosphatidylglycerol and the like.
  • the mole ratio of endoxifen and hydrogenated soy phosphatidylcholine or soy phosphatidylcholine, in a composition containing endoxifen and hydrogenated soy phosphatidylcholine or phosphatidylcholine is between about 1:10 and 1:90, e.g., between about 1:10 and 1:80 or 1:10 and 1:70 or 1:10 and 1:60 or 1:10 and 1:50 or 1:10 and 1:40 and 1:10 and 1:30.
  • the mole ratio of endoxifen and hydrogenated soy phosphatidylcholine or soy phosphatidylcholine is between 1:10 and 1:60.
  • compositions of the present invention preferably contain endoxifen and total lipids having weight to weight ratio between 1:1 to 1:100 ratio such as between 1:1 and 1:20 ratio or between 1:1 and 1:30 ratio or between 1:1 and 1:40 ratio or between 1:1 and 1:50 ratio, or between 1:1 and 1:60 ratio, or between 1:1 and 1:70 ratio, and between 1:1 and 1:80 ratio, or in between 1:1 and 1:90 ratio.
  • the method of the present invention comprises solubilizing or suspending endoxifen and lipid(s) together in an aqueous solution, e.g., water.
  • Endoxifen-lipid complex solution can be filtered through suitable filters to control the size distribution of the complexes.
  • the method may comprise mixing lipid(s) together in water and then adding endoxifen.
  • Endoxifen-lipid complex solution can be filtered through suitable filters to control the size distribution of the complexes.
  • the method also comprises mixing endoxifen and lipid(s) in an organic solvent(s), such as chloroform or ethanol or any other pharmaceutically acceptable solvents, and evaporating the solvent(s) to form a lipid phase or lipid film.
  • the lipid phase is then hydrated with water or an aqueous solution.
  • aqueous solutions include but are not limited to 0.9% sodium chloride, solutions containing sugars such as dextrose, sucrose, and the like.
  • the hydrated solution can be filtered through suitable filters to control the size distribution of the complexes.
  • the method comprises mixing lipid(s) in an organic solvent(s) and evaporating the solvent(s) to form a lipid phase or lipid film.
  • the lipid phase is then hydrated with aqueous solution containing endoxifen.
  • the aqueous solution in addition to endoxifen may further contain sodium chloride or sugars such as dextrose, sucrose and the like.
  • the hydrated solution can be filtered through suitable filters to control the size distribution of the complexes.
  • the method of the present invention comprises mixing endoxifen, one or more lipids in any suitable order and in any suitable solvents such that the resulting composition of the present invention contains endoxifen, and one or more lipids.
  • the method of preparation of the present invention comprises heating the composition comprising endoxifen, and the lipid(s) at temperatures ranging from 30-100° C. preferably between 30-80° C. and more preferably between 30-60° C.
  • the pH of the composition of invention ranges from about 3 to about 11, while a pH between3.5 to about 8 is preferred and pH of between 4.0 to pH 7.5 are particularly preferred.
  • Aqueous solutions having a particular pH can be prepared from water having comprising appropriate buffers.
  • Preferred buffers include but are not limited to mixtures of monobasic sodium phosphate and dibasic sodium phosphate, tribasic sodium phosphate, disodium succinate.
  • Other buffers that find use with the present invention include sodium carbonate, sodium bicarbonate, sodium hydroxide, ammonium acetate, sodium citrate, tris (hydroxy-methyl) aminoethane, sodium benzoate, and the like.
  • the mole ratio of endoxifen and hydrogenated soy phosphatidylcholine or soy phosphatidylcholine in the composition containing endoxifen and hydrogenated soy phosphatidylcholine or soy phosphatidylcholine is in between 1:10 and 1:90 such as in between 1:10 and 1:80 or 1:10 and 1:80 or 1:10 and 1:60 or 1:10 and 1:50 or 1:10 and 1:40 and 1:10 and 1:30.
  • the mole ratio of endoxifen and hydrogenated soy phosphatidylcholine or soy phosphatidylcholine is in between 1:5 and 1:60.
  • compositions can be filtered to obtain a desired size range of complexes particle sizes from the filtrate.
  • Filters that find use in the present invention include those that can be used to obtain the desired size range of the complexes from the filtrate.
  • the complexes can be formed and thereafter filtered through a 5 micron filter to obtain complexes, each particle having a diameter of about 5 micron or less.
  • 1 ⁇ m, 500 nm, 200 nm, 100 nm or other filters can be used to obtain complexes having diameters of about 1 ⁇ m, 500 nm, 200 nm, 100 nm or any suitable size range, respectively.
  • the endoxifen-lipid complex can be dried, e.g., by evaporation or lyophilization.
  • the endoxifen-lipid complex can be lyophilized with one or more cryoprotectants such as sugars.
  • sugars include but are not limited to trehalose, maltose, lactose, sucrose, glucose, and dextran.
  • trehalose and/or sucrose are used. Lyophilization is accomplished under vacuum and can take place either with or without prior freezing of the endoxifen lipid preparation.
  • the complexes can be resuspended in any desirable solvent including water, saline, dextrose and buffer.
  • compositions of the present invention include but are not limited to tablets, capsules, pills, dragees, suppositories, solutions, suspensions, emulsions, ointments, and gels.
  • preferred forms of endoxifen or endoxifen lipid complex include tablets, capsules, lozenges, powders, syrups, aqueous solutions, suspensions and the like.
  • endoxifen or endoxifen-lipid complex comprise gels, oils, and emulsions, such as are formed by the addition of suitable water-soluble or water-insoluble excipients, for example polyethylene glycols, certain fats, and esters, compounds having a higher content of polyunsaturated fatty acids and derivatives thereof.
  • suitable excipients include mono-, di-, and triglycerides and their aliphatic esters (for example, fish oils, vegetable oils etc.) or mixtures of these substances.
  • Suitable excipients are those in which the drug complexes are sufficiently stable to allow for therapeutic use.
  • composition containing endoxifen or endoxifen-lipid complex can be encapsulated in enteric-coated capsules to protect it from acids in the stomach.
  • enteric refers to the small intestine, and enteric coatings prevent release of medication before it reaches the small intestine. Most enteric coatings work by presenting a surface that is stable at acidic pH but breaks down rapidly at higher pH. Enteric coating of capsules filled with composition containing endoxifen or endoxifen-lipid complex can be done as methods known in the art.
  • the endoxifen-lipid complex of the present invention can be of varying size or can be of substantially uniform size.
  • the complex can have a mean diameter of about 1 mm or less, and more preferably are in the micron or sub-micron range.
  • the complexes have an average diameter of about 5 ⁇ m or less, such as 0.2 ⁇ m or less or 0.1 ⁇ m or less.
  • the technology outlined in the present invention may also be used for any other water-insoluble drugs.
  • the methods and compositions of the present invention find use in conjunction with the methods and compositions disclosed in U.S. Application Ser. No. 60/850,446, filed Oct. 10, 2006, PCT Application Ser. No. PCT/US07/80984, filed Oct. 10, 2007, U.S. Application Ser. No. 60/856,952, filed Nov. 6, 2006, PCT Application Ser. No. PCT/US07/83832, filed Nov. 6, 2007, all of which are incorporated by reference herein in their entireties.
  • compositions of the present invention can be employed to treat breast cancer and breast related diseases.
  • the compositions of the present invention may be administered to a patient diagnosed with benign breast disease.
  • benign breast disease refers to a constellation of non-malignant aberrations in breast tissue.
  • the aberrations may be proliferative or non-proliferative in nature.
  • the exemplary benign breast diseases treatable by the present inventive compositions include adenosis, cysts, duct ectasia, fibroadenoma, fibrosis, hyperplasia, metaplasia and other fibrocystic changes. Each of these diseases, referred as “changes” or “conditions” due to their prevalence, have well-defined histological and clinical characteristics.
  • “Adenosis” refers to generalized glandular disease of the breast. It typically involves an enlargement of breast lobules, which contain more glands than usual. In “sclerosing adenosis,” or “fibrosing adenosis,” the enlarged lobules are distorted by scar-like fibrous tissue.
  • Cysts are abnormal sacs filled with fluid or semi-solid material. Cysts in the breast are lined by breast epithelial cells, developing from lobular structures. They begin as excess fluid inside breast glands, but may grow to proportions that stretch surrounding breast tissue, causing pain. “Fibrocysts” are cystic lesions circumscribed by, or situated within, a conspicuous amount of fibrous connective tissue.
  • Duct ectasia refers to a dilation of mammary ducts by lipid and cellular debris. Rupture of the ducts induces infiltration by granulocytes and plasma cells.
  • Fibroadenoma refers to benign tumors that are derived from glandular epithelium and contain a conspicuous stroma of proliferating fibroblasts and connective tissue.
  • Fibrosis simply refers to a prominence of fibrous tissue in the breast.
  • “Hyperplasia” refers to an overgrowth of cells, where several layers of cells line the basal membrane, without tumor formation. Hyperplasia increases the bulk of mammary tissue. In “epithelial hyperplasia,” the cells lining breast ducts and lobules are involved, giving rise to the terms “ductal hyperplasia” and “lobular hyperplasia.” Based on a histological determination, hyperplasia may be characterized as “usual” or “atypical”.
  • Metaplasia refers to a phenomenon in which a differentiated tissue of one type transforms into a differentiated tissue of another type. Metaplasia often results from an environmental change, and enables cells better to withstand the change.
  • compositions of the present invention may be administered in any dosage form and via any system that delivers the active compound endoxifen to breast estrogen receptors in vivo.
  • a composition of present invention is delivered by “percutaneous administration”, e.g., delivering the drug from the surface of patient's skin, through the stratum corneum, epidermis, and dermis layers, and into the microcirculations. This is generally accomplished by diffusion down a concentration gradient. The diffusion may occur via intracellular penetration (through the cells), intercellular penetration (between the cells), transappendageal penetration (through the hair follicles, sweat, and sebaceous glands), or any combination of the above.
  • Percutaneous administration of the endoxifen composition of the present invention may be advantageous because this may reduce systemic drug exposure and the risks from non-specifically activating estrogen receptors throughout the body. This is because in topical application of endoxifen will absorb primarily into local tissues. When the composition of invention containing endoxifen will be percutaneously applied to breasts, high concentration will accumulate in the breast tissues presumably due to many estrogen receptors therein.
  • the composition of endoxifen may be applied to any skin surface, preferably to one or both breasts.
  • the daily doses to be administered can initially be estimated based upon the absorption coefficients of endoxifen, the breast tissue concentration that is desired, and the plasma concentration that should not be exceeded. The initial dose may be optimized in each patient, depending on individual responses.
  • Percutaneous administration can be achieved in different ways, such as (i) by mixing the composition of endoxifen with suitable pharmaceutical carriers and, optionally, penetration enhancers to form ointments, emulsions, gel, lotion, creams or the like, where an amount of said preparation is applied onto a certain area of the skin, (ii) by incorporating the composition of endoxifen into patches or transdermal delivery systems according to the technology known in the art.
  • compositions or complexes comprise penetration enhancers that improve percutaneous absorption by reducing the resistance of stratum corneum by reversibly altering its physicochemical properties, changing hydration in the stratum corneum, acting as co-solvent, or changing the organization of lipids or proteins in the intracellular spaces.
  • Such enhancers include but are not limited to organic solvents such as alcohol, acetone, dimethylsulfoxide (DMSO), polyethylene glycol, propoylene glycol, fatty acids and fatty alcohol and their derivatives, hydroxyl acids, pyrrolidones, urea, vegetable oils, essential oils, and mixture thereof.
  • organic solvents such as alcohol, acetone, dimethylsulfoxide (DMSO), polyethylene glycol, propoylene glycol, fatty acids and fatty alcohol and their derivatives, hydroxyl acids, pyrrolidones, urea, vegetable oils, essential oils, and mixture thereof.
  • DMSO dimethylsulfoxide
  • polyethylene glycol propoylene glycol
  • fatty acids and fatty alcohol and their derivatives hydroxyl acids
  • pyrrolidones urea
  • vegetable oils essential oils, and mixture thereof.
  • physical methods can increase percutaneous absorption. For example, occlusive bandages induce hydration of the skin.
  • Other physical methods include
  • the formulation or composition of the invention containing endoxifen may be delivered in the form of ointment, emulsion (lotion), cream, gel, powder, oil or similar formulation.
  • the formulation comprises excipient additives, including but not limited to vegetable oils such as soybean oil, mustard oil, almond oil, olive oil, groundnut oil, peanut oil, peach kernel oil, groundnut oil, castor oil, canola oil, and the like, animal fats, DMSO, lanolin lipoids, phosphatides, hydrocarbons such as paraffin's, petroleum jelly, waxes, lecithin, detergent emulsifying agents, carotin, alcohols, glycerol, glycerol ether, glycerine, glycol, glycol ethers, polyethylene glycol, polypropylene glycol, non-volatile fatty alcohols, acids, esters, volatile alcoholic compounds, talc, urea, cellulose derivatives, coloring agents, antioxidants and preservatives
  • excipient additives
  • the formulation or composition of the invention containing endoxifen may be delivered as transdermal patch.
  • the patch may comprise (i) a solution-impermeable backing foil, (ii) a layer like element having a cavity, (iii) a microporus or semipermeable membrane, (iv) a self-adhesive layer, and (v) optionally a removable backing film.
  • the layer-like element having a cavity may be formed by the backing foil and the membrane.
  • the patch may comprise (i) a solution-impermeable backing foil.
  • an open-pored foam, a closed pore foam, a tissue like layer or a fibrous web-like layer as reservoir (iii) a self adhesive layer, and (iv) optionally a removable backing film.
  • the composition of the invention containing endoxifen is formulated in hydro alcoholic gel and the amount of endoxifen may vary from 0.001001 to 1.0 gram per 100 grams of gel, most preferably in the range of 0.01-0.20 grams per 100 grams of gel.
  • the composition of present invention comprises one or more fatty acid esters as a penetration enhancer.
  • a fatty acid ester penetration enhancer is isopropyl myristate.
  • the amount may range e.g., from 0.11 to 5.0 grams per 100 grams of gel, preferably from 0.5 to 2.0 grams per 100 grams of gel.
  • the composition of invention containing endoxifen may also contain one or more nonaqueous vehicles, such as alcoholic vehicles.
  • nonaqueous vehicles include ethyl acetate, ethanol, and isopropanol, preferably ethanol and isopropanol.
  • These nonaqueous vehicles may be useful for dissolving both the active agent endoxifen and any other penetration enhancer used. They also preferably have a low boiling point, preferably less than 100° C. at atmospheric pressure, to permit rapid evaporation upon contact with skin.
  • ethanol may effectively contribute to the percutaneous absorption of endoxifen by rapidly evaporating upon contact with skin.
  • the amount of absolute nonaqueous vehicle in a gel formulation ranges from 35% to 99% by weight, preferably between 50% to 85% and more preferably between 60% to 75%.
  • the composition or formulation of the invention comprises an aqueous vehicle that permits solubilization of hydrophilic molecules, and promotes moisturization of skin.
  • An aqueous vehicle also can regulate pH.
  • Aqueous vehicles include alkalinizing and basic buffer solutions, including phosphate buffer solutions, including phosphate buffer solutions (e.g., dibasic or monobasic sodium phosphate); citrate buffered solutions (e.g., sodium citrate or potassium citrate) and purified water.
  • the amount of an aqueous vehicle preferably ranges between 0.1% to 65% by weight of the pharmaceutical composition, preferably between 15% to 50%, and more preferably between 25% to 40%.
  • the composition of the invention comprises one or more gelling agents to increase the viscosity of the composition or formulation or to function as a solubilizing agent. It may constitute between 0.1% to 20% by weight of formulation depending on the nature of gelling agent, preferably between 0.5% to 10% and more preferably between 0.5% to 5%.
  • the gelling agents may be carbomers, cellulose derivatives, poloxamers and poloxamines.
  • the preferred gelling agents are chitosan, dextran, pectins, natural gums and cellulose derivatives such as ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose (HPMC), carboxymethyl cellulose (CMC) and the like.
  • the most preferred gelling agent is hydroxypropyl cellulose.
  • the composition of invention may comprise a gelling agent as described above, in particular a non-preneutralized acrylic polymer and also comprise a neutralizing agent.
  • the ratio of neutralizing agent/gelling agent varies in between 10:1 to 0.1:1, preferably between 7:1 to 0.5:1, and more preferably between 4:1 to 1:1.
  • a neutralizing agent in the presence of polymer should form salts that are soluble in the vehicle.
  • a neutralizing agent also should permit optimum swelling of polymer chains during neutralization of charges and formation of polymer salts.
  • the neutralizing agents include ammonium hydroxide, potassium hydroxide, sodium hydroxide, aminomethylpropanol, trolamine, and tromethamine. Those skilled in the art will select a neutralizing agent according to the type of geling agent used in the composition or formulation. However, no neutralizing agent is required when a cellulose derivative will be used as geling agents.
  • compositions of present invention are employed to treat other diseases, and the medication is selected from a lipophilic or a compound made lipophilic by derivatization of the group consisting of antiasthama, antiarrhythmic, antifungals, antihypertensive, anticancer, antibiotics, antidiabetics, antihistamines, antiparasitics, antivirals, cardiac glycosides, hormones, immunotherapies, antihypotensives, steroids, sedatives and analgesics, tranquilizers, vaccines, and cell surface receptor blockers.
  • Endoxifen solution (1 mg/mL) was prepared by solubilizing endoxifen (10.3 mg) in 0.2% glacial acetic acid (10 mL). The pH ( ⁇ 5.75) of the solution was adjusted with 1N sodium hydroxide (300 ⁇ L).
  • Endoxifen solution (5 mg/mL) was prepared by solubilizing endoxifen (100 mg) in 2% glacial acetic acid (8.6 mL). The solution was diluted with 5% dextrose (10.97 mL). The pH ( ⁇ 5.56) of the solution was adjusted with 5N sodium hydroxide (430 ⁇ L).
  • a suspension of endoxifen, cholesteryl sulfate, and soy lecithin is produced by mixing the components together in water and homogenizing using. e.g., a high pressure homogenizer.
  • the resulting suspension can be filtered through 0.2 ⁇ m filter and then mixed with 7.5% sucrose solution and lyophilized in either vials or in bulk.
  • the particle size of the resulting complexes is determined using standard procedures, e.g., using a Nicomp particle sizer 380.
  • a suspension of endoxifen and soy lecithin is produced by mixing the components together in water and homogenizing using, e.g., a high pressure homogenizer.
  • the resulting suspension can be filtered through 0.2 ⁇ m filter and then mixed with 7.5% sucrose solution and lyophilized in either vials or in bulk.
  • the particle size is determined using standard procedures, e.g., using a Nicomp particle sizer 380.
  • Endoxifen was formulated according to Example 6 and was tested for toxicity in male Balb/c mice.
  • a single test dose at 100 mg/kg or 50 mg/kg was intravenously administered to mice. All the mice died at the 100 mg/kg dose level whereas all animals survived at the 50 mg/kg dose level with no significant loss of body weight. The mice also survived in the control group with a vehicle control that lacked endoxifen.
  • Repeat dose toxicity study was conducted with a dose of 25 mg/kg administered consecutively for 3 days with accumulated dose of 75 mg/kg. All the animals in this group survived. The results are reported in the table below as the number of mice surviving per total.
  • Endoxifen was tested for antiproliferation activity against various cancer cell lines from Non Small Lung Cancer, Breast Cancer, Prostate Cancer, Melanoma Cancer, Ovarian Cancer, CNS Cancer, Renal Cancer and Colon Cancers. The cells were incubated for multiple days (3-6) with endoxifen (10 nM to 10 ⁇ M) and the inhibition of growth were measured by SRB or MTT staining method. The results indicated significant growth inhibition of cells in the presence of endoxifen ranging from 10 to 100%. Endoxifen induce growth inhibition or cell killing in different tumor cells indicates the usefulness of endoxifen in the treatment of cancers in humans.
  • MCF-7 xenografts are developed by passage of transplantable tumor from a parent tumor established in oophorectomized athymic nude mice treated with estradiol (35).
  • Randomly bred female athymic mice are bilaterally ovriectomized and allowed a 2-week recovery period before the implantation of tumor material.
  • the s.c. transplantation of the MCF-7 tumor fragments (size, 1 ⁇ 1 ⁇ 1 mm 3 ) is done under anesthesia.
  • the median volumes of each group are normalized to the initial tumor volume resulting in the relative tumor volume.
  • estradiol valeriate (estradiol valeriate (E2D), 0.5 mg/kg once/wk i.m.].
  • E2D estradiol valeriate
  • This supplementation leads to physiologic levels of serum E2 (25-984 pg/mL) that are comparable to the human situation (25-600 pg/mL depending on the follicular phase).
  • Substances The following substances are used: E2D, tamoxifen and endoxifen.
  • All MCF-7 transplanted animals receive E2D (0.5 mg/kg) injections once a week. After 4 weeks, when hormone-supplemented tumors have grown to ⁇ 0.7-0.8 cm in diameter (180-250 mm 3 ), the mice are randomized into 4 treatment groups of 5-10 mice each. The 5-10 mice are sacrificed as baseline controls for E2D alone.
  • the treatment groups are: (i) E2D support (0.5 mg/kg once/wk i.m); (ii) E2D support (0.5 mg/kg once/wk i.m) plus tamoxifen (0.5 mg-2 mg)/mouse per day, 5 days/week by gavage; (iii) E2D support (0.5 mg/kg once/wk i.m) plus endoxifen (0.5 mg-2 mg)/mouse per day, 5 days/week by gavage; (iv) withdrawal of E2D support.
  • tamoxifen is a non-steroidal agent with potent anti-estrogenic effect in animal and in vitro models. This pharmacologic property is related to the drug's ability to compete with estrogen for estrogen receptors in breast tissues, and to inhibit the stimulatory effect of estrogen on the uterus, vagina and ovaries (36).
  • Endoxifen (0.1 mg-2 mg) is administered orally once daily for 28 days to determine the reduction in utertrophic effect of estradiol;
  • There will be three groups such as vehicle control, tamoxifen and endoxifen.
  • the animals (5-10 mice) are randomly assigned to each group.
  • Daily treatments of intact mice with a dose e.g., 0.1 mg-2 mg
  • gavage of tamoxifen or endoxifen are expected to lead to progressive inhibition of uterine and vaginal weight.
  • endoxifen has better minimizing uterotrophic effect of estrogen than tamoxifen, and that endoxifen finds use as an effective anti-estrogen.
  • Endoxifen blocking of uterine weight gain stimulated by estrogen can also be demonstrated in immature rats.
  • Endoxifen preparations showing the effects described above find use in the treatment of breast cancer as well as other estrogen-sensitive conditions, such as endometriosis, leiomyomata, and benign breast disease, as well as other estrogen-responsive conditions in men and women.
  • Ki-67 is a nuclear non-histone protein. This antigen is absent in quiescent cells and is expressed in proliferating cells and is used as a biomarker (37, 38).
  • Endoxifen base or endoxifen-citrate in oral or injectable form are given to xenograft breast cancer tumor models (e.g., as described above), as well as to breast cancer patients.
  • Immunochemical determination of Ki-67 is done in tumor cells from breast cancer tissues from patients, as well as from mice bearing tumors as described in Example 11.
  • the MIB-1 or similar antibody available from commercial sources such as DAKO, Carpenteria, Calif. is used for immunochemical localization of antigen. Decrease in Ki-67 antigen expression in animals and/or breast cancer patients demonstrate the applicability of endoxifen in treating breast cancers.
  • IGF-1 insulin-like growth factor 1
  • IGF-1 has been used as a surrogate biomarker and predicts the effectiveness of tamoxifen in treatments of breast cancer patients (39).
  • endoxifen base or endoxifen-citrate are given orally or injected to experimental animals bearing breast cancer tumors.
  • the concentration of IGF-1 levels in control and xenografted breast tumor is monitored by established assays (e.g., ELISA Kit from Diagnostics Systems Laboratories, London, UK or DAKO, Carpenteria, Calif.).
  • Endoxifen is administered by gavages at 0.5 mg-2 mg per mouse per day, 5 days/week. Decrease of IGF-1 levels and tumor growth reduction indicates the usefulness of IGF-1 as a surrogate marker for breast cancer.
  • Bicalutamide (Casodex®) is used for treating prostate cancer in men.
  • IGF-1 may be involved in prostate cancer promotion and progression.
  • anti-estrogen agents such as tamoxifen decrease IGF-1 levels and prevent biculatamide-induced gynecomastia in prostate cancer patients (40). Since, endoxifen is an active metabolite of the tamoxifen anti-estrogen, the silastic slow-release capsules containing endoxifen for implant or oral doses of endoxifen (1 mg-10 mg/day) with biculatamide are expected to prevent development of biclutamide-induced gynecomastia and breast pain.
  • a PKC kinase activity assay kit (Assay Designs, Ann Arbor, Mich.) was used to test endoxifen PKC inhibitory activity 0.025, 0.05, 0.1, or 0.2 mM endoxifen was used in a reaction mix containing PKC 10 ng/well. Tamoxifen in same concentration was used as a positive control. Endoxifen inhibited PKC activity in concentration dependent manner. The percentage PKC inhibition ranged between 12 and 80 with endoxifen concentration between 0.025 and 0.2 mM, respectively.
  • FIG. 5 shows endoxifen and tamoxifen induced PKC inhibition at 0.2 mM. The study demonstrated that endoxifen is at least four fold more potent PKC inhibitor than tamoxifen, and suggests its role in manic disorder.
  • Endoxifen safety was evaluated in two rodent species.
  • Endoxifen sub-chronic toxicity study was conducted in mice and rats. The results showed that oral administration of endoxifen up to 8 mg/kg in mice or up to 4 mg/kg in rats, daily for 28 days had no mortalities; gross pathological examination did not reveal any abnormality related to the treatment group and animals were free of clinical signs of toxicity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Reproductive Health (AREA)
  • Rheumatology (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Virology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Cardiology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
US12/470,219 2006-11-21 2009-05-21 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases Abandoned US20090291134A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/470,219 US20090291134A1 (en) 2006-11-21 2009-05-21 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases
EP10778503.2A EP2432462A4 (de) 2009-05-21 2010-05-21 Endoxifen-verfahren und zusammensetzungen zur behandlung von säugererkrankungen
CA2757838A CA2757838C (en) 2009-05-21 2010-05-21 Synthetic endoxifen for treating mammalian diseases
PCT/US2010/035852 WO2010135703A2 (en) 2009-05-21 2010-05-21 Endoxifen methods and compositions in the treatment of mammalian diseases
MX2011012409A MX2011012409A (es) 2009-05-21 2010-05-21 Metodos y composiciones de endoxifeno en el tratamiento de enfermedades mamiferas.
JP2012512075A JP2012527484A (ja) 2009-05-21 2010-05-21 哺乳動物疾患の治療におけるエンドキシフェンの方法および組成物
US13/321,767 US20120164075A1 (en) 2006-11-21 2010-05-21 Endoxifen methods and compositions in the treatment of mammalian diseases
US16/376,053 US20190231687A1 (en) 2006-11-21 2019-04-05 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases
US17/023,208 US11672758B2 (en) 2006-11-21 2020-09-16 Endoxifen methods and compositions for inhibition of protein kinase C

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US86042006P 2006-11-21 2006-11-21
US86078806P 2006-11-22 2006-11-22
PCT/US2007/085443 WO2008070463A2 (en) 2006-11-21 2007-11-21 Endoxifen methods and compositions
US51526109A 2009-05-15 2009-05-15
US12/470,219 US20090291134A1 (en) 2006-11-21 2009-05-21 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/US2007/085443 Continuation-In-Part WO2008070463A2 (en) 2006-11-21 2007-11-21 Endoxifen methods and compositions
US12/515,261 Continuation-In-Part US9333190B2 (en) 2006-11-21 2007-11-21 Endoxifen compositions and methods
US51526110A Continuation-In-Part 2006-11-21 2010-01-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/321,767 Continuation-In-Part US20120164075A1 (en) 2006-11-21 2010-05-21 Endoxifen methods and compositions in the treatment of mammalian diseases
US16/376,053 Continuation US20190231687A1 (en) 2006-11-21 2019-04-05 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases

Publications (1)

Publication Number Publication Date
US20090291134A1 true US20090291134A1 (en) 2009-11-26

Family

ID=43126804

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/470,219 Abandoned US20090291134A1 (en) 2006-11-21 2009-05-21 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases
US16/376,053 Abandoned US20190231687A1 (en) 2006-11-21 2019-04-05 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases
US17/023,208 Active US11672758B2 (en) 2006-11-21 2020-09-16 Endoxifen methods and compositions for inhibition of protein kinase C

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/376,053 Abandoned US20190231687A1 (en) 2006-11-21 2019-04-05 Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases
US17/023,208 Active US11672758B2 (en) 2006-11-21 2020-09-16 Endoxifen methods and compositions for inhibition of protein kinase C

Country Status (6)

Country Link
US (3) US20090291134A1 (de)
EP (1) EP2432462A4 (de)
JP (1) JP2012527484A (de)
CA (1) CA2757838C (de)
MX (1) MX2011012409A (de)
WO (1) WO2010135703A2 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112041A1 (en) * 2006-11-21 2010-05-06 Jina Pharmaceuticals, Inc. Endoxifen Compositions And Methods
WO2010135703A3 (en) * 2009-05-21 2011-01-13 Jina Pharmaceuticals, Inc. Endoxifen methods and compositions in the treatment of mammalian diseases
WO2013163228A1 (en) * 2012-04-24 2013-10-31 International Stem Cell Corporation Derivation of neural stem cells and dopaminergic neurons from human pluripotent stem cells
WO2013178565A1 (de) 2012-06-01 2013-12-05 Bayer Technology Services Gmbh Genotyp- bzw. phänotyp-basierte arzeimittelformulierungen
WO2013184591A1 (en) * 2012-06-05 2013-12-12 International Stem Cell Corporation Method of prevention of neurological diseases
CN104892918A (zh) * 2015-05-29 2015-09-09 吕常海 磷脂酰乙醇胺-羟基聚乙二醇衍生物及制备方法、脂质体造影剂和治疗肿瘤脂质体诊疗药物
CN106537139A (zh) * 2014-05-12 2017-03-22 奎斯特诊断投资公司 通过质谱法定量他莫昔芬及其代谢物
US20170095489A1 (en) * 2011-06-03 2017-04-06 Signpath Pharma Inc. Protective effect of dmpc, dmpg, dmpc/dmpg, lysopg and lysopc against drugs that cause channelopathies
WO2019051416A1 (en) 2017-09-11 2019-03-14 Atossa Genetics Inc. METHODS FOR THE MANUFACTURE AND USE OF ENDOXIFEN
US10238602B2 (en) 2011-06-03 2019-03-26 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LysoPG and LysoPC against drugs that cause channelopathies
US10258691B2 (en) 2014-06-03 2019-04-16 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, EGPG, LysoPG and LysoPC against drugs that cause channelopathies
US10349884B2 (en) * 2011-06-03 2019-07-16 Sighpath Pharma Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
US10357458B2 (en) 2011-06-03 2019-07-23 Signpath Pharma Inc. Liposomal mitigation of drug-induced long QT syndrome and potassium delayed-rectifier current
US10449193B2 (en) 2011-06-03 2019-10-22 Signpath Pharma Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, lysoPG and lysoPC against drugs that cause channelopathies
US20190320975A1 (en) * 2011-06-03 2019-10-24 Signpath Pharma, Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
US10532045B2 (en) 2013-12-18 2020-01-14 Signpath Pharma, Inc. Liposomal mitigation of drug-induced inhibition of the cardiac IKr channel
US20220031625A1 (en) * 2020-07-31 2022-02-03 Altaire Pharmaceuticals, Inc. Ophthalmic compositions for delivering meibum-like materials
WO2022109602A1 (en) * 2020-11-20 2022-05-27 Academia Sinica Use of crassocephalum rabens extract in the prevention and/or treatment of fatigue and/or depression
US11806401B2 (en) 2016-04-27 2023-11-07 Signpath Pharma, Inc. Prevention of drug-induced atrio-ventricular block

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034867B2 (en) 2011-03-18 2015-05-19 Alkermes Pharma Ireland Limited Pharmaceutical compositions comprising sorbitan esters
NZ630643A (en) 2012-03-19 2017-08-25 Alkermes Pharma Ireland Ltd Pharmaceutical compositions comprising fatty acid esters
CA2867137C (en) 2012-03-19 2020-12-08 Alkermes Pharma Ireland Limited Pharmaceutical compositions comprising aripiprazole prodrugs and benzyl alcohol
JP6219918B2 (ja) 2012-03-19 2017-10-25 アルカームス ファーマ アイルランド リミテッド グリセロールエステルを含む医薬組成物
EP2868319A4 (de) * 2012-06-29 2016-02-24 Maruishi Pharma Orale pharmazeutische aripiprazolzubereitung
US9193685B2 (en) 2012-09-19 2015-11-24 Alkermes Pharma Ireland Limited Pharmaceutical compositions having improved storage stability
WO2014141292A2 (en) * 2013-03-04 2014-09-18 Intas Pharmaceuticals Limited Endoxifen citrate polymorph and process for preparing the same
KR101493877B1 (ko) * 2013-03-29 2015-02-16 농업회사법인 주식회사 생명의나무 스피나스테롤 당 유도체를 포함하는 골 질환 예방 또는 치료용 약학 조성물
AU2015231278B2 (en) 2014-03-20 2020-01-23 Alkermes Pharma Ireland Limited Aripiprazole formulations having increased injection speeds
JP7384812B2 (ja) 2018-03-05 2023-11-21 アルカームス ファーマ アイルランド リミテッド アリピプラゾール投与戦略
AU2020364186B2 (en) 2019-10-09 2023-11-30 Novartis Ag 5-oxa-2-azaspiro(3.4)octane derivatives as M4 agonists
CA3177275A1 (en) * 2020-04-10 2021-10-14 Jina Pharmaceuticals, Inc. Endoxifen for the treatment of bipolar i disorder
WO2021205404A1 (en) * 2020-04-10 2021-10-14 Jina Pharmaceuticals, Inc. Endoxifen for the treatment of bipolar i disorder
EP4132497A4 (de) * 2020-04-10 2024-04-24 Jina Pharmaceuticals Inc. Endoxifen zur behandlung von bipolarer i-störung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310523A (en) * 1978-04-17 1982-01-12 Schering Aktiengesellschaft Combined antiestrogens and antigonadotropically effective antiandrogens for the prophylaxis and therapy of hyperplasia of the prostate
US6090407A (en) * 1997-09-23 2000-07-18 Research Development Foundation Small particle liposome aerosols for delivery of anti-cancer drugs
US6290991B1 (en) * 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
US6638767B2 (en) * 1996-05-01 2003-10-28 Imarx Pharmaceutical Corporation Methods for delivering compounds into a cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9824207D0 (en) * 1998-11-04 1998-12-30 Zeneca Ltd Neurological disorders
SE0103839D0 (sv) * 2001-11-16 2001-11-16 Astrazeneca Ab Pharmaceutical formulation & product
US7968532B2 (en) 2003-12-15 2011-06-28 Besins Healthcare Luxembourg Treatment of gynecomastia with 4-hydroxy tamoxifen
WO2005105063A1 (en) * 2004-05-03 2005-11-10 Universita' Degli Studi Di Firenze Pharmaceutical compositions containing serms for the treatment of alzheimer's disease
PL2076244T3 (pl) * 2006-10-10 2017-05-31 Jina Pharmaceuticals Inc. Układy wodne do wytwarzania związków farmaceutycznych na bazie lipidów; kompozycje, sposoby, oraz ich zastosowanie
WO2008048194A1 (en) * 2006-10-20 2008-04-24 Yesilogluj Aysegul Yildiz Use of the protein kinase c inhibitor tamoxifen for the treatment of bipolar disorder
EP2088865B1 (de) 2006-11-06 2015-10-21 Jina Pharmaceuticals Inc. Guggulphospholipid-verfahren und zusammensetzungen
US20090291134A1 (en) * 2006-11-21 2009-11-26 Jina Pharmaceuticals, Inc. Endoxifen methods and compositions in the treatment of psychiatric and neurodegenerative diseases
ES2665917T3 (es) 2006-11-21 2018-04-30 Jina Pharmaceuticals Inc. Endoxifeno para su uso en el tratamiento del cáncer
US20120164075A1 (en) 2006-11-21 2012-06-28 Jina Pharmaceuticals, Inc. Endoxifen methods and compositions in the treatment of mammalian diseases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4310523A (en) * 1978-04-17 1982-01-12 Schering Aktiengesellschaft Combined antiestrogens and antigonadotropically effective antiandrogens for the prophylaxis and therapy of hyperplasia of the prostate
US6290991B1 (en) * 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
US6638767B2 (en) * 1996-05-01 2003-10-28 Imarx Pharmaceutical Corporation Methods for delivering compounds into a cell
US6090407A (en) * 1997-09-23 2000-07-18 Research Development Foundation Small particle liposome aerosols for delivery of anti-cancer drugs

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Einat et al. Protein Kinase C Inhibition by Tamoxifen Antagonizes Manic-Like Behavior in Rats:Implications for the Development of Novel Therapeutics for Bipolar Disorder. Neurospsychobiology 2007:vol. 55: pages 123-131 *
Lim et al. Endoxifen, a Secondary Metabolite of Tamoxifen, and 4-OH-Tamoxifen Induce Similar Changes in Global Gene Expression Patterns in MCF-7 Breast Cancer Cells. (THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS VoI. 318, No. 2. pp 503-512. *
Manji et al. Bipolar disorder: leads from the molecular and cellular mechanisms of action of mood stabilisers . British Journal of Psychiatry, 2001, 178, s107-s119 *
Zeisiq et al. Reduction of tamoxifen resistance in human breast carcinomas by tamoxifen containingliposomes in vivo. Anticancer Drugs. 2004 Aug;15(7):707-14. (abstract only) *

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10376479B2 (en) * 2006-11-21 2019-08-13 Jina Pharmaceuticals, Inc. Endoxifen compositions and methods
US11672758B2 (en) 2006-11-21 2023-06-13 Jina Pharmaceuticals, Inc. Endoxifen methods and compositions for inhibition of protein kinase C
US9333190B2 (en) 2006-11-21 2016-05-10 Jina Pharmaceuticals, Inc. Endoxifen compositions and methods
US20160346230A1 (en) * 2006-11-21 2016-12-01 Jina Pharmaceuticals, Inc. Endoxifen Compositions And Methods
US20100112041A1 (en) * 2006-11-21 2010-05-06 Jina Pharmaceuticals, Inc. Endoxifen Compositions And Methods
WO2010135703A3 (en) * 2009-05-21 2011-01-13 Jina Pharmaceuticals, Inc. Endoxifen methods and compositions in the treatment of mammalian diseases
US12004868B2 (en) * 2011-06-03 2024-06-11 Signpath Pharma Inc. Liposomal mitigation of drug-induced inhibition of the cardiac IKr channel
US10617639B2 (en) 2011-06-03 2020-04-14 Signpath Pharma, Inc. Liposomal mitigation of drug-induced long QT syndrome and potassium delayed-rectifier current
US10357458B2 (en) 2011-06-03 2019-07-23 Signpath Pharma Inc. Liposomal mitigation of drug-induced long QT syndrome and potassium delayed-rectifier current
US20190320975A1 (en) * 2011-06-03 2019-10-24 Signpath Pharma, Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
US20170095489A1 (en) * 2011-06-03 2017-04-06 Signpath Pharma Inc. Protective effect of dmpc, dmpg, dmpc/dmpg, lysopg and lysopc against drugs that cause channelopathies
US10449193B2 (en) 2011-06-03 2019-10-22 Signpath Pharma Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, lysoPG and lysoPC against drugs that cause channelopathies
US10349884B2 (en) * 2011-06-03 2019-07-16 Sighpath Pharma Inc. Liposomal mitigation of drug-induced inhibition of the cardiac ikr channel
US10238602B2 (en) 2011-06-03 2019-03-26 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LysoPG and LysoPC against drugs that cause channelopathies
US10117881B2 (en) * 2011-06-03 2018-11-06 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, LYSOPG and LYSOPC against drugs that cause channelopathies
CN104379732A (zh) * 2012-04-24 2015-02-25 国际干细胞公司 由人多能干细胞衍生神经干细胞和多巴胺能神经元
US9926529B2 (en) 2012-04-24 2018-03-27 International Stem Cell Corporation Derivation of neural stem cells and dopaminergic neurons from human pluripotent stem cells
WO2013163228A1 (en) * 2012-04-24 2013-10-31 International Stem Cell Corporation Derivation of neural stem cells and dopaminergic neurons from human pluripotent stem cells
WO2013178565A1 (de) 2012-06-01 2013-12-05 Bayer Technology Services Gmbh Genotyp- bzw. phänotyp-basierte arzeimittelformulierungen
CN104379136A (zh) * 2012-06-05 2015-02-25 国际干细胞公司 预防神经系统疾病的方法
US10258632B2 (en) 2012-06-05 2019-04-16 International Stem Cell Corporation Method of prevention of neurological diseases
AU2013271841B2 (en) * 2012-06-05 2018-03-08 International Stem Cell Corporation Method of prevention of neurological diseases
WO2013184591A1 (en) * 2012-06-05 2013-12-12 International Stem Cell Corporation Method of prevention of neurological diseases
US10532045B2 (en) 2013-12-18 2020-01-14 Signpath Pharma, Inc. Liposomal mitigation of drug-induced inhibition of the cardiac IKr channel
CN110044998A (zh) * 2014-05-12 2019-07-23 奎斯特诊断投资公司 通过质谱法定量他莫昔芬及其代谢物
CN106537139A (zh) * 2014-05-12 2017-03-22 奎斯特诊断投资公司 通过质谱法定量他莫昔芬及其代谢物
US10258691B2 (en) 2014-06-03 2019-04-16 Signpath Pharma, Inc. Protective effect of DMPC, DMPG, DMPC/DMPG, EGPG, LysoPG and LysoPC against drugs that cause channelopathies
CN104892918A (zh) * 2015-05-29 2015-09-09 吕常海 磷脂酰乙醇胺-羟基聚乙二醇衍生物及制备方法、脂质体造影剂和治疗肿瘤脂质体诊疗药物
US11806401B2 (en) 2016-04-27 2023-11-07 Signpath Pharma, Inc. Prevention of drug-induced atrio-ventricular block
US11261151B2 (en) 2017-09-11 2022-03-01 Atossa Therapeutics, Inc. Methods for making and using endoxifen
US11572334B2 (en) 2017-09-11 2023-02-07 Atossa Therapeutics, Inc. Methods for making and using endoxifen
WO2019051416A1 (en) 2017-09-11 2019-03-14 Atossa Genetics Inc. METHODS FOR THE MANUFACTURE AND USE OF ENDOXIFEN
US11680036B1 (en) 2017-09-11 2023-06-20 Atossa Therapeutics, Inc. Methods for making and using endoxifen
US12071391B2 (en) 2017-09-11 2024-08-27 Atossa Therapeutics, Inc. Methods for making and using endoxifen
US20220031625A1 (en) * 2020-07-31 2022-02-03 Altaire Pharmaceuticals, Inc. Ophthalmic compositions for delivering meibum-like materials
WO2022109602A1 (en) * 2020-11-20 2022-05-27 Academia Sinica Use of crassocephalum rabens extract in the prevention and/or treatment of fatigue and/or depression

Also Published As

Publication number Publication date
EP2432462A4 (de) 2013-11-13
US20210177752A1 (en) 2021-06-17
US20190231687A1 (en) 2019-08-01
CA2757838A1 (en) 2010-11-25
WO2010135703A3 (en) 2011-01-13
JP2012527484A (ja) 2012-11-08
WO2010135703A2 (en) 2010-11-25
MX2011012409A (es) 2012-03-14
US11672758B2 (en) 2023-06-13
EP2432462A2 (de) 2012-03-28
CA2757838C (en) 2013-12-17

Similar Documents

Publication Publication Date Title
US11672758B2 (en) Endoxifen methods and compositions for inhibition of protein kinase C
US10376479B2 (en) Endoxifen compositions and methods
US20120164075A1 (en) Endoxifen methods and compositions in the treatment of mammalian diseases
CA2595617C (en) Formulations for injection of catecholic butanes, including ndga compounds, into animals
FR2803516A1 (fr) Formulation injectable de fulvestrant
CN103221052A (zh) 氟维司群组合物及使用方法
CN114126596A (zh) 用于皮下注射的氯胺酮制剂
JP5489407B2 (ja) 4−ヒドロキシタモキシフェンの化学的に安定な組成物
TW201247613A (en) Ester derivatives of bimatoprost compositions and methods
JP2019023210A (ja) トランス−クロミフェン代謝物およびその使用
CA2414584C (en) 7-hydroxyepiandrosterone having neuroprotective activity
JP7376105B2 (ja) 局所用組成物及び処置方法
WO2017057743A1 (ja) 経皮吸収用組成物
CN111212635A (zh) 局部用组合物
JP5069469B2 (ja) 女性化乳房治療用の薬剤を製造する際の4−ヒドロキシタモキシフェンの使用
MXPA06010914A (es) Tratamiento y prevencion de enfermedades de mama benigna con 4-hidroxi tamoxifen.

Legal Events

Date Code Title Description
AS Assignment

Owner name: JINA PHARMACEUTICALS, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AHMAD, ATEEQ;ALI, SHOUKATH M.;AHMAD, MOGHIS U.;AND OTHERS;REEL/FRAME:023064/0167

Effective date: 20090602

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION