US20090218740A1 - Highly elastic leaf spring - Google Patents

Highly elastic leaf spring Download PDF

Info

Publication number
US20090218740A1
US20090218740A1 US11/921,932 US92193206A US2009218740A1 US 20090218740 A1 US20090218740 A1 US 20090218740A1 US 92193206 A US92193206 A US 92193206A US 2009218740 A1 US2009218740 A1 US 2009218740A1
Authority
US
United States
Prior art keywords
spring
layers
layer
support plate
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/921,932
Inventor
Volker Gedenk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ContiTech Luftfedersysteme GmbH
Original Assignee
ContiTech Luftfedersysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ContiTech Luftfedersysteme GmbH filed Critical ContiTech Luftfedersysteme GmbH
Assigned to CONTITECH LUFTFEDERSYSTEME GMBH reassignment CONTITECH LUFTFEDERSYSTEME GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEDENK, VOLKER
Publication of US20090218740A1 publication Critical patent/US20090218740A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • F16F1/3935Conical sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/393Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type with spherical or conical sleeves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/26Mounting or securing axle-boxes in vehicle or bogie underframes
    • B61F5/30Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
    • B61F5/305Axle-boxes mounted for movement under spring control in vehicle or bogie underframes incorporating rubber springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/371Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/40Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers
    • F16F1/41Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers consisting of a stack of similar elements separated by non-elastic intermediate layers the spring consisting of generally conically arranged elements

Definitions

  • the invention relates to a multilayered spring, in particular for rail vehicles, having an inner connecting part and an outer connecting part and having at least two spring layers which are located between the connecting parts.
  • the spring layers include alternately an elastomer layer and a sheet-metal layer and the elastomer layers are each vulcanized together with the connecting parts and the sheet-metal layers.
  • the elastomer layers of the spring layers have different thicknesses from one another with each elastomer layer being manufactured from the same material.
  • Such multilayered springs are also referred to as primary springs because they frequently form the primary spring stage, that is, the spring stage between the wheel and the swivel truck in rail vehicles.
  • the multilayered springs can have different shapes.
  • the individual spring layers can be arranged concentrically with respect to one another in a cylindrical or conical fashion.
  • multilayered springs made of differently arranged horizontal or vertical spring layers are also possible. The shape, position and number of the spring layers are adapted to the particular application.
  • DE 85 20 180 U1 discloses a multilayered spring which has an additional rubber layer with a Shore hardness which is lower than that of the other layers in order to achieve a specific spring characteristic.
  • this multilayered spring requires a limiting stop in order to limit the spring compression of this additional layer.
  • the spring characteristic line is therefore composed of two line segments, a soft, flat segment up to the time when the spring abuts against the limiting stop and a hard, steep segment. The characteristic line therefore has an unevenness which has an unfavorable effect on the suspension behavior.
  • the invention is based on the object of providing a multilayered spring of the type described above which has an improved, constant spring characteristic line while avoiding the above-mentioned disadvantages.
  • the multilayered spring has a support plate which is contoured substantially in the shape of a cone, is arranged above the thickest spring layer in the loading direction and corresponds to the spring layers of different thicknesses in such a way that initially the inner part of the softest layer is supported on the support plate and, as the loading increases, the outer parts of the softest layer and the further spring layers are supported in a constantly increasing fashion on the support plate.
  • the support plate produces a continuous spring characteristic line since, as a result of this configuration, only the inner, soft spring layer of the multilayered spring experiences spring compression under relatively low loads and the further spring layers increasingly participate in the spring compression under higher loads. Because of the support plate, the thickest, softest spring layer is not overloaded.
  • the characteristic line can be adapted to the application, for example, as a continuously progressive characteristic line depending on the contour of the support plate.
  • the elastomer layer of the inner spring layer is thicker than the elastomer layers of the other spring layers by a factor of three.
  • the inner spring layer is considerably softer than the other spring layers.
  • the hardness of such a spring layer is determined both by the hardness of the material and by the geometry of the layer, with the influence of the geometry being determined by the form factor F.
  • the form factor F describes the ratio of free elastomer area to bound elastomer area of an elastomer layer. If the free surface of an elastomer layer becomes larger while the fixedly vulcanized, that is, bound area remains the same, the form factor increases. High values of F describe a soft spring property, while low values of F describe a hard spring property.
  • Such a multilayered spring can be adapted in the inventive fashion to various applications with a constant characteristic line and does not require complex production methods since, for example, the omission of one or more sheet-metal layers allows the freely deformable elastomer area of the resulting, relatively thick elastomer layer to be easily enlarged. There is no need to use different materials.
  • the single FIGURE shows a multilayered spring 1 in a longitudinal section in the installed position without loading with an inner connecting part 2 directed upwardly with a connecting lug 3 and bearing a load (not shown here).
  • the multilayered spring 1 has an outer connecting part 4 and a plurality of conical, concentrically-arranged sheet-metal intermediate layers ( 5 , 6 , 7 , 8 ) with average diameters which become larger toward the outside.
  • Conical elastomer layers ( 9 , 10 , 11 , 12 ) are arranged between each two sheet-metal intermediate layers 5 to 8 .
  • the conical elastomer layers ( 9 , 10 , 11 , 12 ) are fixedly vulcanized with their respective surfaces to corresponding surfaces of the inner connecting part 2 , the sheet-metal intermediate layers 5 to 8 and the outer connecting part 4 . These surfaces of the elastomer layers face toward the main axis 13 of the multilayered spring 1 or face away from the main axis 13 .
  • the sheet-metal intermediate layers 5 to 8 and the elastomer layers 9 to 12 are arranged with respect to one another in such a way that the multilayered spring 1 has an upwardly tapering truncated cone-like shape.
  • a support plate 14 which has a conical shape on its underside 15 facing toward the inner-lying elastomer layer 9 , is fixedly mounted on the connecting lug 3 concentrically with respect to the inner connecting part 2 .
  • the inner-lying elastomer layer 9 has a significantly larger radial thickness than the other elastomer layers 10 to 12 .
  • the increased thickness gives rise to a form factor F which is increased compared to the other elastomer layers 10 to 12 .
  • the inner elastomer layer 9 is therefore significantly softer than the other elastomer layers 10 to 12 .
  • the inner connecting part 2 moves downwardly toward the outer connecting part 4 and the multilayered spring 1 is compressed.
  • the inner-lying elastomer layer 9 experiences spring compression owing to the softer spring characteristic line.
  • the elastomer layer 9 is supported against the support plate 14 .
  • the configuration of the underside 15 of the support plate 14 thereby contributes to the determination of the spring characteristic line of the inner-lying elastomer layer 9 .
  • the thickness of the inner-lying elastomer layer 9 and the shape of the underside 15 of the support plate 14 are matched to one another in such a manner that, when the inner-lying elastomer layer 9 experiences complete spring compression, the support plate 14 comes to rest on the inner sheet-metal intermediate layer 5 and the other elastomer layers 10 to 12 are increasingly involved in the further spring compression. This results in a continuously progressive spring characteristic line for the entire multilayered spring 1 .

Abstract

The invention relates to a multilayered spring, especially for rail vehicles, having an inner and an outer connecting part and at least two spring layers that are located therebetween and are made alternately of an elastomeric layer and a sheet-metal layer. The elastomeric layers are vulcanized together with the connecting parts and the sheet-metal layers and the elastomeric layers of the spring layer have different thicknesses with respect to each other. Each elastomeric layer is made of the same material. The multilayered spring has a substantially conically contoured support plate which is arranged above the thickest spring layer in the direction in which load is applied. The inner portion of the softest layer initially rests on the support plate when the spring is loaded while the outer portions of the softest layer, followed by the other spring-layers, rest on the support plate in a continually increasing manner as the load increases. The contour of the support plate influences the characteristic line of the spring.

Description

  • The invention relates to a multilayered spring, in particular for rail vehicles, having an inner connecting part and an outer connecting part and having at least two spring layers which are located between the connecting parts. The spring layers include alternately an elastomer layer and a sheet-metal layer and the elastomer layers are each vulcanized together with the connecting parts and the sheet-metal layers. The elastomer layers of the spring layers have different thicknesses from one another with each elastomer layer being manufactured from the same material.
  • Such multilayered springs are also referred to as primary springs because they frequently form the primary spring stage, that is, the spring stage between the wheel and the swivel truck in rail vehicles. The multilayered springs can have different shapes. For example, the individual spring layers can be arranged concentrically with respect to one another in a cylindrical or conical fashion. However, multilayered springs made of differently arranged horizontal or vertical spring layers are also possible. The shape, position and number of the spring layers are adapted to the particular application.
  • Individual multilayered springs are usually manufactured for each application and a specific spring characteristic line has to be achieved. Given low loading, which is particularly critical for protection against derailing during the travel operation, the spring must be made very soft. In contrast, when the loading is high, the spring should be hard so that the vehicle remains within the free space profile.
  • DE 85 20 180 U1 discloses a multilayered spring which has an additional rubber layer with a Shore hardness which is lower than that of the other layers in order to achieve a specific spring characteristic. However, this multilayered spring requires a limiting stop in order to limit the spring compression of this additional layer. The spring characteristic line is therefore composed of two line segments, a soft, flat segment up to the time when the spring abuts against the limiting stop and a hard, steep segment. The characteristic line therefore has an unevenness which has an unfavorable effect on the suspension behavior.
  • In order to obtain an optimal characteristic line of the multilayered spring, it is known to manufacture the elastomer layers of the spring layers from different materials. Such a multilayered spring is shown in DE 28 19 306 A1 or DE 103 01 756 B4.
  • However, the use of different materials requires considerable complexity with respect to manufacture, especially when there are different materials within one layer.
  • The invention is based on the object of providing a multilayered spring of the type described above which has an improved, constant spring characteristic line while avoiding the above-mentioned disadvantages.
  • This object is achieved by virtue of the fact that the multilayered spring has a support plate which is contoured substantially in the shape of a cone, is arranged above the thickest spring layer in the loading direction and corresponds to the spring layers of different thicknesses in such a way that initially the inner part of the softest layer is supported on the support plate and, as the loading increases, the outer parts of the softest layer and the further spring layers are supported in a constantly increasing fashion on the support plate.
  • The support plate produces a continuous spring characteristic line since, as a result of this configuration, only the inner, soft spring layer of the multilayered spring experiences spring compression under relatively low loads and the further spring layers increasingly participate in the spring compression under higher loads. Because of the support plate, the thickest, softest spring layer is not overloaded. The characteristic line can be adapted to the application, for example, as a continuously progressive characteristic line depending on the contour of the support plate.
  • According to one embodiment of the invention, the elastomer layer of the inner spring layer is thicker than the elastomer layers of the other spring layers by a factor of three.
  • As a result, the inner spring layer is considerably softer than the other spring layers. The hardness of such a spring layer is determined both by the hardness of the material and by the geometry of the layer, with the influence of the geometry being determined by the form factor F. The form factor F describes the ratio of free elastomer area to bound elastomer area of an elastomer layer. If the free surface of an elastomer layer becomes larger while the fixedly vulcanized, that is, bound area remains the same, the form factor increases. High values of F describe a soft spring property, while low values of F describe a hard spring property.
  • Such a multilayered spring can be adapted in the inventive fashion to various applications with a constant characteristic line and does not require complex production methods since, for example, the omission of one or more sheet-metal layers allows the freely deformable elastomer area of the resulting, relatively thick elastomer layer to be easily enlarged. There is no need to use different materials.
  • An exemplary embodiment of the invention will be explained in more detail below with reference to the drawing.
  • The single FIGURE shows a multilayered spring 1 in a longitudinal section in the installed position without loading with an inner connecting part 2 directed upwardly with a connecting lug 3 and bearing a load (not shown here).
  • Furthermore, the multilayered spring 1 has an outer connecting part 4 and a plurality of conical, concentrically-arranged sheet-metal intermediate layers (5, 6, 7, 8) with average diameters which become larger toward the outside. Conical elastomer layers (9, 10, 11, 12) are arranged between each two sheet-metal intermediate layers 5 to 8. The conical elastomer layers (9, 10, 11, 12) are fixedly vulcanized with their respective surfaces to corresponding surfaces of the inner connecting part 2, the sheet-metal intermediate layers 5 to 8 and the outer connecting part 4. These surfaces of the elastomer layers face toward the main axis 13 of the multilayered spring 1 or face away from the main axis 13.
  • The sheet-metal intermediate layers 5 to 8 and the elastomer layers 9 to 12 are arranged with respect to one another in such a way that the multilayered spring 1 has an upwardly tapering truncated cone-like shape.
  • A support plate 14, which has a conical shape on its underside 15 facing toward the inner-lying elastomer layer 9, is fixedly mounted on the connecting lug 3 concentrically with respect to the inner connecting part 2.
  • The inner-lying elastomer layer 9 has a significantly larger radial thickness than the other elastomer layers 10 to 12. The increased thickness gives rise to a form factor F which is increased compared to the other elastomer layers 10 to 12. The inner elastomer layer 9 is therefore significantly softer than the other elastomer layers 10 to 12.
  • Under load, the inner connecting part 2 moves downwardly toward the outer connecting part 4 and the multilayered spring 1 is compressed. In the process, at first only the inner-lying elastomer layer 9 experiences spring compression owing to the softer spring characteristic line. The elastomer layer 9 is supported against the support plate 14. The configuration of the underside 15 of the support plate 14 thereby contributes to the determination of the spring characteristic line of the inner-lying elastomer layer 9. The thickness of the inner-lying elastomer layer 9 and the shape of the underside 15 of the support plate 14 are matched to one another in such a manner that, when the inner-lying elastomer layer 9 experiences complete spring compression, the support plate 14 comes to rest on the inner sheet-metal intermediate layer 5 and the other elastomer layers 10 to 12 are increasingly involved in the further spring compression. This results in a continuously progressive spring characteristic line for the entire multilayered spring 1.
  • List Of Reference Numerals
  • (part of the description)
    1 Multilayered spring
    2 Inner connecting part
  • 3 Connecting lug
  • 4 Outer connecting part
    5 Sheet-metal intermediate layer
    6 Sheet-metal intermediate layer
    7 Sheet-metal intermediate layer
    8 Sheet-metal intermediate layer
    9 Inner-lying elastomer layer
    10 Elastomer layer
    11 Elastomer layer
    12 Elastomer layer
    13 Main axis of the multilayered spring 1
    14 Support plate
    15 Underside of the support plate

Claims (4)

1. (canceled)
2. A multilayered spring for a vehicle, including a rail vehicle, the multilayered spring being subjectable to a load in a predetermined direction and comprising:
an inner connecting part;
an outer connecting part;
a plurality of spring layers disposed between said connecting parts;
said spring layers including a plurality of sheet-metal layers and a plurality of elastomer layers alternating with corresponding ones of said sheet-metal layers;
said elastomer layers being vulcanized to corresponding ones of said connecting parts and said sheet-metal layers;
said elastomer layers having different thicknesses and one of said elastomer layers having a thickness greater than the remainder of said elastomer layers;
a conically-shaped contoured support plate mounted above said one elastomer layer in said load direction;
said one layer having an outer portion and being softer than said remainder of said elastomer layers; and,
said support plate corresponding to said elastomer layers to cause first said one layer to be supported against said support plate in response to said load and, with said load increasing, to cause said outer portion of said one layer and said remainder of said elastomer layers to become continuously and increasingly supported against said support plate.
3. The multilayered spring of claim 2, wherein all of said elastomer layers are made of the same material.
4. The multilayered spring of claim 3, wherein said one layer is thicker than the elastomer layers of said remainder of said elastomer layers by a factor of three.
US11/921,932 2005-06-21 2006-05-10 Highly elastic leaf spring Abandoned US20090218740A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005028565.5 2005-06-21
DE102005028565A DE102005028565A1 (en) 2005-06-21 2005-06-21 Highly elastic layered spring
PCT/EP2006/004364 WO2006136238A2 (en) 2005-06-21 2006-05-10 Highly elastic leaf spring

Publications (1)

Publication Number Publication Date
US20090218740A1 true US20090218740A1 (en) 2009-09-03

Family

ID=36646222

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/921,932 Abandoned US20090218740A1 (en) 2005-06-21 2006-05-10 Highly elastic leaf spring

Country Status (9)

Country Link
US (1) US20090218740A1 (en)
EP (1) EP1896310A2 (en)
JP (1) JP2008544186A (en)
KR (1) KR20080019582A (en)
CN (1) CN101203412A (en)
CA (1) CA2612907A1 (en)
DE (1) DE102005028565A1 (en)
MX (1) MX2007014959A (en)
WO (1) WO2006136238A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD699637S1 (en) * 2012-07-06 2014-02-18 Hendrickson Usa, L.L.C. Shear spring for a suspension
USD700113S1 (en) 2012-07-06 2014-02-25 Hendrickson Usa, L.L.C. Suspension assembly
US8657315B2 (en) 2011-07-08 2014-02-25 Hendrickson Usa, L.L.C. Vehicle suspension and improved method of assembly
USD700112S1 (en) 2012-07-06 2014-02-25 Hendrickson Usa, L.L.C. Progressive rate spring for a suspension
US8720937B2 (en) 2008-03-10 2014-05-13 Hendrickson Usa, L.L.C. Load cushion for vehicle suspension
US9004512B2 (en) 2011-07-08 2015-04-14 Hendrickson Usa, L.L.C. Shear spring useful for vehicle suspension
US9085212B2 (en) 2013-03-15 2015-07-21 Hendrickson Usa, L.L.C. Vehicle suspension
US20150226280A1 (en) * 2012-08-28 2015-08-13 Avic Beijing Institute Of Aeronautical Materials Damping rubber spring for an automobile suspension
US9150071B2 (en) 2013-07-25 2015-10-06 Hendrickson Usa, L.L.C. Frame hanger for vehicle suspension
USD764361S1 (en) * 2014-09-29 2016-08-23 Hendrickson Usa, L.L.C. Load cushion
CN108223659A (en) * 2016-12-21 2018-06-29 东洋橡胶工业株式会社 Axis spring
US20180290668A1 (en) * 2015-12-09 2018-10-11 Contitech Luftfedersysteme Gmbh Rubber-metal spring unit
CN116517997A (en) * 2023-05-30 2023-08-01 中国地震局工程力学研究所 Rubber disc spring device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5297602B2 (en) * 2007-06-08 2013-09-25 東洋ゴム工業株式会社 Railway vehicle suspension system
JP5297603B2 (en) * 2007-06-11 2013-09-25 東洋ゴム工業株式会社 Air spring for rolling stock
JP5069974B2 (en) * 2007-08-24 2012-11-07 東洋ゴム工業株式会社 Vehicle suspension system
AT507754A1 (en) * 2008-12-22 2010-07-15 Siemens Ag Oesterreich PRIMARY SPRING
CN102401084A (en) * 2010-09-15 2012-04-04 溧阳市振大铁路设备有限公司 Shaft box spring of bogie of urban rail train
CN102829114A (en) * 2012-08-28 2012-12-19 中国航空工业集团公司北京航空材料研究院 Auxiliary rubber spring for automobile suspension
DK2976544T3 (en) * 2013-03-19 2019-03-11 Fm Energie Gmbh & Co Kg ADAPTIVE ELASTIC RENTAL AND VIBRATION DIMENSIONS CONTAINING THIS
CN105526291B (en) * 2014-09-30 2017-06-30 株洲时代新材料科技股份有限公司 A kind of compounded rubber backstop and its assemble method
CN104864009B (en) * 2015-03-17 2017-06-30 株洲时代新材料科技股份有限公司 The method and product of a kind of volute spring significantly variation rigidity
US20180080522A1 (en) * 2015-03-31 2018-03-22 Aisin Aw Co., Ltd. Damper device
JP6478790B2 (en) * 2015-04-28 2019-03-06 Toyo Tire株式会社 Shaft spring
JP6731841B2 (en) * 2016-12-21 2020-07-29 Toyo Tire株式会社 Axial spring
CN109236916A (en) * 2018-11-07 2019-01-18 株洲时代新材料科技股份有限公司 Volute spring and its variation rigidity and installation and adjustment method
CN111055869B (en) * 2020-01-14 2021-03-12 株洲时代瑞唯减振装备有限公司 Lightweight axle box built-in primary suspension device and lightweight method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2117264A (en) * 1935-08-06 1938-05-10 Firestone Tire & Rubber Co Resilient support
US2830780A (en) * 1953-06-30 1958-04-15 Schloss Fred Low frequency noise and shock isolation mount
US4942824A (en) * 1988-05-24 1990-07-24 Societe Anonyme Dite: Alsthom Articulated coupling for two rail vehicles
US5150657A (en) * 1989-12-29 1992-09-29 Caoutchouc Manufacture Et Plastiques S.A. Train of railway cars having truncated conical resilient articulation on shared truck between two adjacent cars
US5271678A (en) * 1989-12-29 1993-12-21 Caoutchouc Manufacture Et Plastiques S.A. Elastic bearing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB775248A (en) * 1955-07-28 1957-05-22 Norman David Imrie Improvements in or relating to mountings for absorbing or reducing shock and/or noise
CA1095573A (en) * 1977-06-15 1981-02-10 Robert R. Peterson Laminated bearing structures
JPS607437A (en) * 1983-06-28 1985-01-16 Mitsui Toatsu Chem Inc Pressure fixable magnetic toner
DE8520180U1 (en) 1985-07-12 1985-08-29 Phoenix Ag, 2100 Hamburg Axle spring for rail vehicles
IT1202605B (en) * 1987-03-02 1989-02-09 Pirelli Accessori Ind SPRING WITH VARIABLE RIGIDITY
DE29520881U1 (en) * 1995-03-03 1996-05-02 Phoenix Ag Molded article
US6045328A (en) * 1998-09-23 2000-04-04 Lord Corporation Fluid damper including flexible damping plate
JP2000280903A (en) * 1999-03-31 2000-10-10 Railway Technical Res Inst Axle box support device for railway rolling stock
DE10301756B4 (en) 2003-01-18 2005-02-24 Carl Freudenberg Kg layer spring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2117264A (en) * 1935-08-06 1938-05-10 Firestone Tire & Rubber Co Resilient support
US2830780A (en) * 1953-06-30 1958-04-15 Schloss Fred Low frequency noise and shock isolation mount
US4942824A (en) * 1988-05-24 1990-07-24 Societe Anonyme Dite: Alsthom Articulated coupling for two rail vehicles
US5150657A (en) * 1989-12-29 1992-09-29 Caoutchouc Manufacture Et Plastiques S.A. Train of railway cars having truncated conical resilient articulation on shared truck between two adjacent cars
US5271678A (en) * 1989-12-29 1993-12-21 Caoutchouc Manufacture Et Plastiques S.A. Elastic bearing

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8720937B2 (en) 2008-03-10 2014-05-13 Hendrickson Usa, L.L.C. Load cushion for vehicle suspension
US8657315B2 (en) 2011-07-08 2014-02-25 Hendrickson Usa, L.L.C. Vehicle suspension and improved method of assembly
US9004512B2 (en) 2011-07-08 2015-04-14 Hendrickson Usa, L.L.C. Shear spring useful for vehicle suspension
USD700113S1 (en) 2012-07-06 2014-02-25 Hendrickson Usa, L.L.C. Suspension assembly
USD700112S1 (en) 2012-07-06 2014-02-25 Hendrickson Usa, L.L.C. Progressive rate spring for a suspension
USD699637S1 (en) * 2012-07-06 2014-02-18 Hendrickson Usa, L.L.C. Shear spring for a suspension
US9933036B2 (en) * 2012-08-28 2018-04-03 Avic Beijing Institute Of Aeronautical Materials Damping rubber spring for an automobile suspension
US20150226280A1 (en) * 2012-08-28 2015-08-13 Avic Beijing Institute Of Aeronautical Materials Damping rubber spring for an automobile suspension
US9085212B2 (en) 2013-03-15 2015-07-21 Hendrickson Usa, L.L.C. Vehicle suspension
US9242524B2 (en) * 2013-03-15 2016-01-26 Hendrickson Usa, L.L.C. Vehicle suspension
US9150071B2 (en) 2013-07-25 2015-10-06 Hendrickson Usa, L.L.C. Frame hanger for vehicle suspension
USD764361S1 (en) * 2014-09-29 2016-08-23 Hendrickson Usa, L.L.C. Load cushion
USD820735S1 (en) 2014-09-29 2018-06-19 Hendrickson Usa, L.L.C. Load cushion
US10144262B2 (en) 2014-09-29 2018-12-04 Hendrickson Usa, L.L.C. Load cushion
US20180290668A1 (en) * 2015-12-09 2018-10-11 Contitech Luftfedersysteme Gmbh Rubber-metal spring unit
CN108223659A (en) * 2016-12-21 2018-06-29 东洋橡胶工业株式会社 Axis spring
CN116517997A (en) * 2023-05-30 2023-08-01 中国地震局工程力学研究所 Rubber disc spring device

Also Published As

Publication number Publication date
CA2612907A1 (en) 2006-12-28
CN101203412A (en) 2008-06-18
EP1896310A2 (en) 2008-03-12
DE102005028565A1 (en) 2007-01-04
JP2008544186A (en) 2008-12-04
WO2006136238A3 (en) 2007-09-07
MX2007014959A (en) 2008-02-15
WO2006136238A2 (en) 2006-12-28
KR20080019582A (en) 2008-03-04

Similar Documents

Publication Publication Date Title
US20090218740A1 (en) Highly elastic leaf spring
US20180290668A1 (en) Rubber-metal spring unit
JP4714505B2 (en) Air spring
CN100510457C (en) Rubber-plastic composite bushing
US9499022B2 (en) Auxiliary rubber spring for automobile suspension
CA2607275C (en) Stabilizer bush
US20130009376A1 (en) Thrust sliding bearing and combination mechanism of the thrust sliding bearing and a piston rod
CZ20004661A3 (en) Vehicle wheel with support body of emergency run
US20090039574A1 (en) Spring assembly
CN102245926B (en) Air spring
US20120056362A1 (en) Air spring
US20150176670A1 (en) Wave spring having a linear characteristic in some regions
CN106812844B (en) Barrel type vibration insulation device
US20150226280A1 (en) Damping rubber spring for an automobile suspension
EP3725573B1 (en) Coil spring and bonded pad for the car suspension system coil spring and method of manufacturing the same
CN105774454A (en) Spring Support Piece Used For Vehicle Wheel Suspension And Vehicle Wheel Suspension
CN101328944A (en) Rubber metal spherical joint for truck balance beam
US9895948B2 (en) Spring isolators and suspension systems incorporating same
CN201110336Y (en) Rubber-plastic composite bushing
EP2357092B1 (en) A high-yielding wheel of track vehicles
CN102094925B (en) Shaft spring of railway vehicle
JP4747106B2 (en) Spring elements for rail vehicles
CN107428196A (en) Elastic wheel for rail vehicle
US9308793B2 (en) Multi-density jounce bumper
EP3098472B1 (en) Stopper for suspension system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTITECH LUFTFEDERSYSTEME GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GEDENK, VOLKER;REEL/FRAME:020421/0787

Effective date: 20071015

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE