US20090162835A9 - Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries - Google Patents

Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries Download PDF

Info

Publication number
US20090162835A9
US20090162835A9 US10/045,674 US4567401A US2009162835A9 US 20090162835 A9 US20090162835 A9 US 20090162835A9 US 4567401 A US4567401 A US 4567401A US 2009162835 A9 US2009162835 A9 US 2009162835A9
Authority
US
United States
Prior art keywords
nucleic acid
stranded
oligonucleotide
cleavage
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/045,674
Other versions
US20030232333A1 (en
US8288322B2 (en
Inventor
Robert Ladner
Edward Cohen
Horacio Nastri
Kristin Rookey
Rene Hoet
Hendricus Mattheus Hoogenboom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Dyax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32475265&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20090162835(A9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US09/837,306 external-priority patent/US20040029113A1/en
Application filed by Dyax Corp filed Critical Dyax Corp
Priority to US10/045,674 priority Critical patent/US8288322B2/en
Priority to DK02762148.1T priority patent/DK1578903T4/en
Priority to AU2002307422A priority patent/AU2002307422B2/en
Priority to EP02762148.1A priority patent/EP1578903B2/en
Priority to CA2458462A priority patent/CA2458462C/en
Priority to PT02762148T priority patent/PT1578903E/en
Priority to CA2747868A priority patent/CA2747868A1/en
Priority to AT02762148T priority patent/ATE534735T2/en
Priority to ES02762148.1T priority patent/ES2375952T5/en
Priority to PCT/US2002/012405 priority patent/WO2002083872A2/en
Assigned to DYAX CORP. reassignment DYAX CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOOGENBOOM, HENDRICUS R.J.M., HOET, RENE, COHEN, EDWARD H., LADNER, ROBERT C., NASTRI, HORACIO G., ROOKEY, KRISTIN
Publication of US20030232333A1 publication Critical patent/US20030232333A1/en
Assigned to PAUL ROYALTY FUND HOLDINGS II reassignment PAUL ROYALTY FUND HOLDINGS II SECURITY AGREEMENT Assignors: DYAX CORP.
Assigned to DYAX CORP., A DELAWARE CORPORATION reassignment DYAX CORP., A DELAWARE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: PAUL ROYALTY FUND HOLDINGS II
Assigned to COWEN HEALTHCARE ROYALTY PARTNERS, L.P. reassignment COWEN HEALTHCARE ROYALTY PARTNERS, L.P. SECURITY AGREEMENT Assignors: DYAX CORP., A DELAWARE CORPORATION
Priority to AU2009200092A priority patent/AU2009200092B2/en
Assigned to COWEN HEALTHCARE ROYALTY PARTNERS, L.P. reassignment COWEN HEALTHCARE ROYALTY PARTNERS, L.P. SECURITY AGREEMENT Assignors: DYAX CORP., A DELAWARE CORPORATION
Publication of US20090162835A9 publication Critical patent/US20090162835A9/en
Priority to CY20121100019T priority patent/CY1112220T1/en
Priority to US13/464,047 priority patent/US8901045B2/en
Assigned to LFRP INVESTORS, L.P., A DELAWARE LIMITED PARTNERSHIP reassignment LFRP INVESTORS, L.P., A DELAWARE LIMITED PARTNERSHIP SECURITY AGREEMENT Assignors: DYAX CORP., A DELAWARE CORPORATION
Assigned to DYAX CORP., A DELAWARE CORPORATION reassignment DYAX CORP., A DELAWARE CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HEALTHCARE ROYALTY PARTNERS, L.P. F/K/A COWEN HEALTHCARE ROYALTY PARTNERS, L.P.
Publication of US8288322B2 publication Critical patent/US8288322B2/en
Application granted granted Critical
Priority to US14/557,171 priority patent/US9683028B2/en
Assigned to DYAX CORP. reassignment DYAX CORP. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: LFRP INVESTORS, L.P.
Priority to US15/612,938 priority patent/US10829541B2/en
Priority to US16/984,655 priority patent/US20210087256A1/en
Assigned to TAKEDA PHARMACEUTICAL COMPANY LIMITED reassignment TAKEDA PHARMACEUTICAL COMPANY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DYAX CORP.
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/005Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies constructed by phage libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1037Screening libraries presented on the surface of microorganisms, e.g. phage display, E. coli display
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/02Libraries contained in or displayed by microorganisms, e.g. bacteria or animal cells; Libraries contained in or displayed by vectors, e.g. plasmids; Libraries containing only microorganisms or vectors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • C40B40/08Libraries containing RNA or DNA which encodes proteins, e.g. gene libraries
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms

Definitions

  • the present invention relates to libraries of genetic packages that display and/or express a member of a diverse family of peptides, polypeptides or proteins and collectively display and/or express at least a portion of the diversity of the family.
  • the invention relates to libraries that include a member of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family.
  • the displayed and/or expressed polypeptides are human Fabs.
  • the invention is directed to the methods of cleaving single-stranded nucleic acids at chosen locations, the cleaved nucleic acids encoding, at least in part, the peptides, polypeptides or proteins displayed on the genetic packages of, and/or expressed in, the libraries of the invention.
  • the genetic packages are filamentous phage or phagemids or yeast.
  • the present invention further relates to vectors for displaying and/or expressing a diverse family of peptides, polypeptides or proteins.
  • the present invention further relates to methods of screening the libraries of the invention and to the peptides, polypeptides and proteins identified by such screening.
  • DNAs that encode members of the families to be displayed and/or expressed must be amplified before they are cloned and used to display and/or express the desired member. Such amplification typically makes use of forward and backward primers.
  • Such primers can be complementary to sequences native to the DNA to be amplified or complementary to oligonucleotides attached at the 5′ or 3′ ends of that DNA.
  • Primers that are complementary to sequences native to the DNA to be amplified are disadvantaged in that they bias the members of the families to be displayed. Only those members that contain a sequence in the native DNA that is substantially complementary to the primer will be amplified. Those that do not will be absent from the family. For those members that are amplified, any diversity within the primer region will be suppressed.
  • the primer that is used is at the 5′ end of the V H region of an antibody gene. It anneals to a sequence region in the native DNA that is said to be “sufficiently well conserved” within a single species. Such primer will bias the members amplified to those having this “conserved” region. Any diversity within this region is extinguished.
  • CDRs Complementary Determining Regions
  • FRs Framework Regions
  • the DNAs must be cleaved to produce appropriate ends for ligation to a vector. Such cleavage is generally effected using restriction endonuclease recognition sites carried on the primers.
  • restriction endonuclease recognition sites carried on the primers.
  • the restriction endonuclease recognition site is not initially located in the double-stranded part of the oligonucleotide. Instead, it is part of an amplification primer, which primer is complementary to the double-stranded region of the oligonucleotide.
  • the restriction endonuclease recognition site carried on the primer becomes part of the DNA. It can then be used to cleave the DNA.
  • the restriction endonuclease recognition site is that of a Type II-S restriction endonuclease whose cleavage site is located at a known distance from its recognition site.
  • This method involves ligating the individual single-stranded DNA members of the family to a partially duplex DNA complex. The method comprises the steps of:
  • the restriction endonuclease recognition site need not be located in the double-stranded portion of the oligonucleotide. Instead, it can be introduced on amplification with an amplification primer that is used to amplify the DNA-partially double-stranded oligonucleotide combination.
  • FIG. 1 is a schematic of various methods that may be employed to amplify VH genes without using primers specific for VH sequences.
  • FIG. 2 is a schematic of various methods that may be employed to amplify VL genes without using primers specific for VL sequences.
  • FIG. 3 is a schematic of RACE amplification of antibody heavy and light chains.
  • FIG. 4 depicts gel analysis of amplification products obtained after the primary PCR reaction from 4 different patient samples.
  • FIG. 5 depicts gel analysis of cleaved kappa DNA from Example 2.
  • FIG. 6 depicts gel analysis of extender-cleaved kappa DNA from Example 2.
  • FIG. 7 depicts gel analysis of the PCR product from the extender-kappa amplification from Example 2.
  • FIG. 8 depicts gel analysis of purified PCR product from the extender-kappa amplification from Example 2.
  • FIG. 9 depicts gel analysis of cleaved and ligated kappa light chains from Example 2.
  • FIG. 10 is a schematic of the design for CDR1 and CDR2 synthetic diversity.
  • FIG. 11 is a schemaitc of the cloning schedule for construction of the heavy chain repertoire.
  • FIG. 12 is a schematic of the cleavage and ligation of the antibody light chain.
  • FIG. 13 depicts gel analysis of cleaved and ligated lambda light chains from Example 4.
  • FIG. 14 is a schematic of the cleavage and ligation of the antibody heavy chain.
  • FIG. 15 depicts gel analysis of cleaved and ligated lambda light chains from Example 5.
  • FIG. 16 is a schematic of a phage display vector.
  • FIG. 17 is a schematic of a Fab cassette.
  • FIG. 18 is a schematic of a process for incorporating fixed FR1 residues in an antibody lambda sequence.
  • FIG. 19 is a schematic of a process for incorporating fixed FR1 residues in an antibody kappa sequence.
  • FIG. 20 is a schematic of a process for incorporating fixed FR1 residues in an antibody heavy chain sequence.
  • Sense strand The upper strand of ds DNA as usually written. In the sense strand, 5′-ATG-3′ codes for Met.
  • Antisense strand The lower strand of ds DNA as usually written. In the antisense strand, 3′-TAC-5′ would correspond to a Met codon in the sense strand.
  • Forward primer A “forward” primer is complementary to a part of the sense strand and primes for synthesis of a new antisense- strand molecule.
  • Forward primer and “lower-strand primer” are equivalent.
  • Backward primer A “backward” primer is complementary to a part of the antisense strand and primes for synthesis of a new sense- strand molecule.
  • Bases are specified either by their position in a vector or gene as their position within a gene by codon and base. For example, “89.1” is the first base of codon 89, 89.2 is the second base of codon 89. Sv Streptavidin Ap Ampicillin ap R A gene conferring ampicillin resistance.
  • RERS Restriction endonuclease recognition site RE Restriction endonuclease - cleaves preferentially at RERS URE Universal restriction endonuclease Functionally Two sequences are sufficiently complementary complementary so as to anneal under the chosen conditions.
  • an Antibody an immunoglobin.
  • the term also covers any protein having a binding domain which is homologous to an immunoglobin binding domain.
  • antibodies within this definition are, inter alia, immunoglobin isotypes and the Fab, F(ab 1 ) 2 , scfv, Fv, dAb and Fd fragments.
  • Fab Two chain molecule comprising an An light chain and part of a heavy-chain.
  • scFv A single-chain Ab comprising either VH::linker::VL or VL::linker::VH w.t. Wild type HC Heavy chain LC Light chain
  • VK A variable domain of a Kappa light chain.
  • VH A variable domain of a heavy chain.
  • VL A variable domain of a lambda light chain.
  • nucleic acids are cleaved solely at the cleavage site of a restriction endonuclease
  • minor cleavage may occur at random, e.g., at non-specific sites other than the specific cleavage site that is characteristic of the restriction endonuclease.
  • the skilled worker will recognize that such non-specific, random cleavage is the usual occurrence.
  • “solely at the cleavage site” of a restriction endonuclease means that cleavage occurs preferentially at the site characteristic of that endonuclease.
  • cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide includes cleavage sites formed by the single-stranded portion of the partially double-stranded ologonucleotide duplexing with the single-stranded DNA, cleavage sites in the double-stranded portion of the partially double-stranded oligonucleotide, and cleavage sites introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination.
  • the first of those cleavage sites is preferred.
  • the latter two cleavage sites are preferred.
  • nucleic acid sequences that are useful in the methods of this invention i.e., those that encode at least in part the individual peptides, polypeptides and proteins displayed, or expressed in or comprising the libraries of this invention, may be native, synthetic or a combination thereof. They may be mRNA, DNA or cDNA. In the preferred embodiment, the nucleic acids encode antibodies. Most preferably, they encode Fabs.
  • the nucleic acids useful in this invention may be naturally diverse, synthetic diversity may be introduced into those naturally diverse members, or the diversity may be entirely synthetic.
  • synthetic diversity can be introduced into one or more CDRs of antibody genes.
  • it is introduced into CDR1 and CDR2 of immunoglobulins.
  • natural diversity is captured in the CDR3 regions of the immunoglogin genes of this invention from B cells.
  • the nucleic acids of this invention comprise a population of immunoglobin genes that comprise synthetic diversity in at least one, and more preferably both of the CDR1 and CDR2 and diversity in CDR3 captured from B cells.
  • Synthetic diversity may be created, for example, through the use of TRIM technology (U.S. Pat. No. 5,869,644).
  • TRIM technology allows control over exactly which amino-acid types are allowed at variegated positions and in what proportions.
  • codons to be diversified are synthesized using mixtures of trinucleotides. This allows any set of amino acid types to be included in any proportion.
  • Another alternative that may be used to generate diversified DNA is mixed oligonucleotide synthesis.
  • TRIM technology one could allow Ala and Trp.
  • mixed oligonucleotide synthesis a mixture that included Ala and Trp would also necessarily include Ser and Gly.
  • the amino-acid types allowed at the variegated positions are picked with reference to the structure of antibodies, or other peptides, polypeptides or proteins of the family, the observed diversity in germline genes, the observed somatic mutations frequently observed, and the desired areas and types of variegation.
  • the nucleic acid sequences for at least one CDR or other region of the peptides, polypeptides or proteins of the family are cDNAs produced by reverse transcription from mRNA. More preferably, the mRNAs are obtained from peripheral blood cells, bone marrow cells, spleen cells or lymph node cells (such as B-lymphocytes or plasma cells) that express members of naturally diverse sets of related genes. More preferable, the mRNAs encode a diverse family of antibodies. Most preferably, the mRNAs are obtained from patients suffering from at least one autoimmune disorder or cancer. Preferably, mRNAs containing a high diversity of autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, antiphospholipid syndrome and vasculitis are used.
  • autoimmune diseases such as systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, antiphospholipid syndrome and vasculitis are used
  • the cDNAs are produced from the mRNAs using reverse transcription.
  • the mRNAs are separated from the cell and degraded using standard methods, such that only the full length (i.e., capped) mRNAs remain. The cap is then removed and reverse transcription used to produce the cDNAs.
  • the reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., H J de Haard et al., Journal of Biological Chemistry, 274(26):18218-30 (1999).
  • primers that are complementary to the constant regions of antibody genes may be used. Those primers are useful because they do not generate bias toward subclasses of antibodies.
  • poly-dT primers may be used (and may be preferred for the heavy-chain genes).
  • sequences complementary to the primer may be attached to the termini of the antisense strand.
  • the reverse transcriptase primer may be biotinylated, thus allowing the cDNA product to be immobilized on streptavidin (Sv) beads. Immobilization can also be effected using a primer labeled at the 5′ end with one of a) free amine group, b) thiol, c) carboxylic acid, or d) another group not found in DNA that can react to form a strong bond to a known partner on an insoluble medium. If, for example, a free amine (preferably primary amine) is provided at the 5′ end of a DNA primer, this amine can be reacted with carboxylic acid groups on a polymer bead using standard amide-forming chemistry. If such preferred immobilization is used during reverse transcription, the top strand RNA is degraded using well-known enzymes, such as a combination of RNAseH and RNAseA, either before or after immobilization.
  • Sv streptavidin
  • nucleic acid sequences useful in the methods of this invention are generally amplified before being used to display and/or express the peptides, polypeptides or proteins that they encode.
  • the single-stranded DNAs Prior to amplification, the single-stranded DNAs may be cleaved using either of the methods described before. Alternatively, the single-stranded DNAs may be amplified and then cleaved using one of those methods.
  • the present invention preferably utilizes primers in the constant regions of the heavy and light chain genes and primers to a synthetic sequence that are attached at the 5′ end of the sense strand. Priming at such synthetic sequence avoids the use of sequences within the variable regions of the antibody genes. Those variable region priming sites generate bias against V genes that are either of rare subclasses or that have been mutated at the priming sites. This bias is partly due to suppression of diversity within the primer region and partly due to lack of priming when many mutations are present in the region complementary to the primer.
  • the methods disclosed in this invention have the advantage of not biasing the population of amplified antibody genes for particular V gene types.
  • the synthetic sequences may be attached to the 5′ end of the DNA strand by various methods well known for ligating DNA sequences together. RT CapExtention is one preferred method.
  • RT CapExtention (derived from Smart PCR(TM))
  • a short overlap (5′- . . . GGG-3′ in the upper-strand primer (USP-GGG) complements 3′-CCC . . . . 5′ in the lower strand) and reverse transcriptases are used so that the reverse complement of the upper-strand primer is attached to the lower strand.
  • FIGS. 1 and 2 show schematics to amplify VH and VL genes using RT CapExtention.
  • FIG. 1 shows a schematic of the amplification of VH genes.
  • Panel A shows a primer specific to the poly-dT region of the 3′ UTR priming synthesis of the first, lower strand. Primers that bind in the constant region are also suitable.
  • Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA.
  • Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence.
  • Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain.
  • Panel E shows immobilized double-stranded (ds) cDNA obtained by using a 5′-biotinylated top-strand primer.
  • FIG. 2 shows a similar schematic for amplification of VL genes.
  • Panel A shows a primer specific to the constant region at or near the 3′ end priming synthesis of the first, lower strand. Primers that bind in the poly-dT region are also suitable.
  • Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA.
  • Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence.
  • Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain.
  • the bottom-strand primer also contains a useful restriction endonuclease site, such as AscI.
  • Panel E shows immobilized ds cDNA obtained by using a 5′-biotinylated top-strand primer.
  • each V gene consists of a 5′ untranslated region (UTR) and a secretion signal, followed by the variable region, followed by a constant region, followed by a 3′ untranslated region (which typically ends in poly-A).
  • An initial primer for reverse transcription may be complementary to the constant region or to the poly A segment of the 3′-UTR.
  • a primer of 15 T is preferred.
  • Reverse transcriptases attach several C residues to the 3′ end of the newly synthesized DNA. RT CapExtention exploits this feature.
  • the reverse transcription reaction is first run with only a lower-strand primer. After about 1 hour, a primer ending in GGG (USP-GGG) and more RTase are added.
  • synthetic sequences may be added by Rapid Amplification of cDNA Ends (RACE) (see Frohman, M. A., Dush, M. K., & Martin, G. R. (1988) Proc. Natl. Acad. Sci. USA (85): 8998-9002).
  • RACE Rapid Amplification of cDNA Ends
  • FIG. 1 shows a schematic of RACE amplification of antibody heavy and light chains.
  • mRNA is selected by treating total or poly(A+) RNA with calf intestinal phosphatase (CIP) to remove the 5′-phosphate from all molecules that have them such as ribosomal RNA, fragmented mRNA, tRNA and genomic DNA. Full length mRNA (containing a protective 7-methyl cap structure) is uneffected. The RNA is then treated with tobacco acid pyrophosphatase (TAP) to remove the cap structure from full length mRNAs leaving a 5′-monophosphate group.
  • CIP calf intestinal phosphatase
  • RNA adaptor is ligated to the RNA population, only molecules which have a 5-phosphate (uncapped, full length mRNAs) will accept the adaptor.
  • Reverse trascriptase reactions using an oligodT primer, and nested PCR using one adaptor primer (located in the 5′ synthetic adaptor) and one primer for the gene) are then used to amplify the desired transcript.
  • the upper strand or lower strand primer may be also biotinylated or labeled at the 5′ end with one of a) free amino group, b) thiol, c) carboxylic acid and d) another group not found in DNA that can react to form a strong bond to a known partner as an insoluble medium. These can then be used to immobilize the labeled strand after amplification.
  • the immobilized DNA can be either single or double-stranded.
  • the DNAs of this invention are rendered single-stranded.
  • the strands can be separated by using a biotinylated primer, capturing the biotinylated product on streptavidin beads, denaturing the DNA, and washing away the complementary strand.
  • a biotinylated primer capturing the biotinylated product on streptavidin beads
  • denaturing the DNA denaturing the DNA
  • washing away the complementary strand Depending on which end of the captured DNA is wanted, one will choose to immobilize either the upper (sense) strand or the lower (antisense) strand.
  • any 5′ untranslated regions and mammalian signal sequences must be removed and replaced, in frame, by a suitable signal sequence that functions in the display or expression host.
  • parts of the variable domains in antibody genes may be removed and replaced by synthetic segments containing synthetic diversity. The diversity of other gene families may likewise be expanded with synthetic diversity.
  • the first method comprises the steps of:
  • short oligonucleotides are annealed to the single-stranded DNA so that restriction endonuclease recognition sites formed within the now locally double-stranded regions of the DNA can be cleaved.
  • a recognition site that occurs at the same position in a substantial fraction of the single-stranded DNAs is identical.
  • Table 1 depicts the DNA sequences of the FR3 regions of the 51 known human VH germline genes.
  • the genes contain restriction endonuclease recognition sites shown in Table 2. Restriction endonucleases that cleave a large fraction of germline genes at the same site are preferred over endonucleases that cut at a variety of sites.
  • An enzyme that cleaves downstream in FR3 is also more preferable because it captures fewer mutations in the framework. This may be advantageous is some cases. However, it is well known that framework mutations exist and confer and enhance antibody binding.
  • the present invention by choice of appropriate restriction site, allows all or part of FR3 diversity to be captured. Hence, the method also allows extensive diversity to be captured.
  • restriction endonucleases that are active between about 37° C. and about 75° C. are used.
  • restriction endonucleases that are active between about 45° C. and about 75° C. may be used.
  • enzymes that are active above 50° C., and most preferably active about 55° C. are used. Such temperatures maintain the nucleic acid sequence to be cleaved in substantially single-stranded form.
  • Enzymes shown in Table 2 that cut many of the heavy chain FR3 germline genes at a single position include: MaeIII(24@4), Tsp45I(21@4), HphI(44@5), BsaJI(23@65), AluI(23@47), BlpI(21@48), DdeI(29@58), BglII(10@61), MslI(44@72), BsiEI(23@74), EaeI(23@74), EagI(23@74), HaeIII(25@75), Bst4CI(51@86), HpyCH4III(51@86), HinfI(38@2), MlyI(18@2), PleI(18@2), MnlI(31@67), HpyCH4V(21@44), BsmAI(16@11), BpmI(19@12), XmnI(12@30), and SacI(11@51). (The notation used means, for example, that
  • the preferred restriction endonucleases are: Bst4CI (or TaaI or HpyCH4III), BlpI, HpyCH4V, and MslI. Because ACNGT (the restriction endonuclease recognition site for Bst4CI, TaaI, and HpyCH4III) is found at a consistent site in all the human FR3 germline genes, one of those enzymes is the most preferred for capture of heavy chain CDR3 diversity.
  • BlpI and HpyCH4V are complementary. BlpI cuts most members of the VH1 and VH4 families while HpyCH4V cuts most members of the VH3, VH5, VH6, and VH7 families. Neither enzyme cuts VH2s, but this is a very small family, containing only three members. Thus, these enzymes may also be used in preferred embodiments of the methods of this invention.
  • restriction endonucleases HpyCH4III, Bst4CI, and TaaI all recognize 5′-ACnGT-3′ and cut upper strand DNA after n and lower strand DNA before the base complementary to n. This is the most preferred restriction endonuclease recognition site for this method on human heavy chains because it is found in all germline genes. Furthermore, the restriction endonuclease recognition region (ACnGT) matches the second and third bases of a tyrosine codon (tay) and the following cysteine codon (tgy) as shown in Table 3. These codons are highly conserved, especially the cysteine in mature antibody genes.
  • Table 4 E shows the distinct oligonucleotides of length 22 (except the last one which is of length 20) bases.
  • Table 5 C shows the analysis of 1617 actual heavy chain antibody genes. Of these, 1511 have the site and match one of the candidate oligonucleotides to within 4 mismatches. Eight oligonucleotides account for most of the matches and are given in Table 4 F.1. The 8 oligonucleotides are very similar so that it is likely that satisfactory cleavage will be achieved with only one oligonucleotide (such as H43.77.97.1-02#1) by adjusting temperature, pH, salinity, and the like.
  • One or two oligonucleotides may likewise suffice whenever the germline gene sequences differ very little and especially if they differ very little close to the restriction endonuclease recognition region to be cleaved.
  • Table 5 D shows a repeat analysis of 1617 actual heavy chain antibody genes using only the 8 chosen oligonucleotides. This shows that 1463 of the sequences match at least one of the oligonucleotides to within 4 mismatches and have the site as expected. Only 7 sequences have a second HpyCH4III restriction endonuclease recognition region in this region.
  • Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human heavy chains. Cleavage in FR1 allows capture of the entire CDR diversity of the heavy chain.
  • Table 6 shows the restriction endonuclease recognition sites found in human germline genes FR1s.
  • the preferred sites are BsgI(GTGCAG;39@4), BsoFI(GCngc;43@6,11@9,2@3,1@12), TseI(Gcwgc;43@6,11@9,2@3,1@12), MspA1I(CMGckg;46@7,2@1), PvuII(CAGctg;46@7,2@1), AluI(AGct;48@82@2), DdeI(Ctnag;22@52,9@48), HphI(tcacc;22@80), BssKI(Nccngg;35@39,2@40), BsaJI(Ccnngg;32@40,2@41), BstNI(CCwgg;33@40), ScrFI(CCngg;35@40,2@
  • MspAI and PvuII have 46 sites at 7-12 and 2 at 1-6. To avoid cleavage at both sites, oligonucleotides are used that do not fully cover the site at 1-6. Thus, the DNA will not be cleaved at that site. We have shown that DNA that extends 3, 4, or 5 bases beyond a PvuII-site can be cleaved efficiently.
  • Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human kappa light chains.
  • Table 8 shows the human kappa FR1 germline genes and Table 9 shows restriction endonuclease recognition sites that are found in a substantial number of human kappa FR1 germline genes at consistent locations.
  • BsmAI and PflFI are the most preferred enzymes. BsmAI sites are found at base 18 in 35 of 40 germline genes. PflFI sites are found in 35 of 40 germline genes at base 12.
  • Another example of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of the human lambda light chain.
  • Table 10 shows the 31 known human lambda FR1 germline gene sequences.
  • Table 11 shows restriction endonuclease recognition sites found in human lambda FR1 germline genes. HinfI and DdeI are the most preferred restriction endonucleases for cutting human lambda chains in FR1.
  • oligonucleotides are prepared so as to functionally complement, alone or in combination, the chosen recognition site.
  • the oligonucleotides also include sequences that flank the recognition site in the majority of the amplified genes. This flanking region allows the sequence to anneal to the single-stranded DNA sufficiently to allow cleavage by the restriction endonuclease specific for the site chosen.
  • the actual length and sequence of the oligonucleotide depends on the recognition site and the conditions to be used for contacting and cleavage. The length must be sufficient so that the oligonucleotide is functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location.
  • the oligonucleotides of this preferred method of the invention are about 17 to about 30 nucleotides in length. Below about 17 bases, annealing is too weak and above 30 bases there can be a loss of specificity. A preferred length is 18 to 24 bases.
  • Oligonucleotides of this length need not be identical complements of the germline genes. Rather, a few mismatches taken may be tolerated. Preferably, however, no more than 1-3 mismatches are allowed. Such mismatches do not adversely affect annealing of the oligonucleotide to the single-stranded DNA. Hence, the two DNAs are said to be functionally complementary.
  • the second method to manipulate the single-stranded DNAs of this invention for display and/or expression comprises the steps of:
  • the cleavage site may be formed by the single-stranded portion of the partially double-stranded oligonucleotide duplexing with the single-stranded DNA, the cleavage site may be carried in the double-stranded portion of the partially double-stranded oligonucleotide, or the cleavage site may be introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination. In this embodiment, the first is preferred.
  • restriction endonuclease recognition site may be located in either the double-stranded portion of the oligonucleotide or introduced by the amplification primer, which is complementary to that double-stranded region, as used to amplify the combination.
  • the restriction endonuclease site is that of a Type II-S restriction endonuclease, whose cleavage site is located at a known distance from its recognition site.
  • UREs are partially double-stranded oligonucleotides.
  • the single-stranded portion or overlap of the URE consists of a DNA adapter that is functionally complementary to the sequence to be cleaved in the single-stranded DNA.
  • the double-stranded portion consists of a restriction endonuclease recognition site, preferably type II-S.
  • the URE method of this invention is specific and precise and can tolerate some (e.g., 1-3) mismatches in the complementary regions, i.e., it is functionally complementary to that region. Further, conditions under which the URE is used can be adjusted so that most of the genes that are amplified can be cut, reducing bias in the library produced from those genes.
  • the sequence of the single-stranded DNA adapter or overlap portion of the URE typically consists of about 14-22 bases. However, longer or shorter adapters may be used. The size depends on the ability of the adapter to associate with its functional complement in the single-stranded DNA and the temperature used for contacting the URE and the single-stranded DNA at the temperature used for cleaving the DNA with the restriction enzyme.
  • the adapter must be functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that the cleavage may occur at the chosen temperature and at the desired location. We prefer singe-stranded or overlap portions of 14-17 bases in length, and more preferably 18-20 bases in length.
  • the site chosen for cleavage using the URE is preferably one that is substantially conserved in the family of amplified DNAs. As compared to the first cleavage method of this invention, these sites do not need to be endonuclease recognition sites. However, like the first method, the sites chosen can be synthetic rather than existing in the native DNA. Such sites may be chosen by references to the sequences of known antibodies or other families of genes. For example, the sequences of many germline genes are reported at http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html. For example, one preferred site occurs near the end of FR3—codon 89 through the second base of codon 93. CDR3 begins at codon 95.
  • sequences of 79 human heavy-chain genes are also available at http://www.ncbi.nlm.nih.gov/entre2/nucleotide.html. This site can be used to identify appropriate sequences for URE cleavage according to the methods of this invention. See, e.g., Table 12B.
  • one or more sequences are identified using these sites or other available sequence information. These sequences together are present in a substantial fraction of the amplified DNAs. For example, multiple sequences could be used to allow for known diversity in germline genes or for frequent somatic mutations. Synthetic degenerate sequences could also be used. Preferably, a sequence(s) that occurs in at least 65% of genes examined with no more than 2-3 mismatches is chosen.
  • URE single-stranded adapters or overlaps are then made to be complementary to the chosen regions.
  • Conditions for using the UREs are determined empirically. These conditions should allow cleavage of DNA that contains the functionally complementary sequences with no more than 2 or 3 mismatches but that do not allow cleavage of DNA lacking such sequences.
  • the double-stranded portion of the URE includes an endonuclease recognition site, preferably a Type II-S recognition site.
  • Any enzyme that is active at a temperature necessary to maintain the single-stranded DNA substantially in that form and to allow the single-stranded DNA adapter portion of the URE to anneal long enough to the single-stranded DNA to permit cleavage at the desired site may be used.
  • Type II-S enzymes for use in the URE methods of this invention provide asymmetrical cleavage of the single-stranded DNA. Among these are the enzymes listed in Table 13. The most preferred Type II-S enzyme is FokI.
  • the UREs used in the prior art contained a 14-base single-stranded segment, a 10-base stem (containing a FokI site), followed by the palindrome of the 10-base stem. While such UREs may be used in the methods of this invention, the preferred UREs of this invention also include a segment of three to eight bases (a loop) between the FokI restriction endonuclease recognition site containing segments.
  • the stem (containing the FokI site) and its palindrome are also longer than 10 bases. Preferably, they are 10-14 bases in length. Examples of these “lollipop” URE adapters are shown in Table 15.
  • a URE to cleave an single-stranded DNA involves the FR3 region of human heavy chain.
  • Each has a 20-base adaptor sequence to complement the germline gene, a ten-base stem segment containing a FokI site, a five base loop, and the reverse complement of the first stem segment.
  • FIG. 17 shows an analysis of 182 full-length human kappa chains for matching by the four 19-base probe sequences shown. Ninety-six percent of the sequences match one of the probes with 2 or fewer mismatches.
  • the URE adapters shown in Table 17 are for cleavage of the sense strand of kappa chains.
  • the adaptor sequences are the reverse complement of the germline gene sequences.
  • the URE consists of a ten-base stem, a five base loop, the reverse complement of the stem and the complementation sequence.
  • the loop shown here is TTGTT, but other sequences could be used. Its function is to interrupt the palindrome of the stems so that formation of a lollypop monomer is favored over dimerization.
  • Table 17 also shows where the sense strand is cleaved.
  • Table 18 shows analysis of 128 human lambda light chains for matching the four 19-base probes shown. With three or fewer mismatches, 88 of 128 (69%) of the chains match one of the probes. Table 18 also shows URE adapters corresponding to these probes. Annealing these adapters to upper-strand ssDNA of lambda chains and treatment with FokI in the presence of FOKIact at a temperature at or above 45° C. will lead to specific and precise cleavage of the chains.
  • the conditions under which the short oligonucleotide sequences of the first method and the UREs of the second method are contacted with the single-stranded DNAs may be empirically determined.
  • the conditions must be such that the single-stranded DNA remains in substantially single-stranded form. More particularly, the conditions must be such that the single-stranded DNA does not form loops that may interfere with its association with the oligonucleotide sequence or the URE or that may themselves provide sites for cleavage by the chosen restriction endonuclease.
  • first method and UREs can be adjusted by controlling the concentrations of the URE adapters/oligonucleotides and substrate DNA, the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and formamide), the concentration of the restriction endonuclease(e.g., FokI), and the time of the digestion.
  • concentrations of the URE adapters/oligonucleotides and substrate DNA the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and formamide), the concentration of the restriction endonuclease(e.g., FokI), and the time of the digestion.
  • synthetic oligonucleotides having: 1) target germline gene sequences, 2) mutated target gene sequences, or 3) somewhat related non-target sequences. The goal is to cleave most of the target sequences and minimal amounts of non-targets.
  • the single-stranded DNA is maintained in substantially that form using a temperature between about 37° C. and about 75° C.
  • a temperature between about 45° C. and about 75° C. is used. More preferably, a temperature between 50° C. and 60° C., most preferably between 55° C. and 60° C., is used. These temperatures are employed both when contacting the DNA with the oligonucleotide or URE and when cleaving the DNA using the methods of this invention.
  • the two cleavage methods of this invention have several advantages.
  • the first method allows the individual members of the family of single-stranded DNAs to be cleaved preferentially at one substantially conserved endonuclease recognition site.
  • the method also does not require an endonuclease recognition site to be built into the reverse transcription or amplification primers. Any native or synthetic site in the family can be used.
  • the second method has both of these advantages.
  • the preferred URE method allows the single-stranded DNAs to be cleaved at positions where no endoniuclease recognition site naturally occurs or has been synthetically constructed.
  • both cleavage methods permit the use of 5′ and 3′ primers so as to maximize diversity and then cleavage to remove unwanted or deleterious sequences before cloning, display and/or expression.
  • the DNA is prepared for cloning, display and/or expression. This is done by using a partially duplexed synthetic DNA adapter, whose terminal sequence is based on the specific cleavage site at which the amplified DNA has been cleaved.
  • the synthetic DNA is designed such that when it is ligated to the cleaved single-stranded DNA in proper reading frame so that the desired peptide, polypeptide or protein can be displayed on the surface of the genetic package and/or expressed.
  • the double-stranded portion of the adapter comprises the sequence of several codons that encode the amino acid sequence characteristic of the family of peptides, polypeptides or proteins up to the cleavage site.
  • the amino acids of the 3-23 framework are preferably used to provide the sequences required for expression of the cleaved DNA.
  • the double-stranded portion of the adapter is about 12 to 100 bases in length. More preferably, about 20 to 100 bases are used.
  • the double-standard region of the adapter also preferably contains at least one endonuclease recognition site useful for cloning the DNA into a suitable display and/or expression vector (or a recipient vector used to archive the diversity).
  • This endonuclease restriction site may be native to the germline gene sequences used to extend the DNA sequence. It may be also constructed using degenerate sequences to the native germline gene sequences. Or, it may be wholly synthetic.
  • the single-stranded portion of the adapter is complementary to the region of the cleavage in the single-stranded DNA.
  • the overlap can be from about 2 bases up to about 15 bases. The longer the overlap, the more efficient the ligation is likely to be. A preferred length for the overlap is 7 to 10. This allows some mismatches in the region so that diversity in this region may be captured.
  • the single-stranded region or overlap of the partially duplexed adapter is advantageous because it allows DNA cleaved at the chosen site, but not other fragments to be captured. Such fragments would contaminate the library with genes encoding sequences that will not fold into proper antibodies and are likely to be non-specifically sticky.
  • One illustration of the use of a partially duplexed adaptor in the methods of this invention involves ligating such adaptor to a human FR3 region that has been cleaved, as described above, at 5′-ACnGT-3′ using HpyCH4III, Bst4CI or TaaI.
  • Table 4 F.2 shows the bottom strand of the double-stranded portion of the adaptor for ligation to the cleaved bottom-strand DNA. Since the HpyCH4III-Site is so far to the right (as shown in Table 3), a sequence that includes the AflII-site as well as the XbaI site can be added. This bottom strand portion of the partially-duplexed adaptor, H43.XAExt, incorporates both XbaI and AflII-sites.
  • the top strand of the double-stranded portion of the adaptor has neither site (due to planned mismatches in the segments opposite the XbaI and AflII-Sites of H43.XAExt), but will anneal very tightly to H43.XAExt.
  • H43AExt contains only the AflII-site and is to be used with the top strands H43.ABr1 and H43.ABr2 (which have intentional alterations to destroy the AflII-site).
  • the desired, captured DNA can be PCR amplified again, if desired, using in the preferred embodiment a primer to the downstream constant region of the antibody gene and a primer to part of the double-standard region of the adapter.
  • the primers may also carry restriction endonuclease sites for use in cloning the amplified DNA.
  • the composite DNA is cleaved at chosen 5′ and 3′ endonuclease recognition sites.
  • the cleavage sites useful for cloning depend on the phage or phagemid or other vectors into which the cassette will be inserted and the available sites in the antibody genes.
  • Table 19 provides restriction endonuclease data for 75 human light chains.
  • Table 20 shows corresponding data for 79 human heavy chains.
  • the endonucleases are ordered by increasing frequency of cutting.
  • Nch is the number of chains cut by the enzyme and Ns is the number of sites (some chains have more than one site).
  • SfiI, NotI, AflII, ApaLI, and AscI are very suitable.
  • SfiI and NotI are preferably used in pCES1 to insert the heavy-chain display segment.
  • ApaLI and AscI are preferably used in pCES1 to insert the light-chain display segment.
  • BstEII-sites occur in 97% of germ-line JH genes. In rearranged V genes, only 54/79 (68%) of heavy-chain genes contain a BstEII-Site and 7/61 of these contain two sites. Thus, 47/79 (59%) contain a single BstEII-Site.
  • An alternative to using BstEII is to cleave via UREs at the end of JH and ligate to a synthetic oligonucleotide that encodes part of CH1.
  • One example of preparing a family of DNA sequences using the methods of this invention involves capturing human CDR 3 diversity.
  • mRNAs from various autoimmune patients are reverse transcribed into lower strand cDNA.
  • the lower strand is immobilized and a short oligonucleotide used to cleave the cDNA upstream of CDR3.
  • a partially duplexed synthetic DNA adapter is then annealed to the DNA and the DNA is amplified using a primer to the adapter and a primer to the constant region (after FR4).
  • the DNA is then cleaved using BstEII (in FR4) and a restriction endonuclease appropriate to the partially double-stranded adapter (e.g., XbaI and AfilII (in FR3)).
  • the DNA is then ligated into a synthetic VH skeleton such as 3-23.
  • One example of preparing a single-stranded DNA that was cleaved using the URE method involves the human Kappa chain.
  • the cleavage site in the sense strand of this chain is depicted in Table 17.
  • the oligonucleotide kapextURE is annealed to the oligonucleotides (kaBR01UR, kaBR02UR, kaBR03UR, and kaBR04UR) to form a partially duplex DNA.
  • This DNA is then ligated to the cleaved soluble kappa chains.
  • the ligation product is then amplified using primers kapextUREPCR and CKForeAsc (which inserts a AscI site after the end of C kappa). This product is then cleaved with ApaLI and AscI and ligated to similarly cut recipient vector.
  • Another example involves the cleavage of lambda light chains, illustrated in Table 18.
  • an extender ON_LamEx133
  • four bridge oligonucleotides ON_LamB1-133, ON_LamB2-133, ON_LamB3-133, and ON_LamB4-133 are annealed to form a partially duplex DNA. That DNA is ligated to the cleaved lambda-chain sense strands. After ligation, the DNA is amplified with ON_Lam133PCR and a forward primer specific to the lambda constant domain, such as CL2ForeAsc or CL7ForeAsc (Table 130).
  • the preferred process of this invention is to provide recipient vectors (e.g., for display and/or expression) having sites that allow cloning of either light or heavy chains.
  • recipient vectors e.g., for display and/or expression
  • Such vectors are well known and widely used in the art.
  • a preferred phage display vector in accordance with this invention is phage MALIA3. This displays in gene III. The sequence of the phage MALIA3 is shown in Table 21A (annotated) and Table 21B (condensed).
  • the DNA encoding the selected regions of the light or heavy chains can be transferred to the vectors using endonucleases that cut either light or heavy chains only very rarely.
  • light chains may be captured with ApaLI and AscI.
  • Heavy-chain genes are preferably cloned into a recipient vector having SfiI, NcoI, XbaI, AflII, BstEII, ApaI, and NotI sites.
  • the light chains are preferably moved into the library as ApaLI-AscI fragments.
  • the heavy chains are preferably moved into the library as SfiI-NotI fragments.
  • the display is had on the surface of a derivative of M13 phage.
  • the most preferred vector contains all the genes of M13, an antibiotic resistance gene, and the display cassette.
  • the preferred vector is provided with restriction sites that allow introduction and excision of members of the diverse family of genes, as cassettes.
  • the preferred vector is stable against rearrangement under the growth conditions used to amplify phage.
  • the diversity captured by the methods of the present invention may be displayed and/or expressed in a phagemid vector (e.g., pCES1) that displays and/or expresses the peptide, polypeptide or protein.
  • a phagemid vector e.g., pCES1
  • Such vectors may also be used to store the diversity for subsequent display and/or expression using other vectors or phage.
  • the diversity captured by the methods of the present invention may be displayed and/or expressed in a yeast vector.
  • the mode of display may be through a short linker to anchor domains—one possible anchor comprising the final portion of M13 III (“IIIstump”) and a second possible anchor being the full length III mature protein.
  • the IIIstump fragment contains enough of M13 III to assemble into phage but not the domains involved in mediating infectivity. Because the w.t. III proteins are present the phage is unlikely to delete the antibody genes and phage that do delete these segments receive only a very small growth advantage.
  • the DNA encodes the w.t. AA sequence, but differs from the w.t. DNA sequence to a very high extent. This will greatly reduce the potential for homologous recombination between the anchor and the w.t. gene that is also present (see Example 6).
  • the present invention uses a complete phage carrying an antibiotic-resistance gene (such as an ampicillin-resistance gene) and the display cassette. Because the w.t. iii and possibly viii genes are present, the w.t. proteins are also present.
  • the display cassette is transcribed from a regulatable promoter (e.g., P LacZ ).
  • a regulatable promoter allows control of the ratio of the fusion display gene to the corresponding w.t. coat protein. This ratio determines the average number of copies of the display fusion per phage (or phagemid) particle.
  • Another aspect of the invention is a method of displaying peptides, polypeptides or proteins (and particularly Fabs) on filamentous phage.
  • this method displays FABs and comprises:
  • the DNA encoding the anchor protein in the above preferred cassette should be designed to encode the same (or a closely related) amino acid sequence as is found in one of the coat proteins of the phage, but with a distinct DNA sequence. This is to prevent unwanted homologous recombination with the w.t. gene.
  • the cassette should be placed in the intergenic region. The positioning and orientation of the display cassette can influence the behavior of the phage.
  • a transcription terminator may be placed after the second stop of the display cassette above (e.g., Trp). This will reduce interaction between the display cassette and other genes in the phage antibody display vector.
  • the phage or phagemid can display and/or express proteins other than Fab, by replacing the Fab portions indicated above, with other protein genes.
  • hosts can be used the display and/or expression aspect of this invention. Such hosts are well known in the art.
  • the preferred host should grow at 30° C. and be RecA ⁇ (to reduce unwanted genetic recombination) and EndA ⁇ (to make recovery of RF DNA easier). It is also preferred that the host strain be easily transformed by electroporation.
  • XL1-Blue MRF′ satisfies most of these preferences, but does not grow well at 30° C. XL1-Blue MRF′ does grow slowly at 38° C. and thus is an acceptable host. TG-1 is also an acceptable host although it is RecA + and EndA + . XL1-Blue MRF′ is more preferred for the intermediate host used to accumulate diversity prior to final construction of the library.
  • the libraries of this invention may be screened using well known and conventionally used techniques.
  • the selected peptides, polypeptides or proteins may then be used to treat disease.
  • the peptides, polypeptides or proteins for use in therapy or in pharmaceutical compositions are produced by isolating the DNA encoding the desired peptide, polypeptide or protein from the member of the library selected. That DNA is then used in conventional methods to produce the peptide, polypeptides or protein it encodes in appropriate host cells, preferably mammalian host cells, e.g., CHO cells. After isolation, the peptide, polypeptide or protein is used alone or with pharmaceutically acceptable compositions in therapy to treat disease.
  • RNAzolTM kit CINNA/Biotecx
  • RNA adaptor was ligated to the 5′ end of all mRNAs.
  • a reverse transcriptase reaction was performed in the presence of oligo(dT15) specific primer under conditions described by the manufacturer in the GeneRAacerTM kit.
  • 1 ⁇ 5 of the cDNA from the reverse transcriptase reaction was used in a 20 ul PCR reaction.
  • a forward primer based on the CH1 chain of IgM [HuCmFOR] and a backward primer based on the ligated synthetic adaptor sequence [5′A] were used. (See Table 22).
  • a forward primer that contains the 3′ coding-end of the cDNA [HuCkFor and HuCLFor2+HuCLfor7] and a backward primer based on the ligated synthetic adapter sequence [5′A] was used (See Table 22). Specific amplification products after 30 cycles of primary PCR were obtained.
  • FIG. 4 shows the amplification products obtained after the primary PCR reaction from 4 different patient samples. 8 ul primary PCR product from 4 different patients was analyzed on a agarose gel [labeled 1, 2, 3 and 4]. For the heavy chain, a product of approximately 950 nt is obtained while for the kappa and lambda light chains the product is approximately 850 nt. M1-2 are molecular weight markers.
  • PCR products were also analyzed by DNA sequencing [10 clones from the lambda, kappa or heavy chain repertoires]. All sequenced antibody genes recovered contained the full coding sequence as well as the 5′ leader sequence and the V gene diversity was the expected diversity (compared to literature data).
  • a nested biotinylated forward primer [HuCm-Nested] was used, and a nested 5′end backward primer located in the synthetic adapter-sequence [5′NA] was used.
  • the 5′end lower-strand of the heavy chain was biotinylated.
  • a 5′end biotinylated nested primer in the synthetic adapter was used [5′NA] in combination with a 3′end primer in the constant region of Ckappa and Clambda, extended with a sequence coding for the AscI restriction site [kappa: HuCkForAscI, Lambda: HuCL2-FOR-ASC+HuCL7-FOR-ASC]. [5′end Top strand DNA was biotinylated]. After gel-analysis the secondary PCR products were pooled and purified with Promega Wizzard PCR cleanup. Approximately 25 ug biotinylated heavy chain, lambda and kappa light chain DNA was isolated from the 11 patients.
  • a repertoire of human-kappa chain mRNAs was prepared using the RACE method of Example 1 from a collection of patients having various autoimmune diseases.
  • Example 2 followed the protocol of Example 1. Approximately 2 micrograms (ug) of human kappa-chain (Igkappa) gene PACE material with biotin attached to 5′-end of upper strand was immobilized as in Example 1 on 200 microliters ( ⁇ L) of Seradyn magnetic beads. The lower strand was removed by washing the DNA with 2 aliquots 200 ⁇ L of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 200 ⁇ L of 10 mM Tris (pH 7.5) 100 mM NaCl.
  • the short oligonucleotides shown in Table 23 were added in 40 fold molar excess in 100 ⁇ L of NEB buffer 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl 2 , 1 mM dithiothreitol pH 7.9) to the dry beads. The mixture was incubated at 95° C. for 5 minutes then cooled down to 55° C. over 30 minutes. Excess oligonucleotide was washed away with 2 washes of NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 MM MgCl 2 , 1 mM dithiothreitol pH 7.9).
  • NEB BsmAI
  • FIG. 5 shows an analysis of digested kappa single-stranded DNA. Approximately 151.5 pmol of adapter was annealed to 3.79 pmol of immobilized kappa single-stranded DNA followed by digestion with 15 U of BsmAI. The supernatant containing the desired DNA was removed and analyzed by 5% polyacrylamide gel along with the remaining beads which contained uncleaved full length kappa DNA. 189 pmol of cleaved single-stranded DNA was purified for further analysis. Five percent of the original full length ssDNA remained on the beads.
  • FIG. 6 shows an analysis of the extender—cleaved kappa ligation. 180 pmol of pre-annealed bridge/extender was ligated to 1.8 pmol of BsmAl digested single-stranded DNA. The ligated DNA was purified by Qiagen PCR purification column and analyzed on a 5% polyacrylamide gel. Results indicated that the ligation of extender to single-stranded DNA was 95% efficient.
  • a partially double-stranded adaptor was prepared using the oligonucleotide shown in Table 23.
  • the adaptor was added to the single-stranded DNA in 100 fold molar excess along with 1000 units of T4 DNA ligase and incubated overnight at 16° C.
  • the excess oligonucleotide was removed with a Qiagen PCR purification column.
  • the ligated material was amplified by PCR using the primers kapPCRt1 and kapfor shown in Table 23 for 10 cycles with the program shown in Table 24.
  • the soluble PCR product was run on a gel and showed a band of approximately 700 n, as expected ( FIGS. 7 and 8 ).
  • the DNA was cleaved with enzymes ApaLI and AscI, gel purified, and ligated to similarly cleaved vector pCES1.
  • FIG. 7 shows an analysis of the PCR product from the extender-kappa amplification.
  • Ligated extender-kappa single-stranded DNA was amplified with primers specific to the extender and to the constant region of the light chain.
  • Two different template concentrations, 10 ng versus 50 ng, were used as template and 13 cycles were used to generate approximately 1.5 ug of dsDNA as shown by 0.8% agarose gel analysis.
  • FIG. 8 shows an analysis of the purified PCR product from the extender-kappa amplification. Approximately 5 ug of PCR amplified extender-kappa double-stranded DNA was run out on a 0.8% agarose gel, cut out, and extracted with a GFX gel purification column. By gel analysis, 3.5 ug of double-stranded DNA was prepared.
  • FIG. 9A shows the DNA after it was cleaved and collected and purified over a Qiagen PCR purification column.
  • FIG. 9B shows the partially double-stranded adaptor ligated to the single-stranded DNA. This ligated material was then amplified ( FIG. 9C ). The gel showed a band of approximately 700 n.
  • Table 25 shows the DNA sequence of a kappa light chain captured by this procedure.
  • Table 26 shows a second sequence captured by this procedure. The closest bridge sequence was complementary to the sequence 5′-agccacc-3′, but the sequence captured reads 5′-Tgccacc-3′, showing that some mismatch in the overlapped region is tolerated.
  • CDR 1 and 2 Synthetic diversity in Complementary Determinant Region (CDR) 1 and 2 was created in the 3-23 VH framework in a two step process: first, a vector containing the 3-23 VH framework was constructed; and then, a synthetic CDR 1 and 2 was assembled and cloned into this vector.
  • oligonucleotides and two PCR primers (long oligonucleotides—TOPFR1A, BOTFR1B, BOTFR2, BOTFR3, F06, BoTFR4, ON-vgC1, and ON-vgC2 and primers—SFPRMET and BOTPcRPRIM, shown in Table 27) that overlap were designed based on the Genebank sequence of 3-23 VH framework region.
  • the design incorporated at least one useful restriction site in each framework region, as shown in Table 27.
  • the segments that were synthesized are shown as bold, the overlapping regions are underscored, and the PCR priming regions at each end are underscored.
  • a mixture of these 8 oligos was combined at a final concentration of 2.5 uM in a 20 ul PCR reaction.
  • the PCR mixture contained 200 uM dNTPs, 2.5 mM MgCl 2 , 0.02 U Pfu TurboTM DNA Polymerase, 1 U Qiagen HotStart Taq DNA Polymerase, and 1 ⁇ Qiagen PCR buffer.
  • the PCR program consisted of 10 cycles of 94° C. for 30s, 55° C. for 30s, and 72° C. for 30s.
  • the assembled 3-23 VH DNA sequence was then amplified, using 2.5 ul of a 10-fold dilution from the initial PCR in 100 ul PCR reaction.
  • the PCR reaction contained 200 uM dNTPs, 2.5 mM MgCl 2 , 0.02 U Pfu TurboTM DNA Polymerase, 1 U Qiagen HotStart Taq DNA Polymerase, 1 ⁇ Qiagen PCR Buffer and 2 outside primers (SFPRMET and BOTPCRPRIM) at a concentration of 1 uM.
  • the PCR program consisted of 23 cycles at 94° C. for 30s, 55° C. for 30s, and 72° C. for 60s.
  • the 3-23 VH DNA sequence was digested and cloned into pCES1 (phagemid vector) using the SfiI and BstEII restriction endonuclease sites. All restriction enzymes mentioned herein were supplied by New England BioLabs, Beverly, Mass. and used as per the manufacturer's instructions.
  • Stuffer sequences (shown in Table 28 and Table 29) were introduced into pCES1 to replace CDR1/CDR2 sequences (900 bases between BspEI and XbaI RE sites) and CDR3 sequences (358 bases between AflII and BstEII) prior to cloning the CDR1/CDR2 diversity.
  • This new vector was termed pCES5 and its sequence is given in Table 29.
  • the stuffer sequences are fragments from the penicillase gene of E. coli .
  • the CDR1-2 stuffer contains restriction sites for BglII, Bsu36I, BclI, XcmI, MluI, PvuII, HpaI, and HincII, the underscored sites being unique within the vector pCES5.
  • the stuffer that replaces CDR3 contains the unique restriction endonuclease site RsrII.
  • FIG. 10 A schematic representation of the design for CDR1 and CDR2 synthetic diversity is shown FIG. 10 .
  • oligonucleotides ON-vgC1, ON_Br12, ON_CD2Xba, and ON-vgC2, shown in Table 27 and Table 30
  • a mixture of these 4 oligos was combined at a final concentration of 2.5 uM in a 40 ul PCR reaction.
  • Two of the 4 oligos contained variegated sequences positioned at the CDR1 and the CDR2.
  • the PCR mixture contained 200 uM dNTPs, 2.5 U Pwo DNA Polymerase (Roche), and 1 ⁇ Pwo PCR buffer with 2 mM MgSO 4 .
  • the PCR program consisted of 10 cycles at 94° C. for 30s, 60° C. for 30s, and 72° C. for 60s.
  • This assembled CDR1/2 DNA sequence was amplified, using 2.5 ul of the mixture in 100 ul PCR reaction.
  • the PCR reaction contained 200 uM dNTPs, 2.5 U Pwo DNA Polymerase, 1 ⁇ Pwo PCR Buffer with 2 mM MgSO 4 and 2 outside primers at a concentration of 1 uM.
  • the PCR program consisted of 10 cycles at 94° C. for 30s, 60° C. for 30s, and 72° C. for 60s. These variegated sequences were digested and cloned into the 3-23 VH framework in place of the CDR1/2 stuffer.
  • CDR3 diversity either from donor populations or from synthetic DNA can be cloned into the vector containing synthetic CDR1 and CDR 2 diversity.
  • FIG. 11 A schematic representation of this procedure is shown in FIG. 11 .
  • a sequence encoding the FR-regions of the human V3-23 gene segment and CDR regions with synthetic diversity was made by oligonucleotide assembly and cloning via BspE1 and Xbal sites into a vector that complements the FR1 and FR3 regions.
  • the complementary VH-CDR3 sequence top right was cloned via Xbal an BstEll sites.
  • the resulting cloned CH genes contain a combination of designed synthetic diversity and natural diversity (see FIG. 11 ).
  • FIGS. 12A and 12B A schematic of the cleavage and ligation of antibody light chains is shown in FIGS. 12A and 12B .
  • FIG. 12B A schematic of the ligation of the cleaved light chains is shown in FIG. 12B .
  • a mix of bridge/extender pairs was prepared from the Brg/Ext oligo's listed in Table 31 (total molar excess 100 fold) in 1000 U of T4 DNA Ligase (NEB) and incubated overnight at 16° C. After ligation of the DNA, the excess oligonucleotide was removed with a Qiagen PCR purification column and ligation was checked on a Urea-PAGE gel (see FIG. 13B ; ligation was more than 95% efficient).
  • PCRs were performed containing 10 ng of the ligated material in an 50 ul PCR reaction using 25 pMol ON lamPlePCR and 25 pmol of an equimolar mix of Hu-CL2AscI/HuCL7AscI primer (see Example 1).
  • PCR was performed at 60° C. for 15 cycles using Pfu polymerase. About 1 ug of dsDNA was recovered per PCR (see FIG. 13C ) and cleaved with ApaL1 and AscI for cloning the lambda light chains in pCES2.
  • FIGS. 14A and 14B A schematic of the cleavage and ligation of antibody light chains is shown in FIGS. 14A and 14B .
  • the REdaptors (oligonucleotides used to make single-stranded DNA locally double-stranded) shown in Table 32 were added in 30 fold molar excess in 200 uL of NEB buffer 4 (50 mM Potasium Acetate, 20 mM Tris-Acetate, 10 mM Magnesuim Acetate, 1 mM dithiothreitol pH 7.9) to the dry beads.
  • the REadaptors were incubated with the single-stranded DNA at 80 ° C. for 5 minutes then cooled down to 55 ° C. over 30 minutes. Excess REdaptors were washed away with 2 washes of NEB buffer 4.
  • NEB HpyCH4III
  • the Bridge/Extender pairs shown in Table 33 were added in 25 molar excess along with 1200 units of T4 DNA ligase and incubated overnight at 16 ° C. Excess Bridge/Extender was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using primers H43.XAExtPCR2 and Hucumnest shown in Table 34 for 10 cycles with the program shown in Table 35.
  • the soluble PCR product was run on a gel and showed a band of approximately 500 n, as expected (see FIG. 15B ).
  • the DNA was cleaved with enzymes SfiI and NotI, gel purified, and ligated to similarly cleaved vector PCES1.
  • Table 36 contains an annotated DNA sequence of a member of the library, CJRA05, see FIG. 16 .
  • Table 36 is to be read as follows: on each line everything that follows an exclamation mark “!” is a comment. All occurrences of A, C, G, and T before “!” are the DNA sequence. Case is used only to show that certain bases constitute special features, such as restriction sites, ribosome binding sites, and the like, which are labeled below the DNA.
  • CJRA05 is a derivative of phage DY3F7, obtained by cloning an ApaLI to NotI fragment into these sites in DY3F31.
  • DY3F31 is like DY3F7 except that the light chain and heavy chain genes have been replaced by “stuffer” DNA that does not code for any antibody. DY3F7 contains an antibody that binds streptavidin, but did not come from the present library.
  • the phage genes start with gene ii and continue with genes x, v, vii, ix, viii, iii, vi, i, and iv.
  • Gene iii has been slightly modified in that eight codons have been inserted between the signal sequence and the mature protein and the final amino acids of the signal sequence have been altered. This allows restriction enzyme recognition sites EagI and XbaI to be present.
  • gene iv is the phage origin of replication (ori). After ori is bla which confers resistance to ampicillin (ApR).
  • the phage genes and bla are transcribed in the same sense.
  • Fab cassette (illustrated in FIG. 17 ) comprising:
  • the anchor (item r) encodes the same amino-acid sequence as do codons 273 to 424 of M13 iii but the DNA is approximately as different as possible from the wild-type DNA sequence.
  • Table 36 the III′ stump runs from base 8997 to base 9455.
  • Met and Trp have only a single codon and must be left as is. These AA types are rare. Ser codons can be changed at all three base, while Leu and Arg codons can be changed at two.
  • the fragment of M13 III shown in CJRA05 is the preferred length for the anchor segment. Alternative longer or shorter anchor segments defined by reference to whole mature III protein may also be utilized.
  • the sequence of M13 III consists of the following elements: Signal Sequence::Domain 1 (D1)::Linker 1 (L1)::Domain 2 (D2)::Linker 2 (L2)::Domain 3 (D3)::Transmembrane Segment (TM)::Intracellular anchor (IC) (see Table 38).
  • the pIII anchor (also known as trpIII) preferably consists of D2::L2::D3::TM::IC.
  • Another embodiment for the pIII anchor consists of D2′::L2::D3::TM::IC (where D2′ comprises the last 21 residues of D2 with the first 109 residues deleted).
  • a further embodiment of the pIII anchor consists of D2′ (C>S)::L2::D3::TM::IC (where D2′ (C>S) is D2′ with the single C converted to S), and d) D3::TM::IC.
  • Table 38 shows a gene fragment comprising the NotI site, His6 tag, cMyc tag, an amber codon, a recombinant enterokinase cleavage site, and the whole of mature M13 III protein.
  • the DNA used to encode this sequence is intentionally very different from the DNA of wild-type gene iii as shown by the lines denoted “W.T.” containing the w.t. bases where these differ from this gene.
  • III is divided into domains denoted “domain 1”, “linker 1”, “domain 2”, “linker 2”, “domain 3”, “transmembrane segment”, and “intracellular anchor”.
  • the constructs would most readily be made by methods similar to those of Wang and Wilkinson ( Biotechnigues 2001: 31(4)722-724) in which PCR is used to copy the vector except the part to be deleted and matching restriction sites are introduced or retained at either end of the part to be kept.
  • Table 39 shows the oligonucleotides to be used in deleting parts of the III anchor segment.
  • the DNA shown in Table 38 has an NheI site before the DINDDRMA recombinant enterokinase cleavage site (rEKCS). If NheI is used in the deletion process with this DNA, the rEKCS site would be lost. This site could be quite useful in cleaving Fabs from the phage and might facilitate capture of very high-affinity antibodies.
  • DNA from the DY3F31 phage vector was pretreated with ATP dependent DNAse to remove chromosomal DNA and then digested with ApaL1 and Not1. An extra digestion with AscI was performed in between to prevent self-ligation of the vector.
  • the ApaL1/NotI Fab fragment from the preselected libraries was subsequently ligated to the vector DNA and transformed into competent XL1-blue MRF′ cells.
  • Libraries were made using vector:insert ratios of 1:2 for phOx-library and 1:3 for STREP library, and using 100 ng ligated DNA per 50 ⁇ l of electroporation-competent cells (electroporation conditions : one shock of 1700 V, 1 hour recovery of cells in rich SOC medium, plating on amplicillin-containing agar plates).
  • Clones from these selected libraries were screened for binding to their antigens in ELISA. 44 clones from each selection were picked randomly and screened as phage or soluble Fab for binding in ELISA.
  • For the libraries in DY3F31 clones were first grown in 2TY-2% glucose-50 ⁇ g/ml AMP to an OD600 of approximately 0.5, and then grown overnight in 2TY-50 ⁇ g/ml AMP +/ ⁇ 1 mM IPTG. Induction with IPTG may result in the production of both phage-Fab and soluble Fab. Therefore the (same) clones were also grown without IPTG.
  • the following example describes a selection in which one first depletes a sample of the library of binders to streptavidin and optionally of binders to a non-target (i.e., a molecule other than the target that one does not want the selected Fab to bind). It is hypothesized that one has a molecule, termed a “competitive ligand”, which binds the target and that an antibody which binds at the same site would be especially useful.
  • biotinylated depletion target (1 mg/mL stock in PBST) was added to 0.250 mL of washed, blocked beads (from step 1). The target was allowed to bind overnight, with tumbling, at 4° C. The next day, the beads are washed 5 times with PBST.
  • biotinylated target antigen (1 mg/mL stock in PBST) was added to 0.100 mL of blocked and washed beads (from step 1). The antigen was allowed to bind overnight, with tumbling, at 4° C. The next day, the beads were washed 5 times with PBST.
  • Each phage pool was incubated with 50 ⁇ L of depletion target beads (final wash supernatant removed just before use) on a Labquake rotator for 10 min at room temperature. After incubation, the phage supernatant was removed and incubated with another 50 ⁇ L of depletion target beads. This was repeated 3 more times using depletion target beads and twice using blocked streptavidin beads for a total of 7 rounds of depletion, so each phage pool required 350 ⁇ L of depletion beads.
  • each depleted library pool was taken for titering.
  • Each library pool was added to 0.100 mL of target beads (final wash supernatant was removed just before use) and allowed to incubate for 2 hours at room temperature (tumble).
  • Beads were then washed as rapidly as possible (e.g.,3 minutes total) with 5 ⁇ 0.500 mL PBST and then 2 ⁇ with PBS. Phage still bound to beads after the washing were eluted once with 0.250 mL of competitive ligand ( ⁇ 1 ⁇ M) in PBST for 1 hour at room temperature on a Labquake rotator. The eluate was removed, mixed with 0.500 mL Minimal A salts solution and saved. For a second selection, 0.500 mL 100 mM TEA was used for elution for 10 min at RT, then neutralized in a mix of 0.250 mL of 1 M Tris, pH 7.4+0.500 mL Min A salts.
  • the beads can be eluted again with 0.300 mL of non-biotinylated target (1 mg/mL) for 1 hr at RT on a Labquake rotator. Eluted phage are added to 0.450 mL Minimal A salts.
  • Each elution and each set of eluted beads was mixed with 2 ⁇ YT and an aliquot (e.g., 1 mL with 1. E 10/mL) of XL1-Blue MRF′ E. coli cells (or other F′ cell line) which had been chilled on ice after having been grown to mid-logarithmic phase, starved and concentrated (see procedure below—“Mid-Log prep of XL-1 blue MRF′ cells for infection”).
  • the phage/cell mixtures were spread onto Bio-Assay Dishes (243 ⁇ 243 ⁇ 18 mm, Nalge Nunc) containing 2 ⁇ YT, 1 mM IPTG agar. The plates were incubated overnight at 30° C. The next day, each amplified phage culture was harvested from its respective plate. The plate was flooded with 35 mL TBS or LB, and cells were scraped from the plate. The resuspended cells were transferred to a centrifuge bottle. An additional 20 mL TBS or LB was used to remove any cells from the plate and pooled with the cells in the centrifuge bottle. The cells were centrifuged out, and phage in the supernatant was recovered by PEG precipitation. Over the next day, the amplified phage preps were titered.
  • the pellets were gently resuspended (not pipetting up and down) in the original volume of 1 ⁇ Minimal A salts at room temp.
  • the resuspended cells were transferred back into 2-liter flask, shaken at 100 rpm for 45 min at 37° C. This process was performed in order to starve the cells and restore pili.
  • the cells were transferred to 2 ⁇ 250 mL centrifuge bottles, and centrifuged as earlier.
  • the cells were gently resuspended in ice cold Minimal A salts (5 mL per 500 mL original culture). The cells were put on ice for use in infections as soon as possible.
  • the phage eluates were brought up to 7.5 mL with 2 ⁇ YT medium and 2.5 mL of cells were added. Beads were brought up to 3 mL with 2 ⁇ YT and 1 mL of cells were added. Incubated at 37° C. for 30 min. The cells were plated on 2 ⁇ YT, 1 mM IPTG agar large NUNC plates and incubated for 18 hr at 30° C.
  • Described below are examples for incorporating of fixed residues in antibody sequences for light chain kappa and lambda genes, and for heavy chains.
  • the experimental conditions and oligonucleotides used for the examples below have been described in previous examples (e.g., Examples 3 & 4).
  • the process for incorporating fixed FR1 residues in an antibody lambda sequence consists of 3 steps (see FIG. 18 ): (1) annealing of single-stranded DNA material encoding VL genes to a partially complementary oligonucleotide mix (indicated with Ext and Bridge), to anneal in this example to the region encoding residues 5-7 of the FR1 of the lambda genes (indicated with X . . . X; within the lambda genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VL gene.
  • PCRpr PCR of the ligated material with the indicated primer
  • the first few residues of all lambda genes will be encoded by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr). After the PCR, the lambda genes can be cloned using the indicated restriction site for ApaLI.
  • the process for incorporating fixed FR1 residues in an antibody kappa sequence ( FIG. 19 ) consists of 3 steps: (1) annealing of single-stranded DNA material encoding VK genes to a partially complementary oligonucleotide mix (indicated with Ext and Bri), to anneal in this example to the region encoding residues 8-10 of the FR1 of the kappa genes (indicated with X . . . X; within the kappa genes the overlap may sometimes not be perfect) ; (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VK gene.
  • PCRpr PCR of the ligated material with the indicated primer
  • the first few (8) residues of all kappa genes will be encode by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr.). After the PCR, the kappa genes can be cloned using the indicated restriction site for ApaLI.
  • the process of incorporating fixed FR3 residues in a antibody heavy chain sequence ( FIG. 20 ) consists of 3 steps: (1) annealing of single-stranded DNA material encoding part of the VH genes (for example encoding FR3, CDR3 and FR4 regions) to a partially complementary oligonucleotide mix (indicated with Ext and Bridge), to anneal in this example to the region encoding residues 92-94 (within the FR3 region) of VH genes (indicated with X . . .
  • PCRpr PCR of the ligated material with the indicated primer
  • one primer based within the VH gene such as in the FR4 region.
  • certain residues of all VH genes will be encoded by the sequences present in the oligonucleotides used here, in particular from PCRpr (for residues 70-73), or from Ext/Bridge oligonucleotides (residues 74-91).
  • the partial VH genes can be cloned using the indicated restriction site for XbaI.
  • VH2 agg ctc acc atc acc aag gac acc tcc aaa aaccag gtg gtc ctt aca atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt gca cac aga c !
  • VH5 cag gtc acc atc tca gcc gac aag tcc atc agc acc gcc tac ctg cag tgg agc agc ctg aag gcc teg gac acc gcc atg tat tac tgt gcg aga ca !
  • HpyCH4V Probes of actual human HC genes !HpyCH4V in FR3 of human HC, bases 35-56; only those with TGca site TGca; 10, RE recognltion:tgca of length 4 is expected at 10 1 6-1 agttctccctgcagctgaactc 2 3-11,3-07, 3-21, 3-72,3-48 cactgtatctgcaaatgaacag 3 3-09, 3-43,3-20 ccctgtatctgcaaatgaacag 4 5-51 ccgcctacctgcagtggagcag 5 3-15,3-30,3-30.5,3-30.3,3-74,3-23,3-33 cgctgtatctgcaaatgaacag 6 7-
  • BlpF3Ext is the reverse complement of: ! 5′-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG taC Ttg caG Ctg a-3′ !
  • XbaI and Afill sites in bridges are bunged (H43.XABr1) 5′-ggtgtagtga-
  • H43.XABr2 5′-ggtgtagtga-
  • H43.ABr1 5′-ggtgtagtga-
  • H43.ABr2 5′-ggtgtagtga-
  • H43.AExt 5′-ATAgTAgAcTgcAgTgTccTcAgccTTAAgcTgTTTcAcTAcAcc-3′ !
  • H43.AExt is the reverse complement of 5′-ggtgtagtga- !
  • cag tct gcc ctg act cag cct cGc tcA gTg tcc ggg tct cct gga cag tca gtc acc atc tcc tgc! 2e cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg tct cct gga cag tcG Atc acc atc tcc tgc !
  • cag tct gcc ctg act cag cct ccc tcc gTg tcc ggg tct cct gga cag tca gtc acc atc tcc tgc ! 2d cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg tct cct gga cag tcG Atc acc atc tcc tgc ! 2b2 !
  • VL6 AAT TTT ATG CTG ACT CAG CCC CAC TCT GTG TCG GAG TCT CCG GGG AAG ACG GTA ACC ATC TCC TGC ! 6a !
  • VL7 GAC ACT GTG GTG ACT CAG GAG CCC TCA CTG ACT GTG TCC CCA GGA GGG ACA GTC ACT CTC ACC TGT ! 7a
  • cag Gct gtg gtg act cag gag ccc tca ctg act gtg tcc cca gga ggg aca gtc act ctc acc tgt ! 7b !
  • Type II restriction enzymes with asymmetric recognition sequences Enzymes Recognition Sequence Isoschizomers Suppliers AarI CACCTGCNNNN ⁇ circumflex over ( ) ⁇ NNNN — — y AceIII CAGCTCNNNNN ⁇ circumflex over ( ) ⁇ NNNN — — — Bbr7I GAAGACNNNNN ⁇ circumflex over ( ) ⁇ NNNN — — — BbvI GCAGCNNNNNN ⁇ circumflex over ( ) ⁇ NNNN — — y BbvII GAAGACNN ⁇ circumflex over ( ) ⁇ NNNN — Bce83I CTTGAGNNNNNNNNNNNNNN_NN ⁇ circumflex over ( ) ⁇ — — BceAI ACGGCNNNNNNNNNN ⁇ circumflex over ( ) ⁇ NN — — y BcefI ACGGCNNNNNNNNNN ⁇ circumflex over ( ) ⁇ N — — — BciVI GTATCCNNN
  • VHEx881 is the reverse complement of the ON below ! [RC] 5′-cgCttcacTaag- ! Scab........ ! Synthetic 3-23 as in Table 206 !
  • VHBA881 5′-cgCttcacTaag- TCT
  • VHBB881 5′-cgCttcacTaag- TCT
  • Fok I represents sites of cleavage sites of cleavage 5′-cac GGATG tg--nnnnnn
  • VHS881-1.1 5′-gctgtgtat
  • site of substrate cleavage (FOKIact) 5′ cA cATcc
  • VHEx881 is the reverse complement of the ON below ! [RC] 5′cgCttcacTaag- ! Scab........ ! Synthetic 3-23 as in Table 206 !
  • VHBA881 5′-cgCttcacTaag-
  • VHBB881 5′-cgCttcacTaag-
  • VH881PCR 5
  • EstEII sites may occur in light chains; not likely to be unique in final ! vector. ! ! 143 144 145 146 147 148 149 150 151 152 ! A S I K G P S V F P 2769 gcc ttc acc aaG GGC CCa tcg GTC TTC ccc ! Bsp120I. BbsI...(2/2) ! ApaI.... ! ! 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 !
  • MscI 6664 act ggt gaa tct gcc aat gta aat aat cca ttt cag acg att gag cgt 6712 caa aat gta ggt att ttc atg agc gtt ttt cct gtt gca atg gct ggc 6760 ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct 6808 tct act cag gca agt gat gtt att act aat caa aga agt att gct aca 6856 acg gtt aat ttg cgt gat gga cag act ctt tta ctc ggt
  • End IV 7060 aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc 7120 gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcGCCGGCt ttccccgtca !
  • NgoMI_ 7180 agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc 7240 caaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt !
  • DraIII 7300 tcgcctttG ACGTTGGAGT Ccacgttcttt taatagtgga ctcttgttcc aaactggaac !
  • DrdI 7360 aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga 7420 accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa 7480 ctctctcagg gccaggcggt gaagggcaat CAGCTGttgc cCGTCact ggtgaaaga ! PvuII. BsmBI. 7540 aaaaccaccc tGGATCC AAGCTI !
  • cutters Enzymes that cut more than 3 times !ALwNI CAGNNNctg 5 !BsgI ctgcac 4 !BsrFI Rccggy 5 !EarI CTCTTCNnnn 4 !FauI nNNNNGCGGG 10 ! ! Enzymes that cut from 1 to 3 times. !
  • Vlight domains could be cloned in as ApaLI-XhoI fragments.
  • VL-CL (kappa) segments can be cloned in as ApaLI-AscI fragments ⁇ -------- ! ! Ckappa-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  • Start gene x, ii continues 529 gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct 577 ttt gca aaa gcc tct cgc tat tttt ggt ttc tat cgt cgt ctggta ac 625 gag ggt tat gac agt gtt gct ctt act acg cct cgt aat tcc ttttgg 673 cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg 721 atg aat cct tct acc tgt aat
  • PlacZ promoter is in the following block 7246 cgcaacgc aactaatgtg agttagctca 7274 ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg 7324 tgtggaattg tgagcggata acaatttccc acaggaaaca gctatgacca 7374 tgattacgCC AagcttTGGa gcctttttttt tggagatttt caac ! PflMI ! Hind3. (there are 3) !

Abstract

Methods useful in constructing libraries that collectively display and/or express members of diverse families of peptides, polypeptides or proteins and the libraries produced using those methods. Methods of screening those libraries and the peptides, polypeptides or proteins identified by such screens.

Description

  • This application is a continuation-in-part of United States provisional application No. 06/198,069, filed Apr. 17, 2000, a continuation-in-part of U.S. patent application Ser. No. 09/837,306, filed on Apr. 17, 2001, and a continuation-in-part of U.S. application Ser. No. XX/XXX,XXX, filed by Express Mail(EI125454535US) on Oct. 25, 2001. All of the earlier applications are specifically incorporated by reference herein.
  • The present invention relates to libraries of genetic packages that display and/or express a member of a diverse family of peptides, polypeptides or proteins and collectively display and/or express at least a portion of the diversity of the family. In an alternative embodiment, the invention relates to libraries that include a member of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family. In a preferred embodiment, the displayed and/or expressed polypeptides are human Fabs.
  • More specifically, the invention is directed to the methods of cleaving single-stranded nucleic acids at chosen locations, the cleaved nucleic acids encoding, at least in part, the peptides, polypeptides or proteins displayed on the genetic packages of, and/or expressed in, the libraries of the invention. In a preferred embodiment, the genetic packages are filamentous phage or phagemids or yeast.
  • The present invention further relates to vectors for displaying and/or expressing a diverse family of peptides, polypeptides or proteins.
  • The present invention further relates to methods of screening the libraries of the invention and to the peptides, polypeptides and proteins identified by such screening.
  • BACKGROUND OF THE INVENTION
  • It is now common practice in the art to prepare libraries of genetic packages that display, express or comprise a member of a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least a portion of the diversity of the family. In many common libraries, the peptides, polypeptides or proteins are related to antibodies. Often, they are Fabs or single chain antibodies.
  • In general, the DNAs that encode members of the families to be displayed and/or expressed must be amplified before they are cloned and used to display and/or express the desired member. Such amplification typically makes use of forward and backward primers.
  • Such primers can be complementary to sequences native to the DNA to be amplified or complementary to oligonucleotides attached at the 5′ or 3′ ends of that DNA. Primers that are complementary to sequences native to the DNA to be amplified are disadvantaged in that they bias the members of the families to be displayed. Only those members that contain a sequence in the native DNA that is substantially complementary to the primer will be amplified. Those that do not will be absent from the family. For those members that are amplified, any diversity within the primer region will be suppressed.
  • For example, in European patent 368,684 B1, the primer that is used is at the 5′ end of the VH region of an antibody gene. It anneals to a sequence region in the native DNA that is said to be “sufficiently well conserved” within a single species. Such primer will bias the members amplified to those having this “conserved” region. Any diversity within this region is extinguished.
  • It is generally accepted that human antibody genes arise through a process that involves a combinatorial selection of V and J or V, D, and J followed by somatic mutations. Although most diversity occurs in the Complementary Determining Regions (CDRs), diversity also occurs in the more conserved Framework Regions (FRs) and at least some of this diversity confers or enhances specific binding to antigens (Ag). As a consequence, libraries should contain as much of the CDR and FR diversity as possible.
  • To clone the amplified DNAs of the peptides, polypeptides or proteins that they encode for display on a genetic package and/or for expression, the DNAs must be cleaved to produce appropriate ends for ligation to a vector. Such cleavage is generally effected using restriction endonuclease recognition sites carried on the primers. When the primers are at the 5′ end of DNA produced from reverse transcription of RNA, such restriction leaves deleterious 5′ untranslated regions in the amplified DNA. These regions interfere with expression of the cloned genes and thus the display of the peptides, polypeptides and proteins coded for by them.
  • SUMMARY OF THE INVENTION
  • It is an object of this invention to provide novel methods for constructing libraries that display, express or comprise a member of a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least a portion of the diversity of the family. These methods are not biased toward DNAs that contain native sequences that are complementary to the primers used for amplification. They also enable any sequences that may be deleterious to expression to be removed from the amplified DNA before cloning and displaying and/or expressing.
  • It is another object of this invention to provide a method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
      • (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
      • (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
        the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • It is a further object of this invention to provide an alternative method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
      • (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
      • (ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
        the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • In an alternative embodiment of this object of the invention, the restriction endonuclease recognition site is not initially located in the double-stranded part of the oligonucleotide. Instead, it is part of an amplification primer, which primer is complementary to the double-stranded region of the oligonucleotide. On amplification of the DNA-partially double-stranded combination, the restriction endonuclease recognition site carried on the primer becomes part of the DNA. It can then be used to cleave the DNA.
  • Preferably, the restriction endonuclease recognition site is that of a Type II-S restriction endonuclease whose cleavage site is located at a known distance from its recognition site.
  • It is another object of the present invention to provide a method of capturing DNA molecules that comprise a member of a diverse family of DNAs and collectively comprise at least a portion of the diversity of the family. These DNA molecules in single-stranded form have been cleaved by one of the methods of this invention. This method involves ligating the individual single-stranded DNA members of the family to a partially duplex DNA complex. The method comprises the steps of:
      • (i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences; and
      • (ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide.
  • As before, in this object of the invention, the restriction endonuclease recognition site need not be located in the double-stranded portion of the oligonucleotide. Instead, it can be introduced on amplification with an amplification primer that is used to amplify the DNA-partially double-stranded oligonucleotide combination.
  • It is another object of this invention to prepare libraries, that display, express or comprise a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least part of the diversity of the family, using the methods and DNAs described above.
  • It is an object of this invention to screen those libraries to identify useful peptides, polypeptides and proteins and to use those substances in human therapy.
  • Additional objects of the invention are reflected in claims 1-116. Each of these claims is specifically incorporated by reference in this specification.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic of various methods that may be employed to amplify VH genes without using primers specific for VH sequences.
  • FIG. 2 is a schematic of various methods that may be employed to amplify VL genes without using primers specific for VL sequences.
  • FIG. 3 is a schematic of RACE amplification of antibody heavy and light chains.
  • FIG. 4 depicts gel analysis of amplification products obtained after the primary PCR reaction from 4 different patient samples.
  • FIG. 5 depicts gel analysis of cleaved kappa DNA from Example 2.
  • FIG. 6 depicts gel analysis of extender-cleaved kappa DNA from Example 2.
  • FIG. 7 depicts gel analysis of the PCR product from the extender-kappa amplification from Example 2.
  • FIG. 8 depicts gel analysis of purified PCR product from the extender-kappa amplification from Example 2.
  • FIG. 9 depicts gel analysis of cleaved and ligated kappa light chains from Example 2.
  • FIG. 10 is a schematic of the design for CDR1 and CDR2 synthetic diversity.
  • FIG. 11 is a schemaitc of the cloning schedule for construction of the heavy chain repertoire.
  • FIG. 12 is a schematic of the cleavage and ligation of the antibody light chain.
  • FIG. 13 depicts gel analysis of cleaved and ligated lambda light chains from Example 4.
  • FIG. 14 is a schematic of the cleavage and ligation of the antibody heavy chain.
  • FIG. 15 depicts gel analysis of cleaved and ligated lambda light chains from Example 5.
  • FIG. 16 is a schematic of a phage display vector.
  • FIG. 17 is a schematic of a Fab cassette.
  • FIG. 18 is a schematic of a process for incorporating fixed FR1 residues in an antibody lambda sequence.
  • FIG. 19 is a schematic of a process for incorporating fixed FR1 residues in an antibody kappa sequence.
  • FIG. 20 is a schematic of a process for incorporating fixed FR1 residues in an antibody heavy chain sequence.
  • TERMS
  • In this application, the following terms and abbreviations are used:
    Sense strand The upper strand of ds DNA as
    usually written. In the sense
    strand, 5′-ATG-3′ codes for
    Met.
    Antisense strand The lower strand of ds DNA as
    usually written. In the
    antisense strand, 3′-TAC-5′
    would correspond to a Met
    codon in the sense strand.
    Forward primer A “forward” primer is
    complementary to a part of the
    sense strand and primes for
    synthesis of a new antisense-
    strand molecule. “Forward
    primer” and “lower-strand
    primer” are equivalent.
    Backward primer A “backward” primer is
    complementary to a part of the
    antisense strand and primes
    for synthesis of a new sense-
    strand molecule. “Backward
    primer” and “top-strand
    primer” are equivalent.
    Bases Bases are specified either by
    their position in a vector or
    gene as their position within
    a gene by codon and base. For
    example, “89.1” is the first
    base of codon 89, 89.2 is the
    second base of codon 89.
    Sv Streptavidin
    Ap Ampicillin
    apR A gene conferring ampicillin
    resistance.
    RERS Restriction endonuclease
    recognition site
    RE Restriction endonuclease -
    cleaves preferentially at RERS
    URE Universal restriction
    endonuclease
    Functionally Two sequences are sufficiently
    complementary complementary so as to anneal
    under the chosen conditions.
    AA Amino acid
    PCR Polymerization chain reaction
    GLGs Germline genes
    An Antibody: an immunoglobin.
    The term also covers any
    protein having a binding
    domain which is homologous to
    an immunoglobin binding
    domain. A few examples of
    antibodies within this
    definition are, inter alia,
    immunoglobin isotypes and the
    Fab, F(ab1)2, scfv, Fv, dAb and
    Fd fragments.
    Fab Two chain molecule comprising
    an An light chain and part of
    a heavy-chain.
    scFv A single-chain Ab comprising
    either VH::linker::VL or
    VL::linker::VH
    w.t. Wild type
    HC Heavy chain
    LC Light chain
    VK A variable domain of a Kappa
    light chain.
    VH A variable domain of a heavy
    chain.
    VL A variable domain of a lambda
    light chain.
  • In this application when it is said that nucleic acids are cleaved solely at the cleavage site of a restriction endonuclease, it should be understood that minor cleavage may occur at random, e.g., at non-specific sites other than the specific cleavage site that is characteristic of the restriction endonuclease. The skilled worker will recognize that such non-specific, random cleavage is the usual occurrence. Accordingly, “solely at the cleavage site” of a restriction endonuclease means that cleavage occurs preferentially at the site characteristic of that endonuclease.
  • As used in this application and claims, the term “cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide” includes cleavage sites formed by the single-stranded portion of the partially double-stranded ologonucleotide duplexing with the single-stranded DNA, cleavage sites in the double-stranded portion of the partially double-stranded oligonucleotide, and cleavage sites introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination.
  • In the two methods of this invention for preparing single-stranded nucleic acid sequences, the first of those cleavage sites is preferred. In the methods of this invention for capturing diversity and cloning a family of diverse nucleic acid sequences, the latter two cleavage sites are preferred.
  • In this application, all references referred to are specifically incorporated by reference.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The nucleic acid sequences that are useful in the methods of this invention, i.e., those that encode at least in part the individual peptides, polypeptides and proteins displayed, or expressed in or comprising the libraries of this invention, may be native, synthetic or a combination thereof. They may be mRNA, DNA or cDNA. In the preferred embodiment, the nucleic acids encode antibodies. Most preferably, they encode Fabs.
  • The nucleic acids useful in this invention may be naturally diverse, synthetic diversity may be introduced into those naturally diverse members, or the diversity may be entirely synthetic. For example, synthetic diversity can be introduced into one or more CDRs of antibody genes. Preferably, it is introduced into CDR1 and CDR2 of immunoglobulins. Preferably, natural diversity is captured in the CDR3 regions of the immunoglogin genes of this invention from B cells. Most preferably, the nucleic acids of this invention comprise a population of immunoglobin genes that comprise synthetic diversity in at least one, and more preferably both of the CDR1 and CDR2 and diversity in CDR3 captured from B cells.
  • Synthetic diversity may be created, for example, through the use of TRIM technology (U.S. Pat. No. 5,869,644). TRIM technology allows control over exactly which amino-acid types are allowed at variegated positions and in what proportions. In TRIM technology, codons to be diversified are synthesized using mixtures of trinucleotides. This allows any set of amino acid types to be included in any proportion.
  • Another alternative that may be used to generate diversified DNA is mixed oligonucleotide synthesis. With TRIM technology, one could allow Ala and Trp. With mixed oligonucleotide synthesis, a mixture that included Ala and Trp would also necessarily include Ser and Gly. The amino-acid types allowed at the variegated positions are picked with reference to the structure of antibodies, or other peptides, polypeptides or proteins of the family, the observed diversity in germline genes, the observed somatic mutations frequently observed, and the desired areas and types of variegation.
  • In a preferred embodiment of this invention, the nucleic acid sequences for at least one CDR or other region of the peptides, polypeptides or proteins of the family are cDNAs produced by reverse transcription from mRNA. More preferably, the mRNAs are obtained from peripheral blood cells, bone marrow cells, spleen cells or lymph node cells (such as B-lymphocytes or plasma cells) that express members of naturally diverse sets of related genes. More preferable, the mRNAs encode a diverse family of antibodies. Most preferably, the mRNAs are obtained from patients suffering from at least one autoimmune disorder or cancer. Preferably, mRNAs containing a high diversity of autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, antiphospholipid syndrome and vasculitis are used.
  • In a preferred embodiment of this invention, the cDNAs are produced from the mRNAs using reverse transcription. In this preferred embodiment, the mRNAs are separated from the cell and degraded using standard methods, such that only the full length (i.e., capped) mRNAs remain. The cap is then removed and reverse transcription used to produce the cDNAs.
  • The reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., H J de Haard et al., Journal of Biological Chemistry, 274(26):18218-30 (1999). In the preferred embodiment of this invention where the mRNAs encode antibodies, primers that are complementary to the constant regions of antibody genes may be used. Those primers are useful because they do not generate bias toward subclasses of antibodies. In another embodiment, poly-dT primers may be used (and may be preferred for the heavy-chain genes). Alternatively, sequences complementary to the primer may be attached to the termini of the antisense strand.
  • In one preferred embodiment of this invention, the reverse transcriptase primer may be biotinylated, thus allowing the cDNA product to be immobilized on streptavidin (Sv) beads. Immobilization can also be effected using a primer labeled at the 5′ end with one of a) free amine group, b) thiol, c) carboxylic acid, or d) another group not found in DNA that can react to form a strong bond to a known partner on an insoluble medium. If, for example, a free amine (preferably primary amine) is provided at the 5′ end of a DNA primer, this amine can be reacted with carboxylic acid groups on a polymer bead using standard amide-forming chemistry. If such preferred immobilization is used during reverse transcription, the top strand RNA is degraded using well-known enzymes, such as a combination of RNAseH and RNAseA, either before or after immobilization.
  • The nucleic acid sequences useful in the methods of this invention are generally amplified before being used to display and/or express the peptides, polypeptides or proteins that they encode. Prior to amplification, the single-stranded DNAs may be cleaved using either of the methods described before. Alternatively, the single-stranded DNAs may be amplified and then cleaved using one of those methods.
  • Any of the well known methods for amplifying nucleic acid sequences may be used for such amplification. Methods that maximize, and do not bias, diversity are preferred. In a preferred embodiment of this invention where the nucleic acid sequences are derived from antibody genes, the present invention preferably utilizes primers in the constant regions of the heavy and light chain genes and primers to a synthetic sequence that are attached at the 5′ end of the sense strand. Priming at such synthetic sequence avoids the use of sequences within the variable regions of the antibody genes. Those variable region priming sites generate bias against V genes that are either of rare subclasses or that have been mutated at the priming sites. This bias is partly due to suppression of diversity within the primer region and partly due to lack of priming when many mutations are present in the region complementary to the primer. The methods disclosed in this invention have the advantage of not biasing the population of amplified antibody genes for particular V gene types.
  • The synthetic sequences may be attached to the 5′ end of the DNA strand by various methods well known for ligating DNA sequences together. RT CapExtention is one preferred method.
  • In RT CapExtention (derived from Smart PCR(™)), a short overlap (5′- . . . GGG-3′ in the upper-strand primer (USP-GGG) complements 3′-CCC . . . . 5′ in the lower strand) and reverse transcriptases are used so that the reverse complement of the upper-strand primer is attached to the lower strand.
  • FIGS. 1 and 2 show schematics to amplify VH and VL genes using RT CapExtention. FIG. 1 shows a schematic of the amplification of VH genes. FIG. 1, Panel A shows a primer specific to the poly-dT region of the 3′ UTR priming synthesis of the first, lower strand. Primers that bind in the constant region are also suitable. Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. Panel E shows immobilized double-stranded (ds) cDNA obtained by using a 5′-biotinylated top-strand primer.
  • FIG. 2 shows a similar schematic for amplification of VL genes. FIG. 2, Panel A shows a primer specific to the constant region at or near the 3′ end priming synthesis of the first, lower strand. Primers that bind in the poly-dT region are also suitable. Panel B shows the lower strand extended at its 3′ end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3′ terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5′ biotinylated synthetic top-strand primer that replicates the 5′ end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. The bottom-strand primer also contains a useful restriction endonuclease site, such as AscI. Panel E shows immobilized ds cDNA obtained by using a 5′-biotinylated top-strand primer.
  • In FIGS. 1 and 2, each V gene consists of a 5′ untranslated region (UTR) and a secretion signal, followed by the variable region, followed by a constant region, followed by a 3′ untranslated region (which typically ends in poly-A). An initial primer for reverse transcription may be complementary to the constant region or to the poly A segment of the 3′-UTR. For human heavy-chain genes, a primer of 15 T is preferred. Reverse transcriptases attach several C residues to the 3′ end of the newly synthesized DNA. RT CapExtention exploits this feature. The reverse transcription reaction is first run with only a lower-strand primer. After about 1 hour, a primer ending in GGG (USP-GGG) and more RTase are added. This causes the lower-strand cDNA to be extended by the reverse complement of the USP-GGG up to the final GGG. Using one primer identical to part of the attached synthetic sequence and a second primer complementary to a region of known sequence at the 3′ end of the sense strand, all the V genes are amplified irrespective of their V gene subclass.
  • In another preferred embodiment, synthetic sequences may be added by Rapid Amplification of cDNA Ends (RACE) (see Frohman, M. A., Dush, M. K., & Martin, G. R. (1988) Proc. Natl. Acad. Sci. USA (85): 8998-9002).
  • FIG. 1 shows a schematic of RACE amplification of antibody heavy and light chains. First, mRNA is selected by treating total or poly(A+) RNA with calf intestinal phosphatase (CIP) to remove the 5′-phosphate from all molecules that have them such as ribosomal RNA, fragmented mRNA, tRNA and genomic DNA. Full length mRNA (containing a protective 7-methyl cap structure) is uneffected. The RNA is then treated with tobacco acid pyrophosphatase (TAP) to remove the cap structure from full length mRNAs leaving a 5′-monophosphate group. Next, a synthetic RNA adaptor is ligated to the RNA population, only molecules which have a 5-phosphate (uncapped, full length mRNAs) will accept the adaptor. Reverse trascriptase reactions using an oligodT primer, and nested PCR (using one adaptor primer (located in the 5′ synthetic adaptor) and one primer for the gene) are then used to amplify the desired transcript.
  • In a preferred embodiment of this invention, the upper strand or lower strand primer may be also biotinylated or labeled at the 5′ end with one of a) free amino group, b) thiol, c) carboxylic acid and d) another group not found in DNA that can react to form a strong bond to a known partner as an insoluble medium. These can then be used to immobilize the labeled strand after amplification. The immobilized DNA can be either single or double-stranded.
  • After amplification (using e.g., RT CapExtension or RACE), the DNAs of this invention are rendered single-stranded. For example, the strands can be separated by using a biotinylated primer, capturing the biotinylated product on streptavidin beads, denaturing the DNA, and washing away the complementary strand. Depending on which end of the captured DNA is wanted, one will choose to immobilize either the upper (sense) strand or the lower (antisense) strand.
  • To prepare the single-stranded amplified DNAs for cloning into genetic packages so as to effect display of, or for expression of, the peptides, polypeptides or proteins encoded, at least in part, by those DNAs, they must be manipulated to provide ends suitable for cloning and display and/or expression. In particular, any 5′ untranslated regions and mammalian signal sequences must be removed and replaced, in frame, by a suitable signal sequence that functions in the display or expression host. Additionally, parts of the variable domains (in antibody genes) may be removed and replaced by synthetic segments containing synthetic diversity. The diversity of other gene families may likewise be expanded with synthetic diversity.
  • According to the methods of this invention, there are two ways to manipulate the single-stranded DNAs for display and/or expression. The first method comprises the steps of:
      • (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
      • (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
        the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • In this first method, short oligonucleotides are annealed to the single-stranded DNA so that restriction endonuclease recognition sites formed within the now locally double-stranded regions of the DNA can be cleaved. In particular, a recognition site that occurs at the same position in a substantial fraction of the single-stranded DNAs is identical.
  • For antibody genes, this can be done using a catalog of germline sequences. See, e.g., “http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.htm l.” Updates can be obtained from this site under the heading “Amino acid and nucleotide sequence alignments.” For other families, similar comparisons exist and may be used to select appropriate regions for cleavage and to maintain diversity.
  • For example, Table 1 depicts the DNA sequences of the FR3 regions of the 51 known human VH germline genes. In this region, the genes contain restriction endonuclease recognition sites shown in Table 2. Restriction endonucleases that cleave a large fraction of germline genes at the same site are preferred over endonucleases that cut at a variety of sites. Furthermore, it is preferred that there be only one site for the restriction endonucleases within the region to which the short oligonucleotide binds on the single-stranded DNA, e.g., about 10 bases on either side of the restriction endonuclease recognition site.
  • An enzyme that cleaves downstream in FR3 is also more preferable because it captures fewer mutations in the framework. This may be advantageous is some cases. However, it is well known that framework mutations exist and confer and enhance antibody binding. The present invention, by choice of appropriate restriction site, allows all or part of FR3 diversity to be captured. Hence, the method also allows extensive diversity to be captured.
  • Finally, in the methods of this invention restriction endonucleases that are active between about 37° C. and about 75° C. are used. Preferably, restriction endonucleases that are active between about 45° C. and about 75° C. may be used. More preferably, enzymes that are active above 50° C., and most preferably active about 55° C., are used. Such temperatures maintain the nucleic acid sequence to be cleaved in substantially single-stranded form.
  • Enzymes shown in Table 2 that cut many of the heavy chain FR3 germline genes at a single position include: MaeIII(24@4), Tsp45I(21@4), HphI(44@5), BsaJI(23@65), AluI(23@47), BlpI(21@48), DdeI(29@58), BglII(10@61), MslI(44@72), BsiEI(23@74), EaeI(23@74), EagI(23@74), HaeIII(25@75), Bst4CI(51@86), HpyCH4III(51@86), HinfI(38@2), MlyI(18@2), PleI(18@2), MnlI(31@67), HpyCH4V(21@44), BsmAI(16@11), BpmI(19@12), XmnI(12@30), and SacI(11@51). (The notation used means, for example, that BsmAI cuts 16 of the FR3 germline genes with a restriction endonuclease recognition site beginning at base 11 of FR3.)
  • For cleavage of human heavy chains in FR3, the preferred restriction endonucleases are: Bst4CI (or TaaI or HpyCH4III), BlpI, HpyCH4V, and MslI. Because ACNGT (the restriction endonuclease recognition site for Bst4CI, TaaI, and HpyCH4III) is found at a consistent site in all the human FR3 germline genes, one of those enzymes is the most preferred for capture of heavy chain CDR3 diversity. BlpI and HpyCH4V are complementary. BlpI cuts most members of the VH1 and VH4 families while HpyCH4V cuts most members of the VH3, VH5, VH6, and VH7 families. Neither enzyme cuts VH2s, but this is a very small family, containing only three members. Thus, these enzymes may also be used in preferred embodiments of the methods of this invention.
  • The restriction endonucleases HpyCH4III, Bst4CI, and TaaI all recognize 5′-ACnGT-3′ and cut upper strand DNA after n and lower strand DNA before the base complementary to n. This is the most preferred restriction endonuclease recognition site for this method on human heavy chains because it is found in all germline genes. Furthermore, the restriction endonuclease recognition region (ACnGT) matches the second and third bases of a tyrosine codon (tay) and the following cysteine codon (tgy) as shown in Table 3. These codons are highly conserved, especially the cysteine in mature antibody genes.
  • Table 4 E shows the distinct oligonucleotides of length 22 (except the last one which is of length 20) bases. Table 5 C shows the analysis of 1617 actual heavy chain antibody genes. Of these, 1511 have the site and match one of the candidate oligonucleotides to within 4 mismatches. Eight oligonucleotides account for most of the matches and are given in Table 4 F.1. The 8 oligonucleotides are very similar so that it is likely that satisfactory cleavage will be achieved with only one oligonucleotide (such as H43.77.97.1-02#1) by adjusting temperature, pH, salinity, and the like. One or two oligonucleotides may likewise suffice whenever the germline gene sequences differ very little and especially if they differ very little close to the restriction endonuclease recognition region to be cleaved. Table 5 D shows a repeat analysis of 1617 actual heavy chain antibody genes using only the 8 chosen oligonucleotides. This shows that 1463 of the sequences match at least one of the oligonucleotides to within 4 mismatches and have the site as expected. Only 7 sequences have a second HpyCH4III restriction endonuclease recognition region in this region.
  • Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human heavy chains. Cleavage in FR1 allows capture of the entire CDR diversity of the heavy chain.
  • The germline genes for human heavy chain FR1 are shown in Table 6. Table 7 shows the restriction endonuclease recognition sites found in human germline genes FR1s. The preferred sites are BsgI(GTGCAG;39@4), BsoFI(GCngc;43@6,11@9,2@3,1@12), TseI(Gcwgc;43@6,11@9,2@3,1@12), MspA1I(CMGckg;46@7,2@1), PvuII(CAGctg;46@7,2@1), AluI(AGct;48@82@2), DdeI(Ctnag;22@52,9@48), HphI(tcacc;22@80), BssKI(Nccngg;35@39,2@40), BsaJI(Ccnngg;32@40,2@41), BstNI(CCwgg;33@40), ScrFI(CCngg;35@40,2@41), Eco0109I(RGgnccy;22@46, 11@43), Sau96I(Ggncc;23@47,11@44), AvaII(Ggwcc;23@47,4@44), PpuMI(RGgwccy;22@46,4@43), BsmFI(gtccc;20@48), HinfI(Gantc;34@16,21@56,21@77), TfiI(21@77), MlyI(GAGTC;34@16), MlyI(gactc;21@56), and AlwNI(CAGnnnctg;22@68). The more preferred sites are MspAI and PvuII. MspAI and PvuII have 46 sites at 7-12 and 2 at 1-6. To avoid cleavage at both sites, oligonucleotides are used that do not fully cover the site at 1-6. Thus, the DNA will not be cleaved at that site. We have shown that DNA that extends 3, 4, or 5 bases beyond a PvuII-site can be cleaved efficiently.
  • Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human kappa light chains. Table 8 shows the human kappa FR1 germline genes and Table 9 shows restriction endonuclease recognition sites that are found in a substantial number of human kappa FR1 germline genes at consistent locations. Of the restriction endonuclease recognition sites listed, BsmAI and PflFI are the most preferred enzymes. BsmAI sites are found at base 18 in 35 of 40 germline genes. PflFI sites are found in 35 of 40 germline genes at base 12.
  • Another example of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of the human lambda light chain. Table 10 shows the 31 known human lambda FR1 germline gene sequences. Table 11 shows restriction endonuclease recognition sites found in human lambda FR1 germline genes. HinfI and DdeI are the most preferred restriction endonucleases for cutting human lambda chains in FR1.
  • After the appropriate site or sites for cleavage are chosen, one or more short oligonucleotides are prepared so as to functionally complement, alone or in combination, the chosen recognition site. The oligonucleotides also include sequences that flank the recognition site in the majority of the amplified genes. This flanking region allows the sequence to anneal to the single-stranded DNA sufficiently to allow cleavage by the restriction endonuclease specific for the site chosen.
  • The actual length and sequence of the oligonucleotide depends on the recognition site and the conditions to be used for contacting and cleavage. The length must be sufficient so that the oligonucleotide is functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location.
  • Typically, the oligonucleotides of this preferred method of the invention are about 17 to about 30 nucleotides in length. Below about 17 bases, annealing is too weak and above 30 bases there can be a loss of specificity. A preferred length is 18 to 24 bases.
  • Oligonucleotides of this length need not be identical complements of the germline genes. Rather, a few mismatches taken may be tolerated. Preferably, however, no more than 1-3 mismatches are allowed. Such mismatches do not adversely affect annealing of the oligonucleotide to the single-stranded DNA. Hence, the two DNAs are said to be functionally complementary.
  • The second method to manipulate the single-stranded DNAs of this invention for display and/or expression comprises the steps of:
      • (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
      • (ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
        the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
  • As explained above, the cleavage site may be formed by the single-stranded portion of the partially double-stranded oligonucleotide duplexing with the single-stranded DNA, the cleavage site may be carried in the double-stranded portion of the partially double-stranded oligonucleotide, or the cleavage site may be introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination. In this embodiment, the first is preferred. And, the restriction endonuclease recognition site may be located in either the double-stranded portion of the oligonucleotide or introduced by the amplification primer, which is complementary to that double-stranded region, as used to amplify the combination.
  • Preferably, the restriction endonuclease site is that of a Type II-S restriction endonuclease, whose cleavage site is located at a known distance from its recognition site.
  • This second method, preferably, employs Universal Restriction Endonucleases (“URE”). UREs are partially double-stranded oligonucleotides. The single-stranded portion or overlap of the URE consists of a DNA adapter that is functionally complementary to the sequence to be cleaved in the single-stranded DNA. The double-stranded portion consists of a restriction endonuclease recognition site, preferably type II-S.
  • The URE method of this invention is specific and precise and can tolerate some (e.g., 1-3) mismatches in the complementary regions, i.e., it is functionally complementary to that region. Further, conditions under which the URE is used can be adjusted so that most of the genes that are amplified can be cut, reducing bias in the library produced from those genes.
  • The sequence of the single-stranded DNA adapter or overlap portion of the URE typically consists of about 14-22 bases. However, longer or shorter adapters may be used. The size depends on the ability of the adapter to associate with its functional complement in the single-stranded DNA and the temperature used for contacting the URE and the single-stranded DNA at the temperature used for cleaving the DNA with the restriction enzyme. The adapter must be functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that the cleavage may occur at the chosen temperature and at the desired location. We prefer singe-stranded or overlap portions of 14-17 bases in length, and more preferably 18-20 bases in length.
  • The site chosen for cleavage using the URE is preferably one that is substantially conserved in the family of amplified DNAs. As compared to the first cleavage method of this invention, these sites do not need to be endonuclease recognition sites. However, like the first method, the sites chosen can be synthetic rather than existing in the native DNA. Such sites may be chosen by references to the sequences of known antibodies or other families of genes. For example, the sequences of many germline genes are reported at http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html. For example, one preferred site occurs near the end of FR3—codon 89 through the second base of codon 93. CDR3 begins at codon 95.
  • The sequences of 79 human heavy-chain genes are also available at http://www.ncbi.nlm.nih.gov/entre2/nucleotide.html. This site can be used to identify appropriate sequences for URE cleavage according to the methods of this invention. See, e.g., Table 12B.
  • Most preferably, one or more sequences are identified using these sites or other available sequence information. These sequences together are present in a substantial fraction of the amplified DNAs. For example, multiple sequences could be used to allow for known diversity in germline genes or for frequent somatic mutations. Synthetic degenerate sequences could also be used. Preferably, a sequence(s) that occurs in at least 65% of genes examined with no more than 2-3 mismatches is chosen.
  • URE single-stranded adapters or overlaps are then made to be complementary to the chosen regions. Conditions for using the UREs are determined empirically. These conditions should allow cleavage of DNA that contains the functionally complementary sequences with no more than 2 or 3 mismatches but that do not allow cleavage of DNA lacking such sequences.
  • As described above, the double-stranded portion of the URE includes an endonuclease recognition site, preferably a Type II-S recognition site. Any enzyme that is active at a temperature necessary to maintain the single-stranded DNA substantially in that form and to allow the single-stranded DNA adapter portion of the URE to anneal long enough to the single-stranded DNA to permit cleavage at the desired site may be used.
  • The preferred Type II-S enzymes for use in the URE methods of this invention provide asymmetrical cleavage of the single-stranded DNA. Among these are the enzymes listed in Table 13. The most preferred Type II-S enzyme is FokI.
  • When the preferred FokI containing URE is used, several conditions are preferably used to effect cleavage:
      • 1) Excess of the URE over target DNA should be present to activate the enzyme. URE present only in equimolar amounts to the target DNA would yield poor cleavage of ssDNA because the amount of active enzyme available would be limiting.
      • 2) An activator may be used to activate part of the FokI enzyme to dimerize without causing cleavage. Examples of appropriate activators are shown in Table 14.
      • 3) The cleavage reaction is performed at a temperature between 45°-75° C., preferably above 50° C. and most preferably above 55° C.
  • The UREs used in the prior art contained a 14-base single-stranded segment, a 10-base stem (containing a FokI site), followed by the palindrome of the 10-base stem. While such UREs may be used in the methods of this invention, the preferred UREs of this invention also include a segment of three to eight bases (a loop) between the FokI restriction endonuclease recognition site containing segments. In the preferred embodiment, the stem (containing the FokI site) and its palindrome are also longer than 10 bases. Preferably, they are 10-14 bases in length. Examples of these “lollipop” URE adapters are shown in Table 15.
  • One example of using a URE to cleave an single-stranded DNA involves the FR3 region of human heavy chain. Table 16 shows an analysis of 840 full-length mature human heavy chains with the URE recognition sequences shown. The vast majority (718/840=0.85) will be recognized with 2 or fewer mismatches using five UREs (VHS881-1.1, VHS881-1.2, VHS881-2.1, VHS881-4.1, and VHS881-9.1). Each has a 20-base adaptor sequence to complement the germline gene, a ten-base stem segment containing a FokI site, a five base loop, and the reverse complement of the first stem segment. Annealing those adapters, alone or in combination, to single-stranded antisense heavy chain DNA and treating with FokI in the presence of, e.g., the activator FOKIact, will lead to cleavage of the antisense strand at the position indicated.
  • Another example of using a URE(s) to cleave a single-stranded DNA involves the FR1 region of the human Kappa light chains. Table 17 shows an analysis of 182 full-length human kappa chains for matching by the four 19-base probe sequences shown. Ninety-six percent of the sequences match one of the probes with 2 or fewer mismatches. The URE adapters shown in Table 17 are for cleavage of the sense strand of kappa chains. Thus, the adaptor sequences are the reverse complement of the germline gene sequences. The URE consists of a ten-base stem, a five base loop, the reverse complement of the stem and the complementation sequence. The loop shown here is TTGTT, but other sequences could be used. Its function is to interrupt the palindrome of the stems so that formation of a lollypop monomer is favored over dimerization. Table 17 also shows where the sense strand is cleaved.
  • Another example of using a URE to cleave a single-stranded DNA involves the human lambda light chain. Table 18 shows analysis of 128 human lambda light chains for matching the four 19-base probes shown. With three or fewer mismatches, 88 of 128 (69%) of the chains match one of the probes. Table 18 also shows URE adapters corresponding to these probes. Annealing these adapters to upper-strand ssDNA of lambda chains and treatment with FokI in the presence of FOKIact at a temperature at or above 45° C. will lead to specific and precise cleavage of the chains.
  • The conditions under which the short oligonucleotide sequences of the first method and the UREs of the second method are contacted with the single-stranded DNAs may be empirically determined. The conditions must be such that the single-stranded DNA remains in substantially single-stranded form. More particularly, the conditions must be such that the single-stranded DNA does not form loops that may interfere with its association with the oligonucleotide sequence or the URE or that may themselves provide sites for cleavage by the chosen restriction endonuclease.
  • The effectiveness and specificity of short oligonucleotides (first method) and UREs (second method) can be adjusted by controlling the concentrations of the URE adapters/oligonucleotides and substrate DNA, the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and formamide), the concentration of the restriction endonuclease(e.g., FokI), and the time of the digestion. These conditions can be optimized with synthetic oligonucleotides having: 1) target germline gene sequences, 2) mutated target gene sequences, or 3) somewhat related non-target sequences. The goal is to cleave most of the target sequences and minimal amounts of non-targets.
  • In accordance with this invention, the single-stranded DNA is maintained in substantially that form using a temperature between about 37° C. and about 75° C. Preferably, a temperature between about 45° C. and about 75° C. is used. More preferably, a temperature between 50° C. and 60° C., most preferably between 55° C. and 60° C., is used. These temperatures are employed both when contacting the DNA with the oligonucleotide or URE and when cleaving the DNA using the methods of this invention.
  • The two cleavage methods of this invention have several advantages. The first method allows the individual members of the family of single-stranded DNAs to be cleaved preferentially at one substantially conserved endonuclease recognition site. The method also does not require an endonuclease recognition site to be built into the reverse transcription or amplification primers. Any native or synthetic site in the family can be used.
  • The second method has both of these advantages. In addition, the preferred URE method allows the single-stranded DNAs to be cleaved at positions where no endoniuclease recognition site naturally occurs or has been synthetically constructed.
  • Most importantly, both cleavage methods permit the use of 5′ and 3′ primers so as to maximize diversity and then cleavage to remove unwanted or deleterious sequences before cloning, display and/or expression.
  • After cleavage of the amplified DNAs using one of the methods of this invention, the DNA is prepared for cloning, display and/or expression. This is done by using a partially duplexed synthetic DNA adapter, whose terminal sequence is based on the specific cleavage site at which the amplified DNA has been cleaved.
  • The synthetic DNA is designed such that when it is ligated to the cleaved single-stranded DNA in proper reading frame so that the desired peptide, polypeptide or protein can be displayed on the surface of the genetic package and/or expressed. Preferably, the double-stranded portion of the adapter comprises the sequence of several codons that encode the amino acid sequence characteristic of the family of peptides, polypeptides or proteins up to the cleavage site. For human heavy chains, the amino acids of the 3-23 framework are preferably used to provide the sequences required for expression of the cleaved DNA.
  • Preferably, the double-stranded portion of the adapter is about 12 to 100 bases in length. More preferably, about 20 to 100 bases are used. The double-standard region of the adapter also preferably contains at least one endonuclease recognition site useful for cloning the DNA into a suitable display and/or expression vector (or a recipient vector used to archive the diversity). This endonuclease restriction site may be native to the germline gene sequences used to extend the DNA sequence. It may be also constructed using degenerate sequences to the native germline gene sequences. Or, it may be wholly synthetic.
  • The single-stranded portion of the adapter is complementary to the region of the cleavage in the single-stranded DNA. The overlap can be from about 2 bases up to about 15 bases. The longer the overlap, the more efficient the ligation is likely to be. A preferred length for the overlap is 7 to 10. This allows some mismatches in the region so that diversity in this region may be captured.
  • The single-stranded region or overlap of the partially duplexed adapter is advantageous because it allows DNA cleaved at the chosen site, but not other fragments to be captured. Such fragments would contaminate the library with genes encoding sequences that will not fold into proper antibodies and are likely to be non-specifically sticky.
  • One illustration of the use of a partially duplexed adaptor in the methods of this invention involves ligating such adaptor to a human FR3 region that has been cleaved, as described above, at 5′-ACnGT-3′ using HpyCH4III, Bst4CI or TaaI.
  • Table 4 F.2 shows the bottom strand of the double-stranded portion of the adaptor for ligation to the cleaved bottom-strand DNA. Since the HpyCH4III-Site is so far to the right (as shown in Table 3), a sequence that includes the AflII-site as well as the XbaI site can be added. This bottom strand portion of the partially-duplexed adaptor, H43.XAExt, incorporates both XbaI and AflII-sites. The top strand of the double-stranded portion of the adaptor has neither site (due to planned mismatches in the segments opposite the XbaI and AflII-Sites of H43.XAExt), but will anneal very tightly to H43.XAExt. H43AExt contains only the AflII-site and is to be used with the top strands H43.ABr1 and H43.ABr2 (which have intentional alterations to destroy the AflII-site).
  • After ligation, the desired, captured DNA can be PCR amplified again, if desired, using in the preferred embodiment a primer to the downstream constant region of the antibody gene and a primer to part of the double-standard region of the adapter. The primers may also carry restriction endonuclease sites for use in cloning the amplified DNA.
  • After ligation, and perhaps amplification, of the partially double-stranded adapter to the single-stranded amplified DNA, the composite DNA is cleaved at chosen 5′ and 3′ endonuclease recognition sites.
  • The cleavage sites useful for cloning depend on the phage or phagemid or other vectors into which the cassette will be inserted and the available sites in the antibody genes. Table 19 provides restriction endonuclease data for 75 human light chains. Table 20 shows corresponding data for 79 human heavy chains. In each Table, the endonucleases are ordered by increasing frequency of cutting. In these Tables, Nch is the number of chains cut by the enzyme and Ns is the number of sites (some chains have more than one site).
  • From this analysis, SfiI, NotI, AflII, ApaLI, and AscI are very suitable. SfiI and NotI are preferably used in pCES1 to insert the heavy-chain display segment. ApaLI and AscI are preferably used in pCES1 to insert the light-chain display segment.
  • BstEII-sites occur in 97% of germ-line JH genes. In rearranged V genes, only 54/79 (68%) of heavy-chain genes contain a BstEII-Site and 7/61 of these contain two sites. Thus, 47/79 (59%) contain a single BstEII-Site. An alternative to using BstEII is to cleave via UREs at the end of JH and ligate to a synthetic oligonucleotide that encodes part of CH1.
  • One example of preparing a family of DNA sequences using the methods of this invention involves capturing human CDR 3 diversity. As described above, mRNAs from various autoimmune patients are reverse transcribed into lower strand cDNA. After the top strand RNA is degraded, the lower strand is immobilized and a short oligonucleotide used to cleave the cDNA upstream of CDR3. A partially duplexed synthetic DNA adapter is then annealed to the DNA and the DNA is amplified using a primer to the adapter and a primer to the constant region (after FR4). The DNA is then cleaved using BstEII (in FR4) and a restriction endonuclease appropriate to the partially double-stranded adapter (e.g., XbaI and AfilII (in FR3)). The DNA is then ligated into a synthetic VH skeleton such as 3-23.
  • One example of preparing a single-stranded DNA that was cleaved using the URE method involves the human Kappa chain. The cleavage site in the sense strand of this chain is depicted in Table 17. The oligonucleotide kapextURE is annealed to the oligonucleotides (kaBR01UR, kaBR02UR, kaBR03UR, and kaBR04UR) to form a partially duplex DNA. This DNA is then ligated to the cleaved soluble kappa chains. The ligation product is then amplified using primers kapextUREPCR and CKForeAsc (which inserts a AscI site after the end of C kappa). This product is then cleaved with ApaLI and AscI and ligated to similarly cut recipient vector.
  • Another example involves the cleavage of lambda light chains, illustrated in Table 18. After cleavage, an extender (ON_LamEx133) and four bridge oligonucleotides (ON_LamB1-133, ON_LamB2-133, ON_LamB3-133, and ON_LamB4-133) are annealed to form a partially duplex DNA. That DNA is ligated to the cleaved lambda-chain sense strands. After ligation, the DNA is amplified with ON_Lam133PCR and a forward primer specific to the lambda constant domain, such as CL2ForeAsc or CL7ForeAsc (Table 130).
  • In human heavy chains, one can cleave almost all genes in FR4 (downstream, i.e., toward the 3′ end of the sense strand, of CDR3) at a BstEII-Site that occurs at a constant position in a very large fraction of human heavy-chain V genes. One then needs a site in FR3, if only CDR3 diversity is to be captured, in FR2, if CDR2 and CDR3 diversity is wanted, or in FR1, if all the CDR diversity is wanted. These sites are preferably inserted as part of the partially double-stranded adaptor.
  • The preferred process of this invention is to provide recipient vectors (e.g., for display and/or expression) having sites that allow cloning of either light or heavy chains. Such vectors are well known and widely used in the art. A preferred phage display vector in accordance with this invention is phage MALIA3. This displays in gene III. The sequence of the phage MALIA3 is shown in Table 21A (annotated) and Table 21B (condensed).
  • The DNA encoding the selected regions of the light or heavy chains can be transferred to the vectors using endonucleases that cut either light or heavy chains only very rarely. For example, light chains may be captured with ApaLI and AscI. Heavy-chain genes are preferably cloned into a recipient vector having SfiI, NcoI, XbaI, AflII, BstEII, ApaI, and NotI sites. The light chains are preferably moved into the library as ApaLI-AscI fragments. The heavy chains are preferably moved into the library as SfiI-NotI fragments.
  • Most preferably, the display is had on the surface of a derivative of M13 phage. The most preferred vector contains all the genes of M13, an antibiotic resistance gene, and the display cassette. The preferred vector is provided with restriction sites that allow introduction and excision of members of the diverse family of genes, as cassettes. The preferred vector is stable against rearrangement under the growth conditions used to amplify phage.
  • In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed and/or expressed in a phagemid vector (e.g., pCES1) that displays and/or expresses the peptide, polypeptide or protein. Such vectors may also be used to store the diversity for subsequent display and/or expression using other vectors or phage.
  • In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed and/or expressed in a yeast vector.
  • In another embodiment, the mode of display may be through a short linker to anchor domains—one possible anchor comprising the final portion of M13 III (“IIIstump”) and a second possible anchor being the full length III mature protein.
  • The IIIstump fragment contains enough of M13 III to assemble into phage but not the domains involved in mediating infectivity. Because the w.t. III proteins are present the phage is unlikely to delete the antibody genes and phage that do delete these segments receive only a very small growth advantage. For each of the anchor domains, the DNA encodes the w.t. AA sequence, but differs from the w.t. DNA sequence to a very high extent. This will greatly reduce the potential for homologous recombination between the anchor and the w.t. gene that is also present (see Example 6).
  • Most preferably, the present invention uses a complete phage carrying an antibiotic-resistance gene (such as an ampicillin-resistance gene) and the display cassette. Because the w.t. iii and possibly viii genes are present, the w.t. proteins are also present. The display cassette is transcribed from a regulatable promoter (e.g., PLacZ). Use of a regulatable promoter allows control of the ratio of the fusion display gene to the corresponding w.t. coat protein. This ratio determines the average number of copies of the display fusion per phage (or phagemid) particle.
  • Another aspect of the invention is a method of displaying peptides, polypeptides or proteins (and particularly Fabs) on filamentous phage. In the most preferred embodiment this method displays FABs and comprises:
      • a) obtaining a cassette capturing a diversity of segments of DNA encoding the elements:
    • Preg::RBS1::SS1::VL::CL::stop::RBS2::SS2::VH::CH1:: linker::anchor::stop::,
      where Preg is a regulatable promoter, RBS1 is a first ribosome binding site, SS1 is a signal sequence operable in the host strain, VL is a member of a diverse set of light-chain variable regions, CL is a light-chain constant region, stop is one or more stop codons, RBS2 is a second ribosome binding site, SS2 is a second signal sequence operable in the host strain, VH is a member of a diverse set of heavy-chain variable regions, CH1 is an antibody heavy-chain first constant domain, linker is a sequence of amino acids of one to about 50 residues, anchor is a protein that will assemble into the filamentous phage particle and stop is a second example of one or more stop codons; and
      • b) positioning that cassette within the phage genome to maximize the viability of the phage and to minimize the potential for deletion of the cassette or parts thereof.
  • The DNA encoding the anchor protein in the above preferred cassette should be designed to encode the same (or a closely related) amino acid sequence as is found in one of the coat proteins of the phage, but with a distinct DNA sequence. This is to prevent unwanted homologous recombination with the w.t. gene. In addition, the cassette should be placed in the intergenic region. The positioning and orientation of the display cassette can influence the behavior of the phage.
  • In one embodiment of the invention, a transcription terminator may be placed after the second stop of the display cassette above (e.g., Trp). This will reduce interaction between the display cassette and other genes in the phage antibody display vector.
  • In another embodiment of the methods of this invention, the phage or phagemid can display and/or express proteins other than Fab, by replacing the Fab portions indicated above, with other protein genes.
  • Various hosts can be used the display and/or expression aspect of this invention. Such hosts are well known in the art. In the preferred embodiment, where Fabs are being displayed and/or expressed, the preferred host should grow at 30° C. and be RecA (to reduce unwanted genetic recombination) and EndA (to make recovery of RF DNA easier). It is also preferred that the host strain be easily transformed by electroporation.
  • XL1-Blue MRF′ satisfies most of these preferences, but does not grow well at 30° C. XL1-Blue MRF′ does grow slowly at 38° C. and thus is an acceptable host. TG-1 is also an acceptable host although it is RecA+ and EndA+. XL1-Blue MRF′ is more preferred for the intermediate host used to accumulate diversity prior to final construction of the library.
  • After display and/or expression, the libraries of this invention may be screened using well known and conventionally used techniques. The selected peptides, polypeptides or proteins may then be used to treat disease. Generally, the peptides, polypeptides or proteins for use in therapy or in pharmaceutical compositions are produced by isolating the DNA encoding the desired peptide, polypeptide or protein from the member of the library selected. That DNA is then used in conventional methods to produce the peptide, polypeptides or protein it encodes in appropriate host cells, preferably mammalian host cells, e.g., CHO cells. After isolation, the peptide, polypeptide or protein is used alone or with pharmaceutically acceptable compositions in therapy to treat disease.
  • EXAMPLES Example 1
  • RACE Amplification of Heavy and Light Chain Antibody Repertoires from Autoimmune Patients.
  • Total RNA was isolated from individual blood samples (50 ml) of 11 patients using a RNAzol™ kit (CINNA/Biotecx), as described by the manufacturer. The patients were diagnosed as follows:
      • 1. SLE and phospholipid syndrome
      • 2. limited systemic sclerosis
      • 3. SLE and Sjogren syndrome
      • 4. Limited Systemic sclerosis
      • 5. Reumatoid Arthritis with active vasculitis
      • 6. Limited systemic sclerosis and Sjogren Syndrome
      • 7. Reumatoid Artritis and (not active) vasculitis
      • 8. SLE and Sjogren syndrome
      • 9. SLE
      • 10. SLE and (active) glomerulonephritis
      • 11. Polyarthritis/Raynauds Phenomen
        From these 11 samples of total RNA, Poly-A+ RNA was isolated using Promega PolyATtract® mRNA Isolation kit (Promega).
  • 250 ng of each poly-A+ RNA sample was used to amplify antibody heavy and light chains with the GeneRAacer™ kit (Invitrogen cat no. L1500-01). A schematic overview of the RACE procedure is shown in FIG. 3.
  • Using the general protocol of the GeneRAacer™ kit, an RNA adaptor was ligated to the 5′ end of all mRNAs. Next, a reverse transcriptase reaction was performed in the presence of oligo(dT15) specific primer under conditions described by the manufacturer in the GeneRAacer™ kit.
  • ⅕ of the cDNA from the reverse transcriptase reaction was used in a 20 ul PCR reaction. For amplification of the heavy chain IgM repertoire, a forward primer based on the CH1 chain of IgM [HuCmFOR] and a backward primer based on the ligated synthetic adaptor sequence [5′A] were used. (See Table 22).
  • For amplification of the kappa and lambda light chains, a forward primer that contains the 3′ coding-end of the cDNA [HuCkFor and HuCLFor2+HuCLfor7] and a backward primer based on the ligated synthetic adapter sequence [5′A] was used (See Table 22). Specific amplification products after 30 cycles of primary PCR were obtained.
  • FIG. 4 shows the amplification products obtained after the primary PCR reaction from 4 different patient samples. 8 ul primary PCR product from 4 different patients was analyzed on a agarose gel [labeled 1, 2, 3 and 4]. For the heavy chain, a product of approximately 950 nt is obtained while for the kappa and lambda light chains the product is approximately 850 nt. M1-2 are molecular weight markers.
  • PCR products were also analyzed by DNA sequencing [10 clones from the lambda, kappa or heavy chain repertoires]. All sequenced antibody genes recovered contained the full coding sequence as well as the 5′ leader sequence and the V gene diversity was the expected diversity (compared to literature data).
  • 50 ng of all samples from all 11 individual amplified samples were mixed for heavy, lambda light or kappa light chains and used in secondary PCR reactions.
  • In all secondary PCRs approximately 1 ng template DNA from the primary PCR mixture was used in multiple 50 ul PCR reactions [25 cycles].
  • For the heavy chain, a nested biotinylated forward primer [HuCm-Nested] was used, and a nested 5′end backward primer located in the synthetic adapter-sequence [5′NA] was used. The 5′end lower-strand of the heavy chain was biotinylated.
  • For the light chains, a 5′end biotinylated nested primer in the synthetic adapter was used [5′NA] in combination with a 3′end primer in the constant region of Ckappa and Clambda, extended with a sequence coding for the AscI restriction site [kappa: HuCkForAscI, Lambda: HuCL2-FOR-ASC+HuCL7-FOR-ASC]. [5′end Top strand DNA was biotinylated]. After gel-analysis the secondary PCR products were pooled and purified with Promega Wizzard PCR cleanup. Approximately 25 ug biotinylated heavy chain, lambda and kappa light chain DNA was isolated from the 11 patients.
  • Example 2
  • Capturing Kappa Chains with BsmAI.
  • A repertoire of human-kappa chain mRNAs was prepared using the RACE method of Example 1 from a collection of patients having various autoimmune diseases.
  • This Example followed the protocol of Example 1. Approximately 2 micrograms (ug) of human kappa-chain (Igkappa) gene PACE material with biotin attached to 5′-end of upper strand was immobilized as in Example 1 on 200 microliters (μL) of Seradyn magnetic beads. The lower strand was removed by washing the DNA with 2 aliquots 200 μL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 200 μL of 10 mM Tris (pH 7.5) 100 mM NaCl. The short oligonucleotides shown in Table 23 were added in 40 fold molar excess in 100 μL of NEB buffer 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl2, 1 mM dithiothreitol pH 7.9) to the dry beads. The mixture was incubated at 95° C. for 5 minutes then cooled down to 55° C. over 30 minutes. Excess oligonucleotide was washed away with 2 washes of NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 MM MgCl2, 1 mM dithiothreitol pH 7.9). Ten units of BsmAI (NEB) were added in NEB buffer 3 and incubated for 1 h at 55° C. The cleaved downstream DNA was collected and purified over a Qiagen PCR purification column (FIGS. 5 and 6).
  • FIG. 5 shows an analysis of digested kappa single-stranded DNA. Approximately 151.5 pmol of adapter was annealed to 3.79 pmol of immobilized kappa single-stranded DNA followed by digestion with 15 U of BsmAI. The supernatant containing the desired DNA was removed and analyzed by 5% polyacrylamide gel along with the remaining beads which contained uncleaved full length kappa DNA. 189 pmol of cleaved single-stranded DNA was purified for further analysis. Five percent of the original full length ssDNA remained on the beads.
  • FIG. 6 shows an analysis of the extender—cleaved kappa ligation. 180 pmol of pre-annealed bridge/extender was ligated to 1.8 pmol of BsmAl digested single-stranded DNA. The ligated DNA was purified by Qiagen PCR purification column and analyzed on a 5% polyacrylamide gel. Results indicated that the ligation of extender to single-stranded DNA was 95% efficient.
  • A partially double-stranded adaptor was prepared using the oligonucleotide shown in Table 23. The adaptor was added to the single-stranded DNA in 100 fold molar excess along with 1000 units of T4 DNA ligase and incubated overnight at 16° C. The excess oligonucleotide was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using the primers kapPCRt1 and kapfor shown in Table 23 for 10 cycles with the program shown in Table 24.
  • The soluble PCR product was run on a gel and showed a band of approximately 700 n, as expected (FIGS. 7 and 8). The DNA was cleaved with enzymes ApaLI and AscI, gel purified, and ligated to similarly cleaved vector pCES1.
  • FIG. 7 shows an analysis of the PCR product from the extender-kappa amplification. Ligated extender-kappa single-stranded DNA was amplified with primers specific to the extender and to the constant region of the light chain. Two different template concentrations, 10 ng versus 50 ng, were used as template and 13 cycles were used to generate approximately 1.5 ug of dsDNA as shown by 0.8% agarose gel analysis.
  • FIG. 8 shows an analysis of the purified PCR product from the extender-kappa amplification. Approximately 5 ug of PCR amplified extender-kappa double-stranded DNA was run out on a 0.8% agarose gel, cut out, and extracted with a GFX gel purification column. By gel analysis, 3.5 ug of double-stranded DNA was prepared.
  • The assay for capturing kappa chains with BsmA1 was repeated and produced similar results. FIG. 9A shows the DNA after it was cleaved and collected and purified over a Qiagen PCR purification column. FIG. 9B shows the partially double-stranded adaptor ligated to the single-stranded DNA. This ligated material was then amplified (FIG. 9C). The gel showed a band of approximately 700 n.
  • Table 25 shows the DNA sequence of a kappa light chain captured by this procedure. Table 26 shows a second sequence captured by this procedure. The closest bridge sequence was complementary to the sequence 5′-agccacc-3′, but the sequence captured reads 5′-Tgccacc-3′, showing that some mismatch in the overlapped region is tolerated.
  • Example 3
  • Construction of Synthetic CDR1 and CDR2 Diversity in V-3-23 VH Framework.
  • Synthetic diversity in Complementary Determinant Region (CDR) 1 and 2 was created in the 3-23 VH framework in a two step process: first, a vector containing the 3-23 VH framework was constructed; and then, a synthetic CDR 1 and 2 was assembled and cloned into this vector.
  • For construction of the 3-23 VH framework, 8 oligonucleotides and two PCR primers (long oligonucleotides—TOPFR1A, BOTFR1B, BOTFR2, BOTFR3, F06, BoTFR4, ON-vgC1, and ON-vgC2 and primers—SFPRMET and BOTPcRPRIM, shown in Table 27) that overlap were designed based on the Genebank sequence of 3-23 VH framework region. The design incorporated at least one useful restriction site in each framework region, as shown in Table 27. In Table 27, the segments that were synthesized are shown as bold, the overlapping regions are underscored, and the PCR priming regions at each end are underscored.
  • A mixture of these 8 oligos was combined at a final concentration of 2.5 uM in a 20 ul PCR reaction. The PCR mixture contained 200 uM dNTPs, 2.5 mM MgCl2, 0.02 U Pfu Turbo™ DNA Polymerase, 1 U Qiagen HotStart Taq DNA Polymerase, and 1×Qiagen PCR buffer. The PCR program consisted of 10 cycles of 94° C. for 30s, 55° C. for 30s, and 72° C. for 30s.
  • The assembled 3-23 VH DNA sequence was then amplified, using 2.5 ul of a 10-fold dilution from the initial PCR in 100 ul PCR reaction. The PCR reaction contained 200 uM dNTPs, 2.5 mM MgCl2, 0.02 U Pfu Turbo™ DNA Polymerase, 1 U Qiagen HotStart Taq DNA Polymerase, 1×Qiagen PCR Buffer and 2 outside primers (SFPRMET and BOTPCRPRIM) at a concentration of 1 uM. The PCR program consisted of 23 cycles at 94° C. for 30s, 55° C. for 30s, and 72° C. for 60s. The 3-23 VH DNA sequence was digested and cloned into pCES1 (phagemid vector) using the SfiI and BstEII restriction endonuclease sites. All restriction enzymes mentioned herein were supplied by New England BioLabs, Beverly, Mass. and used as per the manufacturer's instructions.
  • Stuffer sequences (shown in Table 28 and Table 29) were introduced into pCES1 to replace CDR1/CDR2 sequences (900 bases between BspEI and XbaI RE sites) and CDR3 sequences (358 bases between AflII and BstEII) prior to cloning the CDR1/CDR2 diversity. This new vector was termed pCES5 and its sequence is given in Table 29.
  • Having stuffers in place of the CDRs avoids the risk that a parental sequence would be over-represented in the library. The stuffer sequences are fragments from the penicillase gene of E. coli. The CDR1-2 stuffer contains restriction sites for BglII, Bsu36I, BclI, XcmI, MluI, PvuII, HpaI, and HincII, the underscored sites being unique within the vector pCES5. The stuffer that replaces CDR3 contains the unique restriction endonuclease site RsrII.
  • A schematic representation of the design for CDR1 and CDR2 synthetic diversity is shown FIG. 10. The design was based on the presence of mutations in DP47/3-23 and related germline genes. Diversity was designed to be introduced at the positions within CDR1 and CDR2 indicated by the numbers in FIG. 10. The diversity at each position was chosen to be one of the three following schemes: 1=ADEFGHIKLMNPQRSTVWY; 2=YRWVGS; 3=PS, in which letters encode equimolar mixes of the indicated amino acids.
  • For the construction of the CDR1 and CDR2 diversity, 4 overlapping oligonucleotides (ON-vgC1, ON_Br12, ON_CD2Xba, and ON-vgC2, shown in Table 27 and Table 30) encoding CDR1/2, plus flanking regions, were designed. A mixture of these 4 oligos was combined at a final concentration of 2.5 uM in a 40 ul PCR reaction. Two of the 4 oligos contained variegated sequences positioned at the CDR1 and the CDR2. The PCR mixture contained 200 uM dNTPs, 2.5 U Pwo DNA Polymerase (Roche), and 1×Pwo PCR buffer with 2 mM MgSO4. The PCR program consisted of 10 cycles at 94° C. for 30s, 60° C. for 30s, and 72° C. for 60s. This assembled CDR1/2 DNA sequence was amplified, using 2.5 ul of the mixture in 100 ul PCR reaction. The PCR reaction contained 200 uM dNTPs, 2.5 U Pwo DNA Polymerase, 1×Pwo PCR Buffer with 2 mM MgSO4 and 2 outside primers at a concentration of 1 uM. The PCR program consisted of 10 cycles at 94° C. for 30s, 60° C. for 30s, and 72° C. for 60s. These variegated sequences were digested and cloned into the 3-23 VH framework in place of the CDR1/2 stuffer.
  • We obtained approximately 7×107 independent transformants. CDR3 diversity either from donor populations or from synthetic DNA can be cloned into the vector containing synthetic CDR1 and CDR 2 diversity.
  • A schematic representation of this procedure is shown in FIG. 11. A sequence encoding the FR-regions of the human V3-23 gene segment and CDR regions with synthetic diversity was made by oligonucleotide assembly and cloning via BspE1 and Xbal sites into a vector that complements the FR1 and FR3 regions. Into this library of synthetic VH segments, the complementary VH-CDR3 sequence (top right) was cloned via Xbal an BstEll sites. The resulting cloned CH genes contain a combination of designed synthetic diversity and natural diversity (see FIG. 11).
  • Example 4
  • Cleavage and Ligation of the Lambda Light Chains with HinfI.
  • A schematic of the cleavage and ligation of antibody light chains is shown in FIGS. 12A and 12B. Approximately 2 ug of biotinylated human Lambda DNA prepared as described in Example 1 was immobilized on 200 ul Seradyn magnetic beads. The lower strand was removed by incubation of the DNA with 200 ul of 0.1 M NaOH (pH=13) for 3 minutes, the supernatant was removed and an additional washing of 30 seconds with 200 ul of 0.1 M NaOH was performed. Supernatant was removed and the beads were neutralized with 200 ul of 10 mM Tris (pH=7.5), 100 mM NaCl. 2 additional washes with 200 ul NEB2 buffer 2, containing 10 mM Tris (pH=7.9), 50 mM NaCl, 10 mM MgCl2 and 1 mM dithiothreitol, were performed. After immobilization, the amount of ssDNA was estimated on a 5% PAGE-UREA gel.
  • About 0.8 ug ssDNA was recovered and incubated in 100 ul NEB2 buffer 2 containing 80 molar fold excess of an equimolar mix of ON_Lam1aB7, ON_Lam2aB7, ON_Lam31B7 and ON_Lam3rB7 [each oligo in 20 fold molar excess] (see Table 31).
  • The mixture was incubated at 95° C. for 5 minutes and then slowly cooled down to 50° C. over a period of 30 minutes. Excess of oligonucleotide was washed away with 2 washes of 200 ul of NEB buffer 2. 4 U/ug of Hinf I was added and incubated for 1 hour at 50° C. Beads were mixed every 10 minutes.
  • After incubation the sample was purified over a Qiagen PCR purification column and was subsequently analysed on a 5% PAGE-urea gel (see FIG. 13A, cleavage was more than 70% efficient).
  • A schematic of the ligation of the cleaved light chains is shown in FIG. 12B. A mix of bridge/extender pairs was prepared from the Brg/Ext oligo's listed in Table 31 (total molar excess 100 fold) in 1000 U of T4 DNA Ligase (NEB) and incubated overnight at 16° C. After ligation of the DNA, the excess oligonucleotide was removed with a Qiagen PCR purification column and ligation was checked on a Urea-PAGE gel (see FIG. 13B; ligation was more than 95% efficient).
  • Multiple PCRs were performed containing 10 ng of the ligated material in an 50 ul PCR reaction using 25 pMol ON lamPlePCR and 25 pmol of an equimolar mix of Hu-CL2AscI/HuCL7AscI primer (see Example 1).
  • PCR was performed at 60° C. for 15 cycles using Pfu polymerase. About 1 ug of dsDNA was recovered per PCR (see FIG. 13C) and cleaved with ApaL1 and AscI for cloning the lambda light chains in pCES2.
  • Example 5
  • Capture of Human Heavy-chain CDR3 Population.
  • A schematic of the cleavage and ligation of antibody light chains is shown in FIGS. 14A and 14B.
  • Approximately 3 ug of human heavy-chain (IgM) gene RACE material with biotin attached to 5′-end of lower strand was immobilized on 300 uL of Seradyn magnetic beads. The upper strand was removed by washing the DNA with 2 aliquots 300 uL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 300 uL of 10 mM Tris (pH 7.5) 100 mM NaCl. The REdaptors (oligonucleotides used to make single-stranded DNA locally double-stranded) shown in Table 32 were added in 30 fold molar excess in 200 uL of NEB buffer 4 (50 mM Potasium Acetate, 20 mM Tris-Acetate, 10 mM Magnesuim Acetate, 1 mM dithiothreitol pH 7.9) to the dry beads. The REadaptors were incubated with the single-stranded DNA at 80 ° C. for 5 minutes then cooled down to 55 ° C. over 30 minutes. Excess REdaptors were washed away with 2 washes of NEB buffer 4. Fifteen units of HpyCH4III (NEB) were added in NEB buffer 4 and incubated for 1 hour at 55° C. The cleaved downstream DNA remaining on the beads was removed from the beads using a Qiagen Nucleotide removal column (see FIG. 15).
  • The Bridge/Extender pairs shown in Table 33 were added in 25 molar excess along with 1200 units of T4 DNA ligase and incubated overnight at 16 ° C. Excess Bridge/Extender was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using primers H43.XAExtPCR2 and Hucumnest shown in Table 34 for 10 cycles with the program shown in Table 35.
  • The soluble PCR product was run on a gel and showed a band of approximately 500 n, as expected (see FIG. 15B). The DNA was cleaved with enzymes SfiI and NotI, gel purified, and ligated to similarly cleaved vector PCES1.
  • Example 6
  • Description of Phage Display Vector CJRA05, a Member of the Library Built in Vector DY3F7.
  • Table 36 contains an annotated DNA sequence of a member of the library, CJRA05, see FIG. 16. Table 36 is to be read as follows: on each line everything that follows an exclamation mark “!” is a comment. All occurrences of A, C, G, and T before “!” are the DNA sequence. Case is used only to show that certain bases constitute special features, such as restriction sites, ribosome binding sites, and the like, which are labeled below the DNA. CJRA05 is a derivative of phage DY3F7, obtained by cloning an ApaLI to NotI fragment into these sites in DY3F31. DY3F31 is like DY3F7 except that the light chain and heavy chain genes have been replaced by “stuffer” DNA that does not code for any antibody. DY3F7 contains an antibody that binds streptavidin, but did not come from the present library.
  • The phage genes start with gene ii and continue with genes x, v, vii, ix, viii, iii, vi, i, and iv. Gene iii has been slightly modified in that eight codons have been inserted between the signal sequence and the mature protein and the final amino acids of the signal sequence have been altered. This allows restriction enzyme recognition sites EagI and XbaI to be present. Following gene iv is the phage origin of replication (ori). After ori is bla which confers resistance to ampicillin (ApR). The phage genes and bla are transcribed in the same sense.
  • After bla, is the Fab cassette (illustrated in FIG. 17) comprising:
      • a) PlacZ promoter,
      • b) A first Ribosome Binding Site (RBS1),
      • c) The signal sequence form M13 iii,
      • d) An ApaLI RERS,
      • e) A light chain (a kappa L20::JK1 shortened by one codon at the V-J boundary in this case),
      • f) An AscI RERS,
      • g) A second Ribosome Binding Site (RBS2),
      • h) A signal sequence, preferably PelB, which contains,
      • i) An SfiI RERS,
      • j) A synthetic 3-23 V region with diversity in CDR1 and CDR2,
      • k) A captured CDR3,
      • l) A partially synthetic J region (FR4 after BstEII),
      • m) CH1,
      • n) A NotI RERS,
      • o) A His6 tag,
      • p) A cMyc tag,
      • q) An amber codon,
      • r) An anchor DNA that encodes the same amino-acid sequence as codons 273 to 424 of M13 iii (as shown in Table 37).
      • s) Two stop codons,
      • t) An AvrII RERS, and
      • u) A trp terminator.
  • The anchor (item r) encodes the same amino-acid sequence as do codons 273 to 424 of M13 iii but the DNA is approximately as different as possible from the wild-type DNA sequence. In Table 36, the III′ stump runs from base 8997 to base 9455. Below the DNA, as comments, are the differences with wild-type iii for the comparable codons with “!W.T” at the ends of these lines. Note that Met and Trp have only a single codon and must be left as is. These AA types are rare. Ser codons can be changed at all three base, while Leu and Arg codons can be changed at two.
  • In most cases, one base change can be introduced per codon. This has three advantages: 1) recombination with the wild-type gene carried elsewhere on the phage is less likely, 2) new restriction sites can be introduced, facilitating construction; and 3) sequencing primers that bind in only one of the two regions can be designed.
  • The fragment of M13 III shown in CJRA05 is the preferred length for the anchor segment. Alternative longer or shorter anchor segments defined by reference to whole mature III protein may also be utilized.
  • The sequence of M13 III consists of the following elements: Signal Sequence::Domain 1 (D1)::Linker 1 (L1)::Domain 2 (D2)::Linker 2 (L2)::Domain 3 (D3)::Transmembrane Segment (TM)::Intracellular anchor (IC) (see Table 38).
  • The pIII anchor (also known as trpIII) preferably consists of D2::L2::D3::TM::IC. Another embodiment for the pIII anchor consists of D2′::L2::D3::TM::IC (where D2′ comprises the last 21 residues of D2 with the first 109 residues deleted). A further embodiment of the pIII anchor consists of D2′ (C>S)::L2::D3::TM::IC (where D2′ (C>S) is D2′ with the single C converted to S), and d) D3::TM::IC.
  • Table 38 shows a gene fragment comprising the NotI site, His6 tag, cMyc tag, an amber codon, a recombinant enterokinase cleavage site, and the whole of mature M13 III protein. The DNA used to encode this sequence is intentionally very different from the DNA of wild-type gene iii as shown by the lines denoted “W.T.” containing the w.t. bases where these differ from this gene. III is divided into domains denoted “domain 1”, “linker 1”, “domain 2”, “linker 2”, “domain 3”, “transmembrane segment”, and “intracellular anchor”.
  • Alternative preferred anchor segments (defined by reference to the sequence of Table 38) include:
      • codons 1-29 joined to codons 104-435, deleting domain 1 and retaining linker 1 to the end;
      • codons 1-38 joined to codons 104-435, deleting domain 1 and retaining the rEK cleavage site plus linker 1 to the end from III;
      • codons 1-29 joined to codons 236-435, deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end;
      • codons 1-38 joined to codons 236-435, deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end and the rEK cleavage site;
      • codons 1-29 joined to codons 236-435 and changing codon 240 to Ser(e.g., agc), deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end; and
      • codons 1-38 joined to codons 236-435 and changing codon 240 to Ser(e.g., agc), deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end and the rEK cleavage site.
  • The constructs would most readily be made by methods similar to those of Wang and Wilkinson (Biotechnigues 2001: 31(4)722-724) in which PCR is used to copy the vector except the part to be deleted and matching restriction sites are introduced or retained at either end of the part to be kept. Table 39 shows the oligonucleotides to be used in deleting parts of the III anchor segment. The DNA shown in Table 38 has an NheI site before the DINDDRMA recombinant enterokinase cleavage site (rEKCS). If NheI is used in the deletion process with this DNA, the rEKCS site would be lost. This site could be quite useful in cleaving Fabs from the phage and might facilitate capture of very high-affinity antibodies. One could mutagenize this sequence so that the NheI site would follow the rEKCS site, an Ala Ser amino-acid sequence is already present. Alternatively, one could use SphI for the deletions. This would involve a slight change in amino acid sequence but would be of no consequence.
  • Example 7
  • Selection of Antigen Binders from an Enriched Library of Human Antibodies Using Phage Vector DY3F31.
  • In this example the human antibody library used is described in de Haard et al., (Journal of Biological Chemistry, 274 (26): 18218-30 (1999). This library, consisting of a large non-immune human Fab phagemid library, was first enriched on antigen, either on streptavidin or on phenyl-oxazolone (phOx). The methods for this are well known in the art. Two preselected Fab libraries, the first one selected once on immobilized phOx-BSA (R1-ox) and the second one selected twice on streptavidin (R2-strep), were chosen for recloning.
  • These enriched repertoires of phage antibodies, in which only a very low percentage have binding activity to the antigen used in selection, were confirmed by screening clones in an ELISA for antigen binding. The selected Fab genes were transferred from the phagemid vector of this library to the DY3F31 vector via ApaL1-Not1 restriction sites.
  • DNA from the DY3F31 phage vector was pretreated with ATP dependent DNAse to remove chromosomal DNA and then digested with ApaL1 and Not1. An extra digestion with AscI was performed in between to prevent self-ligation of the vector. The ApaL1/NotI Fab fragment from the preselected libraries was subsequently ligated to the vector DNA and transformed into competent XL1-blue MRF′ cells.
  • Libraries were made using vector:insert ratios of 1:2 for phOx-library and 1:3 for STREP library, and using 100 ng ligated DNA per 50 μl of electroporation-competent cells (electroporation conditions : one shock of 1700 V, 1 hour recovery of cells in rich SOC medium, plating on amplicillin-containing agar plates).
  • This transformation resulted in a library size of 1.6×106 for R1-ox in DY3F31 and 2.1×106 for R2-strep in DY3F31. Sixteen colonies from each library were screened for insert, and all showed the correct size insert (±1400 bp) (for both libraries).
  • Phage was prepared from these Fab libraries as follows. A representative sample of the library was inoculated in medium with ampicillin and glucose, and at OD 0.5, the medium exchanged for ampicillin and 1 mM IPTG. After overnight growth at 37 ° C., phage was harvested from the supernatant by PEG-NaCl precipitation. Phage was used for selection on antigen. R1-ox was selected on phOx-BSA coated by passive adsorption onto immunotubes and R2-strep on streptavidin coated paramagnetic beads (Dynal, Norway), in procedures described in de Haard et. al. and Marks et. al., Journal of Molecular Biology, 222(3): 581-97 (1991). Phage titers and enrichments are given in Table 40.
  • Clones from these selected libraries, dubbed R2-ox and R3-strep respectively, were screened for binding to their antigens in ELISA. 44 clones from each selection were picked randomly and screened as phage or soluble Fab for binding in ELISA. For the libraries in DY3F31, clones were first grown in 2TY-2% glucose-50 μg/ml AMP to an OD600 of approximately 0.5, and then grown overnight in 2TY-50 μg/ml AMP +/−1 mM IPTG. Induction with IPTG may result in the production of both phage-Fab and soluble Fab. Therefore the (same) clones were also grown without IPTG. Table 41 shows the results of an ELISA screening of the resulting supernatant, either for the detection of phage particles with antigen binding (Anti-M13 HRP=anti-phage antibody), or for the detection of human Fabs, be it on phage or as soluble fragments, either with using the anti-myc antibody 9E10 which detects the myc-tag that every Fab carries at the C-terminal end of the heavy chain followed by a HRP-labeled rabbit-anti-Mouse serum (column 9E10/RAM-HRP), or with anti-light chain reagent followed by a HRP-labeled goat-anti-rabbit antiserum(anti-CK/CL Gar-HRP).
  • The results shows that in both cases antigen-binders are identified in the library, with as Fabs on phage or with the anti-Fab reagents (Table 41). IPTG induction yields an increase in the number of positives. Also it can be seen that for the phOx-clones, the phage ELISA yields more positives than the soluble Fab ELISA, most likely due to the avid binding of phage. Twenty four of the ELISA-positive clones were screened using PCR of the Fab-insert from the vector, followed by digestion with BstNI. This yielded 17 different patterns for the phOx-binding Fab's in 23 samples that were correctly analyzed, and 6 out of 24 for the streptavidin binding clones. Thus, the data from the selection and screening from this pre-enriched non-immune Fab library show that the DY3F31 vector is suitable for display and selection of Fab fragments, and provides both soluble Fab and Fab on phage for screening experiments after selection.
  • Example 8
  • Selection of Phage-antibody Libraries on Streptavidin Magnetic Beads.
  • The following example describes a selection in which one first depletes a sample of the library of binders to streptavidin and optionally of binders to a non-target (i.e., a molecule other than the target that one does not want the selected Fab to bind). It is hypothesized that one has a molecule, termed a “competitive ligand”, which binds the target and that an antibody which binds at the same site would be especially useful.
  • For this procedure Streptavidin Magnetic Beads (Dynal) were blocked once with blocking solution (2% Marvel Milk, PBS (pH 7.4), 0.01% Tween-20 (“2% MPBST”)) for 60 minutes at room temperature and then washed five times with 2% MPBST. 450 μL of beads were blocked for each depletion and subsequent selection set.
  • Per selection, 6.25 μL of biotinylated depletion target (1 mg/mL stock in PBST) was added to 0.250 mL of washed, blocked beads (from step 1). The target was allowed to bind overnight, with tumbling, at 4° C. The next day, the beads are washed 5 times with PBST.
  • Per selection, 0.010 mL of biotinylated target antigen (1 mg/mL stock in PBST) was added to 0.100 mL of blocked and washed beads (from step 1). The antigen was allowed to bind overnight, with tumbling, at 4° C. The next day, the beads were washed 5 times with PBST.
  • In round 1, 2×1012 up to 1013 plaque forming units (pfu) per selection were blocked against non-specific binding by adding to 0.500 mL of 2% MPBS (=2% MPBST without Tween) for 1 hr at RT (tumble). In later rounds, 1011 pfu per selection were blocked as done in round 1.
  • Each phage pool was incubated with 50 μL of depletion target beads (final wash supernatant removed just before use) on a Labquake rotator for 10 min at room temperature. After incubation, the phage supernatant was removed and incubated with another 50 μL of depletion target beads. This was repeated 3 more times using depletion target beads and twice using blocked streptavidin beads for a total of 7 rounds of depletion, so each phage pool required 350 μL of depletion beads.
  • A small sample of each depleted library pool was taken for titering. Each library pool was added to 0.100 mL of target beads (final wash supernatant was removed just before use) and allowed to incubate for 2 hours at room temperature (tumble).
  • Beads were then washed as rapidly as possible (e.g.,3 minutes total) with 5×0.500 mL PBST and then 2× with PBS. Phage still bound to beads after the washing were eluted once with 0.250 mL of competitive ligand (˜1 μμM) in PBST for 1 hour at room temperature on a Labquake rotator. The eluate was removed, mixed with 0.500 mL Minimal A salts solution and saved. For a second selection, 0.500 mL 100 mM TEA was used for elution for 10 min at RT, then neutralized in a mix of 0.250 mL of 1 M Tris, pH 7.4+0.500 mL Min A salts.
  • After the first selection elution, the beads can be eluted again with 0.300 mL of non-biotinylated target (1 mg/mL) for 1 hr at RT on a Labquake rotator. Eluted phage are added to 0.450 mL Minimal A salts.
  • Three eluates (competitor from 1st selection, target from 1st selection and neutralized TEA elution from 2nd selection) were kept separate and a small aliquot taken from each for titering. 0.500 mL Minimal A salts were added to the remaining bead aliquots after competitor and target elution and after TEA elution. Take a small aliquot from each was taken for tittering.
  • Each elution and each set of eluted beads was mixed with 2×YT and an aliquot (e.g., 1 mL with 1. E 10/mL) of XL1-Blue MRF′ E. coli cells (or other F′ cell line) which had been chilled on ice after having been grown to mid-logarithmic phase, starved and concentrated (see procedure below—“Mid-Log prep of XL-1 blue MRF′ cells for infection”).
  • After approximately 30 minutes at room temperature, the phage/cell mixtures were spread onto Bio-Assay Dishes (243×243×18 mm, Nalge Nunc) containing 2×YT, 1 mM IPTG agar. The plates were incubated overnight at 30° C. The next day, each amplified phage culture was harvested from its respective plate. The plate was flooded with 35 mL TBS or LB, and cells were scraped from the plate. The resuspended cells were transferred to a centrifuge bottle. An additional 20 mL TBS or LB was used to remove any cells from the plate and pooled with the cells in the centrifuge bottle. The cells were centrifuged out, and phage in the supernatant was recovered by PEG precipitation. Over the next day, the amplified phage preps were titered.
  • In the first round, two selections yielded five amplified eluates. These amplified eluates were panned for 2-3 more additional rounds of selection using ˜1. E 12 input phage/round. For each additional round, the depletion and target beads were prepared the night before the round was initiated.
  • For the elution steps in subsequent rounds, all elutions up to the elution step from which the amplified elution came from were done, and the previous elutions were treated as washes. For the bead infection amplified phage, for example, the competitive ligand and target elutions were done and then tossed as washes (see below). Then the beads were used to infect E. coli. Two pools, therefore, yielded a total of 5 final elutions at the end of the selection.
      • 1st selection set
        • A. Ligand amplified elution: elute w/ligand for 1 hr, keep as elution
        • B. Target amplified elution: elute w/ligand for 1 hr, toss as wash elute w/target for 1 hr, keep as elution
        • C. Bead infect. amp. elution: elute w/ligand for 1 hr, toss as wash elute w/target for 1 hr, toss as wash elute w/cell infection, keep as elution
      • 2nd selection set
        • A. TEA amplified elution; elute w/TEA 10 min, keep as elution
        • B. Bead infect. amp. elution; elute w/TEA 10 min, toss as wash elute w/cell infection, keep as elution
          Mid-log Prep of XL1 Blue MRF′ Cells for Infection
          (Based on Barbas et al. Phage Display Manual Procedure)
  • Culture XL1 blue MRF′ in NZCYM (12.5 mg/mL tet) at 37° C. and 250 rpm overnight. Started a 500 mL culture in 2 liter flask by diluting cells 1/50 in NZCYM/tet (10 mL overnight culture added) and incubated at 37° C. at 250 rpm until OD600 of 0.45 (1.5-2 hrs) was reached. Shaking was reduced to 100 rpm for 10 min. When OD600 reached between 0.55-0.65, cells were transferred to 2×250 mL centrifuge bottles, centrifuged at 600 g for 15 min at 4° C. Supernatant was poured off. Residual liquid was removed with a pipette.
  • The pellets were gently resuspended (not pipetting up and down) in the original volume of 1×Minimal A salts at room temp. The resuspended cells were transferred back into 2-liter flask, shaken at 100 rpm for 45 min at 37° C. This process was performed in order to starve the cells and restore pili. The cells were transferred to 2×250 mL centrifuge bottles, and centrifuged as earlier.
  • The cells were gently resuspended in ice cold Minimal A salts (5 mL per 500 mL original culture). The cells were put on ice for use in infections as soon as possible.
  • The phage eluates were brought up to 7.5 mL with 2×YT medium and 2.5 mL of cells were added. Beads were brought up to 3 mL with 2×YT and 1 mL of cells were added. Incubated at 37° C. for 30 min. The cells were plated on 2×YT, 1 mM IPTG agar large NUNC plates and incubated for 18 hr at 30° C.
  • Example 9
  • Incorporation of Synthetic Region in FR1/3 Region.
  • Described below are examples for incorporating of fixed residues in antibody sequences for light chain kappa and lambda genes, and for heavy chains. The experimental conditions and oligonucleotides used for the examples below have been described in previous examples (e.g., Examples 3 & 4).
  • The process for incorporating fixed FR1 residues in an antibody lambda sequence consists of 3 steps (see FIG. 18): (1) annealing of single-stranded DNA material encoding VL genes to a partially complementary oligonucleotide mix (indicated with Ext and Bridge), to anneal in this example to the region encoding residues 5-7 of the FR1 of the lambda genes (indicated with X . . . X; within the lambda genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VL gene. In this process the first few residues of all lambda genes will be encoded by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr). After the PCR, the lambda genes can be cloned using the indicated restriction site for ApaLI.
  • The process for incorporating fixed FR1 residues in an antibody kappa sequence (FIG. 19) consists of 3 steps: (1) annealing of single-stranded DNA material encoding VK genes to a partially complementary oligonucleotide mix (indicated with Ext and Bri), to anneal in this example to the region encoding residues 8-10 of the FR1 of the kappa genes (indicated with X . . . X; within the kappa genes the overlap may sometimes not be perfect) ; (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VK gene. In this process the first few (8) residues of all kappa genes will be encode by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr.). After the PCR, the kappa genes can be cloned using the indicated restriction site for ApaLI.
  • The process of incorporating fixed FR3 residues in a antibody heavy chain sequence (FIG. 20) consists of 3 steps: (1) annealing of single-stranded DNA material encoding part of the VH genes (for example encoding FR3, CDR3 and FR4 regions) to a partially complementary oligonucleotide mix (indicated with Ext and Bridge), to anneal in this example to the region encoding residues 92-94 (within the FR3 region) of VH genes (indicated with X . . . X; within the VH genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer (‘PCRpr’) and for example one primer based within the VH gene (such as in the FR4 region). In this process certain residues of all VH genes will be encoded by the sequences present in the oligonucleotides used here, in particular from PCRpr (for residues 70-73), or from Ext/Bridge oligonucleotides (residues 74-91). After the PCR, the partial VH genes can be cloned using the indicated restriction site for XbaI.
  • It will be understood that the foregoing is only illustrative of the principles of this invention and that various modifications can be made by those skilled in the art without departing from the scope of and sprit of the invention.
    TABLE 1
    Human GLG FR3 sequences
    ! VH1
    ! 66  67  68  69  70  71  72  73  74  75  76  77  78  7980
       agg gtc aco atg acc agg gac acg too atc agc aca gcc tac atg
    !  81 82 82a 82b 82c 83 84 85 86 87 88 89 90 91 92
       gag ctg agc agg ctg aga tot gac gac acg gcc gtg tat tac tgt
    !  93 94 95
       gcg aga ga ! 1-02# 1
       aga gtc acc att acc agg gac aca too gcg agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gaa gac acg gct gtg tat tac tgt
       gcg aga ga ! 1-03# 2
       aga gto acc atg acc agg aac acc too ata agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gcg aga gg ! 1-08# 3
       aga gtc acc atg acc aca gac aca tcc acg agc aca gcc tac atg
       gag ctg agg agc ctg aga tct gac gac acg gcc gtg tat tac tgt
       gcg aga ga ! 1-18# 4
       aga gtc acc atg acc gag gac aca tct aca gac aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gca aca ga ! 1-24# 5
       aga gtc acc att acc agg gac agg tct atg agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac aca gcc atg tat tac tgt
       gca aga ta ! 1-45# 6
       aga gtc acc atg acc agg gac acg tcc acg agc aca gtc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 1-46# 7
       aga gtc acc att acc agg gac atg tcc aca agc aca gcc tac atg
       gag ctg agc agc ctg aga tcc gag gac acg gcc gtg tat tac tgt
       gcg gca ga ! 1-58# 8
       aga gtc acg att acc gcg gac gaa tcc acg agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 1-69# 9
       aga gtc acg att acc gag gac aaa tcc acg agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 1-e# 10.
       aga gtc acc ata acc gcg gac acg tct aca gac aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gca aca ga ! 1-f# 11
    ! VH2
       agg ctc acc atc acc aag gac acc tcc aaa aaccag gtg gtc ctt
       aca atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt
       gca cac aga c ! 2-05# 12
       agg ctc acc atc tcc aag gac acc tcc aaa agc cag gtg gtc ctt
       acc atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt
       gca cgg ata c ! 2-26# 13
       agg ctc acc atc tcc aag gac acc tcc aaa aac cag gtg gtc ctt
       aca atg acc aac atg gac cct gtg gac aca gcc acg tat tac tgt
       gca cgg ata c ! 2-70# 14
    ! VH3
       cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg
       caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt
       gcg aga ga ! 3-07# 15
       cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg
       caa atg aac agt ctg aga gct gag gac acg gcc ttg tat tac tgt
       gca aaa gat a ! 3-09# 16
       cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg
       caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 3-11# 17
       cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg
       caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 3-13# 18
       aga ttc acc atc tca aga gat gat tca aaa aac acg ctg tat ctg
       caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt
       acc aca ga ! 3-15# 19
       cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg
       caa atg aac agt ctg aga gcc gag gac acg gcc ttg tat cac tgt
       gcg aga ga ! 3-20# 20
       cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg
       caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt
       gcg aga ga ! 3-21# 21
       cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
       caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt
       gcg aaa ga ! 3-23# 22
       cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
       caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
       gcg aaa ga ! 3-30# 23
       cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
       caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
       gcg aga ga ! 3303# 24
       cga tte acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
       caa atg aac acc ctg aga gct gag gac acg gct gtg tat tac tgt
       gcg aaa ga ! 3305# 25
       cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg
       caa atg aae agc ctg aga gcc gag gac acg gct gtg tat tac tgt
       gcg aga ga ! 3-33# 26
       cga ttc acc ate tcc aga gac aae acc aaa aac tcc ctg tat ctg
       caa atg aac agt ctg aga act gag gac aee gee ttg tat tac tgt
       gca aaa gat a! 3-43# 27
       cga ttc acc atc tcc aga gac aat gcc aag aac tca ctg tat ctg
       caa atg aac agc ctg aga gac gag gac acg gct gtg tat tac tgt
       gcg aga ga ! 3-48# 28
       aga ttc acc atc tca aga gat ggt tcc aaa agc atc gcc tat ctg
       caa atg aae acc ctg aaa acc gag gac aca gcc gtg tat tac tgt
       act aga ga ! 3-49# 29
       cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt
       caa atg aac acc ctg aga gcc gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 3-53# 30
       aga tte acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt
       caa atg ggc acc ctg aga gct gag gac atg gct gtg tat tac tgt
       gcg aga ga ! 3-64# 31
       aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt
       caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
       gcg aga ga ! 3-66# 32
       aga ttc acc atc tca aga gat gat tca aag aac tca ctg tat ctg
       caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt
       gct aga ga ! 3-72# 33
       agg ttc acc atc tcc aga gat gat tca aag aac acg gcg tat ctg
       caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt
       act aga ca ! 3-73# 34
       cga ttc acc atc tcc aga gac aac gcc aag aac acg ctg tat ctg
       caa atg aac agt ctg aga gcc gag gac acg gct gtg tat tac tgt
       gea aga ga ! 3-74# 35
       aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg eat ctt
       caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt
       aag aaa ga ! 3-d# 36
    ! VH4
       cga gtc acc ata tca gta gac aag tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tat tac tgt
       gcg aga ga ! 4-04# 37
       cga gtc acc atg tca gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gcc gtg gac acg gcc gtg tat tac tgt
       gcg aga aa ! 4-28# 38
       cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg
       aag ctg agc tct gtg act gcc gcg gac acg gce gtg tat tac tgt
       gcg aga ga ! 4301# 39
       cga gtc acc ata tca gta gac agg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tat tac tgt
       gce aga ga ! 4302# 40
       cga gtt acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg act gcc gca gac acg gcc gtg tat tac tgt
       gcc aga ga ! 4304# 41
       cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg
       aag ctg agc tct gtg act gcc gcg gac acg gcc gtg tat tac tgt
       gcg aga ga ! 4-31# 42
       cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gcc gcg gac acg gct gtg tat tac tgt
       gcg aga ga ! 4-34# 43
       cga gtc acc ata tcc gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gcc gca gac acg gct gtg tat tac tgt
       gcg aga ca ! 4-39# 44
       cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt
       gcg aga ga ! 4-59# 45
       cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt
       gcg aga ga ! 4-61# 46
       cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg
       aag ctg agc tct gtg acc gcc gca gac acg gcc gtg tat tac tgt
       gcg aga ga ! 4-b# 47
    ! VH5
       cag gtc acc atc tca gcc gac aag tcc atc agc acc gcc tac ctg
       cag tgg agc agc ctg aag gcc teg gac acc gcc atg tat tac tgt
       gcg aga ca ! 5-51# 48
       cac gtc acc atc tca gct gac aag tcc atc agc act gcc tac ctg
       cag tgg agc agc ctg aag gcc tcg gac acc gcc atg tat tac tgt
       gcg aga ! 5-a# 49
    ! VH6
       cga ata acc atc aac eca gac aca tcc aag aac cag ttc tcc ctg
       cag ctg aac tct gtg act ccc gag gac acg gct gtg tat tac tgt
       gca aga ga ! 6-1# 50
    ! VH7
       cgg ttt gtc ttc tcc ttg gac acc tct gtc agc acg gca tat ctg
       cag atc tgc agc cta aag gct gag gac act gcc gtg tat tac tgt
       gcg aga ga ! 74.1# 51
  • TABLE 2
    Enzymes that either cut 15 or more human GLGs or have 5+-base
    recognition in FR3
    Typical entry:
    REname #sites
    Recognition
    GLGid#:base# GLGid#:base# GLGid#:base#. . .
    BstEII Ggtnacc  2
     1:3 48:3
    There are 2 hits at base# 3
    MaeIII gtnac 36
     1:4  2:4  3:4  4:4  5:4  6:4
     7:4  8:4  9:4 10:4 11:4 37:4
    37:58 38:4 38:58 39:4 39:58 40:4
    40:58 41:4 41:58 42:4 42:58 43:4
    43:58 44:4 44:58 45:4 45:58 46:4
    46:58 47:4 47:58 48:4 49:4 50:58
    There are 24 hits at base# 4
    Tsp45I gtsac 33
     1:4  2:4  3:4  4:4  5:4  6:4
     7:4  8:4  9:4 10:4 11:4 37:4
    37:58 38:4 38:58 39:58 40:4 40:58
    41:58 42:58 43:4 43:58 44:4 44:58
    45:4 45:58 46:4 46:58 47:4 47:58
    48:4 49:4 50:58
    There are 21 hits at base# 4
    HphI tcacc 45
     1:5  2:5  3:5  4:5  5:5  6:5
     7:5  8:5 11:5 12:5 12:11 13:5
    14:5 15:5 16:5 17:5 18:5 19:5
    20:5 21:5 22:5 23:5 24:5 25:5
    26:5 27:5 28:5 29:5 30:5 31:5
    32:5 33:5 34:5 35:5 36:5 37:5
    38:5 40:5 43:5 44:5 45:5 46:5
    47:5 48:5 49:5
    There are 44 hits at base# 5
    NlaIII CATG 26
     1:9  1:42  2:42  3:9  3:42  4:9
     4:42  5:9  5:42  6:42  6:78  7:9
     7:42  8:21  8:42  9:42 10:42 11:42
    12:57 13:48 13:57 14:57 31:72 38:9
    48:78 49:78
    There are 11 hits at base# 42
    There are 1 hits at base# 48 Could cause raggedness.
    BsaJI Ccnngg 37
     1:14  2:14  5:14  6:14  7:14  8:14
     8:65  9:14 10:14 11:14 12:14 13:14
    14:14 15:65 17:14 17:65 18:65 19:65
    20:65 21:65 22:65 26:65 29:65 30:65
    33:65 34:65 35:65 37:65 38:65 39:65
    40:65 42:65 43:65 48:65 49:65 50:65
    51:14
    There are 23 hits at base# 65
    There are 14 hits at base# 14
    AluI AGct 42
     1:47  2:47  3:47  4:47  5:47  6:47
     7:47  8:47  9:47 10:47 11:47 16:63
    23:63 24:63 25:63 31:63 32:63 36:63
    37:47 37:52 38:47 38:52 39:47 39:52
    40:47 40:52 41:47 41:52 42:47 42:52
    43:47 43:52 44:47 44:52 45:47 45:52
    46:47 46:52 47:47 47:52 49:15 50:47
    There are 23 hits at base# 47
    There are 11 hits at base# 52 Only 5 bases from 47
    BlpI GCtnagc 21
     1:48  2:48  3:48  5:48  6:48  7:48
     8:48  9:48 10:48 11:48 37:48 38:48
    39:48 40:48 41:48 42:48 43:48 44:48
    45:48 46:48 47:48
    There are 21 hits at base# 48
    MwoI GCNNNNNnngc 19
     1:48  2:28 19:36 22:36 23:36 24:36
    25:36 26:36 35:36 37:67 39:67 40:67
    41:67 42:67 43:67 44:67 45:67 46:67
    47:67
    There are 10 hits at base# 67
    There are 7 hits at base# 36
    DdeI Ctnag 71
     1:49  1:58  2:49  2:58  3:49  3:58
     3:65  4:49  4:58  5:49  5:58  5:65
     6:49  6:58  6:65  7:49  7:58  7:65
     8:49  8:58  9:49  9:58  9:65 10:49
    10:58 10:65 11:49 11:58 11:65 15:58
    16:58 16:65 17:58 18:58 20:58 21:58
    22:58 23:58 23:65 24:58 24:65 25:58
    25:65 26:58 27:58 27:65 28:58 30:58
    31:58 31:65 32:58 32:65 35:58 36:58
    36:65 37:49 38:49 39:26 39:49 40:49
    41:49 42:26 42:49 43:49 44:49 45:49
    46:49 47:49 48:12 49:12 51:65
    There are 29 hits at base# 58
    There are 22 hits at base# 49 Only nine base from 58
    There are 16 hits at base# 65 Only seven bases from 58
    BglII Agatct 11
     1:61  2:61  3:61  4:61  5:61  6:61
     7:61  9:61 10:61 11:61 51:47
    There are 10 hits at base# 61
    BstYI Rgatcy 12
     1:61  2:61  3:61  4:61  5:61  6:61
     7:61  8:61  9:61 10:61 11:61 51:47
    There are 11 hits at base# 61
    Hpy188I TCNga 17
     1:64  2:64  3:64  4:64  5:64  6:64
     7:64  8:64  9:64 10:64 11:64 16:57
    20:57 27:57 35:57 48:67 49:67
    There are 11 hits at base# 64
    There are 4 hits at base# 57
    There are 2 hits at base# 67 Could be ragged.
    MslI CAYNNnnRTG 44
     1:72  2:72  3:72  4:72  5:72  6:72
     7:72  8:72  9:72 10:72 11:72 15:72
    17:72 18:72 19:72 21:72 23:72 24:72
    25:72 26:72 28:72 29:72 30:72 31:72
    32:72 33:72 34:72 35:72 36:72 37:72
    38:72 39:72 40:72 41:72 42:72 43:72
    44:72 45:72 46:72 47:72 48:72 49:72
    50:72 51:72
    There are 44 hits at base# 72
    BsiEI CGRYcg 23
     1:74  3:74  4:74  5:74  7:74  8:74
     9:74 10:74 11:74 17:74 22:74 30:74
    33:74 34:74 37:74 38:74 39:74 40:74
    41:74 42:74 45:74 46:74 47:74
    There are 23 hits at base# 74
    EaeI Yggccr 23
     1:74  3:74  4:74  5:74  7:74  8:74
     9:74 10:74 11:74 17:74 22:74 30:74
    33:74 34:74 37:74 38:74 39:74 40:74
    41:74 42:74 45:74 46:74 47:74
    There are 23 hits at base# 74
    EagI Cggccg 23
     1:74  3:74  4:74  5:74  7:74  8:74
     9:74 10:74 11:74 17:74 22:74 30:74
    33:74 34:74 37:74 38:74 39:74 40:74
    41:74 42:74 45:74 46:74 47:74
    There are 23 hits at base# 74
    HaeIII GGcc 27
     1:75  3:75  4:75  5:75  7:75  8:75
     9:75 10:75 11:75 16:75 17:75 20:75
    22:75 30:75 33:75 34:75 37:75 38:75
    39:75 40:75 41:75 42:75 45:75 46:75
    47:75 48:63 49:63
    There are 25 hits at base # 75
    Bst4CI ACNgt 65° C.  63 Sites There is a third isoschismer
     1:86  2:86  3:86  4:86  5:86  6:86
     7:34  7:86  8:86  9:86 10:86 11:86
    12:86 13:86 14:86 15:36 15:86 16:53
    16:86 17:36 17:86 18:86 19:86 20:53
    20:86 21:36 21:86 22:0 22:86 23:86
    24:86 25:86 26:86 27:53 27:86 28:36
    28:86 29:86 30:86 31:86 32:86 33:36
    33:86 34:86 35:53 35:86 36:86 37:86
    38:86 39:86 40:86 41:86 42:86 43:86
    44:86 45:86 46:86 47:86 48:86 49:86
    50:86 51:0 51:86
    There are 51 hits at base# 86 All the other sites are well away
    HpyCH4III ACNgt 63
     1:86  2:86  3:86  4:86  5:86  6:86
     7:34  7:86  8:86  9:86 10:86 11:86
    12:86 13:86 14:86 15:36 15:86 16:53
    16:86 17:36 17:86 18:86 19:86 20:53
    20:86 21:36 21:86 22:0 22:86 23:86
    24:86 25:86 26:86 27:53 27:86 28:36
    28:86 29:86 30:86 31:86 32:86 33:36
    33:86 34:86 35:53 35:86 36:86 37:86
    38:86 39:86 40:86 41:86 42:86 43:86
    44:86 45:86 46:86 47:86 48:86 49:86
    50:86 51:0 51:86
    There are 51 hits at base# 86
    HinfI Gantc 43
     2:2  3:2  4:2  5:2  6:2  7:2
     8:2  9:2  9:22 10:2 11:2 15:2
    16:2 17:2 18:2 19:2 19:22 20:2
    21:2 23:2 24:2 25:2 26:2 27:2
    28:2 29:2 30:2 31:2 32:2 33:2
    33:22 34:22 35:2 36:2 37:2 38:2
    40:2 43:2 44:2 45:2 46:2 47:2
    50:60
    There are 38 hits at base# 2
    MlyI GAGTCNNNNNn 18
     2:2  3:2  4:2  5:2  6:2  7:2
     8:2  9:2 10:2 11:2 37:2 38:2
    40:2 43:2 44:2 45:2 46:2 47:2
    There are 18 hits at base# 2
    PleI gagtc 18
     2:2  3:2  4:2  5:2  6:2  7:2
     8:2  9:2 10:2 11:2 37:2 38:2
    40:2 43:2 44:2 45:2 46:2 47:2
    There are 18 hits at base# 2
    AciI Ccgc 24
     2:26  9:14 10:14 11:14 27:74 37:62
    37:65 38:62 39:65 40:62 40:65 41:65
    42:65 43:62 43:65 44:62 44:65 45:62
    46:62 47:62 47:65 48:35 48:74 49:74
    There are 8 hits at base# 62
    There are 8 hits at base# 65
    There are 3 hits at base# 14
    There are 3 hits at base# 74
    There are 1 hits at base# 26
    There are 1 hits at base# 35
    -″- Gcgg 11
     8:91  9:16 10:16 11:16 37:67 39:67
    40:67 42:67 43:67 45:67 46:67
    There are 7 hits at base# 67
    There are 3 hits at base# 16
    There are 1 hits at base# 91
    BsiHKAI GWGCWc 20
     2:30  4:30  6:30  7:30  9:30 10:30
    12:89 13:89 14:89 37:51 38:51 39:51
    40:51 41:51 42:51 43:51 44:51 45:51
    46:51 47:51
    There are 11 hits at base# 51
    Bsp1286I GDGCHc 20
     2:30  4:30  6:30  7:30  9:30 10:30
    12:89 13:89 14:89 37:51 38:51 39:51
    40:51 41:51 42:51 43:51 44:51 45:51
    46:51 47:51
    There are 11 hits at base# 51
    HgiAI GWGCWc 20
     2:30  4:30  6:30  7:30  9:30 10:30
    12:89 13:89 14:89 37:51 38:51 39:51
    40:51 41:51 42:51 43:51 44:51 45:51
    46:51 47:51
    There are 11 hits at base# 51
    BsoFI GCngc 26
     2:53  3:53  5:53  6:53  7:53  8:53
     8:91  9:53 10:53 11:53 31:53 36:36
    37:64 39:64 40:64 41:64 42:64 43:64
    44:64 45:64 46:64 47:64 48:53 49:53
    50:45 51:53
    There are 13 hits at base# 53
    There are 10 hits at base# 64
    TseI Gcwgc 17
     2:53  3:53  5:53  6:53  7:53  8:53
     9:53 10:53 11:53 31:53 36:36 45:64
    46:64 48:53 49:53 50:45 51:53
    There are 13 hits at base# 53
    MnlI gagg 34
     3:67  3:95  4:51  5:16  5:67  6:67
     7:67  8:67  9:67 10:67 11:67 15:67
    16:67 17:67 19:67 20:67 21:67 22:67
    23:67 24:67 25:67 26:67 27:67 28:67
    29:67 30:67 31:67 32:67 33:67 34:67
    35:67 36:67 50:67 51:67
    There are 31 hits at base# 67
    HpyCH4V TGca 34
     5:90  6:90 11:90 12:90 13:90 14:90
    15:44 16:44 16:90 17:44 18:90 19:44
    20:44 21:44 22:44 23:44 24:44 25:44
    26:44 27:44 27:90 28:44 29:44 33:44
    34:44 35:44 35:90 36:38 48:44 49:44
    50:44 50:90 51:44 51:52
    There are 21 hits at base# 44
    There are 1 hits at base# 52
    AccI GTmkac 13 5-base recognition
     7:37 11:24 37:16 38:16 39:16 40:16
    41:16 42:16 43:16 44:16 45:16 46:16
    47:16
    There are 11 hits at base# 16
    SacII CCGCgg  8 6-base recognition
     9:14 10:14 11:14 37:65 39:65 40:65
    42:65 43:65
    There are 5 hits at base# 65
    There are 3 hits at base# 14
    TfiI Gawtc 24
     9:22 15:2 16:2 17:2 18:2 19:2
    19:22 20:2 21:2 23:2 24:2 25:2
    26:2 27:2 28:2 29:2 30:2 31:2
    32:2 33:2 33:22 34:22 35:2 36:2
    There are 20 hits at base# 2
    BsmAI Nnnnnngagac 19
    15:11 16:11 20:11 21:11 22:11 23:11
    24:11 25:11 26:11 27:11 28:11 28:56
    30:11 31:11 32:11 35:11 36:11 44:87
    48:87
    There are 16 hits at base# 11
    BpmI ctccag 19
    15:12 16:12 17:12 18:12 20:12 21:12
    22:12 23:12 24:12 25:12 26:12 27:12
    28:12 30:12 31:12 32:12 34:12 35:12
    36:12
    There are 19 hits at base# 12
    XmnI GAANNnnttc 12
    37:30 38:30 39:30 40:30 41:30 42:30
    43:30 44:30 45:30 46:30 47:30 50:30
    There are 12 hits at base# 30
    BsrI NCcagt 12
    37:32 38:32 39:32 40:32 41:32 42:32
    43:32 44:32 45:32 46:32 47:32 50:32
    There are 12 hits at base# 32
    BanII GRGCYc 11
    37:51 38:51 39:51 40:51 41:51 42:51
    43:51 44:51 45:51 46:51 47:51
    There are 11 hits at base# 51
    Ecl136I GAGctc 11
    37:51 38:51 39:51 40:51 41:51 42:51
    43:51 44:51 45:51 46:51 47:51
    There are 11 hits at base# 51
    SacI GAGCTc 11
    37:51 38:51 39:51 40:51 41:51 42:51
    43:51 44:51 45:51 46:51 47:51
    There are 11 hits at base# 51
  • TABLE 3
    Synthetic 3-23 FR3 of human heavy chains showning positions of possible
    cleavagc sites
    ! Sites engineered into the synthetic gene are shown in upper case
    DNA
    ! with the RE name bctween vertical bars (as in | XbaI  |).
    ! RERSa frequently found in GLGs are shown below the synthetic
    sequence
    ! with the name to the right (as in gtn ac = MaeIII(24), indicating
    that
    ! 24 of the 51 GLGs contain the site)
    !
    !                                                      |---FR3---
    !                                                       89  90 (codon
    # in
    !                                                        R  F
    synthetic 3-23)
                                                           |cgc|ttc|  6
    !  Allowed DNA                                         |cgn|tty|
    !                                                      |agr|
    !                                                        ga ntc =
    HinfI(38)
    !                                                        ga gtc =
    PleI(18)
    !                                                        ga wtc =
    TfiI(20)
    !                                                           gtn ac =
    MaeIII(24)
    !                                                           gts ac =
    Tsp45I(21)
    !                                                            tc acc =
    HphI(44)
    !
    !       --------FR3--------------------------------------------------
    !         91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !         T   I   S   R   D   N   S   K   N   T   L   Y   L   Q   M
            |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
    51
    !allowed|acn|ath|tcn|cgn|gay|aay|tcn|aar|aay|acn|ttr|tay|ttr|car|atg|
    !               |agy|agr|       |agy|           |ctn|   |ctn|
    !               |     ga|gac = BsmAI(16)                      ag ct =
    AluI(23)
    !              c|tcc ag = BpmI(19)                             g ctn agc =
    BlpI(21)
    !               |       |              g aan nnn ttt = XmnI(12)
    !               | XbaI  |                                 tg ca =
    HpyCH4V(21)
    !
    !       ---FR3----------------------------------------------------->|
    !        106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !         N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   K
            |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|  96
    !allowed|aay|tcn|ttr|cgn|gcn|gar|gay|acn|gcn|gtn|tay|tay|tgy|gcn|aar|
    !           |agy|ctn|agr|             |      |
    !              |      |   cc nng g = BsaJI(23)        ac ngt = Bst4CI(51)
    !              |     aga tct = BglII(10)     |        ac ngt =
    HpyCH4III(51)
    !              |     Rga tcY = BstYI(11)     |        ac ngt = TaaI(51)
    !              |      |            c ayn nnn rtc = MslI(44)
    !              |      |              cg ryc g = BsiEI(23)
    !              |      |              yg gcc r = EagI(23)
    !              |      |              cg gcc g = EagI(23)
    !              |      |              |g gcc = HaeIII(25)
    !              |      |      gag g = MnlI(31)|
    !              |AflII |              | PstI |
  • TABLE 4
    REdaptors, Extenders, and Bridges used for Cleavacc and
    Capture of Human Heavy Chains in FR3.
    A: HpyCH4V Probes of actual human HC genes
     !HpyCH4V in FR3 of human HC, bases 35-56; only those with TGca site
     TGca; 10,
     RE recognltion:tgca of length 4 is expected at
    10
       1 6-1 agttctccctgcagctgaactc
       2 3-11,3-07, 3-21, 3-72,3-48 cactgtatctgcaaatgaacag
       3 3-09, 3-43,3-20 ccctgtatctgcaaatgaacag
       4 5-51 ccgcctacctgcagtggagcag
       5 3-15,3-30,3-30.5,3-30.3,3-74,3-23,3-33 cgctgtatctgcaaatgaacag
       6 7-4.1 cggcatatctgcagatctgcag
       7 3-73 cggcgtatctgcaaatgaacag
       8 5-a actgcctacctgcagtggagcag
       9 3-49 tcgcctatctgcaaatgaacag
    B: HpyCH4V REdaptors, Extenders, and Bridges
      B.1 PEdaptors
    ! Cutting HC lower strand:
    ! TmKeller for 100 mM NaCl, zero formamide
    ! Edapters for cleavage Tm W Tm K
    (ON_HCFR36-1) 5′-agttctcccTGCAgctgaactc-3′ 68.0 64.5
    (ON_HCFR36-1A) 5′-ttctcccTGCAgctgaactc-3′ 62.0 62.5
    (ON_HCFR36-1B) 5′-ttctcccTGCAgctgaac-3′ 56.0 59.9
    (ON_HCFR33-15) 5′-cgctgtatcTGCAaatgaacag3′ 64.0 60.8
    (ON_HCFR33-15A) 5′-ctgtatcTGCAaatgaacag-3′ 56.0 56.3
    (ON_HCFR33-15B) 5′-tgtatcTGCAaatgaac-3′ 50.0 53.1
    (ON_HCFR33-11) 5′-cactgtatcTGCAaatgaacag-3′ 62.0 58.9
    (ON_HCFR35-51) 5′-ccgcctaccTGCAgtggagcag-3′ 74.0 70.1
    B.2 Segment of synthetic 3-23 gene into which captured CDR3 is to
    be cloned
    !          XbaI . . .
    !D323*  cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC
    !       scab........designed gene 3-23 gene................
    !
    !    HpyCH4V
    !     .. ..            AflII . . .
    !    Ttg caG atg aac agc TtA agG . . .
    !    .............................. . . .
      B.3 Extender and Bridges
    ! Extender (bottom strand):
    (ON_HCHpyEx01) 5′-cAAgTAgAgAgTATTcTTAgAgTTgTcTcTAgAcTTAgTgAAgcg-3′
    ! ON_HCHpyEx01 is the reverse complement of
    ! 5′-cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC Ttg -3′
    !
    ! Bridges (top strand, 9-base overlap)
    !
    (ON_HCHpyBr016-1)   5′-cgCttcacTaag tcT aga gac aaC tcT aag-
                      aaT acT ctC taC Ttg CAgctgaac-3′ {(3′-term C is
    blocked)
    !
    ! 3-15 et al. + 3-11
    (ON_HCHpyBr023-15)  5′-cgCttcacTaag tcT aga gac aaC tcT aag-
                      aaT acT ctC taC Ttg CAaatgaac-3′ {3′-term C is
    blocked)
    !
    ! 5-51
    (ON_1-ICHpyBr045-51)  5′-cgCttcacTaag tcT aga gac aaC tcT aag-
                      aaT acT ctC taC Ttg CAgtggagc-3′ (3′-term C is
    blocked)
    !
    ! PCR primer (top strand)
    !
    (ON_HCHpyPCR)       5′-cgCttcacTaag tcT aca gac-3′
    !
    C: BipI Probes from human HC GLGs
       1 1-58, 1-03, 1-08, 1-69, 1-24, 1-45, 1-46, 1-f, 1-e
    acatggaGCTGAGCagcctgag
       2 1-02
    acatggaGCTGAGCaggctqag
       3 1-18
    acatggagctgaggagcctgag
       4 5-51, 5-a
    acctgcagtggagcagcctgaa
       5 3-15, 3-73, 3-49, 3-72
    atctgcaaatgaacagcctgaa
       6 3303,3-33,3-07,3-11,3-30,3-21,3-23,3305,3-48
    atctgcaaatgaacagcctgag
       7 3-20,3-74,3-09,3-43
    atctgcaaatgaacagtctgag
       8 74.1
    atctgcagatctgcagcctaaa
       9 3-66, 3-13, 3-53, 3-d
    atcttcaaatgaacagcctgag
      10 3-64
    atcttcaaatgggcagcctgag
      11 4301,4-28,4302,4-04,4304,4-31,4-34,4-39,4-59,4-61,4-b
    ccctgaaGCTGAGCtctgtgac
      12 6-1
    ccctgcagctgaactctgtgac
      13 2-70,2-05
    tccttacaatgaccaacatgga
      14 2-26
    tccttaccatgaccaacatgga
    D: BlpI REdaptors, Extenders, and Bridges
      D.1 BEdaptors
    Tm W Tm K
    (B1pF3HC1-58) 5′-ac atg gaG CTG AGC agcctg ag-3′ 70 66.
    4
    (B1pF3HC6-1) 5′-cc ctg aag ctg agc tctgtg ac-3′ 70 66.
    4
    B1pF3HC6-1 matches 4-30.1, not 6-1.
      D.2 Segment of synthetic 3-23 gene into which captured CDR3 is to
    be cloned
    !
    Blp|
    !
    !                    XbaI . . .
    ... ...
    !D323*  cgCttcacTaag TCT AGA gac aaC tcT aag aaT acT ctC taC Ttg
    caG atg aac
    !
    !                    AtlII . . .
    !                  agC TTA AGG
      D.3 Extender and Bridges
    ! Bridges
    (BlpF3Br1) 5′-cgCttcacTcag tcT aga gaT aeC AGT aaA aaT acT TtG-
                      taC Ttg caG Ctg a|GC agc ctg-3′
    (BlpF3Br2) 5′-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-
                      taC Ttg caG Ctg a|gc tct gtg-3′
    !                                  | lower strand is cut here
    ! Extender
    (BlpF3Ext) 5′-
    TcAgcTgcAAgTAcAAAgTATTTTTAcTgTTATcTcTAgAgAcTgAgTgAAgcg-3′
    ! BlpF3Ext is the reverse complement of:
    ! 5′-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG taC Ttg caG
    Ctg a-3′
    !
    (BlpF3PCR) 5′-cgCttcacTcag tcT aga gaT aaC-3′
    E: HpyCH4III Distinct GLG sequences surrounding site, bases 77-98
       1 102#118#4,146#7,169#9,1e#10,311#17,353#30,404#37,4301
    ccgzqtattactgtgcgagaga
       2 103#2,307#15,321#21,3303#24,333#26,348#28,364#31,366#32
    ctgtgtattactgtgcgagaga
       3 108#3
    ccgtgtattactgtgcgagagg
       4 124#5, 1f#11
    ccgtgtattactgtgcaacaga
       5 145#6
    ccatgtattactgtgcaagata
    158#8
    ccgtgtattactgtgcggcaga
       7 205#12
    ccacatattactgtgcacacag
       8 226#13
    ccacatattactgtgcacggat
       9 270#14
    ccacgtattactgtgcacggat
      10 309#16, 343#27
    ccttgtattactgtgcaaaaga
      11 313#18, 374#35, 61#50
    ctgtgtattactgtgcaagaga
      12 315#19
    ccgtgtattactgtaccacaga
      13 320#20
    ccttgtatcactgtgcgagaga
      14 323#22
    ccgtatattactgtgcgaaaga
      15 330#23, 3305#25
    ctgtgtattactgtgcgaaaga
      16 349#29
    ccgtgtattactgtactagaga
      17 372#33
    ccgtgtattactgtgctagaga
      18 373#34
    ccgtgtattactgtactagaca
      19 3d#36
    ctgtgtattactgtaagaaaga
      20 428#38
    ccgtgtattactgtgcgagaaa
      21 4302#40, 4304#41
    ccgtgtattactgtgccagaga
      22 439#44
    ctgtgtattactgtgcgagaca
      23 551#48
    ccatgtattactgtgcgagaca
      24 5a#49
    ccatgtattactgtgcgaga
    F: HypCH4III PEdaptors, Extenders, and Bridges
      F.1 PEdaptors
    ! ONs for cleavacc of HC(lower) in FR3(bases 77-97)
    ! For cleavacc with HpyCH4III, Bst4CI, or Taa|
    ! cleavage is in lower chain before base 88.
    !            77 788 888 888 889 999 999 9
    !            78 901 234 567 890 123 456 7 Tm w
      Tm k
    (H43.77.97.1-02#1) 5′-cc gtg tat tAC TGT gcg aga g-3′ 6462.6
    (H43.77.97.1-03#2) 5′-ct gtg tat tAC TGT gcg aga g-3′ 6260.6
    (H43.77.97.108#3) 5′-cc gtg tat tAC TGT gcg aga g-3′ 6462.6
    (H43.77.97.323#22) 5′-cc gta tat tac tgt gcg aaa g-3′ 6058.7
    (H43.77.97.330#23) 5′-ct gtg tat tac tgt gcg aaa g-3′ 6058.7
    (H43.77.97.439#44) 5′-ct gtg tat tac tgt gcg aga c-3′ 6260.6
    (H43.77.97.551#48) 5′-cc atg tat tac tgt gcg aga -3′ 6260.6
    (H43.77.97.5a#49) 5′-cc atg tat tAC TGT gcg aga -3′ 5858.3
    F.2 Extender and Bridges
    ! XbaI and Afill sites in bridges are bunged
    (H43.XABr1) 5′-ggtgtagtga-
      |TCT|AGt|gac|aac|tct |aag|aat|act|ctc|tac|ttg|cag|atg|-
      |aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac tat tgt gcg aga-3′
    (H43.XABr2) 5′-ggtgtagtga-
      |TCT |AGt|gac|aac|tct |aag|aat|act|ctc|tad ttg|cag|atg|-
      |aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3′
    (H43.XAExt) 5′-ATAgTAgAcT gcAgTgTccT cAgcccTTAA gcTgTTcATc
    TgCAAgTAgA-
                   gAgTATTcTT AgAgTTgTcT cTAgATcACT AcAcc-3′
    !H43.XAExt is the reverse complement of
    ! 5′-ggtgtagtga-
    !  |TCT|AGA|gac|aac|tct|aag|aat|act|ctg|tac|ttg|cag|atg|-
    !  |aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat-3′
    (H43.XAPCR) 5′-ggtgtagtga |TCT|AGA|gac|aac-3′
    ! XbaI and AflII sites in bridges are bunged
    (H43.ABr1) 5′-ggtgtagtga-
      |aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aga-3′
    (H43.ABr2) 5′-ggtgtagtga-
      |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3′
    (H43.AExt) 5′-ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTTcAcTAcAcc-3′
    ! (H43.AExt) is the reverse complement of 5′-ggtgtagtga-
    !  |aac|a gC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat-3′
    (H43.APCR)      5′-ggtgtagtga |aac|a gC|TTA|AGg|gct|-3′
  • TABLE 5
    Analysis of frequency of matching REdaptors in actual V genes
    A: HpyCH4V in HC at bases 35-56
    Number of mismatches.....................Number
    Id Ntct   0   1   2 3 4 5 6 7 8 9 10 Cut Id Probe
    1 510   5  11 274 92 61 25 22 11 1 3 5443 6-1 agttctcccTGCAgctgaactc
    2 192  54  42  32 24 15 2 3 10 3 1 6 167 3-11 cactgtatcTGCAaatgaacag
    3 58  19   7  17 6 5 1 0 1 0 2 0 543-09 ccctgtatcTGCAaatgaacag
    4 267  42  33   9 8 8 82 43 22 8 11 1 100 5-51 ccgcctaccTGCAgtggagcag
    5 250 111  59  41 24 7 5 1 0 0 2 0 242 3-15 cgctgtatcTGCAaatgaacag
    6 7   0   2   0 1 0 0 0 0 0 4 0 3 74.1 cggcatatcTGCAgatctgcag
    7 7   0   2   2 0 0 2 1 0 0 0 0 4 3-73 cggcgtatcTGCAaatgaacag
    8 26  10   4   1 3 1 2 1 3 1 0 0 19 5-a ctgcctaccTGCAgtggagcag
    9 21   8   2   3 1 6 1 0 0 0 0 0 20 3-49 tcgcctatcTGCAaatgaacag
    1338 249 162 379 149 103 120 71 47 13 23 12 1052
    249 411 790 939 1162 1280 1316
    1042 1233 1293 1338
    Id Probe dotted probe
    6-1 agttctcccTGCAgctgaactc agttctcccTGCAgctgaactc
    3-11 cactgtatcTGCAaatgaacag cac.g.at.....aa.....ag
    3-09 ccctgtatcTGCAaatgaacag ccc.g.at.....aa.....ag
    5-51 ccgcctaccTGCAgtggagcag ccgc..a.......tg..g.ag
    3-15 cgctgtatcTGCAaatgaacag c.c.g.at.....aa.....ag
    7-4.1 cggcatatcTGCAgatctgcag c.gca.at......a.ctg.ag
    3-73 cggcgtatcTGCAaatgaacag c.gcg.at.....aa.....ag
    5-a ctgcctaccTGCAgtggaacag ctgc..a.......tg..g.ag
    3-49 tcgcctatcTGCAaatgaacag tcgc..at.....aa.....ag
    Seqs with the expected RE site only.......1004
             (Counts only cases with 4 or fewer mismatches)
    Seqs with only an unexpected site.........   0
    Seqs with both expected and unexpected....  48
             (Counts only cases with 4 or fewer mismatches)
    Seqs with no sites........................   0
    B: BlpI in HC
    Id Ntot 0 1 2 3 4 5 6 7 8 Ncut Name
    1 133 73 16 11 13 6 9 1 4 0 119 1-58 acatggaGCTGAGCagcctgag
    2 14 11 1 0 0 0 0 1 0 1 12 1-02 acatggagctgagcaggctgag
    3 34 17 8 2 6 1 0 0 0 0 0 1-18 acatggagctgaggagcctgag
    4 120 50 32 16 10 9 1 1 1 0 2 5-51 acctgcagtggagcagcctgaa
    5 55 13 11 10 17 3 1 0 0 0 0 3-15 atctgcaaatgaacagcctgaa
    6 340 186 88 41 15 6 3 0 1 0 0 3303 atctgcaaatgaacagcctgag
    7 82 25 16 25 12 1 3 0 0 0 0 3-20 atctgcaaatgaacagtctgag
    8 3 0 2 0 1 0 0 0 0 0 0 74.1 atctgcagatctgcagcctaaa
    9 23 18 2 2 1 0 0 0 0 0 0 3-66 atcttcaaatgaacagcctgag
    10 2 1 0 1 0 0 0 0 0 0 0 3-66 atcttcaaatgggcagcctgag
    11 486 249 78 81 38 21 10 4 4 1 467 4301 ccctgaagctgagctctgtgac
    12 16 6 3 1 0 1 1 3 1 0 1 6-1 ccctgcagctgaactctgtgac
    13 28 15 8 2 2 1 0 0 0 0 0 2-70 tccttacaatgaccaacatgga
    14 2 0 2 0 0 0 0 0 0 0 0 2-26 tccttaccatgaccaacatgga
    Name Full seguence Dot mode
    1-58 acatggacCTGAGCagcctgag acatggaGCTGAGCagcctgag
    1-02 acatggagctgagcaggctgag ...............g......
    1-18 acatggagctgaggagcctgag ............g.........
    5-51 acctgcagtggagcagcctga& ..c..c..tg...........a
    3-15 atctgcaaatgaacagcctgaa .tc..c.aa...a........a
    3-30.3 atctgcaaatgaacagcctgag .tc..c.aa..a..........
    3-20 atctgcaaatgaacagtctgag .tc..c.aa...a...t.....
    7-4.1 atctgcagatctgcagcctaaa .tc..c..a.ct.......a.a
    3-66 atcttcaaatgaacagcctgag .tc.tc.aa...a.........
    3-64 atcttcaaatgggcagcctgag .tc.tc.aa..g..........
    4-30.1 ccctgaagctgagctctgtgacc c.c..a........tctg...c
    6-1 ccctgcagctgaactctgtgac c.c..c......a.tctg...c
    2-70 tccttacaatgaccaacatggat t.c.tacaa...c..a.a..ga
    2-26 tccttaccatgaccaacatggat t.c.tacca...c..a.a..ga
    Seqs with the expected RE site only....... 597 (counting seguences with 4 or fewer mismatches)
    Seqs with only an unexpected site.........   2
    Seqs with both expected and unexpected....   2
    Seqs with no sites........................ 686
    C. HpyCH4III, Bst4CI, or TaaI in HC
    In scoring whether the RE site of interest is present, only ONs that have 4 or fewer mismatches are counted
    Number of sequences..........  1617
    Id Ntot 0 1 2 3 4 5 6 7 8 Ncut acngt acngt
    1 244 78 92 43 18 10 1 2 0 0 241 102#1,1 ccgtgtattACTGTgcgagaga ccgtgtattactgtgcgagaga
    2 457 69 150 115 66 34 11 8 3 1 434 103#2,3 ctgtgtattactgtgcgagaga .t....................
    3 173 52 45 36 22 14 3 0 0 1 169 108#3 ccgtgtattactgtgcgagagg .....................g
    4 16 0 3 2 2 1 6 0 1 1 8 124#5,1 ccgtgtattactgtgcaacaga .................a.c..
    5 4 0 0 1 0 1 1 0 1 0 2 145#6 ccatgtattactgtgcaagata ..a..............a...t
    6 15 1 0 1 0 6 4 1 1 1 8 158#8 ccgtgtattactgtgcggcaga ................gc....
    7 23 4 8 5 2 2 1 1 0 0 21 205#12 ccacatattactgtgcacacag ..aca...........acacag
    8 9 1 1 1 0 3 2 1 0 0 6 226#13 ccacatattactgtgcacggat ..aca...........ac.gat
    9 7 1 3 1 1 0 0 1 0 0 6 270#14 ccacgtattactgtgacggat ..ac............ac.gat
    10 23 7 3 5 5 2 1 0 0 0 22 309#16, ccttgtattactgtgcaaaaga ..t.............a.a...
    11 35 5 10 7 6 3 3 0 1 0 31 313#18, ctgtgtattactgtgcaagaga .t..............a.....
    12 18 2 3 2 2 6 1 0 2 0 15 315#19 ccgtgtattactgtaccacaga ..............a.c.c...
    13 3 1 2 0 0 0 0 0 0 0 3 320#20 ccttgtatcactgtgcgagaga ..t......c............
    14 117 29 23 28 22 8 4 2 1 0 110 323#22 ccgtatattacttggcgaaaga .....a................
    15 75 21 25 13 9 1 4 2 0 0 69 330#23, ctgtgtattactgtgcgaaaga .t...............a....
    16 14 2 2 2 3 0 3 1 1 0 9 349#29 ccgtgtattactgtactagaga ..............a.t.....
    17 2 0 0 1 0 0 1 0 0 0 1 372#33 ccgtgtattactgtgctagaga .................t....
    18 1 0 0 1 0 0 0 0 0 0 1 373#34 ccgtgtattactgtaagaaaga ...............aa..a..
    19 2 0 0 0 0 0 0 0 0 2 0 3d#36 ctgtgtattactgtaagaaaga .t...........aa..a....
    20 34 4 9 9 4 5 3 0 0 0 31 428#38 ccgtgtattactgtgcgagaaa .....................a
    21 17 5 4 2 2 3 1 0 0 0 16 4302#40 ccgtgtattactgtgcgagaca ................c.....
    22 75 15 17 24 7 10 1 1 0 0 73 439#44 ctgtgtattactgtgcgagaca .t..................c.
    23 40 14 15 4 5 1 0 1 0 0 39 551#48 ccatgtattactgtgagagaca ..a.................c.
    24 213 26 56 60 42 20 7 2 0 0 204 5a#49 ccatgtattactgtgcgagaAA ..a.................AA
    Group 337 471 363 218 130 58 23 11 6
    Cumulative 337 808 1171 1389 1519 1577 1600 1611 1617
    Seqs with the expected RE site only.......1511
    Seqs with only en unexpected site.........   0
    Seqs with both expected and unexpected....   8
    Seqs with no sites........................   0
  • TABLE 5D
    Analysis repeated using only 8 best REdaptors
    Id Ntot   0   1   2   3   4   5   6   7   8+
    1  301   78 101  54  32  16   9  10   1   0  281 102#1
    ccgtgtattactgtgcgagaga
    2  493   69 155 125  73  37  14  11   3   6  459 103#2
    ctgtgtattactgtgcgagaga
    3  189   52  45  38  23  18   5   4   1   3  176 108#3
    ccgtgtattactgtgcgagagg
    4  127   29  23  28  24  10   6   5   2   0   114 323#22
    ccgtatattactgtgcgaaaga
    5   78   21  25  14  11   1   4   2   0   0   72 330#23
    ctgtgtattactgtgcgaaaga
    6   79   15  17  25   8  11   1   2   0   0   76 439#44
    ctgtgtattactgtgcgagaca
    7   43   14  15   5   5   3   0   1   0   0   42 551#48
    ccatgtattactgtgcgagaca
    8   307   26  63  72  51  38  24  14  13   6  250 5a#49
    ccatgtattactgtgcgaga
    1  102#1    ccgtgtattactgtgcgagaga  ccgtgtattactgtgcgagaga
    2  103#2    ctgtgtattactgtgcgagaga  .t....................
    3  108#3    ccgtgtattactgtgcgagagg  .....................g
    4  323#22   ccgtatattactgtgcgaaaga  ....a.............a...
    5  330#23   ctgtgtattactgtgcgaaaga  .t.................a..
    6  439#44   ctgtgtattactgtgcgagaca  .t..................c.
    7  551#48   ccatgtattactgtgcgagaca  ..a.................c.
    8  5a#49    ccatgtattactgtgcgagaAA  ..a.................AA
    Seqs with the expected RE site only.......1463/1617
    Seqs with only an unexpected site.........   0
    Seqs with both expected and unexpected....   7
    Seqs with no sites........................   0
  • TABLE 6
    Human HC GLG FR1 Seguences
    VH Exon—Nucleotide sequence alignment
    VH1
    1-02 CAG GTG CAG CTG GTG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG GCC TCA GTG AAG
    GTC TCC TGC AAG GCT TCT GGA TAC ACC TTC ACC
    1-03 cag gtC cag ctT gtg cag tct ggg gct gag gtg aag aag cct ggg gcc toa gtg aag
    gtT tcc tgc aag gct tct gga tac aoc ttc acT
    1-08 cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
    gtc tcc tgc aag gct tct gga tac acc ttc acc
    1-18 cag gtT cag ctg gtg cag tct ggA gct gag gtg aag aag cct ggg gcc tca gtg aag
    gtc tcc tgc aag gct tct ggT tac acc ttT acc
    1-24 cag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
    gtc tcc tgc aag gTt tcC gga tac acc Ctc acT
    1-45 cag Atg cag ctg gtg cag tct ggg gct gag gtg aag aag Act ggg Tcc toa gtg aag
    gtT tcc tgc aag gct tcC gga tac acc ttc acc
    1-46 cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg gcc tca gtg aag
    gtT tcc tgc aag gcA tct gga tac acc ttc acc
    1-58 caA Atg cag ctg gtg cag tct ggg Cct gag gtg aag aag cct ggg Acc tca gtg aag
    gtc tcc tgc aag gct tct gga tTc acc ttT acT
    1-69 cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag
    gtc tcc tgc aag gct tct gga GGo acc ttc aGc
    1-e cag gtg cag ctg gtg cag tct ggg gct gag gtg aag aag cct ggg Tcc tcG gtg aag
    gtc tcc tgc aag gct tct gga GGc acc ttc aGc
    1-f Gag gtC cag ctg gtA cag tct ggg gct gag gtg aag aag cct ggg gcT Aca gtg aaA
    Atc tcc tgc aag gTt tct gga tac acc ttc acc
    VH2
    2-05 CAG ATC ACC TTG AAG GAG TCT GGT CCT ACG CTG GTG AAA CCC ACA CAG ACC CTC ACG
    CTG ACC TGC ACC TTC TCT GGG TTC TCA CTC AGC
    2-26 cag Gtc acc ttg aag gag tct ggt cct GTg ctg gtg aaa ccc aca Gag acc ctc acg
    ctg acc tgc acc Gtc tct ggg ttc tca ctc agc
    2-70 cag Gtc acc ttg aag gag tct ggt cct Gcg ctg gtg aaa ccc aca cag acc ctc acA
    ctg acc tgc acc ttc tct ggg ttc tca ctc agc
    VH3
    3-07 GAG GTG CAG CTG GTG GAG TCT GGG GGA GGC TTG GTC CAG CCT GGG GGG TCC CTG AGA
    CTC TCC TGT GCA GCC TCT GGA TTC ACC TTT AGT
    3-09 gaA gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggC Agg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttt GAt
    3-11 Cag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc Aag cct ggA ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-13 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-15 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA Aag cct ggg ggg tcc otT aga
    ctc tcc tgt gca gcc tct gga ttc acT ttC agt
    3-20 gag gtg cag ctg gtg gag tct ggg gga ggT Gtg gtA cGg cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttt GAt
    3-21 gag gtg cag ctg gtg gag tct ggg gga ggc Ctg gtc Aag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-23 gag gtg cag ctg Ttg gag tct ggg gga ggc ttg gTA cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttt agC
    3-30 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-30.3 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-30.5 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-33 Cag gtg cag ctg gtg gag tct ggg gga ggc Gtg gtc cag cct ggg Agg tcc ctg aga
    ctc tcc tgt gca gcG tct gga ttc acc ttC agt
    3-43 gaA gtg cag ctg gtg gag tct ggg gga gTc Gtg gtA cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttt GAt
    3-48 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-49 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtA cag ccA ggg Cgg tcc ctg aga
    ctc tcc tgt Aca gcT tct gga ttc acc ttt Ggt
    3-53 gag gtg cag ctg gtg gag Act ggA gga ggc ttg Atc cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct ggG ttc acc GtC agt
    3-64 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-66 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc Gtc agt
    3-72 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggA ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-73 gag gtg cag ctg gtg gag tct ggg gga ggc ttg gtc cag cct ggg ggg tcc ctg aAa
    ctc tcc tgt gca gcc tct ggGttc acc ttC agt
    3-74 gag gtg cag ctg gtg gag tcC ggg gga ggc ttA gtT cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc ttC agt
    3-d gag gtg cag ctg gtg gag tct Cgg gga gTc ttg gtA cag cct ggg ggg tcc ctg aga
    ctc tcc tgt gca gcc tct gga ttc acc GtC agt
    VH4
    4-04 CAG GTG CAG CTG CAG GAG TCG GGC CCA GGA CTG GTG AAG CCT TCG GGG ACC CTG TCC
    CTC ACC TGC GCT GTC TCT GGT GGC TCC ATC AGC
    4-28 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAC acc ctg tcc
    ctc acc tgc gct gtc tct ggt TAc tcc atc agc
    4-30.1 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc
    ctc acc tgc Act gtc tct ggt ggc tcc atc agc
    4-30.2 cag Ctg cag ctg cag gag tcC ggc Tca gga ctg gtg aag cct tcA CAg acc ctg tcc
    ctc acc tgc gct gtc tct ggt ggc tcc atc agc
    4-30.4 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc
    ctc acc tgc Act gtc tct ggt ggc tcc atc agc
    4-31 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcA CAg acc ctg tcc
    ctc acc tgc Act gtc tct ggt ggc tcc atc agc
    4-34 cag gtg cag ctA cag Cag tGg ggc Gca gga ctg Ttg aag cct tcg gAg acc ctg tcc
    ctc acc tgc gct gtc tAt ggt ggG tcc Ttc agT
    4-39 cag Ctg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tct gAg acc ctg tcc
    ctc acc tgc Act gtc tct ggt ggc tcc atc agt
    4-59 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
    ctc acc tgc Act gtc tct ggt ggc tcc atc agT
    4-61 cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
    ctc acc tgc Act gtc tct ggt ggc tcc Gtc agc
    4-b cag gtg cag ctg cag gag tcg ggc cca gga ctg gtg aag cct tcg gAg acc ctg tcc
    ctc acc tgc gct gtc tct ggt TAc tcc atc agc
    VH5
    5-51 GAG GTG CAG CTG GTG CAG TCT GGA GCA GAG GTG AAA AAG CCC GGG GAG TCT CTG AAG
    ATC TCC TGT AAG GGT TCT GGA TAC AGC TTT ACC
    5-a gaA gtg cag ctg gtg cag tct gga gca gag gtg aas aag ccc ggg gag tct ctg aGg
    atc tcc tgt aag ggt tct gga tac agc ttt acc
    VH6
    6-1 CAG GTA CAG CTG CAG CAG TCA GGT CCA GGA CTG GTG AAG CCC TCG CAG ACC CTC TCA
    CTC ACC TGT GCC ATC TCC GGG GAC AGT GTC TCT
    VH7
    7-4.1 CAG GTG CAG CTG GTG CAA TCT GGG TCT GAG TTG AAG AAG CCT GGG GCC TCA GTG AAG
    GTT TCC TGC AAG GCT TCT GGA TAC ACC TTC ACT
  • TABLE 7
    RERS sites in Human HC GLG FR1s where there are at least 20 GLGs cut
    BsgI GTGCAG 71 (cuts 16/14 bases to right)
     1:4  1:13  2:13  3:4  3:13  4:13
     6:13  7:4  7:13  8:13  9:4  9:13
    10:4 10:13 15:4 15:65 16:4 16:65
    17:4 17:65 18:4 18:65 19:4 19:65
    20:4 20:65 21:4 21:65 22:4 22:65
    23:4 23:65 24:4 24:65 25:4 25:65
    26:4 26:65 27:4 27:65 28:4 28:65
    29:4 30:4 30:65 31:4 31:65 32:4
    32:65 33:4 33:65 34:4 34:65 35:4
    35:65 36:4 36:65 37:4 38:4 39:4
    41:4 42:4 43:4 45:4 46:4 47:4
    48:4 48:13 49:4 49:13 51:4
    There are 39 hits at base# 4
    There are 21 hits at base# 65
    -″- ctgcac  9
    12:63 13:63 14:63 39:63 41:63 42:63
    44:63 45:63 46:63
    BbvI GCAGC 65
     1:6  3:6  6:6  7:6  8:6  9:6
    10:6 15:6 15:67 16:6 16:67 17:6
    17:67 18:6 18:67 19:6 19:67 20:6
    20:67 21:6 21:67 22:6 22:67 23:6
    23:67 24:6 24:67 25:6 25:67 26:6
    26:67 27:6 27:67 28:6 28:67 29:6
    30:6 30:67 31:6 31:67 32:6 32:67
    33:6 33:67 34:6 34:67 35:6 35:67
    36:6 36:67 37:6 38:6 39:6 40:6
    41:6 42:6 43:6 44:6 45:6 46:6
    47:6 48:6 49:6 50:12 51:6
    There are 43 hits at base# 6 Bolded sites very near sites
    listed below
    There are 21 hits at base# 67
    -″- gctgc 13
    37:9 38:9 39:9 40:3 40:9 41:9
    42:9 44:3 44:9 45:9 46:9 47:9
    50:9
    There are 11 hits at base# 9
    BsoFI GCngc 78
     1:6  3:6  6:6  7:6  8:6  9:6
    10:6 15:6 15:67 16:6 16:67 17:6
    17:67 18:6 18:67 19:6 19:67 20:6
    20:67 21:6 21:67 22:6 22:67 23:6
    23:67 24:6 24:67 25:6 25:67 26:6
    26:67 27:6 27:67 28:6 28:67 29:6
    30:6 30:67 31:6 31:67 32:6 32:67
    33:6 33:67 34:6 34:67 35:6 35:67
    36:6 36:67 37:6 37:9 38:6 38:9
    39:6 39:9 40:3 40:6 40:9 41:6
    41:9 42:6 42:9 43:6 44:3 44:6
    44:9 45:6 45:9 46:6 46:9 47:6
    47:9 48:6 49:6 50:9 50:12 51:6
    There are 43 hits at base# 6 These often occur together.
    There are 11 hits at base# 9
    There are 2 hits at base# 3
    There are 21 hits at base# 67
    TseI Gcwgc 78
     1:6  3:6  6:6  7:6  8:6  9:6
    10:6 15:6 15:67 16:6 16:67 17:6
    17:67 18:6 18:67 19:6 19:67 20:6
    20:67 21:6 21:67 22:6 22:67 23:6
    23:67 24:6 24:67 25:6 25:67 26:6
    26:67 27:6 27:67 28:6 28:67 29:6
    30:6 30:67 31:6 31:67 32:6 32:67
    33:6 33:67 34:6 34:67 35:6 35:67
    36:6 36:67 37:6 37:9 38:6 38:9
    39:6 39:9 40:3 40:6 40:9 41:6
    41:9 42:6 42:9 43:6 44:3 44:6
    44:9 45:6 45:9 46:6 46:9 47:6
    47:9 48:6 49:6 50:9 50:12 51:6
    There are 43 hits at base# 6 Often together.
    There are 11 hits at base# 9
    There are 2 hits at base# 3
    There are 1 hits at base# 12
    There are 21 hits at base# 67
    MspA1I CMGckg 48
     1:7  3:7  4:7  5:7  6:7  7:7
     8:7  9:7 10:7 11:7 15:7 16:7
    17:7 18:7 19:7 20:7 21:7 22:7
    23:7 24:7 25:7 26:7 27:7 28:7
    29:7 30:7 31:7 32:7 33:7 34:7
    35:7 36:7 37:7 38:7 39:7 40:1
    40:7 41:7 42:7 44:1 44:7 45:7
    46:7 47:7 48:7 49:7 50:7 51:7
    There are 46 hits at base# 7
    PvuII CAGctg 48
     1:7  3:7  4:7  5:7  6:7  7:7
     8:7  9:7 10:7 11:7 15:7 16:7
    17:7 18:7 19:7 20:7 21:7 22:7
    23:7 24:7 25:7 26:7 27:7 28:7
    29:7 30:7 31:7 32:7 33:7 34:7
    35:7 36:7 37:7 38:7 39:7 40:1
    40:7 41:7 42:7 44:1 44:7 45:7
    46:7 47:7 48:7 49:7 50:7 51:7
    There are 46 hits at base# 7
    There are 2 hits at base# 1
    AluI AGct 54
     1:8  2:8  3:8  4:8  4:24  5:8
     6:8  7:8  8:8  9:8 10:8 11:8
    15:8 16:8 17:8 18:8 19:8 20:8
    21:8 22:8 23:8 24:8 25:8 26:8
    27:8 28:8 29:8 29:69 30:8 31:8
    32:8 33:8 34:8 35:8 36:8 37:8
    38:8 39:8 40:2 40:8 41:8 42:8
    43:8 44:2 44:8 45:8 46:8 47:8
    48:8 48:82 49:8 49:82 50:8 51:8
    Threre are 48 hits at base# 8
    There are 2 hits at base# 2
    DdeI Ctnag 48
     1:26  1:48  2:26  2:48  3:26  3:48
     4:26  4:48  5:26  5:48  6:26  6:48
     7:26  7:48  8:26  8:48  9:26 10:26
    11:26 12:85 13:85 14:85 15:52 16:52
    17:52 18:52 19:52 20:52 21:52 22:52
    23:52 24:52 25:52 26:52 27:52 28:52
    29:52 30:52 31:52 32:52 33:52 35:30
    35:52 36:52 40:24 49:52 51:26 51:48
    There are 22 hits at base# 52 52 and 48 never together.
    There are 9 hits at base# 48
    There are 12 hits at base# 26 26 and 24 never together.
    HphI tcacc 42
     1:86  3:86  6:86  7:86  8:80 11:86
    12:5 13:5 14:5 15:80 16:80 17:80
    18:80 20:80 21:80 22:80 23:80 24:80
    25:80 26:80 27:80 28:80 29:80 30:80
    31:80 32:80 33:80 34:80 35:80 36:80
    37:59 38:59 39:59 40:59 41:59 42:59
    43:59 44:59 45:59 46:59 47:59 50:59
    There are 22 hits at base# 80 80 and 86 never together
    There are 5 hits at base# 86
    There are 12 hits at base# 59
    BssKI Nccngg 50
     1:39  2:39  3:39  4:39  5:39  7:39
     8:39  9:39 10:39 11:39 15:39 16:39
    17:39 18:39 19:39 20:39 21:29 21:39
    22:39 23:39 24:39 25:39 26:39 27:39
    28:39 29:39 30:39 31:39 32:39 33:39
    34:39 35:19 35:39 36:39 37:24 38:24
    39:24 41:24 42:24 44:24 45:24 46:24
    47:24 48:39 48:40 49:39 49:40 50:24
    50:73 51:39
    There are 35 hits at base# 39 39 and 40 together twice.
    There are 2 hits at base# 40
    BsaJI Ccnngg 47
     1:40  2:40  3:40  4:40  5:40  7:40
     8:40  9:40  9:47 10:40 10:47 11:40
    15:40 18:40 19:40 20:40 21:40 22:40
    23:40 24:40 25:40 26:40 27:40 28:40
    29:40 30:40 31:40 32:40 34:40 35:20
    35:40 36:40 37:24 38:24 39:24 41:24
    42:24 44:24 45:24 46:24 47:24 48:40
    48:41 49:40 49:41 50:74 51:40
    There are 32 hits at base# 40 40 and 41 together twice
    There are 2 hits at base# 41
    There are 9 hits at base# 24
    There are 2 hits at base# 47
    BstNI CCwgg 44
    PspGI ccwgg
    ScrFI ($M.HpaII) CCwgg
     1:40  2:40  3:40  4:40  5:40  7:40
     8:40  9:40 10:40 11:40 15:40 16:40
    17:40 18:40 19:40 20:40 21:30 21:40
    22:40 23:40 24:40 25:40 26:40 27:40
    28:40 29:40 30:40 31:40 32:40 33:40
    34:40 35:40 36:40 37:25 38:25 39:25
    41:25 42:25 44:25 45:25 46:25 47:25
    50:25 51:40
    There are 33 hits at base# 40
    ScrFI CCngg 50
     1:40  2:40  3:40  4:40  5:40  7:40
     8:40  9:40 10:40 11:40 15:40 16:40
    17:40 18:40 19:40 20:40 21:30 21:40
    22:40 23:40 24:40 25:40 26:40 27:40
    28:40 29:40 30:40 31:40 32:40 33:40
    34:40 35:20 35:40 36:40 37:25 38:25
    39:25 41:25 42:25 44:25 45:25 46:25
    47:25 48:40 48:41 49:40 49:41 50:25
    50:74 51:40
    There are 35 hits at base# 40
    There are 2 hits at base# 41
    EcoO109I RGgnccy 34
     1:43  2:43  3:43  4:43  5:43  6:43
     7:43  8:43  9:43 10:43 15:46 16:46
    17:46 18:46 19:46 20:46 21:46 22:46
    23:46 24:46 25:46 26:46 27:46 28:46
    30:46 31:46 32:46 33:46 34:46 35:46
    36:46 37:46 43:79 51:43
    There are 22 hits at base# 46 46 and 43 never together
    There are 11 hits at base# 43
    NlaIV GGNncc 71
     1:43  2:43  3:43  4:43  5:43  6:43
     7:43  8:43  9:43  9:79 10:43 10:79
    15:46 15:47 16:47 17:46 17:47 18:46
    18:47 19:46 19:47 20:46 20:47 21:46
    21:47 22:46 22:47 23:47 24:47 25:47
    26:47 27:46 27:47 28:46 28:47 29:47
    30:46 30:47 31:46 31:47 32:46 32:47
    33:46 33:47 34:46 34:47 35:46 35:47
    36:46 36:47 37:21 37:46 37:47 37:79
    38:21 39:21 39:79 40:79 41:21 41:79
    42:21 42:79 43:79 44:21 44:79 45:21
    45:79 46:21 46:79 47:21 51:43
    There are 23 hits at base# 47 46 & 47 often together
    There are 17 hits at base# 46 There are 11 hits at base# 43
    Sau96I Ggncc 70
     1:44  2:3  2:44  3:44  4:44  5:3  5:44  6:44
     7:44  8:22  8:44  9:44 10:44 11:3 12:22 13:22
    14:22 15:33 15:47 16:47 17:47 18:47 19:47 20:47
    21:47 22:47 23:33 23:47 24:33 24:47 25:33 25:47
    26:33 26:47 27:47 28:47 29:47 30:47 31:33 31:47
    32:33 32:47 33:33 33:47 34:33 34:47 35:47 36:47
    37:21 37:22 37:47 38:21 38:22 39:21 39:22 41:21
    41:22 42:21 42:22 43:80 44:21 44:22 45:21 45:22
    46:21 46:22 47:21 47:22 50:22 51:44
    There are 23 hits at base# 47 These do not occur together.
    There are 11 hits at base# 44
    There are 14 hits at base# 22 These do occur together.
    There are 9 hits at base# 21
    BsmAI GTCTCNnnnn 22
     1:58  3:58  4:58  5:58  8:58  9:58
    10:58 13:70 36:18 37:70 38:70 39:70
    40:70 41:70 42:70 44:70 45:70 46:70
    47:70 48:48 49:48 50:85
    There are 11 hits at base# 70
    -“- Nnnnnngagac 27
    13:40 15:48 16:48 17:48 18:48 20:48
    21:48 22:48 23:48 24:48 25:48 26:48
    27:48 28:48 29:48 30:10 30:48 31:48
    32:48 33:48 35:48 36:48 43:40 44:40
    45:40 46:40 47:40
    There are 20 hits at base# 48
    AvaII Ggwcc 44
    Sau96I ($M.HaeIII) 44
    Ggwcc
     2:3  5:3  6:44  8:44  9:44 10:44
    11:3 12:22 13:22 14:22 15:33 15:47
    16:47 17:47 18:47 19:47 20:47 21:47
    22:47 23:33 23:47 24:33 24:47 25:33
    25:47 26:33 26:47 27:47 28:47 29:47
    30:47 31:33 31:47 32:33 32:47 33:33
    33:47 34:33 34:47 35:47 36:47 37:47
    43:80 50:22
    There are 23 hits at base# 47 44 & 47 never together
    There are 4 hits at base# 44
    PpuMI RGgwccy 27
     6:43  8:43  9:43 10:43 15:46 16:46
    17:46 18:46 19:46 20:46 21:46 22:46
    23:46 24:46 25:46 26:46 27:46 28:46
    30:46 31:46 32:46 33:46 34:46 35:46
    36:46 37:46 43:79
    There are 22 hits at base# 46 43 and 46 never occur together.
    There are 4 hits at base# 43
    BsmFI GGGAC  3
     8:43 37:46 50:77
    -″- gtccc 33
    15:48 16:48 17:48 1:0 1:0 20:48
    21:48 22:48 23:48 24:48 25:48 26:48
    27:48 28:48 29:48 30:48 31:48 32:48
    33:48 34:48 35:48 36:48 37:54 38:54
    39:54 40:54 41:54 42:54 43:54 44:54
    45:54 46:54 47:54
    There are 20 hits at base# 48
    There are 11 hits at base# 54
    HinfI Gantc 80
     8:77 12:16 13:16 14:16 15:16 15:56
    15:77 16:16 16:56 16:77 17:16 17:56
    17:77 18:16 18:56 18:77 19:16 19:56
    19:77 20:16 20:56 20:77 21:16 21:56
    21:77 22:16 22:56 22:77 23:16 23:56
    23:77 24:16 24:56 24:77 25:16 25:56
    25:77 26:16 26:56 26:77 27:16 27:26
    27:56 27:77 28:16 28:56 28:77 29:16
    29:56 29:77 30:56 31:16 31:56 31:77
    32:16 32:56 32:77 33:16 33:56 33:77
    34:16 35:16 35:56 35:77 36:16 36:26
    36:56 36:77 37:16 38:16 39:16 40:16
    41:16 42:16 44:16 45:16 46:16 47:16
    48:46 49:46
    There are 34 hits at base# 16
    TfiI Gawtc 21
     8:77 15:77 16:77 17:77 18:77 19:77
    20:77 21:77 22:77 23:77 24:77 25:77
    26:77 27:77 28:77 29:77 31:77 32:77
    33:77 35:77 36:77
    There are 21 hits at base# 77
    MlyI GAGTC 38
    12:16 13:16 14:16 15:16 16:16 17:16
    18:16 19:16 20:16 21:16 22:16 23:16
    24:16 25:16 26:16 27:16 27:26 28:16
    29:16 31:16 32:16 33:16 34:16 35:16
    36:16 36:26 37:16 38:16 39:16 40:16
    41:16 42:16 44:16 45:16 46:16 47:16
    48:46 49:46
    There are 34 hits at base# 16
    -″- GACTC 21
    15:56 16:56 17:56 18:56 19:56 20:56
    21:56 22:56 23:56 24:56 25:56 26:56
    27:56 28:56 29:56 30:56 31:56 32:56
    33:56 35:56 36:56
    There are 21 hits at base# 56
    PleI gagtc 38
    12:16 13:16 14:16 15:16 16:16 17:16
    18:16 19:16 20:16 21:16 22:16 23:16
    24:16 25:16 26:16 27:16 27:26 28:16
    29:16 31:16 32:16 33:16 34:16 35:16
    36:16 36:26 37:16 38:16 39:16 40:16
    41:16 42:16 44:16 45:16 46:16 47:16
    48:46 49:46
    There are 34 hits at base# 16
    -″ -gactc 21
    15:56 16:56 17:56 18:56 19:56 20:56
    21:56 22:56 23:56 24:56 25:56 26:56
    27:56 28:56 29:56 30:56 31:56 32:56
    33:56 35:56 36:56
    There are 21 hits at base# 56
    AlwNI CAGNNNctg 26
    15:68 16:68 17:68 18:68 19:68 20:68
    21:68 22:68 23:68 24:68 25:68 26:68
    27:68 28:68 29:68 30:68 31:68 32:68
    33:68 34:68 35:68 36:68 39:46 40:46
    41:46 42:46
    There are 22 hits at base# 68
  • TABLE 8
    Kappa FR1 GLGs
    ! 1   2   3   4   5   6   7   8   9   11  12
      GAC ATC CAG ATG ACC CAG TCT CCA TCC TGC CTG TCT
    ! 13  14  15  16  17  18  19  20  21  22  23
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! O12
      GAC ATC CAG ATG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! O2
      GAC ATC CAG ATG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ACC ACT TGC  ! O18
      GAC ATC CAG ATG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! O8
      GAC ATC CAG ATG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! A20
      GAC ATC CAG ATG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! A30
      AAC ATC CAG ATG ACC CAG TCT CCA TCT GCC ATG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  ! L14
      GAC ATC CAG ATG ACC CAG TCT CCA TGC TCA CTG TCT
      CCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGT  ! L1
      GAC ATC CAG ATC ACC CAG TCT CCA TGC TCA GTC TCT
      CCA TCT CTA GGA GAC AGA GTC ACC ATC ACT TGT  ! L15
      GCC ATC CAG TTG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! L4
      GCC ATC CAG TTG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT CTA GGA GAC AGA GTC ACC ATC ACT TGC  ! L18
      GAC ATC CAG ATG ACC CAG TCT CCA TCT TGC GTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TCT  ! L5
      GAC ATC CAG ATG ACC CAG TCT CCA TCT TCT GTG TCT
      CCA TCT CTA CGA GAC ACA GTC ACC ATC ACT TGT  ! L19
      GAC ATC CAG TTG ACC CAG TCT CCA TGC TTC GTC TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! L8
      GAC ATC CCG ATC ACC CAG TCT CCA TTC TGC GTC TCT
      CCA TCT CTA CGA GAC AGA GTC ACC ATC ACT TGC  ! L23
      GCC ATC CGG ATC ACC CAG TCT CCA TCC TCA TTC TCT
      GCA TCT ACA GGA GAC AGA GTC ACC ATC ACT TCT  ! L9
      GTC ATC TGG ATG ACC CAG TCT CCA TGC TTA GTC TCT
      GCA TCT ACA GGA GAC AGA GTC ACC ATC AGT TGT  ! L24
      GCC ATC CAG ATG ACC CAG TCT CCA TGC TGC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! L11
      GAC ATC CAG ATG ACC CAG TCT CCT TGC ACC CTG TCT
      GCA TCT GTA GGA GAC AGA GTC ACC ATC ACT TGC  ! L12
      GAT ATT GTG ATG ACC CAG ACT CCA GTC TGC CTG CCC
      GTC ACC CCT GGA GAG CCG GCC TGC ATC TGC TGC  ! O11
      GAT ATT GTG ATG ACC CAG ACT CCA GTC TGC CTG CCC
      GTC ACC CCT GGA GAG CCG GCC TGC ATC TGC TGC  ! O1
      GAT GTT GTG ATG ACT CAG TCT CCA GTC TGC CTG CCC
      GTC ACC CTT GGA CAG CCG GCC TGC ATC TGC TGC  ! A17
      GAT GTT GTG ATG ACT CAG TCT CCA GTC TGC CTG CCC
      GTC ACC CTT GGA CAG CCG GCC TGC ATC TGC TGC  ! A1
      GAT ATT GTG ATG ACC CAG ACT CCA GTC TCT CTG TGC
      GTC ACC CCT GGA CAG CCG GCC TGC ATC TGC TGC  ! A18
      GAT ATT GTG ATG ACC CAG ACT CCA GTC TCT GTC TGC
      GTC ACC CCT GGA CAG CCG GCC TGC ATC TGC TGC  ! A2
      GAT ATT GTG ATG ACT CAG TCT CCA GTC TGC CTG CCC
      GTC ACC CCT GGA GAG CCG GCC TGC ATC TGC TGC  ! A19
      GAT ATT GTG ATG ACT CAG TCT CCA GTC TGC CTG CCC
      GTC ACC CCT GGA GAG CCG GCC TGC ATC TGC TGC  ! A3
      GAT ATT GTG ATG ACC CAG ACT CCA GTC TGC TCA CCT
      GTC ACC CTT GGA CAG CCG GCC TGC ATC TGC TGC  ! A23
      GAA ATT GTG TTG ACG CAG TCT CCA GGC ACC CTG TCT
      TTG TCT CCA GGG GAA AGA GCC ACC GTC TGC TGC  ! A27
      GAA ATT GTG TTG ACG CAG TCT CCA GCC ACC CTG TCT
      TTG TCT CCA GGG GAA AGA GCC ACC GTC TGC TGC  ! A11
      GAA ATA GTG ATG ACG CAG TCT CCA GCC ACC CTG TCT
      GTG TCT CCA GGG GAA AGA GCC ACC GTC TGC TGC  ! L2
      GAA ATA GTG ATG ACG CAG TCT CCA CCC ACC CTG TCT
      GTG TCT CCA GGG GAA AGA CCC ACC GTC TGC TGC  ! L16
      GAA ATT GTG TTG ACA CAG TCT CCA CCC ACC CTG TCT
      TTG TCT CCA GGG GAA AGA GCC ACC GTC TGC TGC  ! L6
      GAA ATT GTG TTG ACA CAG TCT CCA CCC ACC GTC TCT
      TTG TCT CCA GGG GAA AGA GCC ACC GTC TGC TGC  ! L20
      GAA ATT GTA ATG ACA CAG TCT CCA GCC ACC CTG TCT
      TTG TCT CCA GGG GAA AGA GCC ACC GTC TGC TGC  ! L25
      GAC ATC GTG ATG ACC CAG TCT CCA GAC TGC CTG GCT
      GTG TCT CTG GGC GAG AGG GCC ACC ATC AAC TGC  ! B3
      GAA ACG ACA GTC ACG CAG TCT CCA GCA TTC ATG TCA
      GCG ACT CCA GGA GAC AAA GTC AAC ATC TGC TGC  ! B2
      GAA ATT GTG CTG ACT CAG TCT CCA GAC TTT CAG TCT
      GTG ACT CCA AAG GAG AAA GTC ACC ATC ACC TGC  ! A26
      GAA ATT GTG CTG ACT CAG TCT CCA GAC TTT CAG TCT
      GTG ACT CCA AAG GAG AAA GTC ACC ATC ACC TGC  ! A10
      GAT GTT GTG ATG ACA CAG TCT CCA GCT TTC GTC TCT
      GTG ACT CCA GGG GAG AAA GTC ACC ATC ACC TGC  ! A14
  • TABLE 9
    RERS sites found in Human Kappa FR1 GLGs
    FokI HpyCH
    MslI --> <-- --> PflFI BsrI BsmAI MnlI 4V
    VKI
    O12  1-69 3 3 23 12 49 15 18 47 26 36
    O2 101-169 103 103 123 112 149 115 118 147 126 136
    O18 201—269 203 203 223 212 249 215 218 247 226 236
    O8 301-369 303 303 323 312 349 315 318 347 326 336
    A20 401-469 403 403 423 412 449 415 418 447 426 436
    A30 501-569 503 503 523 512 549 515 518 547 526 536
    L14 601-669 603 603 612 649 615 618 647 636
    L1 701-769 703 703 723 712 749 715 718 747 726 736
    L15 801-869 803 803 823 812 849 815 818 847 826 836
    L4 901-969 903 923 912 949 906 915 918 947 926 936
    L18 1001-1069 1003 1012 1049 1006 1015 1018 1047 1026 1036
    L5 1101-1169 1103 1112 1149 1115 1118 1147 1136
    L19 1201-1269 1203 1203 1212 1249 1215 1218 1247 1236
    L8 1301-1369 1303 1323 1312 1349 1306 1315 1318 1347 1336
    L23 1401-1469 1403 1403 1408 1412 1449 1415 1418 1447 1436
    L9 1501-1569 1503 1503 1508 1523 1512 1549 1515 1518 1547 1526 1536
    L24 1601-1669 1603 1608 1623 1612 1649 1615 1618 1647 1636
    L11 1701-1769 1703 1703 1723 1712 1749 1715 1718 1747 1726 1736
    L12 1801-1869 1803 1803 1812 1849 1815 1818 1847 1836
    VKII
    O11 1901-1969 1956
    O1 2001-2069 2056
    A17 2101-2169 2112 2118 2156
    A1 2201-2269 2212 2218 2256
    A18 2301-2369 2356
    A2 2401-2469 2456
    A19 2501-2569 2512 2518 2556
    A3 2601-2669 2612 2618 2656
    A23 2701-2769 2729 2756
    VKIII
    A27 2801-2869 2812 2818 2839 2860
    A11 2901-2969 2912 2918 2939 2960
    L2 3001-3069 3012 3018 3039 3060
    L16 3101-3169 3112 3118 3139 3160
    L6 3201-3269 3212 3218 3239 3260
    L20 3301-3369 3312 3318 3339 3360
    L25 3401-3469 3412 3418 3439 3460
    VKIV
    B3 3501-3569 3503 3512 3515 3518 3539 3551<
    VKV
    B2 3601-3669 3649 3618 3647
    VKVI
    A26 3701-3769 3712 3718
    A10 3801-3869 3812 3818
    A14 3901-3969 3912 3918 3930>
    MaeIII HpaII
    MlyI Tsp45I same HphI MspI
    SfaNI SfcI HinfI --> --> <-- sites xx38 xx56 xx62 xx06 xx52
    VKI
    O12  1-69 37 41 53 53 55  56
    O2 101-169 137 141 153 153 155  156
    O18 201-269 237 241 253 253 255  256
    O8 301-369 337 341 353 353 355  356
    A20 401-469 437 441 453 453 455  456
    A30 501-569 537 541 553 553 555  556
    L14 601-669 637 641 653 653 655  656
    L1 701-769 737 741 753 753 755  756
    L15 801-869 837 841 853 853 855  856
    L4 901-969 937 941 953 953 955  956
    L18 1001-1069 1037 1041 1053 1053 1055 1056
    L5 1101-1169 1137 1141 1153 1153 1155 1156
    L19 1201-1269 1237 1241 1253 1253 1255 1256
    L8 1301-1369 1337 1341 1353 1353 1355 1356
    L23 1401-1469 1437 1441 1453 1453 1455 1456 1406
    L9 1501-1569 1537 1541 1553 1553 1555 1556 1506
    L24 1601-1669 1637 1641 1653 1653 1655 1656
    L11 1701-1769 1737 1741 1753 1753 1755 1756
    L12 1801-1869 1837 1841 1853 1853 1855 1856
    VKII
    O11 1901-1969 1918 1918 1937 1938 1952
    O1 2001-2069 2018 2018 2037 2038 2052
    A17 2101-2169 2112 2112 2137 2138 2152
    A1 2201-2269 2212 2212 2237 2238 2252
    A18 2301-2369 2318 2318 2337 2338 2352
    A2 2401-2469 2418 2418 2437 2438 2452
    A19 2501-2569 2512 2512 2537 2538 2552
    A3 2601-2669 2612 2612 2637 2638 2652
    A23 2701-2769 2718 2718 2737  2731*  2738*
    VKIII
    A27 2801-2869
    A11 2901-2969
    L2 3001-3069
    L16 3101-3169
    L6 3201-3269
    L20 3301-3369
    L25 3401-3469
    VKIV
    B3 3501-3569 3525 3525
    VKV
    B2 3601-3669 3639 3639
    VKVI
    A26 3701-3769 3712 3739 3712 3739 3737 3755 3756 3762
    A10 3801-3869 3812 3839 3812 3839 3837 3855 3856 3862
    A14 3901-3969 3939 3939 3937 3955 3956 3962
    BsrFI
    BpmI Cac8I
    BsaJI BssKI (NstNI) xx20 xx41 xx44 NaeI
    xx29 xx42 xx43 xx22 xx30 xx43 --> --> <-- NgoMIV HaeIII Tsp509I
    VKI
    O12  1-69
    O2 101-169
    O18 201-269
    O8 301-369
    A20 401-469
    A30 501-569
    L14 601-669
    L1 701-769
    L15 801-869
    L4 901-969
    L18 1001-1069
    L5 1101-1169
    L19 1201-1269
    L8 1301-1369
    L23 1401-1469
    L9 1501-1569
    L24 1601-1669
    L11 1701-1769
    L12 1801-1869
    VKII
    O11 1901-1969 1942 1943 1944 1951 1954
    O1 2001-2069 2042 2043 2044 2051 2054
    A17 2101-2169 2142 2151 2154
    A1 2201-2269 2242 2251 2254
    A18 2301-2369 2342 2343 2351 2354
    A2 2401-2469 2442 2443 2451 2454
    A19 2501-2569 2542 2543 2544 2551 2554
    A3 2601-2669 2642 2643 2644 2651 2654
    A23 2701-2769 2742 2751 2754
    VKIII
    A27 2801-2869 2843 2822 2843 2820 2841 2803
    A11 2901-2969 2943 2943 2920 2941 2903
    L2 3001-3069 3043 3043 3041
    L16 3101-3169 3143 3143 3120 3141
    L6 3201-3269 3243 3243 3220 3241 3203
    L20 3301-3369 3343 3343 3320 3341 3303
    L25 3401-3469 3443 3443 3420 3441 3403
    VKIV
    B3 3501-3569 3529 3530 3520 3554
    VKV
    B2 3601-3669 3643 3620 3641
    VKVI
    A26 3701-3769 3720 3703
    A10 3801-3869 3820 3803
    A14 3901-3969 3943 3943 3920 3941
  • TABLE 10
    Lambda FR1 GLG sequences
    ! VL1
    CAG TCT GTG CTG ACT CAG CCA CCC TCG GTG TCT GAA
    GCC CCC AGG CAG AGG GTC ACC ATO TCC TGT !  1a
    cag tct gtg ctg acG cag ccG ccc tcA gtg tct gGG
    gcc ccA Ggg cag agg gtc acc atc tcc tgC !  1e
    cag tct gtg ctg act cag cca ccc tcA gcg tct gGG
    Acc ccc Ggg cag agg gtc acc atc tcT tgt !  1c
    cag tct gtg ctg act cag cca ccc tcA gCg tct gGG
    Acc ccc Ggg cag agg gtc acc atc tcT tgt !  1c
    cag tct gtg ctg acG cag ccG ccc tcA gtg tot gGG
    gcc ccA GgA cag aAg gtc acc atc tcc tgC !  1b
    ! VL2
    CAG TCT GCC CTG ACT CAG CCT CCC TCC GCG TCC GGG
    TCT CCT GGA CAG TCA GTC ACC ATC TCC TGC !  2c
    cag tct gcc ctg act cag cct cGc tcA gTg tcc ggg
    tct cct gga cag tca gtc acc atc tcc tgc!  2e
    cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg
    tct cct gga cag tcG Atc acc atc tcc tgc !  2a2
    cag tct gcc ctg act cag cct ccc tcc gTg tcc ggg
    tct cct gga cag tca gtc acc atc tcc tgc !  2d
    cag tct gcc ctg act cag cct Gcc tcc gTg tcT ggg
    tct cct gga cag tcG Atc acc atc tcc tgc !  2b2
    ! VL3
    TCC TAT GAG CTG ACT CAG CCA CCC TCA GTG TCC GTG
    TCC CCA GGA CAG ACA GCC AGC ATC ACC TGC!   3r
    tcc tat gag ctg act cag cca cTc tca gtg tcA gtg
    Gcc cTG gga cag acG gcc agG atT acc tgT !  3j
    tcc tat gag ctg acA cag cca ccc tcG gtg toA gtg
    tcc cca gga caA acG gcc agG atc acc tgc!  3p
    tcc tat gag ctg acA cag cca ccc tcG gtg tcA gtg
    tcc cTa gga cag aTG gcc agG atc acc tgc !  3a
    tcT tct gag ctg act cag GAC ccT GcT gtg tcT gtg
    Gcc TTG gga cag aca gTc agG atc acA tgc !  3l
    tcc tat gTg ctg act cag cca ccc tca gtg tcA gtg
    Gcc cca gga Aag acG gcc agG atT acc tgT !  3h
    tcc tat gag ctg acA cag cTa ccc tcG gtg tcA gtg
    tcc cca gga cag aca gcc agG atc acc tgc !  3e
    tcc tat gag ctg aTG cag cca ccc tcG gtg tcA gtg
    tcc cca gga cag acG gcc agG atc acc tgc !  3m
    tcc tat gag ctg acA cag cca Tcc tca gtg tcA gtg
    tcT ccG gga cag aca gcc agG atc acc tgc !  V2-19
    ! VL4
    CTG CCT GTG CTG ACT CAG CCC CCG TCT GCA TCT GCC
    TTG CTG GGA GCC TCG ATC AAG CTC ACC TGC !  4c
    cAg cct gtg ctg act caA TcA TcC tct gcC tct gcT
    tCC ctg gga Tcc tcg Gtc aag ctc acc tgc !  4a
    cAg cTt gtg ctg act caA TcG ccC tct gcC tct gcc
    tCC ctg gga gcc tcg Gtc aag ctc acc tgc !  4b
    ! VL5
    CAG CCT GTC CTG ACT CAG CCA CCT TCC TCC TCC GCA
    TCT CCT GGA GAA TCC GCC AGA CTC ACC TGC !  5e
    cag Gct gtg ctg act cag ccG Gct tcc CTc tcT gca
    tct cct gga gCa tcA gcc agT ctc acc tgc !  5c
    cag cct gtg ctg act cag cca Tct tcc CAT tcT gca
    tct Tct gga gCa tcA gTc aga ctc acc tgc !  5b
    ! VL6
    AAT TTT ATG CTG ACT CAG CCC CAC TCT GTG TCG GAG
    TCT CCG GGG AAG ACG GTA ACC ATC TCC TGC !  6a
    ! VL7
    GAC ACT GTG GTG ACT CAG GAG CCC TCA CTG ACT GTG
    TCC CCA GGA GGG ACA GTC ACT CTC ACC TGT !  7a
    cag Gct gtg gtg act cag gag ccc tca ctg act gtg
    tcc cca gga ggg aca gtc act ctc acc tgt !  7b
    ! VL8
    CAG ACT GTG GTG ACC CAG GAG CCA TCG TTC TCA GTG
    TCC CCT GGA GGG ACA GTC ACA CTC ACT TGT !  8a
    ! VL9
    CAG CCT GTG CTG ACT CAG CCA CCT TCT GCA TCA GCC
    TCC CTG GGA GCC TCG GTC ACA CTC ACC TGC !  9a
    ! VL10
    CAG GCA GGG CTG ACT CAG CCA CCC TCG GTG TCC AAG
    GGC TTG AGA CAG ACC GCC ACA CTC ACC TGC !  10a
  • TABLE 11
    RERSs found in human lambda FR1 GLGs
    ! There are 31 lambda GLGs
    MlyT NnnnnnGACTC      25
     1: 6  3:  6  4: 6  6: 6  7:  6  8: 6
     9: 6 10:  6 11: 6 12: 6 15:  6 16: 6
    20: 6 21:  6 22: 6 23: 6 23: 50 24: 6
    25: 6 25: 50 26: 6 27: 6 28:  6 30: 6
    31: 6
    There are  23 hits at base# 6
    -″- GAGTCNNNNNn       1
     26: 34
    MwoI GCNNNNNnngc      20
     1: 9  2: 9  3: 9  4: 9 11: 9 11: 56
    12: 9 13: 9 14: 9 16: 9 17: 9 18:  9
    19: 9 20: 9 23: 9 24: 9 25: 9 26:  9
    30: 9 31: 9
    There are  19 hits at base# 9
    HinfI Gantc           27
     1: 12  3: 12  4: 12  6: 12  7: 12  8: 12
     9: 12 10: 12 11: 12 12: 12 15: 12 16: 12
    20: 12 21: 12 22: 12 23: 12 23: 46 23: 56
    24: 12 25: 12 25: 56 26: 12 26: 34 27: 12
    28: 12 30: 12 31: 12
    There are  23 hits at base# 12
    PleI gactc            25
     1: 12  3: 12  4: 12  6: 12  7: 12  8: 12
     9: 12 10: 12 11: 12 12: 12 15: 12 16: 12
    20: 12 21: 12 22: 12 23: 12 23: 56 24: 12
    25: 12 25: 56 26: 12 27: 12 28: 12 30: 12
    31: 12
    There are  23 hits at base# 12
    -″- gagtc             1
    26: 34
    DdeI Ctnag          32
     1: 14  2: 24  3: 14  3: 24  4: 14  4: 24
     5: 24  6: 14  7: 14  7: 24  8: 14  9: 14
    10: 14 11: 14 11: 24 12: 14 12: 24 15:  5
    15: 14 16: 14 16: 24 19: 24 20: 14 23: 14
    24: 14 25: 14 26: 14 27: 14 28: 14 29: 30
    30: 14 31: 14
    There are  21 hits at base# 14
    BsaJI Ccnngg          38
     1: 23  1: 40  2: 39  2: 40  3: 39  3: 40
     4: 39  4: 40  5: 39 11: 39 12: 38 12: 39
    13: 23 13: 39 14: 23 14: 39 15: 38 16: 39
    17: 23 17: 39 18: 23 18: 39 21: 38 21: 39
    21: 47 22: 38 22: 39 22: 47 26: 40 27: 39
    28: 39 29: 14 29: 39 30: 38 30: 39 30: 47
    31: 23 31: 32
    There are  17 hits at base# 39
    There are   5 hits at base# 38
    There are   5 hits at base# 40 Makes cleavage ragged.
    MnlI cctc             35
     1: 23  2: 23  3: 23  4: 23  5: 23  6: 19
     6: 23  7: 19  8: 23  9: 19  9: 23 10: 23
    11: 23 13: 23 14: 23 16: 23 17: 23 18: 23
    19: 23 20: 47 21: 23 21: 29 21: 47 22: 23
    22: 29 22: 35 22: 47 23: 26 23: 29 24: 27
    27: 23 28: 23 30: 35 30: 47 31: 23
    There are   21 hits at base# 23
    There are   3 hits at base# 19
    There are   3 hits at base# 29
    There are   1 hits at base# 26
    There are   1 hits at base# 27
    These could make cleavage ragged.
    -″- gagg              7
     1: 48  2: 48  3: 48  4: 48 27: 44 28: 44
    29: 44
    BssKI Nccnqg          39
     1: 40  2: 39  3: 39  3: 40  4: 39  4: 40
     5: 39  6: 31  6: 39  7: 31  7: 39  8: 39
     9: 31  9: 39 10: 39 11: 39 12: 38 12: 52
    13: 39 13: 52 14: 52 16: 39 16: 52 17: 39
    17: 52 18: 39 18: 52 19: 39 19: 52 21: 38
    22: 38 23: 39 24: 39 26: 39 27: 39 28: 39
    29: 14 29: 39 30: 38
    There are  21 hits at base# 39
    There are   4 hits at base# 38
    There are   3 hits at base# 31
    There are   3 hits at base# 40 Ragged
    BstNI CCwqg           30
     1: 41  2:40  5: 40  6: 40  7: 40  8: 40
     9: 40 10: 40 11: 40 12: 39 12: 53 13: 40
    13: 53 14: 53 16: 40 16: 53 17: 40 17: 53
    18: 40 18: 53 19: 53 21: 39 22: 39 23: 40
    24: 40 27: 40 28: 40 29: 15 29: 40 30: 39
    There are  17 hits at base# 40
    There are   7 hits at base# 53
    There are   4 hits at base# 39
    There are   1 hits at base# 41 Ragged
    PspGI ccwgg           30
     1: 41  2: 40  5: 40  6: 40  7: 40  8: 40
     9: 40 10: 40 11: 40 12: 39 12: 53 13: 40
    13: 53 14: 53 16: 40 16: 53 17: 40 17: 53
    18: 40 18: 53 19: 53 21: 39 22: 39 23: 40
    24: 40 27: 40 28: 40 29: 15 29: 40 30: 39
    There are  17 hits at base# 40
    There are   7 hits at base# 53
    There are   4 hits at base# 39
    There are   1 hits at base# 41
    ScrFI CCngg           39
     1: 41  2: 40  3: 40  3: 41  4: 40  4: 41
     5: 40  6: 32  6: 40  7: 32  7: 40  8: 40
     9: 32  9: 40 10: 40 11: 40 12: 39 12: 53
    13: 40 13: 53 14: 53 16: 40 16: 53 17: 40
    17: 53 18: 40 18: 53 19: 40 19: 53 21: 39
    22: 39 23: 40 24: 40 26: 40 27: 40 28: 40
    29: 15 29: 40 30: 39
    There are  21 hits at base# 40
    There are   4 hits at base# 39
    There are   3 hits at base# 41
    MaeIII gtnac          16
     1: 52  2: 52  3: 52  4: 52  5: 52  6: 52
     7: 52  9: 52 26: 52 27: 10 27: 52 28: 10
    28: 52 29: 10 29: 52 30: 52
    There are  13 hits at base# 52
    Tsp45I gtsac          15
     1: 52  2: 52  3: 52  4: 52  5: 52  6: 52
     7: 52  9: 52 27: 10 27: 52 28: 10 28: 52
    29: 10 29: 52 30: 52
    There are  12 hits at base# 52
    HphI tcacc            26
     1: 53  2: 53  3: 53  4: 53  5: 53  6: 53
     7: 53  8: 53  9: 53 10: 53 11: 59 13: 59
    14: 59 17: 59 18: 59 19: 59 20: 59 21: 59
    22: 59 23: 59 24: 59 25: 59 27: 59 28: 59
    30: 59 31: 59
    There are  16 hits at base# 59
    There are  10 hits at base# 53
    BspMI ACCTGCNNNNn     14
    11: 61 13:61 14: 61 17: 61 18: 61 19: 61
    20: 61 21:61 22: 61 23: 61 24: 61 25: 61
    30: 61 31:61
    There are  14 hits at base# 61 Goes into CDR1
  • TABLE 12
    Matches to URE FR3 adapters in 79 human HC.
    A. List of Heavy-chains genes sampled
    AF008566 AF103367 HSA235674 HSU94417 S83240
    AF035043 AF103368 HSA235673 HSU94418 SABVH369
    AF103026 AF103369 HSA240559 H5U96389 SADEIGVH
    af103033 AF103370 HSCB201 HSU96391 SAH2IGVH
    AF103061 af103371 HSIGGVHC HSU96392 SDA3IGVH
    Af103072 AF103372 HSU44791 HSU96395 SIGVHTTD
    af103078 AF158381 HSU44793 HSZ93849 SUK4TGVH
    AF103099 E05213 HSU82771 HSZ93850
    AF103102 E05886 HSU82949 HSZ93851
    AF103103 E05887 HSU82950 HSZ93853
    AF103174 HSA235661 HSU82952 HSZ93855
    AF103186 HSA235664 HSU82961 HSZ93857
    af103187 HSA235660 HSU86522 HSZ93860
    AF103195 HSA235659 HSU86523 HSZ93863
    af103277 HSA235678 HSU92452 MCOMFRAA
    af103286 HSA235677 HSU94412 MCOMFRVA
    AF103309 HSA235676 HSU94415 S82745
    af103343 HSA235675 HSU94416 S82764
  • TABLE 12B
    Testing all distinct GLGs from bases 89.1 to 93.2
    of the heavy variable domain
    Id SEQ
    NO: Nb 0 1 2 3 4 ID
    1 38 15 11 10 0 2 Seq1 gtgtattactgtgc 25
    2 19 7 6 4 2 0 Seq2 gtAtattactgtgc 26
    3 1 0 0 1 0 0 Seq3 gtgtattactgtAA 27
    4 7 1 5 1 0 0 Seq4 gtgtattactgtAc 28
    5 0 0 0 0 0 0 Seq5 Ttgtattactgtgc 29
    6 0 0 0 0 0 0 Seq6 Ttgtatcactgtgc 30
    7 3 1 0 1 1 0 Seq7 ACAtattactgtgc 31
    8 2 0 2 0 0 0 Seq8 ACgtattactgtgc 32
    9 9 2 2 4 1 0 Seq9 ATatattactatac 33
    Group 26 26 21 4 2
    Cumula- 26 52 73 77 79
    tivet
  • TABLE 12C
    Most important URE recognition seqs in FR3 Heavy
    1 VRSzy1 GTGtattactgtgc (ON_SHC103) (SEQ ID NO:25)
    2 VHSzy2 GTAtattactgtgc (ON_SHC323) (SEQ ID NO:26)
    3 VHSzy4 GTGtattactgtac (ON_SHC349) (SEQ ID NO:28)
    4 VHSzy9 ATGtattactgtgc (ON_SHC5a) (SEQ ID NO:33)
  • TABLE 12D
    testing 79 human HC V genes with four probes
    Number of sequences. . . 79
    Number of bases. . . 29143
    Number of mismatches
    Id Best 0 1 2 3 4 5
    1 39 15 11 10 1 2 0 Seq1 gtgtattactgtgc (SEQ ID NO:25)
    2 22 7 6 5 3 0 1 Seq2 gtAtattactgtgc (SEQ ID NO:26)
    3 7 1 5 1 0 0 0 Seq4 gtgtattactgtAc (SEQ ID NO:28)
    4 11 2 4 4 1 0 0 Seq9 ATgtattactgtgc (SEQ ID NO:33)
    Group 25 26 20 5 2
    Cumu- 25 51 71 76 78
    lative

    One sequence has five mismatches with sequences 2, 4, and 9; it is scored as best for 2.

    Id is the number of the adapter.
    Best is the number of sequence for which the identified adapter was the best available.
    The rest of the table shows how well the sequences match the adapters. For example, there are 10 sequences that match VHSzy1 (Id=1) with 2 mismatches and are worse for all other adapters. In this sample, 90% come within 2 bases of one of the four adapters.
  • TABLE 13
    The following list of enzymes was taken from
    htttp//rebase.neb.com/cgi-bin/asymmlist.
    I have removed the enzymes that a) cut within the recognition, b) cut on
    both sides of the recognition, or c) have fewer than 2 bases between
    recognition and closest cut site.
    REBASE Enzymes
    Apr. 13, 2001
    Type II restriction enzymes with asymmetric recognition sequences:
    Enzymes Recognition Sequence Isoschizomers Suppliers
    AarI CACCTGCNNNN{circumflex over ( )}NNNN y
    AceIII CAGCTCNNNNNNN{circumflex over ( )}NNNN
    Bbr7I GAAGACNNNNNNN{circumflex over ( )}NNNN
    BbvI GCAGCNNNNNNNN{circumflex over ( )}NNNN y
    BbvII GAAGACNN{circumflex over ( )}NNNN
    Bce83I CTTGAGNNNNNNNNNNNNNN_NN{circumflex over ( )}
    BceAI ACGGCNNNNNNNNNNNN{circumflex over ( )}NN y
    BcefI ACGGCNNNNNNNNNNNN{circumflex over ( )}N
    BciVI GTATCCNNNNN_N{circumflex over ( )} BfuI y
    BfiI ACTGGGNNNN_N{circumflex over ( )} BmrI y
    BinI GGATCNNNN{circumflex over ( )}N
    BscAI GCATCNNNN{circumflex over ( )}NN
    BseRI GAGGAGNNNNNNNN_NN{circumflex over ( )} y
    BsmFI GGGACNNNNNNNNNN{circumflex over ( )}NNNN BspLU11III y
    BspMI ACCTGCNNNN{circumflex over ( )}NNNN Acc36I y
    EciI GGCGGANNNNNNNNN_NN{circumflex over ( )} y
    Eco57I CTGAAGNNNNNNNNNNNNNN_NN{circumflex over ( )} BspKT5I y
    FauI CCCGCNNNN{circumflex over ( )}NN BstFZ438I y
    FokI GGATGNNNNNNNNN{circumflex over ( )}NNNN BstPZ418I y
    GsuI CTGGAGNNNNNNNNNNNNNN_NN{circumflex over ( )} y
    HgaI GACGCNNNNN{circumflex over ( )}NNNNN y
    HphI GGTGANNNNNNN_N{circumflex over ( )} AsuHPI y
    MboII GAAGANNNNNNN_N{circumflex over ( )} y
    MlyI GAGTCNNNNN{circumflex over ( )} SchI y
    MmeI TCCRACNNNNNNNNNNNNNNNNNN—NN{circumflex over ( )}
    MnlI CCTCNNNNNN_N{circumflex over ( )} y
    Plel GAGTCNNNN{circumflex over ( )}N PpsI y
    RleAI CCCACANNNNNNNNN_NNN{circumflex over ( )}
    SfaNI GCATCNNNNN{circumflex over ( )}NNNN BspST5I y
    SspD5I GGTGANNNNNNNN{circumflex over ( )}
    Sth132I CCCGNNNN{circumflex over ( )}NNNN
    StsI GGATGNNNNNNNNNN{circumflex over ( )}NNNN
    TaqII GACCGANNNNNNNNN_NN{circumflex over ( )}, CACCCANNNNNNNNN_NN{circumflex over ( )}
    Tth111II CAARCANNNNNNNNN_NN{circumflex over ( )}
    UbaPI CGAACG

    The notation is {circumflex over ( )} means cut the upper strand and _ means cut the lower strand. If the upper and lower strand are cut at the same place, then only {circumflex over ( )} appears.
  • TABLE 14
    (FOKIact)    5′-cAcATccgTg TT cAcggATgTg-3′
    (VHEx881) 5′-AATAgTAgAc TgcAgTgTcc TcAgcccTTA AgcTgTTcAT cTgcAAgTAg-
                 AgAgTATTcT TAgAgTTgTc TcTAgAcTTA gTgAAgcg-3′
    ! note that VHEx881 is the reverse complement of the ON below
    !         [RC] 5′-cgCttcacTaag-
    !                 Scab........
    !                 Synthetic 3-23 as in Table 206
    !                 |TCT|AGA|gac|aac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
    !                  XbaI. . .
    !                 aac|agC|TTA|AGg|gct|gag|gac|aCT|GCC|Gtc|tac|tat|t-3′
    !                        AflII . . .
    (VHBA881)      5′-cgCttcacTaag-
                      TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
                      aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3′
    (VHBB881)      5′-cgCttcacTaag-
                      TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
                      aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3′
    (VH881PCR) 5′-cgCttcacTaag|TCT|AGA|gac|aac -3′
  • TABLE 15
    Use of FokI as “Universal Restriction Enzyme”
    FokI — for dsDNA, | represents sites of cleavage
                               sites of cleavage
         5′-cacGGATGtg--nnnnnnn|nnnnnnn-3′ (SEQ ID NO:15)
         3′-gtgCCTACac--nnnnnnnnnnn|nnn-5′ (SEQ ID NO:16)
               RECOG
               NITion of FokI
    Case I
               5′-...gtg|tatt-actgtgc..Substrate....-3′ (SEQ ID NO:17)
                  3′-cac-ata|tgacacg—|
                                      gtGTAGGcac\
                                  5′-caCATCCgtg/ (SEQ ID NO:18)
    Case II
               5′-...gtgtatt|agac-tgc..Substrate....-3′ (SEQ ID NO:19)
                   |—cacataa-tctg|acg-5′
         /gtgCCTACac
         \cacGGATGtg-3′ (SEQ ID NO:20)
    Case III (Case I rotated 180 degrees)
         /gtgCCTACac-5′
         \cacGGATGtg—|
                     gtgtctt|acag-tcc-3′ Adapter (SEQ ID NO:21)
               3′-...cacagaa-tgtc|agg..substrate....-5′ (SEQ ID NO:22)
    Case IV (Case II rotated 180 degrees)
                                  3′- gtGTAGGcac\  (SEQ ID NO:23)
                                    |—caCATCCgtg/
                  5′-gag|tctc-actgagc
     Substrate 3′-...ctc-agag|tgactcg...-5′ (SEQ ID NO:24)
    Improved FokI adapters
    Fok— for dsDNA, | represents sites of cleavage
    Case I
    Stem 11, loop 5, stem 11, recognition 17
               5′-...catgtg|tatt-actgtgc..Substrate....-3′
                  3′-gtacac-ataa|tgacacg—|        |-T—|
                                         gtGTAGGcacG  T
                                     5′- caCATCCgtgc  C
                                                  |-TT-|
    Case II
    Stem 10, loop 5, stem 10, recognition 18
                  5′-...gtgtatt|agac-tgctgcc..Substrate....-3′
           |-T-|        |—cacataa-tctg|acgacgg-5′
          T    gtgCCTACac
          C    cacGGATGtg-3′
          |-TT-|
    Case III (Case I rotated 180 degrees)
    Stem 11, loop 5, stem 11, recognition 20
         |-T-|
         T    TgtgCCTACac-5′
         G    AcacGGATGtg—|
         |-TT-|           gtgtctt|acag-tccattctg-3′ Adapter
                  3′-...cacagaa-tgtc|aggtaagac..substrate....-5′
    Case IV (Case II rotated 180 degrees)
    Stem 11, loop 4, stem 11, recognition 17
                                                   |-T-|
                                     3′- gtGTAGGcacc   T
                                       |—caCATCCgtgg   T
                  5′-atcgag|tctc-actgagc           |-T-|
     Substrate 3′-...tagctc-agag|tgactcg...-5′
    BseRI
                                  | sites of cleavage
         5′-cacGAGGAGnnnnnnnnnn|nnnnn-3′
         3′-gtgctcctcnnnnnnnn|nnnnnnn-5′
               RECOG
               NITion of BseRI
    Stem 11, loop 5, stem 11, recognition 19
              3′-.......gaacat|cg-ttaagccagta.....5′
        |-T-T-|           cttgta-gc|aattcggtcat-3′
        C     GCTGAGGAGTC--|
        T     cgactcctcag-5′  An adapter for BseRI to cleave the substrate above.
        |-T—|
  • TABLE 16
    Human heavy chans bases 88.1 to 94.2
    Number of sequences..........   840
    Number of Mismatchers......... Probe
    Id Ntot 0 1 2 3 4 5 6 7 Name Sequence............ Dot form............
    1 364 152 97 76 26 7 4 2 0 VHS881-1.1 gctgtgtattactgtgcgag gctgtgtattactgtgcgag
    2 265 150 60 33 13 5 4 0 0 VHS881-1.2 gccgtgtattactgtgcgag ..c.................
    3 96 14 34 16 10 5 7 9 1 VHS881-2.1 gccgtatattactgtgcgag ..c..a..............
    4 20 0 3 4 9 2 2 0 0 VHS881-4.1 gccgtgtattactgtacgag ..c............a....
    5 95 25 36 18 11 2 2 0 1 VH5881-9.1 gccatgtattactgtgcgag ..ca................
    840 341 230 147 69 21 19 11 2
    341 571 718 787 808 827 838 840
       88 89 90 91 92 93 94 95 Codon number as in Table 195
       Recognition........... Stem...... Loop. Stem......
    (VHS881-1.1) 5′-gctgtgtat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
    (VHS881-1.2) 5′-gccgtgtat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
    (VHS881-2.1) 5′-gccgtatat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
    (VHS881-9.1) 5′-gccatgtat|tact-gtgcgag cAcATccgTg TTgTT cAcggATgTg-3′
                     | site of substrate cleavage
    (FOKIact)   5′cAcATccgTg TTgTT cAcggATgTg-3′
    (VHEx881) 5′-AATAgTAgAc TgcAgTgTcc TcAgcccTTA AgcTgTTcAT cTgcAAgTAg-
           AgAgTATTcT TAgAgTTgTc TcTAgAcTTA gTgAAgcg-3′
    ! note that VHEx881 is the reverse complement of the ON below
    !       [RC] 5′cgCttcacTaag-
    !           Scab........
    !           Synthetic 3-23 as in Table 206
    !           |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
    !            XbaI...
    !        |aac|agC|TTA|AGg|gct|gag|aCT|GCA|Gtc|tac|tat|t-3′
    !            AflII...
    (VHBA881)   5′-cgCttcacTaag-
            |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
            |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3′
    (VHBB881)   5′-cgCttcacTaag-
            |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
            |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3′
    (VH881PCR) 5′-cgCttcacTaag|TCT|AGA|gac|aac-3′
  • TABLE 17
    Kappa, bases 12-30
    !
    ! ID Ntot 0 1 2 3 4 5 6 Name Sequence........... Dot Form..........
    ! 1 84 40 21 20 1 2 0 0 SK12O12 gaccagtctccatcctcc gacccagtctccatcctcc
    ! 2 32 19 3 6 2 1 0 1 SK12A17 gactcagtctccactctcc ...t.........ct....
    ! 3 26 17 8 1 0 0 0 0 SK12A27 gacgcagtctccaggcacc ...g.........gg.aa..
    ! 4 40 21 18 1 0 0 0 0 SK12A11 gacgcagtctccagccacc ...g.........g..a..
    ! 182 97 50 28 3 3 0 1
    ! 97 147 175 178 181 181 182
    !
    URE adapters:
    !             Stem...... Loop. Stem...... Recognition........
    (SzKB1230-O12)     5′-cAcATccgTg TTgTT cAcggATgTg ggAggATggAgAcTgggTc-3′
    !        [RC] 5′-gaccagtctccatcctcc cAcATccgTG AAcAA cAcggATgTg-3′
    !             Recognition........ Stem...... loop. Stem......
    !                               FokI.      Foki.
    !
    !             Stem...... Loop. Stem...... Recognition........
    (SzKB1230-A17)     5′cAcATccgTg TTgTT cAcggATgTg ggAgAgTggAgAcTgAgTc-3′
    !        [RC] 5′-gactcagtctccactctcc cAcATccTg AAcAA cAcggATgTg-3′
    !             Recognition......... Stem...... loop. Stem......
    !                               FokI.      FokI.
    !
    !             Stem...... Loop. Stem...... Recognition........
    (SzKB1230-A27)     5′-cAcATccgTg TTgTT cAcggATgTg ggTgccTggAgAcTgcgTc-3′
    !        [RC] 5′-gacgcagtctccaggcacc cAcATccgTg AAcAA cAcggATgTg-3′
    !             Recognition........ Stem...... loop. Stem......
    !                               FokI.      FokI.
    !
    !             Stem...... Loop. Stem...... Recognition........
    (SzKB1230-A11)     5′-cAcAtccgTg TTgTT cAcggATgTg ggTggcTggAgAcTgcgTc-3′
    !        [RC] 5′-gacgcagtctccagccacc cAcATccgTg AAcAA cAcggATgTg-3′
    !             Recognition........ Stem...... loop. Stem......
    !                               FokI.      FokI.
    What happens in the upper strand:
    (SzKB1230-O12*)                 5′-gac cca gtc|tcc a-tc ctc c-3′
    !                                | Site of cleavage in substrate
    !
    (SzKB1230-A17*)                 5′-gac tca gtc|tcc a-ct ctc c-3′
    !
    (SzKB1230-A27*)                 5′-gac gca gtc|tcc a-gg cac c-3′
    !
    (SzKB1230-A11*)                 5′-gac gca gtc|tcc a-gc cac c-3′
    (kapextURE)   5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg-3′ !sense strand
                       Scab.............ApaLI.
    (kapextUREPCR) 5′-ccTctactctTgTcAcAgTg-3′
                       Scab...  .........
    (kaBRO1UR)  5′-ggAggATggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
    !      [RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-tc ctc c-3′ ON above is R.C. of this one
    (kaBRO2UR)  5′-ggAgAgTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
    !      [RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-ct ctc c-3′ ON above is R.C. of this one
    (kaBRO3UR)  5′-ggTgccTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
    !      [RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-gg cac c-3′ ON above is R.C. of this one
    (kaBRO4UR)  5′-ggTggcTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3′
    !      [RC] 5′-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcc a-gc cac c-3′
                   Scab.............ApaLI.
  • TABLE 18
    Lambda URE adapters bases 13.3 to 19.3
    !
    ! Number of sequences.......... 128
    !
    ! Number of mismatches..............
    ! Id Ntot 0 1 2 3 4 5 6 7 8 Name Sequence........... Dot form...........
    ! 1 58 45 7 1 0 0 0 2 2 1 VL133-2a2 gtctcctggacagtcgatc gtctcctggacagtcgatc
    ! 2 16 10 1 0 1 0 1 1 0 2 VL122-3I ggccttgggacagacagtc gcttg......a.ag..
    ! 3 17 6 0 0 0 4 1 1 5 0 VL133-2c gtctcctggacagtcagtc ............ag..
    ! 4 37 3 0 10 4 4 3 7 4 2 VL133-1c ggccccagggcagagggtc g.c..a..g...a..g..
    ! 128 64 8 11 5 8 5 11 11 5
    ! 64 72 83 88 96 101 112 123 128
    !          Stem...... loop. Stem...... Recognition........
    VL133-2a2)    5′cAcATccgTg TTgTT cAcggATgTggATcgAcTgTccAggAgAc-3′
    !      [RC] 5′-gtctcctggacagtcgatc cAcATccTg AAcAA cAcggATgTg-3′
    !          Recognition........ Stem...... Loop. Stern......
    !          Stern...... loop. Stem...... Recognition........
    (VL133-31)     5′-cAcATccgTg TTgTT cAcggATgTggAcTgTcTgTcccAAggcc-3′
    !      [RC] 5′-ggccttgggacagacagtc cAcATccgTg AAcAA cAcggATgTg-3′
    !          Recognition........ Stern...... Loop. Stern......
    !          Stern...... loop. Stern...... Recognition........
    (VL133-2c)     5′cAcATccgTgTTgTT cAcggATgTg gAcTgAcTgTccAggAgAc-3′
    !      [RC] 5′-gtctcctggacagtcagtc cAATccgTg AAcAA cAcggATgTg-3′
    !          Recognition........ Stern...... Loop. Stern......
    !          Stern...... loop. Stern...... Recognition........
    (VL133-1c)     5′-cAcATccgTg TTgTT cAcggATgTg gAcccTcTgcccTggggcc-3′
    !      [RC] 5′-ggccccagggcagagggtc cAcATccgTg AAcAA cacggATgTg-3′
    What happens in the top strand:
    !                | site cleavage in the upper strand
    (VL133-2a2*) 5′-g tct cct g|ga cag tcg atc
    !
    (VL133-31*) 5′-g gcc ttg g|ga cag aca gtc
    !
    (VL133-2c*) 5′-g tct cct g|ga cag tca gtc
    !
    (VL133-1c*) 5′-g gcc cca g|gg cag agg gtc
    !
    ! The following Extenders and Bridges all encode the AA sequence of 2a2 for codons 1-15
    !                   1
    (ON_LamEx133) 5′-ccTcTgAcTgAgT gcA cAg -
    !     2 3 4 5 6 7 8 9 10 11 12
          AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
    !
    !     13 14 15
          tcC ccG g! 2a2
    !                   1
    (ON_LamB1-133) [RC] 5′-ccTcTgAcTgAgT gcA cAg -
    !
    !     2 3 4 5 6 7 8 9 10 11 12
          AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
    !
    !      13 14 15
          tcC ccG g ga cag tcg at-3′ !2a2 N.B. the sctuA seq is the
    !                             reverse complement of the
    !                             one shown.
    !
    (ON_LamB2-133) [RC] 5′-ccTcTgAcTgAgT gcA cAg -
    !
    !     2 3 4 5 6 7 8 9 10 11 12
          AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
    !
    !      13 14 15
          tcC ccG g ga cag aca gt-3′ |3l N.B. the actual seq is the
    !                             reverse complement of the
    !                             one shown.
    !
    !
    (ON_LamB3-133) [RC] 5′-ccTcTgAcTgAgT gcA cAg -
    !
    !     2 3 4 5 6 7 8 9 10 11 12
          AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
    !
          13 14 15
          tcC ccG g ga cag tcagt -3′! 2c N.B. the actual seq is the
    !                             reverse complement of the
    !                             one shown.
    !(ON_LamE4-133) [RC] 5′-ccTcTgAcTgAgT gcA cAg -
    !
    !      2 3 4 5 6 7 8 9 10 11 12
          AGt gcT TtA acC caA ccG gcT AGT gtT AGC gqT-s
    !
    !      13 14 15
          tcC ccG g gg cag agg gt-3′ ! 1c N.B. the actual seq is the
    !                                       reverse complement off the
    !                                       one shown.
    (ON_Lam133PCR) 5′-ccTcTgAcTgAgT gcA cAg AGt gc-3′
  • TABLE 19
    Cleavage of 75 human light chains.
    Planned location of
    Enzyme Recognition Nch Ns site
    AfeI AGCgct 0 0
    AflII Cttaag 0 0 HC FR3
    Agel Accggt 0 0
    AscI GGcgcgcc 0 0 After LC
    BglII Agatct 0 0
    BsiWI Cgtacg 0 0
    BspDI ATcgat 0 0
    BssHII Gcgcgc 0 0
    BstBI TTcgaa 0 0
    DraIII CACNNNgtg 0 0
    EagI Cggccg 0 0
    FseI GGCCGGcc 0 0
    FspI TGCgca 0 0
    HpaI GTTaac 0 0
    HfeI Caattg 0 0 MC FRi
    MluI Acgcgt 0 0
    NcoI Ccatgg 0 0 Heavy chain signal
    NheI Gctagc 0 0 HC/anchor linker
    NotI GCggccgc 0 0 In linker after MC
    NruI TCGcga 0 0
    Pad TTAATtaa 0 0
    PmeI GTTTaaac 0 0
    PmlI CACgtg 0 0
    PvuI CGATcg 0 0
    SacII CCGCgg 0 0
    SaiI Gtcgac 0 0
    SfiI GGCC1-NNNnggcc 0 0 Heavy Chain signal
    SgfI GCGATcgc 0 0
    SnaBI TACgta 0 0
    StuI AGGcct 0 0
    XbaI Tctaga 0 0 MC FR3
    AatII GACGTc 1 1
    AciI AAcgtt 1 1
    AseI ATtaat 1 1
    BsmI GAATGCN 1 1
    EspEI Tccgga 1 1 MC FR1
    BstXI CCANNNNNntgg 1 1 MC FR2
    DrdI GACNNNNnngtc 1 1
    HindIII Aagctt 1 1
    PciI Acatgt 1 1
    SapI gaagagc 1 1
    Scal AGTact 1 1
    SexAl Accwggt 1 1
    Spel Actagt 1 1
    TiiI Ctcgag 1 1
    XhoI Ctcgag 1 1
    BcgI cgannnnnntgc 2 2
    BlpI GCtnagc 2 2
    BssSI Ctcgtg 2 2
    EstAPI GCANNNNntgc 2 2
    EspI GCtnagc 2 2
    KasI Ggcgcc 2 2
    PflMI CCANNNNntgg 2 2
    XrnnI GAANNnnttc 2 2
    ApaLI Gtgcac 3 3 LC signal seq
    NaeI GCCggc 3 3
    NgoMI Gccggc 3 3
    PvuII CAGctg 3 3
    RsrII CGgwccg 3 3
    BsrBI GAGcgg 4 4
    BsrDI GCAPLTGNNn 4 4
    BstZl7I GTAtac 4 4
    EcoRI Gaattc 4 4
    SphI GCATGc 4 4
    SspI AATatt 4 4
    AccI GTmkac 5 5
    BclI Tgatca 5 5
    BsmBI Nnnnnngagacg 5 5
    BsrGI Tgtaca 5 5
    Dral TTTaaa 6 6
    NdeI CAtatg 6 6 HC FR4
    Swal ATTTaaat 6 6
    BamHI Ggatcc 7 7
    Sad GAGCTc 7 7
    BciVI GTATCCNNNNNN 8 8
    BsaBI GATNNnnatc 8 8
    NsiI ATGCAt 8 8
    Espl20I Gggccc 9 9 CH1
    Apal GGGCCc 9 9 CH3.
    PspOOMI Gggccc 9 9
    BspHI Tcatga 9 11
    EcoRV GATatc 9 9
    AhdI GACNNNnngtC 11 11
    BbsI GAAGAC 11 14
    PsiI TTAtaa 12 12
    BsaI GGTCTCNnnnn 13 15
    XmaI Cccggg 13 14
    Aval Cycgrg 14 16
    BglI GCCNNNNnggc 14 17
    AiwNI CAGNNNctg 16 16
    BspMI ACCTGC 17 19
    XcmI CCANNNNNnnnntgg 17 26
    EstEZI Ggtnacc 19 22 HC FR4
    Sse8387I CCTGCAgg
    20 20
    AvrII Cctagg 22 22
    HincII GTYraC 22 22
    EsgI GTGCAG 27 29
    MscI TGGcca 30 34
    BseRI NNnnnnnnnnctcctc 32 35
    Bsu36I CCtnagg 35 37
    PstI CTGCAg 35 40
    EciI nnnnnnnnntccgcc 38 40
    PpuMI RGgwccy 41 50
    StyI Ccwwgg 44 73
    EcoO109I RGgnccy 46 70
    Acc65I Ggtacc 50 51
    KpnI GGTACc 50 51
    BpmI ctccag 53 82
    AvaII Ggwcc 71 124

    *cleavage occurs in the top strand after the last upper-case base. For REs that cut palindromic sequences, the lower strand is cut at the symmetrical site.
  • TABLE 20
    Cleavage of 79 human heavy chains
    Planned location of
    Enzyme Recognition Nch Ns site
    AfeI AGCgct 0 0
    AflII Cttaag 0 0 NC FR3
    AscI GGcgcgcc 0 0 After LC
    BsiWI Cgtacg 0 0
    BspDI ATcgat 0 0
    BssHII Gcgcgc 0 0
    FseI GGCCGGcc 0 0
    HpaI GTTaac 0 0
    NheI Gctagc 0 0 NC Linker
    NotI GCggccgc 0 0 In linker, NC/anchor
    NruI TCGcga 0 0
    NsiI ATGCAt 0 0
    PacT TTAATtaa 0 0
    PciI Acatgt 0 0
    PmeI GTTTaaac 0 0
    PvuI CGATcg 0 0
    RsrII CGgwccg 0 0
    SapI gaagagc 0 0
    SfiI GGCCNNNNnggcc 0 0 NC signal seq
    SgfI GCGATcgc 0 0
    SwaT ATTTaaat 0 0
    AcII AAcgtt 1 1
    AgeT Accggt 1 1
    AseI ATtaat 1 1
    AvrII Cctagg 1 1
    EsmI GAATGCN 1 1
    BsrBI GAGcgg 1 1
    BsrDI GCAATGNNn 1 1
    DraI TTTaaa 1 1
    FspI TGCgca 1 1
    HindIII Aagctt 1 1
    MfeI Caattg 1 1 NC FR1
    NaeI GCCggc 1 1
    NgoMI Gccggc 1 1
    SpeI Actagt 1 1
    Acc65I Ggtacc 2 2
    BstEI TTcgaa 2 2
    KpnI GGTACc 2 2
    MIuI Acgcgt 2 2
    NcoI Ccatgg 2 2 In NC signal seq
    NdeI CAtatg 2 2 NC FR4
    PmlT CACgtg 2 2
    XcmI CCANNNNNnnnntgg 2 2
    BcgI cgannnnnntgc 3 3
    EdI Tgatca 3 3
    EglI GCCNNNNnggc 3 3
    BsaBI GATNNnnatc 3 3
    EsrGI Tgtaca 3 3
    SnaBI TACgta 3 3
    SseE387I CCTGCAgg 3 3
    ApaLI Gtgcac 4 4 LC Signal/FRi
    EspHI Tcatga 4 4
    BssSI Ctcgtg 4 4
    PsiI TTAtaa 4 5
    SphI GCATGc 4 4
    AhciI GACNNNnngtc 5 5
    EspHI Tccgga 5 5 HC FR1
    MscI TGGcca 5 5
    Sad GAGCTc 5 5
    Scal AGTact 5 5
    SexAl Accwggt 5 6
    SspI AATatt 5 5
    TliI Ctcgag 5 5
    XhoI Ctcgag 5 5
    BbsI GAAGAC 7 8
    EstAPI GCANNNNntgc 7 8
    BstZl7I GTAtac 7 7
    EcoRV GATatc 7 7
    EcoRI Gaattc 8 8
    SipI GCtnagc 9 9
    Bsu36I CCtnagg 9 9
    DraIII CACNNNgtg 9 9
    EspI GCtnagc 9 9
    StuI AGGcct 9 13
    XbaI Totaga 9 9 HC FR3
    Bsp120I Gggccc 10 11 CH1
    ApaI GGGCCC10 11 CH1
    PspOOMI Gggccc 10 11
    BciVI GTATCCNNNNNN 11 11
    Sail Gtcgac 11 12
    DrdI GACNNNNnngtc 12 12
    KasI Ggcgcc 12 12
    XmaI Cccggg 12 14
    BglII Agatot 14 14
    HincII GTYrac 16 18
    BainHI Ggatcc 17 17
    Pf1MI CCANNNNntgg 17 18
    BsmBI Nnnnnngagacg 18 21
    BstXI CCANNNNNntgg 18 19 HC FR2
    XmnI GAANNnnttc 18 18
    SaclI CCGCgg 19 19
    PstI CTGCAg 20 24
    PvuII CAGctg 20 22
    AvaI Cycgrg 21 24
    EagI Cggccg 21 22
    AatII GACGTc 22 22
    BspMI ACCTGC 27 33
    AccI GTmkac 30 43
    StyI Ccwwgg 36 49
    AlWNI CAGNNNctg 38 44
    BsaI GGTCTCNnnnn 38 44
    PpuMI RGgwccy 43 46
    BsgI GTGCAG 44 54
    BseRI NNnnnnnnnctcctc 48 60
    EciI nnnnnnnntccgcc 52 57
    EstEII Ggtnacc 54 61 HC Fr4, 47/79 have one
    EcoO109I RGgnccy 54 86
    BpmI ctccag 60 121
    AvaII Ggwcc 71 140
  • TABLE 21
    MALIA3, annotated
    ! MALIA3 9532 bases
    !----------------------------------------------------------------------
    1 aat gct act act att agt aga att gat gcc acc ttt tca gct cgc gcc
    !   gene ii continued
    49 cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta
    97 tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca act
    145 gtt aca tgg aat gaa act ttc aga cac cgt act tta gtt gca tat tta
    193 aaa cat gtt gag cta cag cac cag att cag caa tta agc tct aag cca
    241 ttc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc tct
    289 aat cct gac ctg ttg gag ttt gct ttc ggtctg gtt cgc ttt gaa gct
    337 cga att aaa acg cga tat ttg aag tct ttc ggg ctt cct ctt aat ctt
    385 ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggtaaa gac
    433 ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa gca
    481 ttt gag ggg gat tca ATG aat att tat gac gat ttc gca gta ttg gac
    !     RES?......      Start gene x, ii continues
    529 gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct
    577 ttt gca aaa gcc tct cgc tat ttt ggtttt tat cgt cgt ctg gta aac
    625 gag ggttat gat agt gtt gct ctt act atg cct cgt aat ttc ttt tgg
    673 cgt tat gta tct gca tta gtt gaa tgt ggtatt cct aaa tct caa ctg
    721 atg aat ctt tct acc tgt aat aat gtt ggt ccg tta gtt cgt ttt att
    769 aac gta gat ttt tct ttc caa cgt cct gac tgg tat aat gag cca gtt
    817 ctt aaa atc gca TAA
    !                 End X & II
    832 ggtaattca ca
    !
    !  M1              ES                 Q10                 T15
    843 ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act cgt
    ! Start gene V
    !
    ! S17        S20                 P25                 E30
    891 tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aat gag cag ctt
    !
    !         V35                 E40                 V45
    939 tgt tac gtt gat ttg ggtaat gaa tat ccg gtt ctt gtc aag att act
    !
    !     D50                 A55                 L60
    987 ctt gat gaa ggtcag cca gcc tat gcg cct ggtcTG TAC Acc gtt cat
    !                                              BsrGI...
    ! L65                 V70                 S75                 R80
    1035 ctg ttc tct ttc aaa gtt ggtcag ttc ggtttc ctt atg att gac cgt
    !
    !                 P85     K87 end of V
    1083 ctg cgc ctc gtt ccg gct aag TAA C
    !
    1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg
    ! Start gene VII
    !
    1150 ata caa atc ttc gtt gta ctt tgt ttc gcg ctt ggt ata atc
    !
    !                VII and IX overlap.
    !                S2  V3  L4  V5                 S10
    1192 gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttc gcc tct ttc gtt
    !                  End VII
    !                |start IX
    ! L13     W15                 G20                 T25             E29
    1242 tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta atg gaa
    !
    1293 act ttc tc
    !
    !  .... stop of IX, IX and VIII overlap by four bases
    1301 ATG aaa aag tct tta gtc ctc aaa gcc tct gta gcc gtt gct acc ctc
    ! Start signal sequence of viii.
    !
    1349 gtt cog atg ctg tct ttc gct gct gag ggt gac gat ccc gca aaa gcg
    !                             mature VIII --->
    1397 gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg
    1445 tgg gcg atg gtt ggt gtc att
    1466 gtc ggc gca act atc ggt atc aag ctg ttt aag
    1499 aaa ttc acc tcg aaa gca ! 1515
    ! |...........  −35  ..
    !
    1517      agc tga taaaccgat acaattaaag gctccttttg
    !                 ..... −10   ...
    !
    1552 gagccttttt ttttGGAGAt ttt ! S.D. underlined
    !
    !      >----------- III signal sequence ----------------------------->
    !       M   K   K   L   L   F   A   I   P   L   V
    1575 caac GTG aaa aaa tta tta ttc gca att cct tta gtt ! 1611
    !
    !  V   P   F   Y   S   H   S   A   Q
    1612 gtt cct ttc tat tct cac aGT gcA Cag tCT
    !                          ApaLI...
    !
    1642     GTC GTG ACG CAG CCG CCC TCA GTG TCT GGG GCC CCA GGG CAG
        AGG GTC ACC ATC TCC TGC ACT GGG AGC AGC TCC AAC ATC GGG GCA
    !       BstEII...
    1729     GGT TAT GAT GTA CAC TGG TAC CAG CAG CTT CCA GGA ACA GCC CCC AAA
    1777     CTC CTC ATC TAT GGT AAC AGC AAT CGG CCC TCA GGG GTC CCT GAC CGA
    1825     TTC TCT GGC TCC AAG TCT GGC ACC TCA GCC TCC CTG GCC ATC ACT
    1870     GGG CTC CAG GCT GAG GAT GAG GCT GAT TAT
    1900     TAC TGC CAG TCC TAT GAC AGC AGC CTG AGI
    1930     GGC CTT TAT GTC TTC GGA ACT GGG ACC AAG GTC ACC GTC
    !                                           BstEII...
    1969     CTA GGT CAG CCC AAG GCC AAC CCC ACT GTC ACT
    2002     CTG TTC CCG CCC TCC TCT GAG GAG CTC CAA GCC AAC AAG GCC ACA CTA
    2050     GTG TGT CTG ATC AGT GAC TTC TAC CCG GGA GCT GTG ACA GTG GCC TGG
    2098     AAG GCA GAT AGC AGC CCC GTC AAG GCG GGA GTG GAG ACC ACC ACA CCC
    2146     TCC AAA CAA AGC AAC AAC AAG TAC GCG GCC AGC AGC TAT CTG AGC CTG
    2194     ACG CCT GAG CAG TGG AAG TCC CAC AGA AGC TAC AGC TGC CAG GTC ACG
    2242     CAT GAA GGG AGC ACC GTG GAG AAG ACA GTG GCC CCT ACA GAA TGT
    2290     TAA TAA ACCG CCTCCACCGG GCGCGCCAAT TCTATTTCAA GGAGACAGTC ATA
    !                           AscI.....
    !
    !     PelB signal---------------------------------------->
    !      M   K   Y   L   L   P   T   A   A   A   G   L   L   L   L
    2343     ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC
    !
    !       16  17  18  19  20      21  22
    !      A   A   Q   P   A        M   A
    2388     gcG GCC cag ccG GCC      atg gcc
    !       SfiI.............
    !               NgoMI...(1/2)
    !                      NcoI.........
    !
    !                             FR1 (DP47/V3-23)---------------
    !                             23  24  25  26  27  28  29  30
    !                              E   V   Q   L   L   E   S   G
    2409                             gaa|gtt|CAA|TTG|tta|gag
    tct|ggt|
    !                                    |MfeI  |
    !
    ! --------------FR1--------------------------------------------
    !  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    !   G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A
    2433 |ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|
    !
    ! ----FR1---------------->|...CDR1................|---FR2------
    !  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    !   A   S   G   F   I   F   S   S   Y   A   M   S   W   V   R
    2478 |gct|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgc|
    !     | BspEI |                 | BsiwW|                     |BstXI.
    !
    !  -------FR2-------------------------------->|...CDR2........
    !  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    !   Q   A   P   G   K   G   L   K   W   V   S   A   I   S   G
    2523 |CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|
    !  ...BstXI          |
    !
    !      .....CDR2............................................|---FR3---
    !  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    !  S   G   G   S   T   Y   Y   A   D   S   K   G   R   F
    2568 |tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc|
    !
    !
    ! --------FR3--------------------------------------------------
    !   91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !   T   I   S   R   D   N   S   K   N   I   L   Y   L   Q   M
    2613 |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
    !         | XbaI  |
    !
    ! ---FR3----------------------------------------------------->|
    !  106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !   N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   K
    2658 |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|
    !        |AflII |               | PstI |
    !
    ! .......CDR3.................|----FR4-------------------------
    !  121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    !   D   Y   E   G   T   G   Y   A   F   D   I   W   G   Q   G
    2703 |gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt|
    !                                        | NdeI |(1/4)
    !
    ! --------------FR4---------->|
    !  136 137 138 139 140 141 142
    !   T   M   V   I   V   S   S
    2748 |act|atG|GTC|ACC|gtc|tct|agt
    !        | BstEII |
    ! From BstEII onwards, pV323 is same as pCES1, except as noted.
    ! EstEII sites may occur in light chains; not likely to be unique in final
    ! vector.
    !
    !                   143 144 145 146 147 148 149 150 151 152
    !                      A   S   I   K   G   P   S   V   F   P
    2769                     gcc ttc acc aaG GGC CCa tcg GTC TTC ccc
    !                                   Bsp120I.      BbsI...(2/2)
    !                                   ApaI....
    !
    ! 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    !  L   A   P   S   S   K   S   T   S   G   G   T   A   A   L
    2799 ctg gca ccc TCC TCc aag agc acc tct ggg ggc aca gcg gcc ctg
    !           BseRI...(2/2)
    !
    !   168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    !    G   C   L   V   K   D   Y   F   P   E   P
    2844   ggc tgc ctg GTC AAG GAC TAC TTC CCC gaA CCG GTg acg gtg tcg
    !                                         AgeI....
    !
    !   183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    !    W   N   S   G   A   L   I   S   G   V   H   T   F   P   A
    2889   tgg aac tca GGC GCC ctg acc agc ggc gtc cac acc ttc ccg gct
    !               KasI...(1/4)
    !
    !   198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    !    V   L   Q   S   S   G   L   Y   S   L   S   S   V   V   T
    2934   gtc cta cag tCt agc GGa ctc tac ttc ctc agc agc gta gtg acc
    !               (Bsu36I...)(knocked out)
    !
    !   213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    !    V   P   S   S   S   L   G   T   Q   T   Y   I   C   N   V
    2979   gtg CCC tCt tct agc tTG Ggc acc cag acc tac ctc tgc cac gtg
    !           (BstXI...........)N.B. destruction of BstXI & BpmI sites.
    !
    !   228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    !    N   H   K   P   S   N   T   K   V   D   K
    3024   aat cac aag ccc agc aac acc acg gtg gac aag aaa gtt gag ccc
    !
    !   243 244 245
    !    K   S   C   A   A   A   H   H   H   H   H   H   S   A
    3069   aaa tct tgt GCG GCC GCt cat cac cac cat cat cac tct gct
    !               NotI......
    !
    !    E   Q   K   L   I   S   E   E   D   L   N   G   A   A
    3111   gaa caa aaa ctc ctc tca gaa gag gct ctg act ggt gcc gcc
    !
    !
    !    D   I   N   D   D   R   M     A   S   G   A
    3153   GAT ATC acc gat gat cgt atg   gct AGC  ggc gcc
    !   rEK cleavage site..........   NheI...  KasI...
    !   EcoRV..
    !
    ! Domain 1 ------------------------------------------------------------
    !      A   E   I   V   E   S   C   L   A
    3183     gct gaa act gtt gac cgt tgt tta gca
    !
    !
    !  K   P   H   T   E   I   S   F
    3210 caa ccc cat aca gcc aat tca ttt
    !
    !  T   N   V   W   K   D   D   K   T
    3234 aCT AAC GTC TGG AAA GAC GAC AAA ACt
    !
    !  L   D   R   Y   A   N   Y   E   G   C   L   W   N   A   T   G   V
    3261 tta gat cgt tac gct aac tat gag ggttgt ctg tgG AAT GCt aca ggc gtt
    !                                               BsmI____
    !
    !  V   V   C   T   G   D   E   T   Q   C   Y   G   T   W   V   P   I
    3312 gta gtt tgt act ggt GAC GAA ACT CAG TGT TAC GGT ACA TGG GTT cct att
    !
    !  G   L   A   I   P   E   N
    3363 ggg ctt gct atc cct gaa aat
    !
    ! L1 linker ------------------------------------
    !  E   G   G   G   S   E   G   G   G   S
    3384 gag ggt ggt ggc tct gag ggt ggc ggt tct
    !
    !  E   C   G   G   S   E   G   G   G   S
    3414 gag ggt ggc ggt tct gag ggt ggc ggt act
    !
    ! Domain 2 ------------------------------------
    3444 aaa cct cct gag tac ggtgat aca cct att ccg ggc tat act tat atc aac
    3495 cct ctc gac ggc act tat ccg cct ggtact gag caa aac ccc gct aat cct
    3546 aat cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag aat
    !                 EseRI  
    3597 aat agg ttc cga aat agg cag ggg gca tta act gtt tat acg ggc act
    3645 gtt act caa ggc act gac ccc gtt aaa act tat tac cag tac act cct
    3693 gta tca tca aaa gcc atg tat gac gct tac tgg aac ggt aaa ttC AGA
    !                                                           AlwNI
    3741 GAC TGc gct ttc cat tct ggc ttt aat gaa gat cca ttc gtt tgt gaa
    !  AlwNI
    3789 tat caa ggc caa tcg tct gac ctg cct caa cct cct gto aat gct
    !
    3834 ggc ggc ggc tct
    !  start L2 ------------------------------------------------------------
    3846 ggt ggt ggt tct
    3858 ggt ggc ggc tct
    3870 gag ggt ggt ggc tct gag ggt ggc ggt tct
    3900 gag ggt ggc ggc tct gag gga ggc ggt tcc
    3930 ggt ggt ggc tct ggt    ! end L2
    !
    ! Domain 3 --------------------------------------------------------------
    !  S   G   D   F   D   Y   E   K   M   A   N   A   N   K   G   A
    3945 tcc ggt gat ttt gat tat gaa aag atg gca aac gct aat aag ggg gct
    !
    !  M   T   E   N   A   D   E   N   A   L   Q   S   D   A   K   G
    3993 atg acc gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc
    !
    !  K   L   D   S   V   A   I   D   Y   G   A   A   I   D   G   F
    4041 aaa ctt gat tct gtc gct act gat tac ggt gct gct atc gat ggt ttc
    !
    !  I   C   D   V   S   G   L   A   N   G   N   G   A   T   G   D
    4089 att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt gat
    !
    !  F   A   C   S   N   S   Q   M   A   Q   V   G   D   G   D   N
    4137 ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt gat aat
    !
    !  S   P   L   M   N   N   F   R   Q   Y   L   P   S   L   P   Q
    4185 tca cct tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct caa
    !
    !  S   V   K   C   R   P   F   V   F   S   A   G   K   P   Y   E
    4233 tcg gtt gaa tgt cgc cct ttt gtc ttt agc gct ggt aaa cca tat gaa
    !
    !  F   S   I   U   C   U   K   I   N   L   F   R
    4281 ttt tct att gat tgt gac aaa ata aac tta ttc cgt
    !                                             End Domain 3
    !
    !  G   V   F   A   F   L   L   Y   V   A   T   F   M   Y   V  F140
    4317 ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat gta ttt
    ! start transmembrane segment
    !
    !  S   T   F   A   N   I   L
    4365 tct acg ttt gct aac ata ctg
    !
    !  R   N   K   E   S
    4386 cgt aat aag gag tct TAA ! stop of iii
    !     Intracellular anchor.
    !
    !      M1  P2  V   L  L5   G   I   P   L  L10  L   R   F   L  G15
    4404  tc ATG cca gtt ctt ttg ggt att ccg tta tta ttg cgt ttc ctc ggt
    !     Start VI
    !
    4451 ttc ctt ctg gta act ttg ttc ggc tat ctg ctt act ttt ctt aaa aag
    4499 ggc ttc ggt aag ata gct att gct att tca ttg ttt ctt gct ctt att
    4547 att ggg ctt aac tca att ctt gtg ggt tat ctc tct gat att agc gct
    4595 caa tta ccc tct gac ttt gtt cag ggt gtt cag tta att ctc ccg tct
    4643 aat gcg ctt ccc tgt ttt tat gtt att ctc tct gta aag gct gct att
    4691 ttc att ttt gac gtt aaa caa aaa atc gtt tct tat ttg gat tgg gat
    !
    !            M1  A2  V3      F5                 L10         G13
    4739 aaa TAA t ATG gct gtt tat ttt gta act ggc aaa tta ggc tct gga
    !  end VI   Start gene I
    !
    !  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28
    !  K   T   L   V   S   V   G   K   I   Q   D   K   I   V   A
    4785 aag acg ctc gtt agc gtt ggt acg att cag gat aaa att gta gct
    !
    !  29  30  31  32  33  34  35  36  37  38  39  40  41  42  43
    !  G   C   K   I   A   I   N   L   D   L   P   L   Q   N   L
    4830 ggg tgc aaa ata gca act aat ctt gat tta agg ctt caa aac ctc
    !
    !  44  45  46  47  48  49  50  51  52  53  54  55  56  57  58
    !  P   Q   V   G   R   F   A   K   T   P   R   V   L   R   I
    4875 ccg caa gtc ggg agg ttc gct aaa acg cct cgc gtt ctt aga ata
    !
    !  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73
    !  P   D   K   P   S   I   S   D   L   L   A   I   G   R   G
    4920 ccg gat aag cct tct ata tct gat ttg ctt gct att ggg cgc ggt
    !
    !  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88
    !  N   D   S   Y   D   E   N   K   N   G   L   L   V   L   V   D
    4965 aat gat tcc tac gat gaa aat aaa aac ggc ttg ctt gtt ctc gat
    !
    !  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103
    !  E   C   G   T   W   F   N   T   R   S   W   N   D   K   E
    5010 gag tgc ggt act tgg ttt aat acc cgt tct tgg aat gat aag gaa
    !
    ! 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    !  R   Q   P   I   I   D   W   F   L   H   A   R   K   L   G
    5055 aga cag ccg att att gat tgg ttt cta cat gct cgt aaa tta gga
    !
    ! 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    !  W   D   I   I   F   L   V   Q   D   L   S   I   V   D   K
    5100 tgg gat att att ttt ctt gtt cag gac tta tct att gtt gat aaa
    !
    ! 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    !  Q   A   R   S   A   L   A   E   H   V   V   Y   C   R   R
    5145 cag gcg cgt tct gca tta gct gaa cat gtt ggt tat tgt cgt cgt
    !
    ! 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    !  L   D   R   I   T   L   P   F   V   G   I   L   Y   S   L
    5190 ctg gac aga att act tta cct ttt gtc ggt act tta tat tct ctt
    !
    ! 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    !  I   I   G   S   K   M   P   L   P   K   L   H   V   G   V
    5235 att act ggc tcg aaa atg cct ctg cct aaa tta cat gtt ggc gtt
    !
    ! 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    !  V   K   Y   G   D   S   Q   L   S   P   I   V   E   R   W
    5280 gtt aaa tat ggc gat tct caa tta agc cct act gtt gag cgt tgg
    !
    ! 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    !  L   Y   T   G   K   N   L   Y   N   A   Y   D   T   K   Q
    5325 ctt tat act ggt aag aat ttg tat aac gca tat gat act aaa cag
    !
    ! 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    !  A   F   S   S   N   Y   D   S   G   V   Y   S   Y   L   I
    5370 gct ttt tct agt aat tat gat ttc ggt gtt tat tct tat tta acg
    !
    ! 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    !  P   Y   L   S   H   G   R   Y   F   K   P   L   N   L   G
    5415 cct tat tta tca cac ggt cgg tat ttc aaa cca tta aat tta ggt
    !
    ! 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    !  Q   K   M   K   L   I   K   I   Y   L   K   K   F   S   R
    5460 cag aag atg aaa tta act aaa ata tat ttg aaa aag ttt tct cgc
    !
    ! 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    !  V   L   C   L   A   I   G   F   A   S   A   F   I   Y   S
    5505 gtt ctt tgt ctt gcg att gga ttt gca tca gca ttt aca tat agt
    !
    ! 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    !  Y   I   T   Q   P   K   P   E   V   K   K   V   V   S   Q
    5550 tat ata acc caa cct aag ccg gag gtt aaa aag gta gtc tct cag
    !
    ! 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    !  T   Y   D   F   D   K   F   T   I   D   S   S   Q   R   L
    5595 acc tat gat ttt gat aaa ttc act att gac tct tct cag cgt ctt
    !
    ! 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    !  N   L   S   Y   P   Y   V   F   K   D   S   K   G   K   L
    5640 aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA
    !                                                         PacI
    !
    ! 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    !  I   N   S   D   D   L   Q   K   Q   G   Y   S   L   I   Y
    5685 ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat
    !     PacI
    49
    ! 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    ! i  I   D   L   C   I   V   S   I   K   K   G   N   S   N   E
    !     iv                                                       M1  K
    5730 att gat tta tgt act gtt ttc att aaa aaa ggt aat tca aAT Gaa
    !                                                        Start IV
    !
    !    344 345 346 347 348 349
    !     i    I   V   K   C   N   .End of I
    !     iv    L3  L   N5  V   17  N    F  V10
    5775     att gtt aaa tgt aat TAA T TTT GTT
    !  IV continued.....
    5800 ttc ttg atg ttt ggt tca tca tct tct ttt gct cag gta att gaa atg
    5848 aat aat tcg cct ctg cgc gat ttt gta act tgg tat tca aag caa tca
    5896 ggc gaa ttc ggt att ggt tct ccc gat gta aaa ggt act gtt act gta
    5944 tat tca tct gac ggt aaa cct gaa aat cta cgc aat ttc ttt att tct
    5992 ggt tta cgt gct aat aat ttt gat atg ggt ggt tca att cct tcc ata
    6040 att cag aag tat aat cca aac aat cag gat tat att gat gaa ttg cca
    6088 tca tct gat aat cag gaa tat gat gat aat ttc gct cct tct ggt ggt
    6136 ttc ttt ggt ccg caa aat gat aat ggt act caa act ttt aaa att att
    6184 aac ggt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta aag
    6280 cta tta gtt ggt TCT gca cct aaa gat att tta gat aac ctt cct caa
    !                  ApaLI removed
    6328 ttc ctt tct act gtt gat ttg cca act gac cag ata ttg att gag ggt
    6376 ttg ata ttt gag gtt cag caa ggt gat gct tta gat ttt tca ttt gct
    6424 gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac cgc
    6472 ctc acc tct gtt tta tct tct gct ggt ggt tcg ttc ggt att ttt aat
    6520 ggc gat gtt tta ggg cta tca gtt cgc gca tta aag act aat agc cat
    6568 tca aaa ata ttg tct gtg cca cgt att ctt acg ctt tca ggt cag aag
    6616 ggt tct atc tct gtT GGC CAg aat gtc cct ttt att act ggt cgt gtg
    !                   MscI    
    6664 act ggt gaa tct gcc aat gta aat aat cca ttt cag acg att gag cgt
    6712 caa aat gta ggt att ttc atg agc gtt ttt cct gtt gca atg gct ggc
    6760 ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct
    6808 tct act cag gca agt gat gtt att act aat caa aga agt att gct aca
    6856 acg gtt aat ttg cgt gat gga cag act ctt tta ctc ggt ggc ctc act
    6904 gat tat aaa aac act tct caa gat tct ggc gta ccg ttc ctg tct aaa
    6952 atc oct tta atc ggc ctc ctg ttt agc ttc cgc tct gat ttc aac gag
    7000 gaa agc acg tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc ctg
    7048 TAG cggcgcatt
    ! End IV
    7060 aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca gcgccctagc
    7120 gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcGCCGGCt ttccccgtca
    !                                                NgoMI_
    7180 agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc
    7240 caaaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt
    !                             DraIII    
    7300 tcgccctttG ACGTTGGAGT Ccacgttctt taatagtgga ctcttgttcc aaactggaac
    !          DrdI          
    7360 aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga
    7420 accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa
    7480 ctctctcagg gccaggcggt gaagggcaat CAGCTGttgc cCGTCTCact ggtgaaaaga
    !                                  PvuII.      BsmBI.
    7540 aaaaccaccc tGGATCC  AAGCTI
    !             BamHI  HindIII (1/2)
    !             Insert carrying bla gene
    7563    gcaggtg gcacttttcg gggaaatgtg cgcggaaccc
    7600 ctatttgttt atttttctaa atacattcaa atatGTATCC gctcatgaga caataaccct
    !                                      BciVI
    7660 gataaatgct tcaataatat tgaaaaAGGA AGAgt
    !                             RBSsI.?...
    ! Start bla gene
    7695 ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg gca ttt
    7746 tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa gat gct
    7797 gaa gat cag ttg ggc gCA CGA Gtg ggt tac atc gaa ctg gat ctc aac agc
    !                      BssSI...
    !                  ApaLI removed
    7848 ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc
    7899 act ttt aaa gtt ctg cta tgt cat aca cta tta ttc cgt att gac gcc ggg
    7950 caa gaG CAA CTC GGT CGc cgg gcg cgg tat tct cag aat gac ttg gtt gAG
    !       BcgI                                                       ScaI
    8001 TAC Tca cca gtc aca gaa acg cat ctt acg gat ggc atg aca gta aga gaa
    ! ScaI
    8052 tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta ctt
    8103 ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg
    !          PvuI    
    8154 ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc
    8205 ata cca aac gac gag cgt gac acc acg atg cct gta gca atg cca aca acg
    8256 tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct ttc cgg caa caa
    !  FspI....
    !
    8307 tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg cgc tcg
    8358 GCC ctt ccG GOt ggc tgg ttt att gct gat aaa tct gga gcc ggt gag cgt
    ! BglI          
    8409 gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc ttc cgt
    ! BsaI    
    8460 atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat
    !                       AhdI           
    8511 aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA ctgt
    !                                                         stop
    8560 cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa
    8620 ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt
    8680 cgttccactg tacgtaagac cccc
    8704 AAGCTT   GTCGAC tgaa tggcgaatgg cgctttgcct
    ! HindIII  SalI..
    ! (2/2)    HincII
    8740 ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt
    !
    8790 CCTGAGG
    ! Bsu36I_
    8797      ccgat actgtcgtcg tcccctcaaa ctggcagatg
    8832 cacggt tacg atgcgcccat ctacaccaac gtaacctatc ccattacggt caatccgccg
    8892 tttgttccca cggagaatcc gacgggttgt tactcgctca catttaatgt tgatgaaagc
    8952 tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg ttaaaaaatg
    9012 agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaATTTAAA
    !                                                           SwaI...
    9072 Tatttgctta tacaatcttc ctgtttttgg ggcttttctg attatcaacc GGGGTAcat
    !                                                        RBS
    9131 ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt gtt tgc
    ! Start gene II
    9182 ttc aga ctc tca ggc aat gac ctg ata gcc ttt gtA GAT CTc tca aaa ata
    !                                               BglII...
    9233 gct acc ctc ttc ggc atg aat tta tca gct aga acg gtt gaa tat cat att
    9284 gat ggt gat ttg act gtc ttc ggc ctt tct cac cct ttt gaa tct tta cct
    9335 aca cat tac tca ggc att gca ttt aaa ata tat gag ggt tct aaa aat ttt
    9386 tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag ggt cat
    9437 aat gtt ttt ggt aca acc gat tta gct tta tgc tct gag gct tta ttg ctt
    9488 aat ttt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt ! 9532
    ! gene II continues
  • TABLE 212
    Sequence of MALIA3, condensed
    LOCUS
    ORIGIN  MALIA3      9532             CIRCULAR
    1 AATGCTACTA CTATTAGTAG AATTGATGCC ACCTTTTCAG CTCGCGCCCC AAATGAAAAI
    61 ATAGCTAAAC AGGTTATTGA CCATTTGCGA AATGTATCTA ATGGTCAAAC TAAATCTACT
    121 CGTTCGCAGA ATTGGGAATC AACTGTTACA TGGAATGAAA CTTCCAGACA CCGTACTTTA
    181 GTTGCATATT TAAAACATGT TGAGCTACAG CACCAGATTC AGCAATTAAG CTCTAAGCCA
    241 TCCGCAAAAA TGACCTCTTA TCAAAAGGAG CAATTAAAGG TACTCTCTAA TCCTGACCTG
    361 TCTTTCGGGC TTCCTCTTAA TCTTTTTGAT GCAATCCGCT TTGCTTCTGA CTATAATAGT
    421 CAGGGTAAAG ACCTGATTTT TGATTTATGG TCATTCTCGT TTTCTGAACT GTTTAAAGCA
    481 TTTGAGGGGG ATTCAATGAA TATTTATGAC GATTCCGCAG TATTGGACGC TATCCAGTCT
    541 AAACATTTTA CTATTACCCC CTCTGGCAAA ACTTCTTTTG CAAAAGCCTC TCGCTATTTT
    601 GGTTTTTATC GTCGTCTGGT AAACGAGGGT TATGATAGTG TTGCTCTTAC TATGCCTCGT
    661 AATTCCTTTT GGCGTTATGT ATCTGCATTA GTTGAATGTG GTATTCCTAA ATCTCAACTG
    721 ATGAATCTTT CTACCTGTAA TAATGTTGTT CCGTTAGTTC &TTTTATTAA CGTAGATTTT
    781 TCTTCCCAAC GTCCTGACTG GTATAATGAG CCAGTTCTTA AAATCGCATA AGGTAATTCA
    841 CAATGATTAA AGTTGAAATT AAACCATCTC AAGCCCAATT TACTACTCGT TCTGGTGTTT
    901 CTCGTCAGGG CAAGCCTTAT TCACTGAATG AGCAGCTTTG TTACGTTGAT TTGGGTAATG
    961 AATATCCGGT TCTTGTCAAG ATTACTCTTG ATGAAGGTCA GCCAGCCTAT GCGCCTGGTC
    1021 TGTACACCGT TCATCTGTCC TCTTTCAAAG TTGGTCAGTT CGGTTCCCTT ATGATTGACC
    1081 GTCTGCGCCT CGTTCCGGCT AAGTAACATG GAGCAGGTCG CGGATTTCGA CACAATTTAT
    1141 CAGGCGATGA TACAAATCTC CGTTGTACTT TGTTTCGCGC TTGGTATAAT CGCTGGGGGT
    1201 CAAAGATGAG TGTTTTAGTG TATTCTTTCG CCTCTTTCGT TTTAGGTTGG TGCCTTCGTA
    1261 GTGGCATTAC GTATTTTACC CGTTTAATGG AAACTTCCTC ATGAAAAAGT CTTTAGTCCT
    1321 CAAAGCCTCT GTAGCCGTTG CTACCCTCGT TCCGATGCTG TCTTTCGCTG CTGAGGGTGA
    1381 CGATCCCGCA AAAGCGGCCT TTAACTCCCT GCAAGCCTCA GCGACCGAAT ATATCGGTTA
    1441 TGCGTGGGCG ATGGTTGTTG TCATTGTCGG CGCAACTATC GGTATCAAGC TGTTTAAGAA
    1501 ATTCACCTCG AAAGCAAGCT GATAAACCGA TACAATTAAA GGCTCCTTTT GGAGCCTTTT
    1561 TTTTTGGAGA TTTTCAACGT GAAAAAATTA TTATTCGCAA TTCCTTTAGT TGTTCCTTTC
    1621 TATTCTCACA GTGCACAGTC TGTCGTGACG CAGCCGCCCT CAGTGTCTGG GGCCCCAGGG
    1681 CAGAGGGTCA CCATCTCCTG CACTGGGAGC AGCTCCAACA TCGGGGCAGG TTATGATGTA
    1741 CACTGGTACC AGCAGCTTCC AGGAACAGCC CCCAAACTCC TCATCTATGG TAACAGCAAT
    1801 CGGCCCTCAG GGGTCCCTGA CCGATTCTCT GGCTCCAAGT CTGGCACCTC AGCCTCCCTG
    1861 GCCATCACTG GGCTCCAGGC TGAGGATGAG GCTGATTATT ACTGCCAGTC CTATGACAGC
    1921 AGCCTGAGTG GCCTTTATGT CTTCGGAACT GGGACCAAGG TCACCGTCCT AGGTCAGCCC
    1981 AAGGCCAACC CCACTGTCAC TCTGTTCCCG CCCTCCTCTG AGGAGCTCCA AGCCAACAAG
    2041 GCCACACTAG TGTGTCTGAT CAGTGACTTC TACCCGGGAG CTGTGACAGT GGCCTGGAAG
    2101 GCAGATAGCA GCCCCGTCAA GGCGGGAGTG GAGACCACCA CACCCTCCAA ACAAAGCAAC
    2161 AACAAGTACG CGGCCAGCAG CTATCTGAGC CTGACGCCTG AGCAGTGGAA GTCCCACAGA
    2221 AGCTACAGCT GCCAGGTCAC GCATGAAGGG AGCACCGTGG AGAAGACAGT GGCCCCTACA
    2281 GAATGTTCAT AATAAACCGC CTCCACCGGG CGCGCCAATT CTATTTCAAG GAGACAGTCA
    2341 TAATGAAATA CCTATTGCCT ACGGCAGCCG CTGGATTGTT ATTACTCGCG GCCCAGCCGG
    2401 CCATGGCCGA AGTTCAATTG TTAGAGTCTG GTGGCGGTCT TGTTCAGCCT GGTGGTTCTT
    2461 TACGTCTTTC TTGCGCTGCT TCCGGATTCA CTTTCTCTTC GTACGCTATG TCTTGGGTTC
    2521 GCCAAGCTCC TGGTAAAGGT TTGGAGTGGG TTTCTGCTAT CTCTGGTTCT GGTGGCAGTA
    2581 CTTACTATGC TGACTCCGTT AAAGGTCGCT TCACTATCTC TAGAGACAAC TCTAAGAATA
    2641 CTCTCTACTT GCAGATGAAC AGCTTAAGGG CTGAGGACAC TGCAGTCTAC TATTGCGCTA
    2701 AAGACTATGA AGGTACTGGT TATGCTTTCG ACATATGGGG TCAAGGTACT ATGGTCACCG
    2761 TCTCTAGTGC CTCCACCAAG GGCCCATCGG TCTTCCCCCT GGCACCCTCC TCCAAGAGCA
    2821 CCTCTGGGGG CACAGCGGCC CTGGGCTGCC TGGTCAAGGA CTACTTCCCC GAACCGGTGA
    2881 CGGTGTCGTG GAACTCAGGC GCCCTGACCA GCGGCGTCCA CACCTTCCCG GCTGTCCTAC
    2941 AGTCTAGCGG ACTCTACTCC CTCAGCAGCG TAGTGACCGT GCCCTCTTCT AGCTTGGGCA
    3001 CCCAGACCTA CATCTGCAAC GTGAATCACA AGCCCAGCAA CACCAAGGTG GACAAGAAAG
    3061 TTGAGCCCAA ATCTTGTGCG GCCGCTCATC ACCACCATCA TCACTCTGCT GAACAAAAAC
    3121 TCATCTCAGA AGAGGATCTG AATGGTGCCG CAGATATCAA CGATGATCGT ATGGCTGGCG
    3181 CCGCTGAAAC TGTTGAAAGT TGTTTAGCAA AACCCCATAC AGAAAATTCA TTTACTAACG
    3241 TCTGGAAAGA CGACAAAACT TTAGATCGTT ACGCTAACTA TGAGGGTTGT CTGTGGAATG
    3301 CTACAGGCGT TGTAGTTTGT ACTGGTGACG AAACTCAGTG TTACGGTACA TGGGTTCCTA
    3361 TTGGGCTTGC TATCCCTGAA AATGAGGGTG GTGGCTCTGA GGGTGGCGGT TCTGAGGGTG
    3421 GCGGTTCTGA GGGTGGCGGT ACTAAACCTC CTGAGTACGG TGATACACCT ATTCCGGGCT
    3481 ATACTTATAT CAACCCTCTC GACGGCACTT ATCCGCCTGG TACTGAGCAA AACCCCGCTA
    3541 ATCCTAATCC TTCTCTTGAG GAGTCTCAGC CTCTTAATAC TTTCATGTTT CAGAATAATA
    3601 GGTTCCGAAA TAGGCAAGGG GCATTAACTG TTTATACGGG CACTGTTACT CAAGGCACTG
    3661 ACCCCGTTAA AACTTATTAC CAGTACACTC CTGTATCATC AAAAGCCATG TATGACGCTT
    3721 ACTGGAACGG TAAATTCAGA GACTGCGCTT TCCATTCTGG CTTTAATGAA GATCCATTCG
    3781 TTTGTGAATA TCAAGGCCAA TCGTCTGACC TGCCTCAACC TCCTGTCAAT GCTGGCGGCG
    3841 GCTCTGGTCG TGGTTCTGGT GGCGGCTCTG AGGGTGGTGG CTCTGAGGGT GGCGGTTCTG
    3901 AGGGTGGCGG CTCTGAGGGA GGCGGTTCCG GTGGTGGCTC TGGTTCCGGT GATTTTGATT
    3961 ATGAAAAGAT GGCAAACGCT AATAAGGGGG CTATGACCGA AAATGCCGAT GAAAACGCGC
    4021 TACAGTCTGA CGCTAAAGGC AAACTTGATT CTGTCGCTAC TGATTACGGT GCTGCTATCG
    4081 ATGGTTTCAT TGGTGACGTT TCCGGCCTTG CTAATGGTAA TGGTGCTACT GGTGATTTTG
    4141 CTGGCTCTAA TTCCCAAATG GCTCAAGTCG GTGACGGTGA TAATTCACCT TTAATGAATA
    4201 ATTTCCGTCA ATATTTACCT TCCCTCCCTC AATCGGTTGA ATGTCGCCCT TTTGTCTTTA
    4261 GCGCTGGTAA ACCATATGAA TTTTCTATTG ATTGTGACAA AATAAACTTA TTCCGTGGTG
    4321 TCTTTGCGTT TCTTTTATAT GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA
    4381 TACTGCGTAA TAAGGAGTCT TAATCATGCC AGTTCTTTTG GGTATTCCGT TATTATTGCG
    4441 TTTCCTCGGT TTCCTTCTGG TAACTTTGTT CGGCTATCTG CTTACTTTTC TTAAAAAGGG
    4501 CTTCGGTAAG ATAGCTATTG CTATTTCATT GTTTCTTGCT CTTATTATTG GGCTTAACTC
    4561 AATTCTTGTG GGTTATCTCT CTGATATTAG CGCTCAATTA CCCTCTGACT TTGTTCAGGG
    4621 TGTTCAGTTA ATTCTCCCGT CTAATGCGCT TCCCTGTTTT TATGTTATTC TCTCTGTAAA
    4681 GGCTGCTATT TTCATTTTTG ACGTTAAACA AAAAATCGTT TCTTATTTGG ATTGGGATAA
    4741 ATAATATGGC TGTTTATTTT GTAACTGGCA AATTAGGCTC TGGAAAGACG CTCGTTAGCG
    4801 TTGGTAAGAT TCAGGATAAA ATTGTAGCTG GGTGCAAAAT AGCAACTAAT CTTGATTTAA
    4861 GGCTTCAAAA CCTCCCGCAA GTCGGGAGGT TCGCTAAAAC GCCTCGCGTT CTTAGAATAC
    4921 CGGATAAGCC TTCTATATCT GATTTGCTTG CTATTGGGCG CGGTAATGAT TCCTACGATG
    4981 AAAATAAAAA CGGCTTGCTT GTTCTCGATG AGTGCGGTAC TTGGTTTAAT ACCCGTTCTT
    5041 GGAATGATAA GGAAAGACAG CCGATTATTG ATTGGTTTCT ACATGCTCGT AAATTAGGAT
    5101 GGGATATTAT TTTTCTTGTT CAGGACTTAT CTATTGTTGA TAAACAGGCG CGTTCTGCAT
    5161 TAGCTGAACA TGTTGTTTAT TGTCGTCGTC TGGACAGAAT TACTTTACCT TTTGTCGGTA
    5221 CTTTATATTC TCTTATTACT GGCTCGAAAA TGCCTCTGCC TAAATTACAT GTTGGCGTTG
    5281 TTAAATATGG CGATTCTCAA TTAAGCCCTA CTGTTGAGCG TTGGCTTTAT ACTGGTAAGA
    5341 ATTTGTATAA CGCATATGAT ACTAAACAGG CTTTTTCTAG TAATTATGAT TCCGGTGTTT
    5401 ATTCTTATTT AACGCCTTAT TTATCACACG GTCGGTATTT CAAACCATTA AATTTAGGTC
    5461 AGAAGATGAA ATTAACTAAA ATATATTTGA AAAAGTTTTC TCGCGTTCTT TGTCTTGCGA
    5521 TTGGATTTGC ATCAGCATTT ACATATAGTT ATATAACCCA ACCTAAGCCG GAGGTTAAAA
    5581 AGGTAGTCTC TCAGACCTAT GATTTTGATA AATTCACTAT TGACTCTTCT CAGCGTCTTA
    5641 ATCTAAGCTA TCGCTATGTT TTCAAGGATT CTAAGGGAAA ATTAATTAAT AGCGACGATT
    5701 TACAGAAGCA AGGTTATTCA CTCACATATA TTGATTTATG TACTGTTTCC ATTAAAAAAG
    5761 GTAATTCAAA TGAAATTGTT AAATGTAATT AATTTTGTTT TCTTGATGTT TGTTTCATCA
    5821 TCTTCTTTTG CTCAGGT0AT TGAAATGAAT AATTCGCCTC TGCGCGATTT TGTAACTTGG
    5881 TATTCAAAGC AATCAGGCGA ATCCGTTATT GTTTCTCCCG ATGTAAAAGG TACTGTTACT
    5941 GTATATTCAT CTGACGTTAA ACCTGAAAAT CTACGCAATT TCTTTATTTC TGTTTTACGT
    6001 GCTAATAATT TTGATATGGT TGGTTCAATT CCTTCCATAA TTCAGAAGTA TAATCCAAAC
    6061 AATCAGGATT ATATTGATGA ATTGCCATCA TCTGATAATC AGGAATATGA TGATAATTCC
    6121 GCTCCTTCTG GTGGTTTCTT TGTTCCGCAA AATGATAATG TTACTCAAAC TTTTAAAATT
    6181 AATAACGTTC GGGCAAAGGA TTTAATACGA GTTGTCGAAT TGTTTGTAAA GTCTAATACT
    6241 TCTAAkTCCT CAAATGTATT ATCTATTGAC GGCTCTAATC TATTAGTTGT TTCTGCACCT
    6301 AAAGATATTT TAGATAACCT TCCTCAATTC CTTTCTACTG TTGATTTGCC AACTGACCAG
    6361 ATATTGATTG AGGGTTTGAT ATTTGAGGTT CAGCAAGGTG ATGCTTTAGA TTTTTCATTT
    6421 GCTGCTGGCT CTCAGCGTGG CACTGTTGCA GGCGGTGTTA ATACTGACCG CCTCACCTCT
    6481 GTTTTATCTT CTGCTGGTGG TTCGTTCGGT ATTTTTAATG GCGATGTTTT AGGGCTATCA
    6541 GTTCGCGCAT TAAAGACTAA TAGCCATTCA AAAATATTGT CTGTGCCACG TATTCTTACG
    6601 CTTTCAGGTC AGAAGGGTTC TATCTCTGTT GGCCAGAATG TCCCTTTTAT TACTGGTCGT
    6661 GTGACTGGTG AATCTGCCAA TGTAAATAAT CCATTTCAGA CGATTGAGCG TCAAAATGTA
    6721 GGTATTTCCA TGAGCGTTTT TCCTGTTGCA ATGGCTGGCG GTAATATTGT TCTGGATATT
    6781 ACCAGCAAGG CCGATAGTTT GAGTTCTTCT ACTCAGGCAA GTGATGTTAT TACTAATCAA
    6841 AGAAGTATTG CTACAACGGT TAATTTGCGT GATGGACAGA CTCTTTTACT CGGTGGCCTC
    6901 ACTGATTATA AAAACACTTC TCAAGATTCT GGCGTACCGT TCCTGTCTAA AATCCCTTTA
    6961 ATCGGCCTCC TGTTTAGCTC CCGCTCTGAT TCCAACGAGG AAAGCACGTT ATACGTGCTC
    7021 GTCAAAGCAA CCATAGTACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT
    7081 TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT
    7141 CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC
    7201 TTTAGGGTTC CGATTTAGTG CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTTGGGTGA
    7261 TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC
    7321 CACGTTCTTT AATAGTGGAC TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGG
    7381 CTATTCTTTT GATTTATAAG GGATTTTGCC GATTTCGGAA CCACCATCAA ACAGGATTTT
    7441 CGCCTGCTGG GGCAAACCAG CGTGGACCGC TTGCTGCAAC TCTCTCAGGG CCAGGCGGTG
    7501 AAGGGCAATC AGCTGTTGCC CGTCTCACTG GTGAAAAGAA AAACCACCCT GGATCCAAGC
    7561 TTGCAGGTGG CACTTTTCGG GGAAATGTGC GCGGAACCCC TATTTGTTTA TTTTTCTAAA
    7621 TACATTCAAA TATGTATCCG CTCATGAGAC AATAACCCTG ATAAATGCTT CAATAATATT
    7681 GAAAAAGGAA GAGTATGAGT ATTCAACATT TCCGTGTCGC CCTTATTCCC TTTTTTGCGG
    7741 CATTTTGCCT TCCTGTTTTT GCTCACCCAG AAACGCTGGT GAAAGTAAAA GATGCTGAAG
    7801 ATCAGTTGGG CGCACGAGTG GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTTG
    7861 AGAGTTTTCG CCCCGAAGAA CGTTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTC
    7921 ATACACTATT ATCCCGTATT GACGCCGGGC AAGAGCAACT CGGTCGCCGG GCGCGGTATT
    7981 CTCAGAATGA CTTGGTTGAG TACTCACCAG TCACAGAAAA GCATCTTACG GATGGCATGA
    8041 CAGTAAGAGA ATTATGCAGT GCTGCCATAA CCATGAGTGA TAACACTGCG GCCAACTTAC
    8101 TTCTGACAAC GATCGGAGGA CCGAAGGAGC TAACCGCTTT TTTGCACAAC ATGGGGGATC
    8161 ATGTAACTCG CCTTGATCGT TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC
    8221 GTGACACCAC GATGCCTGTA GCAATGCCAA CAACGTTGCG CAAACTATTA ACTGGCGAAC
    8281 TACTTACTCT AGCTTCCCGG CAACAATTAA TAGACTGGAT GGAGGCGGAT AAAGTTGCAG
    8341 GACCACTTCT GCGCTCGGCC CTTCCGGCTG GCTGGTTTAT TGCTGATAAA TCTGGAGCCG
    8401 GTGAGCGTGG GTCTCGCGGT ATCATTGCAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA
    8461 TCGTAGTTAT CTACACGACG GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG
    8521 CTGAGATAGG TGCCTCACTG ATTAAGCATT GGTAACTGTC AGACCAAGTT TACTCATATA
    8581 TACTTTAGAT TGATTTAAAA CTTCATTTTT AAATTTAAAG GATCTAGGTG AAGATCCTTT
    8641 TTGATAATCT CATGACCAAA ATCCCTTAAC GTGAGTTTTC GTTCCACTGT ACGTAAGACC
    8701 CCCAAGCTTG TCGACTGAAT GGCGAATGGC GCTTTGCCTG GTTTCCGGCA CCAGAAGCGG
    8761 TGCCGGAAAG CTGGCTGGAG TGCGATCTTC CTGAGGCCGA TACTGTCGTC GTCCCCTCAA
    8821 ACTGGCAGAT GCACGGTTAC GATGCGCCCA TCTACACCAA CGTAACCTAT CCCATTACGG
    8881 TCAATCCGCC GTTTGTTCCC ACGGAGAATC CGACGGGTTG TTACTCGCTC ACATTTAATG
    8941 TTGATGAAAG CTGGCTACAG GAAGGCCAGA CGCGAATTAT TTTTGATGGC GTTCCTATTG
    9001 GTTAAAAAAT GAGCTGATTT AACAAAAATT TAACGCGAAT TTTAACAAAA TATTAACGTT
    9061 TACAATTTAA ATATTTGCTT ATACAATCTT CCTGTTTTTG GGGCTTTTCT GATTATCAAC
    9121 CGGGGTACAT ATGATTGACA TGCTAGTTTT ACGATTACCG TTCATCGATT CTCTTGTTTG
    9181 CTCCAGACTC TCAGGCAATG ACCTGATAGC CTTTGTAGAT CTCTCAAAAA TAGCTACCCT
    9241 CTCCGGCATG AATTTATCAG CTAGAACGGT TGAATATCAT ATTGATGGTG ATTTGACTGT
    9301 CTCCGGCCTT TCTCACCCTT TTGAATCTTT ACCTACACAT TACTCAGGCA TTGCATTTAA
    9361 AATATATGAG GGTTCTAAAA ATTTTTATCC TTGCGTTGAA ATAAAGGCTT CTCCCGCAAA
    9421 AGTATTACAG GGTCATAATG TTTTTGGTAC AACCGATTTA GCTTTATGCT CTGAGGCTTT
    9481 ATTGCTTAAT TTTGCTAATT CTTTGCCTTG CCTGTATGAT TTATTGGATG TT
  • TABLE 22
    Primers used in RACE amplification:
    Heavy chain
    Hucμ-FOR (1st PCR) 5′-TGG AAG AGG CAC GTT CTT TTC TTT-3′
    HuCμ-Nested (2nd PCR) 5′-CTT TTC TTT GTT GCC GTT GGG GTG-3′
    Kappa light chain
    HuCkFor (1st PCR) 5′-ACA CTC TCC CCT GTT GAA GCT CTT-3′
    HuCkForAscI (2nd PCR) 5′-ACC GCC TCC ACC GGG CGC GCC TTA TTA ACA CTC TCC CCT GTT GAA GCT CTT-3′
    Lamba light chain
    HuClambdaFor (1st PCR)
    HuCL2-FOR 5′-TGA ACA TTC TGT AGG GGC CAC TG-3′
    HuCL7-FOR 5′-AGA GCA TTC TGC AGG GGC CAC TG-3′
    HuClambdaForAscI (2nd PCR)
    HuCL2-FOR-ASC 5′-ACC GCC TCC ACC GGG CGC GCC TTA TTA TGA ACA TTC
    TGT AGG GGC CAC TG-3′
    HuCL7-FOR-ASC 5′-ACC GCC TCC ACC GGG CGC GCC TTA TTA AGA GCA TTC
    TGC AGG GGC CAC TG-3′
    GeneRAcer 5′ Primers provided with the kit (Invitrogen)
    5′A 1st PCR 5′CGACTGGAGCACGAGGACACTGA 3′
    5′NA 2nd pCR 5′GGACACTGACATGGACTGAAGGAGTA-3′
  • TABLE 23
    ONs used in Capture of kappa light chains using CJ method and BsmAI
    REdapters (6)
    ON_20SK15012 gggAggATggAgAcTgggTc
    ON_20SK15L12 gggAAgATggAgAcTgggTc
    ON_20SK15A17 gggAgAgTggAgAcTgAgTc
    ON_20SK15A27 gggTgccTggAgAcTgcgTc
    ON_20SK15A11 gggTggcTggAgAcTgcgTc
    ON_20SK15B gggAgTcTggAgAcTgggTc
    Bridges (6)
    kapbri1012 gggAggATggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
    kapbrilL12 gggAAgATggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
    kapbrilA17 gggTgccTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
    kapbrilA27 gggTgccTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
    kapbrilA11 gggTggcTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
    kapbri1B3 gggAgTcTggAgAcTgggTcATcTggATgTcTTgTgcAcTgTgAcAgAgg
    Extender (5′ biotinylated)
    kapextlbio ccTcTgTcAcAgTgcAcAAgAcATccAgATgAcccAgTcTcc
    Primers
    kaPCRt1 ccTcTgTcAcAgTgcAcAAgAc
    kapfor 5′-aca ctc tcc cct gtt gaa gct ctt-3′

    All ONs are written 5′ to 3′.
  • TABLE 24
    PCR program for amplification of kappa DNA
    95° C.  5 minutes
    95° C. 15 seconds
    65° C. 30 seconds
    72° C.  1 minute
    72° C.  7 minutes
     4° C. hold
    Reagents (100 ul reaction):
    Template 50 ng
    10x turbo PCR buffer 1x
    turbo Pfu 4U
    dNTPs 200 μM each
    kaPCRt1 300 nM
    kapfor 300 nM
  • TABLE 25
    h3401-h2 captured Via Cl with BsmAI
    !  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    !  S   A   Q   D   I   Q   M   T   Q   S   P   A   T   L   S
    aGT GCA Caa gac atc cag atg ace cag tct cca gcc acc ctg tct
    !  ApaLI...                    a gcc acc ! L25,L6,L20,L2,L16,A11
    !  Extender.................................Bridge...
    ! 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30
    !  I   V   S   P   G   E   R   A   T   L   S   C   R   A   S   Q
    gtg tct cca ggg gaa agg gcc acc ctc ttc tgc agg gcc agt cag
    ! 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    !  S   V   S   N   N   L   A   W   Y   Q   Q   K   P   G   Q
    agt gtt agt aac aac tta gcc tgg tac cag cag aaa cct ggc cag
    ! 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    !  V   P   R   L   L   I   Y   G   A   S   T   R   A   T   D
    gtt ccc agg ctc ctc atc tat ggt gca ttc acc agg gcc act gat
    ! 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    !  I   P   A   R   F   S   G   S   G   S   G   T   D   F   T
    atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gac ttc act
    ! 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    !  L   T   I   S   R   L   E   P   E   D   F   A   V   Y   Y
    ctc acc atc agc aga ctg gag cct gaa gat ttt gca gtg tat tac
    ! 91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !  C   Q   R   Y   G   S   S   P   G   W   T   F   G   Q   G
    tgt cag cgg tat ggt agc tca ccg ggg tgg acg ttc ggc caa ggg
    ! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !  T   K   V   E   I   K   R   T   V   A   A   P   S   V   F
    acc aag gtg gaa atc aaa cga act gtg gct gca cca tct gtc ttc
    ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    !  I   F   P   P   S   D   E   Q   L   K   S   G   T   A   S
    atc ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct
    ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    !  V   V   C   L   L   N   N   F   Y   P   R   E   A   K   V
    gtt gtg tgc ctg clg aat aac ttc tat ccc aga gag gcc aaa gta
    ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    !  Q   W   K   V   D   N   A   L   Q   S   G   N   S   Q   E
    cag tgg aag gtg gat aac gcc ctc caa tcg ggt aac ttc cag gag
    ! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    !  S   V   T   E   Q   D   S   K   D   S   T   Y   S   L   S
    agt gtc aca gag cag gac agc aag gac agc acc tac agc ctc agc
    ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    !  S   T   L   T   L   S   K   A   D   Y   E   K   H   K   V
    agc acc ctg acg ctg agc aaa gca gac tac gag aaa cac aaa gtc
    ! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    !  Y   A   C   E   V   T   H   Q   G   L   S   S   P   V   I
    tac gcc tgc gaa gtc acc cat cag ggc ctg agc tcg cct gtc aca
    ! 211 212 213 214 215 216 217 218 219 220 221 222 223
    !  K   S   F   N   K   G   E   C   K   G   E   F   A
    aag agc ttc aac aaa gga gag tgt aag ggc gaa ttc gc.....
  • TABLE 26
    h3401-d8 KAPPA captured with CJ and BsmAI
    !  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    !  S   A   Q   D   I   Q   M   T   Q   S   P   A   T   L   S
    aGT GCA Caa gac atc cag atg acc cag tct cct gcc acc ctg tct
    !  ApaLI...Extender...........................a gcc acc ! L25,L6,L20,L2,L16,A11
    !                        A GCC ACC CTG TCT ! L2
    ! 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30
    !  V   S   P   G   E   R   A   T   L   S   C   R   A   S   Q
    gtg tct cca ggt gaa aga gcc acc dc ttc tgc agg gcc agt cag
    ! GTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L2
    ! 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    !  N   L   L   S   N   L   A   W   Y   Q   Q   K   P   G   Q
    aat cct ctc agc aac tta gcc tgg tac cag cag aaa cct ggc cag
    ! 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    !  A   P   R   L   L   I   Y   G   A   S   T   G   A   I   G
    gct ccc agg ctc ctc atc tat ggt gct ttc acc ggg gcc att ggt
    ! 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    !  I   P   A   R   F   S   G   S   G   S   G   T   E   F   I
    atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gag ttc act
    ! 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    !  L   T   I   S   S   L   Q   S   E   D   F   A   V   Y   F
    ctc acc atc agc agc ctg cag tct gaa gat ttt gca gtg tat ttc
    ! 91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !  C   Q   Q   Y   G   T   S   P   P   T   F   G   G   G   I
    tgt cag cag tat ggt acc tca ccg ccc act ttc ggc gga ggg acc
    ! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !  K   V   E   I   K   R   T   V   A   A   P   S   V   F   I
    aag gtg gag atc aaa cga act gtg gct gca cca tct gtc ttc atc
    ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    !  F   P   P   S   D   E   Q   L   K   S   G   T   A   S   V
    ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct gtt
    ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    !  V   C   P   L   N   N   F   Y   P   R   E   A   K   V   Q
    gtg tgc ccg ctg aat aac ttc tat ccc aga gag gcc aaa gta cag
    ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    !  W   K   V   D   N   A   L   Q   S   G   N   S   Q   E   S
    tgg aag gtg gat aac gcc ctc caa tcg ggt aac ttc cag gag agt
    ! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    !  V   T   E   Q   D   N   K   D   S   T   Y   S   L   S   S
    gtc aca gag cag gac aac aag gac agc acc tac agc ctc agc agc
    ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    !  T   L   T   L   S   K   V   D   Y   E   K   H   E   Y
    acc ctg acg ctg agc aaa gta gac tac gag aaa cac gaa gtc tac
    ! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    !  A   C   E   V   T   H   Q   G   L   S   S   P   V   T   K
    gcc tgc gaa gtc acc cat cag ggc ctt agc tcg ccc gtc acg aag
    ! 211 212 213 214 215 216 217 218 219 220 221 222 223
    !  S   F   N   R   G   E   C   K   K   E   F   V
    agc ttc aac agg gga gag tgt aag aaa gaa ttc gtt t
  • TABLE 27
    V3-23 VH framework with variegated codons shown
    !
    !                       17  18  19  20  21  22
    !                        A   Q   P   A   M   A
             5′-ctg tct gaa  cG GCC cag ccG GCC atg gcc   29
             3′-gac aga ctt gc cgg gtc ggc cgg tac cgg
    !             Scab.........SfiI.............
    !                             NgoMI...
    !                                NcoI...
    !
    !                          FR1(DP47/V3-23)---------------
    !                          23  24  25  26  27  28  29  30
    !                           E   V   Q   L   L   E   S   G
                             gaa|gtt|CAA|TTG|tta|gag|tct|ggt|   53
    !                          ctt|caa|gtt|aac|aat|ctc|aga|cca|
    !                               |MfeI |
    !
    !    --------------FR1--------------------------------------------
    !     31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    !      G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A
       |ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|   98
    !    |ccg|cca|gaa|caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|
    !
    !    Sites to be varied--->    ***   ***   ***
    !    ----FR1---------------->|...CDR1................|---FR2------
    !     46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    !      A   S   G   F   T   F   S   S   Y   A   M   S   W   V   R
       |gct|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC|   143
    !    |cga|agg|cct|aag|tga|aag|aga|agc|atg|cga|tac|aga|acc|caa|gcg|
    !       | BspEI |           |BsiWI|               |BstXI.
    !
    !                  Sites to be varies-->***   *** ***
    !     61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    !      Q   A   P   G   K   G   L   E   W   V   S   A   I   S   G
       |CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|   188
    !    |gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|cga|tag|aga|cca|
    ! ...BstXI       |
    !
    !             ***   ***
    !    .....CDR2............................................|---FR3---
    !     76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    !      S   G   G   S   T   Y   Y   A   D   S   V   K   G   R   F
       |tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc|   233
    !    |aga|cca|ccg|tca|tga|atg|ata|cga|ctg|agg|caa|ttt|cca|gcg|aag|
    !
    !    --------FR3--------------------------------------------------
    !     91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !      T   I   S   R   D   N   S   K   N   T   L   Y   L   Q   M
       |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|   278
    !    |tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|
    !          | XbaI |
    !
    !    ---FR3----------------------------------------------------->|
    !     106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !      N   S   L   R   A   E   D   T   A   V   Y   Y   C   A   K
    !    |acc|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|   323
    !    |ttg|tcg|aat|tcc|cga|ctc|ctg|tga|cgt|cag|atg|ata|acg|cga|ttt|
    !        |AflII |         | PstI |
    !
    !    ..... CDR3.................|----FR4-------------------------
    !     121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    !      D   Y   E   G   T   G   Y   A   F   D   I   W   G   Q   G
       |gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt|   368
    !    |ctg|ata|ctt|cca|tga|cca|ata|cga|aag|ctg|tat|acc|cca|gtt|cca|
    !                                 | NdeI |
    !
    !    --------------FR4---------->|
    !     136 137 138 139 140 141 142
    !      T   M   V   T   V   S   S
       |act|atG|GTC|ACC|gtc|tct|agt-   389
    !    tga|tac|cag|tgg|cag|aga|tca-
    !         | BstEII |
    !
    !                 143 144 145 146 147 148 149 150 151 152
    !                  A   S   T   K   G   P   S   V   F   P
                    gcc tcc ace aaG GGC CCa tcg GTC TTC ccc-3′   419
    !                 cgg agg tgg ttc ccg ggt agc cag aag ggg-5′
    !                          Bsp120I.     BbsI...(2/2)
    !                          ApaI....
    (SFPRMET) 5′-ctg tct gaa cG GCC cag ccG-3′
    (TOPFRIA) 5′-ctg tct gaa cG GCC cag ccG GCC atg gcc-
           |gaa|gtt|CAA|TTG|tta|gag|tct|ggt|-
          |ggc|ggt|ctt|gtt|cag|cct|ggt|tct|tta-3′
    (BOTFR1B)             3′-caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|-
          |cga|agg|tga|aag|tga|aag-5′ ! bottom strand
    (BOTFR2)  3′-acc|caa|gcg|-
          |gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|-5′ ! bottom strand
    (BOTFR3)  3′-a|cga|ctg|agg|caa|ttt|cca|gcg|aag|-
          |tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|
        |ttg|tcg|aat|tgc|cga|ctc|ctg|tga-5′
    (F06)     5′-gC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|-
       |gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|c-3′
    (BOTFR4)  3′-cga|aag|ctg|tat|acc|cca|gtt|cca-
          |tga|tac|cag|tgg|cag|aga|tca-
             cgg agg tgg ttc ccg ggt agc cag aag ggg-5′ ! bottom strand
    (BOTPRCPRIM)        3′-gg ttc ccg ggt agc cag aag ggg-5′
    !
    ! CDR1 diversity
    !
    (ON-vgC1)  5′-|gct|TCC|GGA|ttc|act|ttc|tct|<|>|TAC|<|>|atg<|>|-
    !                       CDR1...................6859
            |tgg|gtt|cuG|CAa|gct|ccT|GG-3′
    !
    !<|> stands for an equimolar mix of {ADEFGHIKLMNPQRSTVWY}; no C
    !                       (this is not a sequence)
    !
    ! CDR2 diversity
    !
    (ON-vgc2)  5′-ggt|ttg|gag|tgg|gtt|tct|<2>|atc|>2>|<3>|-
    !                        CDR2............
             tct|ggt|ggc|<1>|act|<|>|tat|gct|gac|tcc|gtt|aaa|ggg-3′
    !         CDR2................................................
    ! <1> is an equimolar mixture of {ADEFGHIIKLMNPQRSTVWY}; no C
    ! <2> is an equimolar mixture of {YRWVGS}; no ACDEFHIKLMNPQT
    ! <3> is an equimolar mixture of {PS}; no ACDEFGHIKLMNQRTVWY
  • TABLE 28
    Stuffer used in VH
    1 TCCGGAGCTT CAGATCTGTT TGCCTTTTTG TGGGGTGGTG CAGATCGCGT TACGGAGATC
    61 GACCGACTGC TTGAGCAAAA GCCACGCTTA ACTGCTGATC AGGCATGGGA TGTTATTCGC
    121 CAAACCAGTC GTCAGGATCT TAACCTGAGG CTTTTTTTAC CTACTCTGCA AGCAGCGACA
    181 TCTGGTTTGA CACAGAGCGA TCCGCGTCGT CAGTTGGTAG AAACATTAAC ACGTTGGGAT
    241 GGCATCAATT TGCTTAATGA TGATGGTAAA ACCTGGCAGC AGCCAGGCTC TGCCATCCTG
    301 AACGTTTGGC TGACCAGTAT GTTGAAGCGT ACCGTAGTGG CTGCCGTACC TATGCCATTT
    361 GATAAGTGGT ACAGCGCCAG TGGCTACGAA ACAACCCAGG ACGGCCCAAC TGGTTCGCTG
    421 AATATAAGTG TTGGAGCAAA AATTTTGTAT GAGGCGGTGC AGGGAGACAA ATCACCAATC
    481 CCACAGGCGG TTGATCTGTT TGCTGGGAAA CCACAGCAGG AGGTTGTGTT GGCTGCGCTG
    541 GAAGATACCT GGGAGACTCT TTCCAAACGC TATGGCAATA ATGTGAGTAA CTGGAAAACA
    601 CCTGCAATGG CCTTAACGTT CCGGGCAAAT AATTTCTTTG GTGTACCGCA GGCCGCAGCG
    661 GAAGAAACGC GTCATCAGGC GGAGTATCAA AACCGTGGAA CAGAAAACGA TATGATTGTT
    721 TTCTCACCAA CGACAAGCGA TCGTCCTGTG CTTGCCTGGG ATGTGGTCGC ACCCGGTCAG
    781 AGTGGGTTTA TTGCTCCCGA TGGAACAGTT GATAAGCACT ATGAAGATCA GCTGAAAATG
    841 TACGAAAATT TTGGCCGTAA GTCGCTCTGG TTAACGAAGC AGGATGTGGA GGCGCATAAG
    901 GAGTCGTCTA GA
  • TABLE 29
    DNA sequence of pCES5
    ! pCES5 6680 bases = pCes4 with stuffers in CDR1-2 and CDR3 2000.12.13
    !
    ! Ngene = 6680
    !φUseful REs (cut MAnoLI fewer than 3 times) 2000.06.05
    !
    ! Non-cutters
    !Acc65I Ggtacc    AfeI AGCgct    AvrII Cctagg
    !BsaBI GATNNnnatc    BsiWI Cgtacg    BsmFI Nnnnnnnnnnnnnnngtccc
    !BsrGI Tgtaca    BstAPI GCANNNNntgc    BstBI TTcgaa
    !BstZI7I GTAtac    BtrI CACgtg    Ec1136I GAGctc
    !EcoRV GATatc    FseI GGCCGGcc    KpnI GGTACc
    !MscI TGGcca    NruI TCGcga    NsiI ATGCAt
    !PacI TTAATtaa    PmeI GTTTaaac    PmlI CACgtg
    PpuMI RGgwccy    PshAI GACNNnngtc    SacI GAGCTc
    !SacIl CCGCgg    SbfI CCTGCAgg    SexAI Accwggt
    !SgfI GCGATcgc    SnaBI TACgta    SpeI Actagt
    !SphI GCATGc    SseS387I CCTGCAgg  StuI AGGect
    !SwaI ATTTanat    XmaI Cccggg
    !
    ! cutters
    ! Enzymes that cut more than   3 times
    !ALwNI CAGNNNctg     5
    !BsgI ctgcac     4
    !BsrFI Rccggy     5
    !EarI CTCTTCNnnn     4
    !FauI nNNNNNNGCGGG     10
    !
    ! Enzymes that cut from 1 to   3 times.
    !
    !EcoO109I RGgnccy     3    7  2636 4208
    !BssSI Ctcgtg     1   12
    !-″- Cacgag     1   1703
    !BspHI Tcatga     3    43  148 1156
    !AatII GACGTc     1    65
    !BciVI GTATCCNNNNNN     2    140  1607
    !Eco57I CTGAAG     1    301
    !-″- cttcag     2    1349
    !AvaI Cycgrg     3    319  2347 6137
    !BsiHKAI GWGCWc     3    401  2321 4245
    !HgiAI GWGCWc     3    401  2321 4245
    !BcgI gcannnnnntcg     1    461
    !ScaI AGTact     1    505
    !PvuI CGATcg     3    616  3598 5926
    !FspI TGCgca     2    763  5946
    !BglI GCCNNNNnggc     3    864  2771 5952
    !BpmI CTGGAG     1    898
    !-″- ctccag     1    4413
    !BsaI GGTCTCNnnnn     1    916
    !AhdI GACNNNnngtc     1    983
    !Eaml 1051 GACNNNnngtc     1    983
    !DrdI GACNNNNnngtc     3    1768  6197 6579
    !SapI gaagagc     1    1998
    !PvuII CACctg     3    2054  3689 5896
    !PfIMI CCANNNNntgg     3    2233  3943 3991
    !HindIII Aagctt     1    2235
    !ApaLI Gtgcac     1    2321
    !BspMI Nnnnnnnnnngcaggt     1    2328
    !-″- ACCTGCNNNNn     2    3460
    !PstI CTGCAg     1    2335
    !AccI GTmkac     2    2341  2611
    !HincII GTYrac     2    2341  3730
    !SalI Gtcgac     1    2341
    !ThiI Ctcgag     1    2347
    !XhoI Ctcgag     1    2347
    !BbsI gtcttc     2    2383  4219
    !BlpI GCtnagc     1    2580
    !ElpI GCtnagc     1    2580
    !SgrAI CRccggyg     1    2648
    !AgeI Acggt     2    2649  4302
    !AscI GCcgcgcc     1  2689
    !BssHII Gcgcgc     1    2690
    !SfiI GGCCNNNNnggcc     1    2770
    !NaeI GCGggc     2    2776  6349
    !NgoMIV Gccggc     2    2776  6349
    !BtgI Ccrygg     3    2781  3553 5712
    !DsaI Ccrygg     3    2781  3553 5712
    !NcoI Ccatgg     1    2781
    !StyI Ccwwagg     3    2781  4205 4472
    !MfeI Caattg     2795
    !BspEI Tccgga     1    2861
    !BglII Agatct     1    2872
    !BclI Tgatca     1    2956
    !Bsu36I CCtnagg     3    3003  4143 4373
    !XcmI CCANNNNNnnnntgg     1    3215
    !MluI Acgcgt     1    3527
    !HpaI GTTaac     1    3730
    !XbaI Tctaga     1    3767
    !
    !AflII Cttaag     1    3811
    !BsmI NGcattc     1    3821
    !-″- GAATGCN     1    4695
    !RsrII CGgwccg     1    3827
    !NheI Gctagc     1    4166
    !BstEII Ggtnacc     1    4182
    !BsmBI CGTCTCNnnnn     2    4188  6625
    !-″- Nnnnnngagacg     1    6673
    !ApaI GGGCCc     1    4209
    !BanII GRCCYc     3    4209  4492 6319
    Bsp120I Gggccc     1    4209
    !PspOMI Gggccc     1    4209
    !BseRI NNnnnnnnnnctcctc     1    4226
    !-″- GAGGAGNNNNNNNNN     1    4957
    !EcoNI CCTNNnnnagg     1    4278
    !PflFI GACNnngtc     1    4308
    !Tth111I GACNnngtc     1    4308
    !KasI Ggcgcc     2    4327  5967
    !BstXI CCANNNNNNntgg     1    4415
    !NotI GCggccgc     1    4507
    !EagI Cggccg     1    4508
    !BamHI Ggatcc     1    5169
    !BspDI ATcgat     1    5476
    !NdeI CAtatg     1    5672
    !EcoRI Gaattc     1    5806
    !PsiI TTAtaa     1    6118
    !DraIII CACNNNNgtg     1    6243
    !BsaAI YACgtr     1    6246
    !----------------------------------------------------------------------------
    1 gacgaaaggg cCTCGTGata cgcctatttt tataggttaa tgtcatgata ataatggttt
           BssSL(1/2)
    61 cttaGACGTC aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt
    !   AatII.
    121 tctaaataca ttcaaatatG TATCCgctca tgagacaata accctgataa atgcttcaat
    !             BeiVI..(1 of 2)
    181 aatattgaaa aaggaagagt
    ! Base # 201 to 1061 = ApR gene from pUC119 with some RE sites removed
    !
    ! 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    ! fM  S   T   Q   H   G   R   V   A   L   A   L   I   P   F   F   A
    201  atg agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg
    !
    ! 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30
    ! A   F   C   L   P   V   F   A   H   P   E   T   L   V   K
    246  gca ttt tgc ctt ctt gtt ttt gct cac cca gaa acg ctg gtg aaa
    !
    ! 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    ! V   K   D   A   E   D   Q   L   G   A   R   V   G   Y   I
    291  gta aaa gat gct gaa gat cag ttg ggt gcc cga gtg ggt tac atc
    ! 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    ! E   L   D   L   N   S   G   K   I   L   E   S   F   R   P
    336 gaa ctg gat ctc aac agc ggt aag atc ctt gag agt ttt cgc ccc
    !
    ! 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    ! E   E   R   F   P   M   M   S   T   F   K   V   L   L   C
    381  gaa gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg cta tgt
    !
    ! 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    ! G   A   V   L   S   R   I   D   A   G   Q   E   Q   L   G
    426  ggc gcg gta tta tcc cgt att gac gcc ggg caa gaG CAa ctc ggT
    !                                 BcgI............
    !
    ! 91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    ! R   R   I   H   Y   S   Q   N   D   L   V   E   Y   S   P
    471  CGc cgc ata cac tat tct cag aat gac ttg gtt gAG TAC Tca cca
    !..BcgI......                        ScaI....
    !
    ! 106 107 108 109 110 112 113 114 115 116 117 118 119 120
    ! V   T   E   K   H   L   T   D   G   M   T   V   R   E   L
    516  gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta
    !
    ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    ! C   S   A   A   A   I   T   M   S   D   N   T   A   A   N   L
    561  tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta
    !
    ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    ! L   L   T   T   I   G   G   P   K   E   L   T   A   F   L
    606  ctt ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg
    !          PvuI....(1/2)
    !
    ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    ! H   N   M   G   D   H   V   T   R   L   D   R   W   E   P
    651  cac aac atg ggg gat cat gta act gcg ctt gat cgt tgg gaa ccg
    !
    ! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    ! E   L   N   E   A   I   P   N   D   E   R   D   T   T   M
    696  gag ctg aat gaa gcc ata cca aac gac gag cgt gac acc acg atg
    !
    ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    ! P   V   A   M   A   T   T   L   R   K   L   L   T   G   E
    741  cct gta GCA ATG gca aca acg tTG CGC Aaa cta tta act ggc gaa
    !      BsrDI..(1/2)   FspI....(1/2)
    !
    ! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    ! L   L   T   L   A   S   R   Q   Q   L   I   D   W   M   E
    786  cta ctt act cta gct tcc cgg caa caa tta ata gac tgg atg gag
    !
    ! 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    ! A   D   K   V   A   G   A   P   L   L   R   S   A   L   P   A
    831  gcg gat aaa gtt gca gga cca ctt ctg cgc tcg gcc ctt ccg gct
    !
    ! 226 227 228 229 230 231 232 233 234 235 236 240
    ! G   W   F   I   A   D   K   S   G   A   G   E   R   G   S
    876  ggc tgg ttt att gct gat aaa tCT GGA Gcc ggt gag cgt gGG TCT
    !                      BpmI....(1/2)    BsaI....
    !
    ! 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    ! R   G   I   I   A   A   L   G   P   D   G   K   P   S   R
    921  Cgc ggt atC ATT GCa gca ctg ggg cca gat ggt aag ccc tcc cgt
    ! BsaI...... BsrDI...(2/2)
    !
    ! 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    ! I   V   V   I   Y   T   T   G   S   Q   A   T   M   D   E
    966  atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa
    !                 AdhI...........
    !
    ! 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    ! R   N   R   Q   I   A   E   I   G   A   S   L   I   K   H
    1011   cga aat aga cag atc gct gag ata ggt gcc tca ctg att aag cat
    !
    ! 286 287
    ! W
    1056   tgg taa
    1062                                  ctgtcagac caagtttact
    1081   catatact ttagattgattaaaacttc atttttaatt taaaaggatc taggtgaaga
    1141   tccttttttga tatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagct
    1201   cagacccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct
    1261   gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaaagagc
    1321   taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgtcc
    1381   ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc
    1441   tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg
    1501   ggttggactc aagacgatag ttaccggata aggcgcagcg gtcggggctga acggggggtt
    1561   cgtgcataca gcccagcttg gagcgaagga cctacaccga actgagatac ctacagcgtg
    1621   agcattgaga aagcgccacg cttcccgaag ggagaaaggc ggacagGTAT CCggtaagcg
    !                                 BciVI..(2 of 2)
    1681   gcagggtcgg aacaggagag cgCACGAGgg agcttccagg gggaaacgcc tggtatctt
    !                BssSI.(2/2)
    1741   atagtcctgt cgggtttcgc cacctcgac ttgagcgtcg atttttgtga tgctcgtcag
    1801   ggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt
    1861   gctggccttt tgctcACATG Ttctttcctg cgttatcccc tgattctgtg gataaccgta
    !           PciI...
    1921   ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgagcgagt
    1981   cagtgagcga ggaagcgGAA GAGCgcccaa tacgcaaacc gcctctccccc gcgcgttggc
    !            SapI...
    2041   cgattcatta atgCAGCTGg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca
    !          PvuIL.(1/3)
    2101   acgcaatTAA TGTgagttag ctcactcatt aggacccca ggcTTACAc tttatgcttc
    !     ..−35..   Plac            ..−10.
    2161   cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacaCAGGA AACAGCTATG
    !                                  M13Rev_seq_primer
    2221   ACcatgatta cgCCAAGCTT TGG agcctttt tttttggaga ttttcaac
    !        PflMI.....
    !         Hind3.
    ! signal:linker::CLight
    !
    !  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    ! fM   K   K   L   L   F   A   I   P   L   V   V   P   F   Y
    2269   gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat
    !
    !            Linker........... ................End of FR4
    ! 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30
    ! S   H   S   A   Q   V   Q   L   Q   V   D   L   E   I   K
    2314   tct cac aGT GCA Cag gtc caa CTG CAG GTC GAC CTC GAG atc aaa
    !        ApaLI......  PstI...    BspMI...
    !                   SalI...
    !                      AccI...(1/2)
    !                      HincIII.(1/2)
    !
    ! Vlight domains could be cloned in as ApaLI-XhoI fragments.
    ! VL-CL (kappa) segments can be cloned in as ApaLI-AscI fragments <--------
    !
    ! Ckappa----------------------------------------------------
    ! 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    ! R   G   T   V   A   A   P   S   V   F   I   F   P   P   S
    2359   cgt gga act gtg gct gca cca tct GTC TTC atc ttc ccg cca tct
    !                       BbsI...(1/2)
    !
    ! 46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    ! D   E   Q   L   K   S   G   T   A   S   V   V   C   L   L
    2404   gat gag cag ttg aaa tct gga act gcc tct gtt gtg tgc ctg ctg
    !
    ! 61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    ! N   N   F   Y   P   R   E   A   K   V   Q   W   K   V   D
    2449   aat aac ttc tat ccc aga gag gcc aaa gta cag tgg aag gtg gat
    !
    ! 76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    ! N   A   L   Q   S   G   N   S   Q   E   S   V   T   E   Q
    2494   aac gcc ctc caa tcg ggt aac tcc cag gag agt gtc aca gag cag
    !
    ! 91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    ! D   S   K   D   S   T   Y   S   L   S   S   T   L   T   L
    2539   gac agc aag gac agc acc tac agc ctc agc acc ctg acG CTG
    !                                     EspI...
    !
    ! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    ! S   K   A   D   Y   E   K   H   K   V   Y   A   C   E   V
    2584   AGC aaa gca gac tac gag aaa cac aaa GTC TAC gcc tgc gaa gtc
    ! ...ESpI....                AccI...(2/2)
    !
    ! 121 122 123 124 125 126 127 128 130 131 132 133 134 135
    ! T   H   Q   G   L   S   S   P   V   T   K   S   F   N   R
    2629   acc cat cag ggc ctg agt tCA CCG GTg aca aag agc ttc aac agg
    !                   AgeI....(1/2)
    !
    ! 136 137 138 139 140
    ! G   E   C
    2674   gga gag tgt taa taa GG CGCGCCaatt
    !                AscI.....
    !                 BssHII.
    !
    2701   ctatttcaag gagacagtca ta
    !
    ! PelB::3-23(stuffed)::CH1::III fusion gene
    !
    ! 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    ! M   K   Y   L   L   P   T   A   A   A   G   L   L   L   L
    2723 atg aaa tac cta ttg cct acg gca gcc gct gga ttg tta tta ctc
    !
    !---------------------------
    !
    ! 16  17  18  19  20  21  22
    ! A   A   Q   P   A   M   A   M   A
    2768   gcG GCC cag ccG GCC atg gcc
    ! SfiI.............
    !       NgoMIV..(1/2)
    !          NcoI....
    !
    !                 Fr1(dp47/V3-23)---------------
    !                 23  24  25  26  27  28  29  30
    !                  E   V   Q   L   L   E   S   G
    2789                   gaa|gtt|CAA|TTG|tta|gag|tct|ggt|
    !                           | MfeI |
    !
    ! --------------FR1--------------------------------------------
    ! 31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    ! G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A
    2813 |ggc|ggt|ctt|gtt|cag|cct|ggt|tct|tta|cgt|ctt|tct|tgc|gct|
    !
    ! ----FR1-----
    ! 46  47  48
    ! A   S   G
    2858 |gct|TCC|GGA|
    ! | BspEI |
    !
    ! Stuffer for CDR1, FR2, and CDR2--------------------------------->
    ! There are no stop codons in this stuffer.
    2867                                gcttcAGATC Tgtttgcctt
    !                                 BglII..
    2887   tttgtggggt ggtgcagatc gcgttacgga gatcgaccga ctgcttgagc aaaagccacg
    2947   cttaactgcT GATCAggcat gggatgttat tcgccaaaacc agtcgtcagg atcttaacct
    !       BclI...
    3007   gaggcttttt ttacctactc tgcaagcagc gacatctggt ttgacacaga gcgatccgcg
    3067   tcgtcagttg gtagaaacat taacagttg ggatggcatc aatttgctta atgatgatgg
    3127   taaaacctgg cagcagccag gctctgccat cctgaacgtt tggctgacca gtatgttgaa
    3187   gcgtaccgta gtggctgccg tacctatgCC Atttgataag TGGtacagcg ccagtggcta
    !                    XcmI.............
    3247   cgaaacaacc caggacggcc caactggttc gctgaatata agtgttggag caaaaaattt
    3307   gtatgaggcg gtgcagggag acaaatcacc aatcccacag gcggttgatc tgtttgctgg
    3367   gaaaccacag caggaggttg tgttggctgc gctggaagat acctgggaga ctctttccaa
    3427   acgctatggc aataatgtga gtaactggaa aacacctgca atggccttaa cgttccgggc
    3487   aaataatttc tttggtgtac cgcaggccgc agcggaagaa ACGCGTcatc aggcggagta
    !                               MluI..
    3547   tcaaaaaccgt ggacagaaa acgatatgat tgttttctca ccaacgacaa gcgatcgtcc
    3607   tgtgcttgcc tgggatgtgg tcgcacccgg tcagagtggg tttattgctc ccgatggaac
    3667   agttgataag cactatgaag atcagctgaa aatgtacgaa aattttggcc gtaagtcgct
    !                PvuII.
    3727   ctgGTTAACg aagcaggatg tggagggca taaggagtcg
    !   HpaI
    !   HindII(2/2)
    !
    ! --------FR3--------------------------------------------------
    !      4   5   6   7   8   9  10  11  12  13  14  15  16
    !      93  94  95  96  97  98  99 100 101 102 103 104 105
    !      S   R   D   N   S   K   N   T   L   Y   L   Q   M
    3767       |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
    !    | XbaI |
    !
    ! ---FR3----------------------------------------------------->|
    !  17  18  19  20
    ! 106 107 108 109
    ! N   S   L   s   l   s   i   r   s   g
    3806 |aac|agC|TTA|AG t ctg agc att CGG TCC G
    !   |AfIII |       RsrII..
    !
    !    q   h   s   p   t
    3834   gg caa cat tct cca aac tga ccagacga cacaaacggc
    3872   ttacgctaaa tcccgcgcat gggatggtaa agaggtggcg tctttgctgg cctggactca
    3932   tcagatgaag gccaaaaatt ggcaggagtg gacacagcag gcagcgaaac aagcactgac
    3992   catcaactgg tactatgctg atgtaaacgg caatattggt tatgttcata ctggtgctta
    4052   tccagatcgt caatcaggcc atgatccgcg attacccgtt cctggtacgg gaaaatggga
    4112   ctggaaaggg ctattgcctt ttgaaatgaa ccctaaggtg tataaccccc ag
    4164       aa GCTAGC ctgcggcttc
    !       NHeI..
    !
    4182   G|GTC|AAC|                             gtc tca agc
    ! | BstEII |
    !
    ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    ! A   S   T   K   G   P   S   V   F   P   L   A   P   S   S
    4198   gcc tcc acc aag ggc cca tcg gtc ttc ccc ctg gca ccc tcc tcc
    !
    ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    ! K   S   T   S   G   G   T   A   A   L   G   C   L   V   K
    4243   aag agc acc tct ggg ggc aca gcg gcc ctg ggc tgc ctg gtc aag
    !
    ! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    ! D   Y   G   P   E   P   V   T   V   S   W   N   S   G   A
    4288   gac tac ttc ccc gaa ccg gtg acg gtg tcg tgg aac tca ggc gcc
    !
    ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    ! L   T   S   G   V   H   T   G   P   A   V   L   Q   S   S
    4333   ctg acc agc ggc gtc cac acc ttc ccg gct gtc cta cag tcc tca
    !
    ! 196 197 198 199 190 200 201 202 203 204 205 206 207 208 209 210
    ! G   L   Y   S   L   S   S   V   V   T   V   P   S   S   S
    4378   gga ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agc agc
    !
    ! 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    ! L   G   T   Q   T   Y   I   C   N   V   N   H   K   P   S
    4423   ttg ggc acc cag acc tac atc tgc aac gtg aat cac aag ccc agc
    !
    ! 226 227 228 229 230 231 232 233 234 235 236 237 238
    ! N   T   K   V   D   K   K   V   E   P   K   S   C
    4468   aac acc aag gtg gac aaG AAA GTT GAG CCC AAA TCT TGT
    !               ON-TQHCforw......................
    !
    !               Poly His linker
    !         139 140 141 142 143 144 145 146 147 148 149 150
    !         A   A   A   H   H   H   H   H   H   G   A   A
    4507           GCG GCC GCa cat cat cat cac cat cac ggg gcc gca
    !          NotI......
    !          EagI....
    !
    ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    ! E   Q   K   L   I   S   E   E   D   L   N   G   A   A
    4543   gaa caa aaa ctc atc tca gaa gag gat ctg aat ggg gcc gca tag
    !
    ! Mature III------------------------------------------------>...
    ! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    ! T   V   E   S   C   L   A   K   P   H   T   E   N   S   F
    4588   act gtt gaa agt tgt tta gca aaa cct cat aca gaa aat tca ttt
    !
    ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    ! T   N   V   W   K   D   D   K   T   L   D   R   Y   A   N
    4633   act aac gtc tgg aaa gac gac aaa act ta gat cgt tac gct aac
    !
    ! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    ! Y   E   G   C   L   W   N   A   T   G   V   V   V   C   T
    4678   tat gag ggc tgt ctg tgG AAT GCt aca ggc gtt gtg gtt tgt act
    !                BsmI....
    !
    ! 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    ! G   D   E   T   Q   C   Y   G   T   W   V   P   I   G   L
    4723   ggt gac gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt
    !
    ! 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    ! A   I   P   E   N   E   G   G   G   S   E   G   G   G   S
    4768   gct atc cct gaa aat gag ggt ggt ggc tct gag ggt ggc ggt tct
    !
    ! 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    ! E   G   G   G   S   E   G   G   G   T   K   P   P   E   Y
    4813   gag ggt ggc ggt tct gag ggt ggc ggt act aaa cct cct gag tac
    !
    ! 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    ! G   D   T   P   I   P   G   T   Y   I   N   P   L   D
    4858   ggt gat aca cct att ccg ggc tat act tat atc aac cct ctg gac
    !
    ! 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    ! G   T   Y   P   P   G   T   E   Q   N   P   A   N   P   N
    4903   ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct aat
    !
    ! 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    ! P   S   L   E   E   S   Q   P   L   N   T   F   M   F   Q
    4948   cct tct ctt GAG GAG tct cag cct ctt aat act ttc atg ttt cag
    !          BseRI..(2/2)
    !
    ! 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    ! N   N   R   F   R   N   R   Q   G   A   L   T   V   Y   T
    4993   aat aat agg ttc cga aat agg cag ggt gca tta act gtt tat acg
    !
    ! 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    ! G   T   V   T   Q   G   T   D   P   V   K   T   Y   Y   Q
    5038   ggc act gtt act caa ggc act gac ccc gtt aaa act tat tac cag
    !
    ! 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    ! Y   T   P   V   S   S   K   A   M   Y   D   A   Y   W   N
    5083   tac act cct gta tca tca aaa gcc atg tat gac gct tac tgg aac
    !
    ! 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    ! G   K   F   R   D   C   A   F   H   S   G   F   N   E   D
    5128   ggt aaa ttc aga gac tgc gct ttc cat tct ggc ttt aat gaG GAT
    !                                       BamHI..
    !
    ! 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    ! P   F   V   C   E   Y   Q   G   Q   S   S   D   L   P   Q
    5173   CCa ttc gtt tgt gaa tat caa ggc caa tcg tct gAC CTG Cct caa
    !  BamHI...                               BspMI...(2/2)
    !
    ! 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    ! P   P   V   N   A   G   G   G   S   G   G   G   S   G   G
    5218   cct cct gtc aat gct ggc ggc ggc tct ggt ggt ggt tct ggt ggc
    !
    ! 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    ! G   S   E   G   G   G   S   E   G   G   G   S   E   G   G
    5263   ggc tct gag ggt ggc ggc tct gag ggt ggc ggt tct gag ggt ggc
    !
    ! 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    ! G   S   E   G   G   G   S   G   G   G   S   G   S   G   D
    5308   ggc tct gag ggt ggc ggt tcc ggt ggc ggc tcc ggt tcc ggt gat
    !
    ! 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
    ! F   D   Y   E   K   M   A   N   A   N   K   G   A   M   T
    5353   ttt gat tat gaa aaa atg gca aac gct aat aag ggg gct atg acc
    !
    ! 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    ! E   N   A   D   E   N   A    L   Q   S   D   A   K   G   K
    5398   gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc aaa
    !
    ! 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    ! L   D   S   V   A   T   D   Y   G   A   A   I   D   G   F
    5443   ctt gat tct gtc gct act gat tac ggt gct gct ATC GAT ggt ttc
    !                                 BspDI..
    !
    ! 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    ! I   G   D   V   S   G   L   A   N   G   N   G   A   T   G
    5488   att ggt gac gtt tcc ggc ctt gct aat ggt aat ggt gct act ggt
    !
    ! 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    ! D   F   A   G   S   N   S   Q   M   A   Q   V   G   D   G
    5533   gat ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt
    !
    ! 496 497 498 500 501 502 503 504 505 506 507 508 509 510
    ! D   N   S   P   L   M   N   N   F   R   Q   Y   L   P   S
    5578   gat aat tca cct tta atg aat aat ttc cgt caa tat tta cct tct
    !
    ! 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    ! L   P   Q   S   V   E   C   R   P   Y   V   F   G   A   G
    5623   ttg cct cag tcg gtt gaa tgt cgc cct tat gtc ttt ggc gct ggt
    !
    ! 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
    ! K   P   Y   E   F   S   I   D   C   D   K   I   N   L   F
    5668   aaa cCA TAT Gaa ttt tct att gat tgt gac aaa ata aac tta ttc
    !    NdeI.. .
    !
    ! 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
    ! R   G   V   F   A   F   L   L   Y   V   A   T   F   M   Y
    5713   cgt ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat
    !
    ! 556 557 558 559 560 561 562 563 563 564 565 566 567 568 569 570
    ! V   F   S   T   F   A   N   I   L   R   N   K   E   S
    5758   gta ttt tcg acg ttt gct aac ata ctg cgt aat aag gag tct taa
    !
    ! 571
    !
    ! 5803   taa GAATTC
    !  EcoRI
    5812   actggccgt cgttttacaa cgtcgtgact gggaaaaacc tggcgttacc caattaatc
    5871   gccttgcagc acatccccct ttcgccagct ggcgtaatag cgaagaggcc cgcacCGATC
    !                                         PvuI..
    5931   Gcccttccca acagtTGCGC Agcctgaatg gcgaatGGCG CCgatgcgg tattttctcc
    ! ...PvuI...(3/3)   FspI..(2/2)    KasI...(2/2)
    5991   ttacgcatct gtgcggtatt tcacaccgca tataaattgt aaacgttaat attttgttaa
    6051   aattcgcgtt aaatttttgt taaatcagct cattttttaa ccaataggcc gaaatcggca
    6111   aaatcccTTA TAAatcaaaa gaatagcccg agatagggtt gagtgggtt ccagtttgga
    !     PsiI...
    6171   acaagagtcc actattaaag aacgtggact ccaacgtcaa agggcgaaaa accgtctatc
    6231   agggcgatgg ccCACtacGT Gaaccatcac ccaaatcaag tttttggggg tcgaggtgcc
    !         DraIII....
    6291 gtaaagcact aaatcggaac cctaaaggga gcccccgatt tagagcttga cgggaaaGC
    !                                       NgoMIV..
    6351   GCCGgaacgt ggcgagaaag gaagggaaga aagcgaaagg agcgggcgct agggcgctgg
    !   ..NgoMIV(2/2)
    6411   caagtgtagc ggtcacgctg cgcgtaacca ccacacccaga cgcgcttaat gcgccgctac
    6471   agggcgcgta ctatggttgc tttgacgggt gcagtctcag tacaatctgc tctgatgccg
    6531   catagttaag ccagccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc
    6591   tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga
    6651   ggttttcacc gtcatcaccg aaacgcgcga
  • TABLE 30
    Oligonucleotides used to clone CDR1/2 diversity
    All sequences are 5′ to 3′.
    1) ON_CDLBsp, 30 bases
    A c c T c A c T g g c T T c c g g A
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    T T c A c T T T c T c T
    19 20 21 22 23 24 25 26 27 28 29 30
    2) ON_Br12, 42 bases
    A g A A A c c c A c T c c A A A C c
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    T T T A c c A g g A g c T T g g c g
    19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
    A A c c c A
    37 38 39 40 41 42
    3) ON13 CD2Xba, 51 bases
    g g A A g g c A g T g A T C T A g A
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    g A T A g T g A A g c g A c c T T T
    19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
    A A c g g A g T c A g c A T A
    37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    4) ON_BotXba, 23 bases
    g g A A g g c A g T g A T c T A g A
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
    g A T A g
    19 20 21 22 23
  • TABLE 31
    Bridge/Extender Oligonucleotides
    ON_Lam1aB7(rc) .........................GTGCTGACTCAGCCACCCTC. 20
    ON_Lam2aB7(rc)  ........................GCCCTGACTCAGCCTGCCTC. 20
    ON_Lam31B7(rc)   .......................GAGCTGACTCAGGACCCTGC 20
    ON_Lam3rB7(cc)  ........................GAGCTGACTGAGCCACGCTC. 20
    ON_LamHf1cBrg(rc)  CCTCGACAGCGAAGTGCACAGAGCGTCTTGACTGAGCC....... 38
    ON_LamHf1cExc  CCTCGACAGCGAAGTGCACAGAGCGTCTTG............... 30
    ON_LamNf2b2Brg(rc)  CCTCGACAGCGAAGTGCACAGAGCGCTTTGACTCAGCC....... 38
    ON_LamNf2b2Ext  CCTCGACAGCGAGTGCACAGAGCGCTTTG............... 30
    ON_LarnHf2dBrg(rc)  CCTCGACAGCTAAGTGCACAGAGCGCTTTGACTCAGCC....... 38
    ON_LamNf2dExt  CCTCGACAGCGAAGTGCACAGAGCGCTTTG............... 30
    ON_LarnH3rBrg(rc)  CCTCGACAGCGAAGTGCACAGAGCGAATTGACTCAGCC....... 38
    ON_LamHf3rExt  CCTCCACAGCGAAGTGCACAGAGCCAATTG............... 30
    ON_LamNf3rBrg(rc)  CCTCGACAGCGAAGTGCACAGTACGAATTGACTCAGCC....... 38
    ON_LemHf3rExt  CCTCGACAGCGAAGTGCACAGTACGAATTG............... 30
    ON_lamPlePCR  CCTCGACAGCGAACTGCACAG........................ 21
    Consensus
  • TABLE 32
    Oligonucleotides used to make SSDNA locally
    double-stranded
    Adapters (8)
    H43 HF3.1-02#1 5′-cc gtg tat tac tgt gcg aga g-3′
    H43.77.97.1-03#2 5′-ct gtg tat tac tgt gcg aga g-3′
    H43.77.97.323 #22 5′-cc gta tat tac tgt gcg aaa g-3′
    H43.77.97.330 #23 5′-ct gtg tat tac tgt gcg aaa c-3′
    H43.77.97.439 #44 5′-ct gtg tat tac tgt gcg aga c-3′
    H43.77.97.551 #48 5′-cc atg tat tac tgt gcg aga c-3′
  • TABLE 33
    Bridge/extender pairs
    Bridges (2)
    H43.XABr1
    5′ggtgtagtgaTCTAGtgacaactctaagaatactctctacttgcagat
    gaacagCTTtAGggctgaggacaCTGCAGtctactattgtgcgaga-3
    H43.XABr2
    5′ggtgtagtgaTCTAGtgacaactctaagaatactctctacttgcagat
    gaacagCTTtAGggctgaggacaCTGCACtctactattgtgcgaaa-3′
    Extender
    H-43.XAExt
    5′ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTcATcTgcAAgTA
    gAgAgTATTcTTAgAgTTgTcTcTAgATcAcTAcAcc-3′
  • TABLE 34
    PCR primers
    Primers
    H43.XAPCR2 gactgggTgTAgTgATCTAg
    Hucmnest cttttctttgtgccgttggggtg
  • TABLE 35
    PCR program for amplification of
    heavy chain CDR3 DNA
    95 degrees C.  5 minutes
    95 degrees C. 20 seconds
    60 degrees C. 30 seconds repeat 20x
    72 degrees C.  1 minute
    72 degrees C.  7 minutes
     4 degrees C. hold
    Reagents (100 ul reaction)
    Template 5 ul ligation mix
    10x PCR buffer 1x
    Taq 5U
    dNTPs 200 uM each
    MgCl 2 2 mM
    H43.XAPCR2-biotin 400 nM
    Hucmnest 200 nM
  • !TABLE 36
    Annotated sequence of CJR DY3F7(CJR-A05) 10251 bases
    !
    ! Non-cutters
    !
    !BclI Tgatca BsiWI Cgtacg BssSI Cacgag
    !BstZ17I GTAtac BtrI CACgrg EcoRV GATatc
    !FseI GGCCGGcc HpaI GTTaac MluT Acgcgt
    !PmeI GTTTaaac PmlI CACgtg PpuMI RGgwccy
    !RsrII CGgwccg SapI GCTCTTC SexAI Accwggt
    !SgfI GCGATcgc SgrAI CRccgggg SphI GCATGc
    !StuI AGGcct XmaI Cccggg
    !
    ! cutters
    !
    ! Enzymes that cut from 1 to 4 times and other features
    !End of genes II and X  829
    !Start gene V  843
    !BsrGI Tgtaca 1 1021
    !BspMI Nnnnnnnnngcaggt 3 1104 5997 9183
    !-″-   ACCTGCNNNNn 1 2281
    !End of gene V 1106
    !Start gene VII 1108
    !BsaBI GATNNnnatc 2 1149 3967
    !Start gene IX 1208
    !End gene VII 1211
    !SnaBI TACgta 2 1268 7133
    !BspHI Tcatga 3 1299 6085 7093
    !Start gene VIII 1301
    !End gene IX 1304
    !End gene VIII 1522
    !Start gene III 1578
    !EagI Cggccg 2 1630 8905
    !XbaI Tctaga 2 1643 8436
    !KasI Ggcgcc 4 1650 8724 9039 9120
    !BsmI GAATGCN 2 1769 9065
    !BseRI GAGGAGNNNNNNNNNN 2 2031 8516
    !-″-   NNnnnnnnnnctcctc 2 7603 8623
    !AlwNI CAGNNNctg 3 2210 8072 8182
    !BspDI ATcgat 2 2520 9883
    !NdeI CAtatg 3 2716 3796 9847
    !End gene III 2846
    !Start gene VI 2848
    !AfeI AGCgct 1 3032
    !End gene VI 3187
    !Start gene I 3189
    !EarI CTCTTCNnnn 2 4067 9274
    !-″-  Nnnnngaagag 2 6126 8953
    !PacI TTAATtaa 1 4125
    !Start gene IV 4213
    !End gene I 4235
    !BsmFI Nnnnnnnnnnnnnnngtccc 2 5068 9515
    !MscI TGGcca 3 5073 7597 9160
    !PsiI TTAtaa 2 5349 5837
    !End gene IV 5493
    !Start on 5494
    !NgoMIV Gccggc 3 5606 8213 9315
    !BanII GRGCYc 4 5636 8080 8606 8889
    !DraIII CACNNNgtg 1 5709
    !DrdI GACNNNNnngtc 1 5752
    !AvaI Cycgrg 2 5818 7240
    !PvuII CAGctg 1 5953
    !BsmBI CGTCTCNnnnn 3 5964 8585 9271
    !End ori region 5993
    !BamHI Ggatcc 1 5994
    !HindIII Aagctt 3 6000 7147 7384
    !BciVI GTATCCNNNNNN 1 6077
    !Start bla 6138
    !Eco57I CTGAAG 2 6238 7716
    !SpeI Actagt 1 6257
    !BcgI gcannnnnntcg 1 6398
    !ScaI AGTact 1 6442
    !PvuI CGATcg 1 6553
    !FspI TGCgca 1 6700
    !BglI GCCNNNNnggc 3 6801 8208 8976
    !BsaI GGTCTCNnnnn 1 6853
    !AhdI GACNNNnngtc 1 6920
    !Eam1105I GACNNNnngtc 1 6920
    !End bla 6998
    !AccI GTmkac 2 7153 8048
    !HincII GTYrac 1 7153
    !SalI Gtcgac 1 7153
    !XhoI Ctcgag 1 7240
    !Start PlacZ region 7246
    !End PlacZ region 7381
    !PflMI CCANNNNntgg 1 7382
    !RBS1 7405
    !start M13-iii signal seq for LC 7418
    !ApaLI Gtgcac 1 7470
    !end M13-iii signal seq 7471
    !Start light chain kappa L20:JK 1 7472
    !PflFI GACNnngtc 3 7489 8705 9099
    !SbfI CCTGCAgg 1 7542
    !PstI CTGCAg 1 7543
    !KpnI GGTACc 1 7581
    !XcmI CCANNNNNnnnntgg 2 7585 9215
    !NsiI ATGCAt 2 7626 9503
    !BsgI ctgcac 1 7809
    !BbsI gtcttc 2 7820 8616
    !BlpI GCtnagc 1 8017
    !EspI GCtnagc 1 8017
    !EcoO109I RGgnccy 2 8073 8605
    !Ecl136I GACctc 1 8080
    !SacT GASCTc 1 8080
    !End light chain 8122
    !AscI GGcgcgcc 1 8126
    !BssHII Gcgcgc 1 8127
    !RBS2 8147
    !SfiI GGCCNNNNnggcc 1 8207
    !NcoI Ccatgg 1 8218
    !Start 3-23, FR1 8226
    !MfeI Caattg 1 6232
    !BspEI Tccgga 1 8298
    !Start CDR1 8316
    !Start FR2 8331
    !BstXI CCANNNNNntgg 2 8339 8812
    !EcoNI CCTNNnnnagg 2 8346 8675
    !Start FR3 8373
    !XhaI Tctaga 2 8436 1643
    !AflII Cttaag 1 8480
    !Start CDR3 8520
    !AatII GACGTc 1 8556
    !Start FR4 8562
    !PshAI GACNNnngcc 2 8573 9231
    !BstEII Ggtnacc 1 8579
    !Start CH1 8595
    !ApaI GGGCCc 1 8606
    !Bsp120I Gggccc 1 8606
    !PspOMI Gggccc 1 8606
    !AgeI Accggt 1 8699
    !Bsu36I CCtnagg 2 8770 9509
    !End of CH1 8903
    !NotI GCggccgc 1 8904
    !Start His6 tag 8913
    !Start cMyc tag 8931
    !Amber codon 8982
    !NheI Gctagc 1 8985
    !Start M13 III Domain 3 8997
    !Nrul TCGcga 1 9106
    !BstEI TTcgaa 1 9197
    !EcoRI Gaattc 1 9200
    !XcmI CCANNNNNnnnntgg 1 9215
    !BstAPI GCANNNNntgc 1 9337
    !SacII CCGCgg 1 9365
    !End IIIstump anchor 9455
    !AvrII Cctagg 1 9462
    !trp terminator 9470
    !SwaI ATTTaaat 1 9784
    !Start gene II 9850
    !BglII Agatct 1 9936
    !----------------------------------------------------------------------
    1 aat gct act act att agt aga att gat gcc acc ttt tca gct cgc gcc
    !     gene ii continued
    49 cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta
    97 tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca act
    145 gtt aTa tgg aat gaa act tcc aga cac cgt act tta gtt gca tat tta
    193 aaa cat gtt gag cta cag caT TaT att cag caa tta agc tct aag cca
    241 tcc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc tct
    289 aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa gct
    337 cga att aaa acg cga tat ttg aag tct ttc ggg ctt cct ctt aat ctt
    385 ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa gac
    433 ctg att ttt gat tta tgg tca ttc tcg ctt tct gaa ctg ttt aaa gca
    481 ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg gac
    !                     Start gene x, ii continues
    529 gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct
    577 ttt gca aaa gcc tct cgc tat ttt ggt ttc tat cgt cgt ctg gta aac
    625 gag ggt tat gac agt gtt gct ctt act acg cct cgt aat tcc ttt tgg
    673 cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg
    721 atg aat cct tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt att
    789 aac gta gat ttt tct tcc caa cgt cct gac tgg tat aat gag cca gtt
    817 ctt aaa atc gca TAA
    !                 End X & II
    832 ggtaattca ca
    !
    !  M1              ES                 Q10                 T15
    843 ATG att aaa gtc gaa act aaa oca tct caa gcc caa ttt act act cgt
    ! Start gene V
    !
    ! S17        S20                 P25                 E30
    891 tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aac gag cag ctt
    !
    !         V35                 E40                 V45
    939 cgt tac ggt gat tcg ggt aac gaa tat ccg gtt gtt gtc aag att act
    !
    !     D50                 A55                 L60
    987 ctt gac gaa ggc ccg cca gcc tat gcg cct ggt cTG TAC Acc gtt cat
    !                                              BsrGI...
    ! L85                 V70                 S75                 R80
    1035 ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt
    !
    !                 P85     K87 end of V
    1083 ctg cgc ctc gtt ccg gct aag TAA C
    !
    1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg
    ! Start gene VII
    !
    1150 ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc
    !
    !                   VII end IX overlap.
    !                   ..... S2  V3  L4  V5                 S10
    1192 gct ggg ggt caa agA TGA gt gtt tta gtg tat cct ttT gcc tct ttc gtt
    !                     End VII
    !                   |start IX
    ! L13     W15                 G20                 T25         E29
    1242 tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta atg gaa
    !
    1293 act tcc tc
    !
    !  .... stop of IX, IX end VIII overlap by four bases
    1301 ATG aaa aag tct tta gtc ctc aaa gcc tcc gta gcc gtt gct acc ctc
    ! Start signal sequence of viii.
    !
    1349 gtt ccg atg ctg tct ttc gct gct gag ggt gac get ccc gca aaa gcg
    !                             mature VIII --->
    1397 gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg
    1445 tgg gcg atg gtt gtt gtc att
    1468 gtc ggc gca act atc ggt atc aag ctg ttt aag
    !
    !  bases 1499-1539 are probable promoter for iii
    1499 aaa ttc acc tcg aaa gca ! 1515
    !  ...........  −35  ..
    !
    1517      agc tga oaaaccgat acaattaaag gctcctttcg
    !                 ..... −10   ...
    !
    1552 gagccttttt ttt SCAGAt ttt ! S.D. uppercase, there may be 9 Ts
    !
    !      <------ III signal sequence ----------------------------->
    !       M   K   K   L   L   F   A   I   P   L   V   V   P   F
    1574 caac GTG aaa aaa tta tta ttc gca att ccc tta gct gct cct ttc !
    1620
    !
    !  Y   S   G   A   A   S   S   H   L   D   S   A
    1620 tat tct ggc gCG GCC Gaa tca caT CTA SAc ggc gcc
    !              EagI....         XbaI....
    !
    ! Domain 1 ------------------------------------------------------------
    !      A   S   T   V   K   S   C   L   A
    1656     gct gaa act gct gaa agt tgt tta gca
    !
    !  K   S   H   T   K   I   S   F   T   N   V   W   K   D   D   K   T
    1693 aaA Tcc cat aca gaa aat tca tta aCT AAC GTC TGG AAA GAC SAC AAA ACt
    !
    !  L   D   R   Y   A   N   Y   E   G   S   L   W   N   A   T   G   V
    1734 tta gat cgt tac gct aac tat gag ggC tgt ctg tgG AAT SCt aca ggc gtt
    !                                               BsmI....
    !
    !  V   V   C   T   S   D   K   T   Q   C   Y   S   T   W   V   P   I
    1785 gta gtt tgt act ggt SAC GAA ACT CAG TGT TAC GGT ACA TSG STT ccc att
    !
    !  G   L   A   I   P   K   N
    1836 ggg ctt gct atc cct gaa aat
    !
     L1 linker ------------------------------------
    !  E   S   S   G   S   K   G   G   S   S
    1857 gag ggt ggt ggc tct gag ggt ggc ggt tct
    !
    !  E   G   G   G   S   K   G   S   G   T
    1887 gag ggt ggc ggt tct gag ggt ggc ggt act
    !
      Domain 2 ------------------------------------
    1917 aaa cct cct gag tac ggt gat aca cct att ccg ggc tat act tat atc aac
    1968 cct ctc gac ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct
    2019 aat cct tct cct GAG GAG tcc cag cct ctt aat act ttc atg ttt cag aac
    !                 BseRI..
    2070 aat agg tcc cga aat agg cag ggg gca tta act gtt cat acg ggc acc
    2118 gct act caa ggc act gac ccc gtt aaa act tac tac cag tac act cct
    2166 gta tca tca aaa gcc atg tat gac gct tac tgg tac ggt aaa ttC AGA
    !
    AlwNI
    2214 GAG TGc gct ttc cat tct ggc tct aac gaG gat TTa ttT gtt cgc gaa
    !  AlwNI
    2262 tat caa ggc caa tcg tct gac ctg cct caa cct cct gtc aat gct
    !
    2307 ggc ggc ggc tct
    !  start L2 -------------------------------------------------------------
    2319 ggt ggt ggt tct
    2331 ggt ggc ggc tct
    2343 gag ggc ggt ggc tct gag gga ggc ggt
    2373 ggt ggt ggc tct ggt    ! end L2
    !
    !  Many published sequences of M13-derived phage have a longer linker
    !  than shown here by repeats of the EGGGS motif two more times.
    !
    ! Domain 3--------------------------------------------------------------
    !  S   G   D   B   D   Y   E   K   M   A   N   A   N   K   G   A
    2388 tcc ggt gat tct gat tat gaa aag atg gca aac gct aat aag ggg gct
    !
    !  M   T   K   N   A   D   K   N   A   I   Q   S   D   A   K   G
    2436 atg acc gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc
    !
    !  K   L   D   S   V   A   T   D   Y   C   A   A   M   D   G   F
    2484 aaa ctt gat tct gtc gct act gat tac ggt gct gct atc gat ggt ttc
    !
    !  I   C   D   V   S   G   L   A   N   G   N   C   A   T   C   D
    2532 att ggt gac gtt tcc ggc otc gct aat ggt ast ggt gct gct ggt gat
    !
    !  F   A   G   S   N   S   Q   I   A   Q   V   G   D   G   D   N
    2580 ttt gct ggc tct aat tcc cac atg gct caa gtc ggt gac ggt gat aat
    !
    !  S   P   I   N   N   B   R   Q   V   L   P   S   I   P   Q
    2628 tca cct tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct cac
    !
    !  S   V    K   C   P   P   B   V   B   C   A   C   K   P   Y   E
    2676 tcg gtt gaa tgt cgc cct ttt gcc ctt ggc gct ggc asa cca tat gaa
    !
    !  I   B   S   I   D   C   D   K   I   N   L   B   R
    2724 ttt tct att gat tgt gac aaa ata aac tta ttc cgt
    !                                             End Domain 3
    !
    !  G   V   B   A   B   I   I   V   V   A   T   B   M   V   V
    F140
    2760 ggc gtc ttt gcg ttt ctt tta tat gtc gcc acc ttt atg tat gta ctt
    ! start transmembrane segment
    !
    !  S   T   B   A   N   I   L
    2808 tct acg ttt gct aac ata ctg
    !
    !  R   N   K   F   S
    2829 cgt aat aag gag tct TAA ! step of iii
         Intracellular anchor.
    !      M1  P2  V   L  L5   G   I   P   L  L10  L   R   F   L  G15
    2847  tc ATG cca gtt ctt ttg ggt att ccg tca tta ttg cgt ttc ctc ggt
    !     Start VI
    !
    2894 ttc ctt ctg gta act ttg ttc ggc tat ctg ctt act ttt ctt aaa aag
    2942 ggc ttc ggt aag ata gct att gct att tca ttg ttt ctt gct ctt atc
    2990 atc ggg ctc aac cca att ctt gtg ggc tac ctc tct gat att agc gct
    3038 caa tta ccc tct gac ttt gct cag ggc gct cag tta att ctc ccg tct
    3086 aat gcg ctt ccc tgt ttt tac gtc att ccc cct gta aag gcc gct act
    3134 tcc att tct gac gtt aaa caa aaa atc gtt tct tat ttg gat tgg gac
    !
    !           M1  A2  V3      F5                 L10         G13
    3182 aaa TAA t ATG gct gtt tat ttt gta act ggc aaa tta ggc tct gga
    !  end VI   Start gene I
    !
    !  K   T   L   V   S   V   G   K   I   Q   D   K   I   V   A
    3228 aag acg ctc gct agc gtt ggc aag att cag gac aaa att gta gct
    !
    !  G   C   K   I   A   T   N   L   D   L   K   L   Q   N   L
    3273 ggg tgc aca cta gca act aat ctt gct tta cgg ctt ccc ccc ctc
    !  P   Q   V   C   R   F   A   K   T   P   K   V   L   K   I
    3318 ccg ccc gtc ggg cgg ttc gct caa ccg cct cgc gtt cct aga ata
    !
    !  P   D   K   P   S   I   S   D   L   L   A   I   G   K   C
    3363 ccg gct aag cct tct cta tct gct ttg ctc gct act ggg cgc ggt
    !
    !  N   D   S   V   D   E   N   K   N   C   L   L   V   L   D
    3408 aat gct tcc tac gct gcc aat cca ccc ggc ctg ctt gtt ctc gct
    !
    !  E   C   G   T   W   F   N   T   R   S   W   N   D   K   E
    3453 gag tgc ggt act tgg ttt aat acc cgt tct tgg aat gct aag gcc
    !
    !  R   Q   P   I   I   D   W   F   L   H   A   K   K   L   G
    3498 agc cag ccg att gct tgg ttt cta aat gct cgt caa cta gga
    !
    !  W   D   I   I   F   L   V   Q   D   L   S   I   V   D   K
    3543 tgg gct ctt cct ttt ctc gtt ccg gac tcc ccc cct gtt gac cac
    !
    !  Q   A   R   S   A   L   A   E   H   V   V   Y   C   R   R
    3588 ccg gcg cgc tct gca ttc gct gcc ccc gtt gtt aat tgt cgt cgt
    !
    !  L   D   K   I   T   L   P   F   V   G   T   L   Y   S   L
    3633 ctg gac agc ctc act tta cct ttt gtc ggt acc tta tat tct cct
    !
    !  I   T   G   S   K   N   P   L   P   K   L   H   V   C   V
    3678 att act ggc tcg cca atg cct ctg ccc cca tta aat gtt ggc gct
    !
    !  V   K   V   G   D   S   Q   L   S   P   T   V   K   K   N
    3723 gtt aaa tat ggc gat tct caa tta agc cct act gtt gag cgt tgg
    !
    !  L   Y   T   G   K   N   L   V   N   A   V   D   T   K   Q
    3768 ctt tat act ggt aag aat ttg tat aac gca tac gat acc aaa cag
    !
    !  A   F   S   S   N   V   D   S   G   V   Y   S   Y   L   T
    3813 gct ttt tct agt aat tat gat tcc ggc gtt tat tct tat tta acg
    !
    !  P   V   L   S   H   G   R   V   F   K   P   L   N   L   G
    3858 cct tat tta tca cac ggt cgg tat ttc aaa cca tta aat tta ggt
    !
    !  Q   K   M   K   L   T   K   I   V   L   K   K   F   S   R
    3903 cag aag atg aaa tta act aaa ata tat ctg aaa aag ttt tct cgc
    !
    !  V   L   C   L   A   I   C   F   A   S   A   F   T   Y   S
    3948 gtt ctt tgc ctt gcg att gga ttt gca tca gca ttt aca tat agt
    !
    !  V   I   T   Q   P   K   F   F   V   K   K   V   V   S   Q
    3993 tat aca acc caa cct aag ccg gag gct aaa aag gta gtc tct cag
    !
    !  T   Y   D   F   D   K   F   T   I   B   S   S   Q   K   L
    4038 acc tat gat ttt gat aaa ttc act att gac tct tct cag cgt ctt
    !
    !  N   L   S   V   K   V   V   F   K   B   S   K   G   K   L
    4083 aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA
    !                                                        PacI
    !
    !  I   N   S   D   D   L   Q   K   Q   G   V   S   L   T   Y
    4128 ATT AAt agc gac gat cta cag aag caa ggt tat tca ctc aca tat
    !     PacI
    !
    ! i   I   D   L   C   T   V   S   I   K   K   G   N   S   N   E
    !      iv                                                       M1  K
    4173 att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa
    !                                                        Start
    IV
    !
    49      i    I   V   K   C   N   End of I
    !      iv    L3  L   N5  V   I7  N    F  V10
    4218 att gtt aaa tgt aat TAA T TTT GTT
    !   IV continued.....
    4243 ttc ttg acg ttt gtt tca tca tct tct ttc gct cag gta att gaa atg
    4291 aat aat tcg cct ctg cgc gat ttt gta act tgg tac tca aag caa tca
    4339 ggc gaa tcc gtt att gtt tct ccc gat gta aaa ggt act gtt act gta
    4387 aat cca tct gac gtt aaa cct gaa aat cta cgc aat tcc ctt att tct
    4435 gct tta cgc gcA aac aat ctc gat atg gtA ggt tcT aAC cct tcc act
    4483 att cag aag tat aat cca aac aat cag gat tat atc gat gaa ttg cca
    4531 tca tct gat aat cag gaa tat gat gat aac ccc gct ccc cct ggc ggt
    4579 ttc ttt gtt ccg caa aat gat aat gtt act caa act tct aaa act aat
    4627 aac gct cgg gca aag gat cta ata cga gtt gtc gaa ttg ctc gta aag
    4675 tct aat acc tct aaa tcc tca aat gta tta tct att gac ggc tct aat
    4723 cta cta gtt gtt agt gcT cct aaa gat atc tta gat aac ctc ccc caa
    4771 ttc ctt tcA act gtt gat ttg cca act gac cag ata ttg att gag ggt
    4819 ttg ata ttt gag gtt cag caa ggt gat gct tta gac ttt tca ttt gct
    4867 gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac cgc
    4915 ctc acc tct gtt tta tct tct gct ggt ggt tcg ttc ggt att ttt aat
    4963 ggc gat gtt tta ggg cta tca gtt cgc gcc tta aag act aat agc aat
    5011 tca aaa ata ttg tct gtg cca cgt att cct aag ctt tca ggt cag aag
    5059 ggt tcc agc tct gtT GGC CAg aat gtc cct ctt att act ggt ctg gcg
    !                   MscI....
    5107 act ggt gaa tcc gcc aat gta aat aat cca ttc cag aag att gag ctg
    5155 caa aat gta ggt att tcc atg agc gct ctt cct gct gca atg gct ggc
    5203 ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct
    5251 cct act cag gca agt gat gtt att act aat caa aga agt att gct acc
    5299 aag gtt aat ttg cgc gat gga cag act ctt cta ctc ggt ggc ctc act
    5347 gat tat aaa aac act tct caG gat tct ggc gta ccg ttc ctg tct aaa
    5395 atc cct tta agc ggc ctc ctg ttt agc tcc cgc tct gat teT aac gag
    5443 gaa agc aag tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc ctg
    5491 TAG cggcgcatt
    ! End IV
    5503 aagcgcggeg ggtgtggtgg ttccgcgcag cgtgaccgct acacttgcca gcgccctagc
    5563 gcccgctcct ttcgctttct tcccttcctt tctcgccaag ttcGCCGGCt ttccccgcca
    !                                                NgoMI.
    5623 agctctaaat cgggggcccc ccttagggtt ccgatttagt gctttacggc acctcgaccc
    5683 caaaaaactt gattcgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt
    !                             DraIII....
    5743 tcgccctttG ACGTTGGAGT Ccaagttctt taatagtgga ctcttgttcc aaactggaac
    !          DrdI..........
    5903 aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga
    5863 accacaatca aacaggattt tcgcctgctg gggcaaacca gctgggaccg cttgccgcaa
    5923 ctctctcagg gccaggcggt gaagggcaat CAGCTGctgc cCGTCTCact ggtgaaaaga
    !                                  PvuII.      BsmBI.
    5983 aaaaccaccc tGGATCC AAGCTT
    !             BamHI   HindIII (1/2)
    !             Insert carrying bla gene
    6006 gcaggtg gcacttctcg gggaaatgtg cgcggcaccc
    6043 ctatttgctt atttctctaa atacatcccc atatGTATCC gctcatgaga caataacct
    !                                      BciVI
    6103 gacaaacgct ccaataatat tgaaaaAGGA AGAgt
    !                             RBS.?...
    ! Start bla gene
    6138 ATG agt att caa aat ttc cgt gtc gcc ctt att ccc ttt ttt gag gca ttt
    6189 tgc ctt cct gtt ttt gct ccc cca gaa acg ctg gtg aaa gta aaa gat gct
    6240 gaa gat cag ttg ggC gcA CTA GTg ggt tac atc gaa ctg gat atc aac agc
    !                       SpeI....
    !                  ApaLI & BssSI Removed
    6291 ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc
    6342 act ttt aaa gtc ctg cta tgt GGC GcG Gta tta tcc cgt att gac gcc ggg
    6393 caa gaG CAA CTC GGT CGc agc ATA cAC tat tct cag aat gac ttg gtt gAG
    !       BcgI............
     ScaI
    6444 TAC Tca cca gtc aca gaa aag aat ctt acg gat ggc atg aca gta aga gaa
    ! Scal.
    6495 tta cgc agt gct gcc ata acc atg agc gat aac act gcg gcc aac tta ctt
    6546 ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg
    !          PvuI....
    6597 ggg gat aat gta act agc ctt gat cgt tgg gaa ccg gag ctg aat gaa gac
    6648 ata cca aac gac gag cgt gac acc aag atg aat gta gca atg Gca aca aag
    6699 tTG CGC Aaa cta tta act ggc gaa cta ctt act ata gct tcc cgg aaa caa
    !  FspI....
    !
    6750 tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg agc tcg
    6801 GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tat gga gac ggt gag agt
    ! BglI..........
    6852 gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc tcc agt
    !  BsaI....
    6903 atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat
    !                       AhdI...........
    6954 aga cag atc gct gag ata ggt gcc tca ccg att aag aat tgg TAA ctgt
    !                                                         stop
    7003 cagaccaagc ttactaatat atactttaga ttgatttaaa acttaatttt taatttaaaa
    7063 ggatataggt gaagatcctc tttgataatc tcatgaccaa aatccattaa cgtgagtttt
    7123 cgttccactg tacgtaagac cccc
    7147 AAGCTT GTCGAG tgaa tggcgaatgg cgctttgcct
    ! HindIII  SalI..
    ! (2/2)    HincII
    7183 ggtttccggc accagaagcg gcgccggaaa gctggctgga gcgcgatctt
    !
    !  Start of Fab-display cacsettc, the Fab DSR-A05, selected for
    !  binding to a protein antigen.
    !
    7233 CCTGAcG CTCGAG
    !       xBsu36I XhoI..
    !
    !  PlacZ promoter is in the following block
    7246                         cgcaacgc aactaatgtg agttagctca
    7274 ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg
    7324 tgtggaattg tgagcggata acaatttccc acaggaaaca gctatgacca
    7374 tgattacgCC AagcttTGGa gccttttttt tggagatttt caac
    !         PflMI
    !            Hind3. (there are 3)
    !  Gene iii signal sequence:
    !  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    !  M   K   K   L   L   F   A   I   P   L   V   Y
    7418 gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat
    !
    ! 16  17  18          Start light chain (L20:JK1)
    !  S   H   S   A   Q   D   I   Q   M   T   Q   S   P   A
    7463 tct cac aGT GCA Caa aat atc tac acc act tac cct cca gct
    !          ApaLI...
    !          Sequence supplied by extender............
    !
    !       T   L   S   L
    7505      acc ctg tct ttg
    !
    !  S   P   G   E   R   A   T   L   S   C   R   A   A   S   Q   G
    7517 tcc cca ggg gaa agc gct act ctt tcc tgc agg gct ctg tag Ggt
    !  V   S   S   Y   L   A   N   Y   Q   Q   K   P   G   Q   A
    7562 gtt agc agc tat tta gct tgg tac cag cag aaa cct ggc tag gct
    !
    !  P   R   L   L   I   V   D   A   S   S   R   A   T   G   I
    7607 ccc agg ctt ctt atc tat gAt gtc tcc aAc agg gct act ggc atc
    !
    !  P   A   R   F   S   G   S   G   F   G   T   D   F   T   L
    7652 tcc gct cgg ttc ctg ggc ctg ggg Cct ggg acc gac ttc act ctt
    !
    !  T   I   S   S   L   E   P   E   D   F   A   V   Y   Y   C
    7697 ctc ctc cgc agC ctA gag tct gcc gct ttt gtc gtT tat tac tgt
    !
    !  Q   Q   R   S   N   H   P   W   I   F   G   Q   G   T   R
    7742 cag cag CGt aAc tgg aat ccg tgg ACG TTC GGC CAA GGG ACC AAG
    !
    !  V   E   I   K   K   T   V   A   A   P   S   V   F   I   F
    7787 gtg gcc ctc aaa cga act gtg gCT GCA Cca tct gtc ttc ctc ttc
    !                              BsgI....
    !
    !  P   P   S   D   E   Q   L   K   S   G   T   A   S   V   V
    7832 ccg tcc tct gct gag cag ttg ccc tct gga act gct tct gtt gtg
    !
    !  C   L   L   N   N   F   Y   P   K   E   A   K   V   Q   W
    7877 tgc ctg ctg aat ccc ttc tat ccc agc gag gcc aaa gta cag tgg
    !
    !  K   V   D   N   A   L   Q   S   G   N   S   Q   E   S   V
    7922 aag gtg gct aat gct ctt tcc tcg ggt ccc tcc cag gag agt gct
    !
    !  T   E   R   D   D   S   K   D   S   T   Y   S   L   S   S   T
    7967 aca gag cgg gct agc aag gac agc acc tac agc ctt agc agc ctc
    !
    !  L   T   L   S   K   A   D   Y   F   K   H   K   V   Y   A
    8012 ctg acG CTG AGc aaa gca gac tac gag caa ccc ccc gtc tac gct
    !       EspI.....
    !
    !  C   E   V   T   H   Q   G   L   S   S   P   V   T   K   S
    8057 tgc gaa gtc acc aat cag ggc ctG AGC Tcg ccc gtc aca aag agc
    !                               SacI....
    !
    !  F   N   R   G   E   C   .   .
    8102 ttc aac agg gga gag tgt caa taa
    8128     GGCGCG CCaattctat ttcaaGGAGA cagtaata
    !     AscI.....              RBS2.
    !
    !  PelB signal sequence------(22 codons)----->
    !   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    !  M   K   Y   L   L   P   T   A   A   A   A   L   L   L   L
    8160 aag aaa tac cta ttg cct aag gca gcc gct gga ttg tta tta ctc
    !
    ! ...PelB signal------------> Scare VH, FR1----------------->
    !  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30
    !  A   A   Q   P   A   M   A   K   V   Q   L   L   E   S   G
    8205 gcG GCC cag ccG GCC atg gcc gaa gtt CAA TTG tta gag tct ggt
    !   SfiI.............                 MfeI...
    !                  NcoI....
    !
    !  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    !  G   G   L   V   Q   P   G   G   S   L   R   L   S   C   A
    8250 ggc ggt ctt gtt cag cct ggt ggt tct tta cgt ctt tct tgc gct
    !
    ! ...FR1--------------------> CDR1--------------> FR2-------->
    !  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    !  A   S   G   F   I   F   S   T   V   K   N   R   W   V   R
    8295 gct TCC GGA ttc act ttc tct act tac gag atg ctg tgg gtt cgC
    !     BspE71..
    BstXI...
    !
    !  FR2--------------------------------------> CDR2 ---------->
    !  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    !  Q   A   P   G   K   G   L   K   W   V   S   Y   I   A   P
    8340 CAa gct ccT GGt aaa ggt ttg gag tgg gtc tct tat agc gct cct
    !   BstXI................
    !
    !        ...CDR2---------------------------------------------> FR3---->
    !  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    !  S   G   G   D   T   A   Y   A   D   S   V   K   G   R   F
    8385 tct ggt ggc gat aet gct tat gct gae ccc gtt aaa ggt cgc ttc
    !
    !  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !  T   I   S   R   D   N   S   K   N   T   L   V   L   Q   N
    8430 act atc TGT AGA gac aac tct aag aat act ctc tac ttg cag atg
    !         XbaI...
    !         Supplied by extender-------------------------------
    !
    ! -----------------------------------------FR3-------------->
    ! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !  N   S   L   R   A   K   D   T   A   V   Y   Y   C   A   R
    8475 aac agC TTA AGg gct gag gac act gca gtc tac tat tgt gcg agg
    !       AflII...
    ! from extender--------------------------------->
    !
    ! CDR3-------------------------------------------------->
    FR4-->
    ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    !  R   L   D   G   Y   I   S   Y   Y   V   G   M   D   V   W
    8520 agg ctc gat ggc tat att tcc tac tac tac ggt atg GAC GTC tgg
    !                                                 AatII..
    !
    ! 136 137 138 139 140 141 142 143 144 145
    !  G   Q   C   T   T   V   T   V   S   S
    8565 ggc caa ggg acc acG GTC ACC gtc tca agc
    !                   BstEII...
    !
    ! CH1 of IgG1---------->
    !  A   S   T   K   G   P   S   V   F   P   L   A   P   S   S
    8595 gcc tcc acc aag ggc cca tcg gcc ttc ccc ctg gca ccc tcc ccc
    !
    !  K   S   T   S   G   G   T   A   A   L   G   C   L   V   K
    8640 aag agc acc tct ggg ggc aca gcg gcc ctg ggc tgc ctg gtc aag
    !
    !  D   V   F   P   E   P   V   I   V   S   W   N   S   G   A
    8685 gac tac ttc ccc gaa ccg gtg acg gtg tcg tgg aac tca ggc gcc
    !
    !  L   T   S   G   V   H   T   F   P   A   V   L   Q   S   S
    8730 ctg acc agc ggc gtc cac acc ctc ccg gct gtc cta cag tcc TCA
    Bsu36I....
    !
    !  G   L   Y   S   L   S   S   V   V   I   V   P   S   S   S
    8775 GGa ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agc agc
    !   Bsu36I....
    !
    !  L   G   T   Q   T   Y   I   C   N   V   N   H   K   P   S
    8820 ttg ggc acc cag acc tac agc tgc aac gtg aat cac aag ccc agc
    !
    !  N   T   K   V   D   K   K   V   F   P   K   S   C   A   A
    8865 aac acc aag gtg gac aag aaa gtt gag ccc aaa tcc tgt GCG GCC
    NotI......
    !
    !  A   H   H   H   H   H   H   G   A   A   F   Q   K   L
    8910 GCa aat aat aat cac aat cac ggg gcc gca gaa caa aaa ctc agc
    !   ..NoeI....  H6 tag.................Myc-
    Tag........................
    !
    !  S   E   E   D   L   N   G   A   A   q   A   S   S   A
    8955 tca gaa gag gat ctg aat ggg gcc gca cag GCT AGC tct gct
    ! Myc-Taq....................         ... NheI...
    !                                    Amber
    !
    !  III′stump
    !
    ! Domain 3 of III -------------------------------------------------------
    !
    !  S   G   D   F   D   Y   E   K   N   A   N   A   N   K   G   A
    8997 agc ggc gac ttc gac tac gag aaa atg gct aat gcc aac aaa GGC GCC
    ! tcc   t   t   t   t   t   a   g       a   c   t   t   g   g   t !W.T.
    !
    KasI...(2/4)
    !
    !  M   T   K   N   A   D   E   N   A   L   Q   S   D   A   K   G
    9045 atG ACT GAG AAC GCT GAC GAG aat gct ttg caa agc gat gcc aag ggt
    !       c   a   t   c   t   a   c   g   c   a   g   t   c   t   c   t   a   c !W.T.
    !
    !  K   L   D   S   V   A   T   D   Y   G   A   A   I   D   G   F
    9093 aag tta gac agc gTC GCG Aoo gac tat GGC GOD gcc ATO GAc ggc ttt
    !   a c t   t tct       t   t   t   c   t   t   t       t   t   c !W.T.
    !                  NruI....           KasI...(3/4)
    !
    !  I   G   I   D   V   S   G   L   A   N   G   N   G   A   T   G   D
    9141 atc ggc gat gcc agt ggt tTG GCC Aac ggc aac gga gcc acc gga gac
    !   t   t   c   t tcc   c c t   t   t   t   t   t   t   t   t   t !W.T.
    !                          MscI....(3/3)
    !
    !  F   A   G   S   N   S   Q   M   A   Q   V   G   D   G   D   N
    9189 ttc GCA GGT tcG AAT TGt cag atg gcC CAG GTT GGA GAT GGg gac aac
    !   t   t   c   t       c   a       t   a   c   t   c   t   t   t !W.T.
    !     BspMI.. (2/2)                 XcmI................
    !               EcoRI...
    !
    !  S   P   L   N   N   N   F   K   Q   Y   L   P   S   L   P   Q
    9237 agt ccg ctt atg aac aac ttt aga cag tac ctt ccg tct ctt ccg cag
    ! tca   t t a       t   t   c c t   a   t t a   t   c   c   t   a !W.T.
    !
    !  S   V   E   C   R   P   F   V   F   S   A   G   K   P   Y   E
    9285 agt gtc gag tgc cgt cca ttc gtt ttc tcc gcc ggc aag cct tac gag
    ! tcg   t   a   t   c   t   t   c   t agc   t   t   a   a   t   a !W.T.
    !
    !  F   S   I   D   C   I   D   K   I   N   L   F   R
    9333 ttc aGC Atc gac TGC gat aag atc aat ctt ttC CGC
    !   t tct   t   t   t   c   a   a   c t a   c   t  !W.T.
    !      BatAPI........                                          SacII...
    !                                             End Domain 3
    !
    !  G   V   F   A   F   L   L   V   V   A   T   F   N   V   V   F
    9369 GGc gtt ttc gct tcc ttg cta tac gtc gct act ttc atg tac gtt ttc
    !   t   c   t   g   t c t t a   t   t   c   c   t       t   a   t !W.T.
    ! start transmembrane segment
    !
    !  S   T   F   A   N   I   L     R   N   K   E   S
    9417 aCC ACT TTC GCC AAT ATT TTA Cgc aac aaa gaa agc
    ! tct   g   t   t   c   a c g     t   t   g    g tct !W.T.
    !                              Intraccellular anchor.
    !
    !          .   .
    9453         tag tga tct CCT AGG
    !                     AvrII..
    !
    9468 aag ccc gcc taa tga gcg ggc ctt tct ttt ct  ggt
    !   | Trp terminator                     |
    !
    !  End Fab cassette
    !
    9503   ATGCAT CCTGAGC  ccgat actgtcgtcg tcccctcaaa ccggcagatg
    !   NsiI.. Bsu36I.(3/3)
    9551 cacggtcacg atgcgcccat ctacaccaac gcgacctatc ccactacggt caacccgccg
    9611 tttgttccca cggagaatcc gacgggttgt tactcgctca aatttaatgt tgatgaaagc
    9671 tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg tcagaaaatg
    9731 agctgactta accaaaattt aaTgcgaatt ttaacaaaat attaacgttt acaATTTAAA
    !
    SwaI...
    9791 Tatttgctta tacaatcttc ctgtctctgg ggcttttctg attatcaacc GGGGTAaat
    9850 ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt gtt tgc
    ! Start gene II
    9901 tcc aga ctc tca ggc aat gac ctg ata gcc ttt gtA GAT CTc tca aaa ata
    !                                               BglII...
    9952 gct acc ctc tcc ggc atT aat tta tca gct aga acg gct gaa tat aat att
    10003 gat ggt gat ttg act gtc tcc ggc ctc cct cac ccc ctt gaa tct tta cct
    10054 aca aat tac tca ggc att gca ctt aaa ata tat gag ggt tct aaa aat ttt
    10105 tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag ggt aat
    10156 aat gtt ttt ggt aca acc gat tta gct cta tgc tct gag gct tta ttg ctt
    10207 aat ttt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt !
    !  gene II continues
    !------------------------ End of Table -------------------------------
  • !TABLE 37
    DNA seq of w.t. M13 gene iii
    !
    !  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
    ! fM   K   K    L   L   F   A   I   P   L   V   V   P   F   Y
    1579 gtg aaa aaa tta tta ctc gca att act tta gtt gtt cct ttc tat
    ! Signal sequence............................................
    !
    !  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30
    !  S   H   S   A   E   T   V   E   S   C   L   A   K   P   H
    1624 tct cac tcc gct gaa act gtt gaa agt tgt tta gca aaa ccc cat
    ! Signal sequence> Domain 1---------------------------------------
    !
    !  31  32  33  34  35  36  37  38  39  40  41  42  43  44  45
    !  T   E   N   S   F   T   N   V   N   K   D   D   K   T   L
    1669 aca gaa aat tca ctt act aac gtc tgg aaa gac gac aaa act tta
    ! Domain 1---------------------------------------------------
    !
    !  46  47  48  49  50  51  52  53  54  55  56  57  58  59  60
    !  D   R  Y   A   N   Y   S   G   C   L   N   N   A   T   G
    1714 gat cgt tac gct aac tat gag ggc tgt ctg tgG AAT GCt aca ggc
    !                                           BsmI....
    ! Domain 1---------------------------------------------------
    !
    !  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75
    !  V   V   V   C   T   G   D   E   T   Q   C   Y   C   T   N
    1759 gtt gta gtt tgt act ggt gac gaa act cag tgt tac ggt aca tgg
    ! Domain 1---------------------------------------------------
    !
    !  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
    !  V   P   I   G   L   A   I   P   E   N   S   G   G   G   S
    1804 gtt cct att ggg ctt gct agc cct gaa aat gag ggt ggt ggc tct
    ! Domain 1------------------------------> Linker 1-----------
    !
    !  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105
    !  S   G   C   C   S   E   G   G   G   S   S   G   G   G   T
    1849 gag ggt ggc ggt tct gag ggc ggc ggt tct gag ggt ggc ggt act
    ! Linker 1-------------------------------------------------->
    !
    ! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    !  K   P   P   E   Y   G   D   T   P   I   P   G   Y   T   Y
    1894 aaa cct ccc gag tac ggt gat acc cct att ccg ggc tat act aat
    ! Domain 2---------------------------------------------------
    !
    ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    !  I   N   P   L   D   G   T   Y   P   P   G   T   S   Q   N
    1939 agc aac ccc ctc gac ggc act taT CCG CGt ggt act gag caa aac
    !                               EciI....
    ! Domain 2---------------------------------------------------
    !
    ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    !  P   A   N   P   N   P   E   L   F   S   S   Q   P   L   N
    1984 ccc gct aat cct aat cct tct ctt GAG GAG tct cag cct ctt aac
    !                                 BseRI..
    ! Domain 2---------------------------------------------------
    !
    ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    !  T   F   N   F   Q   N   N   R   F   R   N   R   Q   S   A
    2029 act ttc atg ctt cag aat aat agg ttc ega aat agg cag ggg gca
    ! Domain 2---------------------------------------------------
    !
    ! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    !  L   T   V   Y   I   G   T   V   T   Q   G   T   D   P   V
    2074 tta act gtt tat aag ggc act gtt act caa ggc act gac ccc gtt
    ! Domain 2---------------------------------------------------
    !
    ! 181 182 183 184 185 188 187 188 189 190 191 192 193 194 195
    !  K   T   V   Y   Q   V   T   P   V   S   S   K   A   N   Y
    2119 aaa act aat tac cag tec act ccc gta tca tca aaa gcc atg tat
    ! Domain 2---------------------------------------------------
    !
    ! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    !  D   A   Y   W   N   G   K   F   R   V   C   A   F   H   S
    2164 gac gct tac tgg aac ggt aaa ttC AGa gaC TGc gct ttc aat tct
    !                               AlwNI.......
    ! Domain 2---------------------------------------------------
    !
    ! 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    !  G   F   N   E   D   P   F   V   C   E   Y   Q   G   Q   S
    2209 ggc ttt aat gaG GAT CCa ctc gtt tgt caa ggc caa ggc caa tcg
    !               BamHI...
    ! Domain 2---------------------------------------------------
    !
    ! 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    !  S   D   L   P   Q   P   P   V   N   A   G   G   C   S   C
    2254 tct gac ctg cct caa cct cct gcc aat gct ggc ggc ggc tct ggt
    ! Domain 2------------------------------> Linker 2-----------
    !
    ! 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
    !  G   G   S   C   G   G   S   K   C   C   G   S   K   G   C
    2299 ggt ggt Oct ggt ggc ggc tct gag ggt ggt ggc tct gag ggt ggc
    ! Linker 2---------------------------------------------------
    !
    ! 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    !  G   S   K   G   G   G   S   E   G   C   G   S   G   G   G
    2344 ggt tct gag ggt ggc ggc tct gag gga ggc ggt tcc ggt ggt ggc
    ! Linker 2---------------------------------------------------
    !
    ! 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    !  S   G   S   C   G   F   D   Y   K   K   N   A   N   A   N
    2389 tct ggt tcc ggt gct ctt gat tat gaa aag atg gca aac gct aat
    !Linker 2>     Domain 3-------------------------------------------
    !
    ! 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
    !  K   G   A   M   T   K   N   A   D   E   N   A   L   Q   S
    2434 aag ggg gct atg acc gaa aat gcc gct gaa aac gcg cta cag tct
    ! Domain 3---------------------------------------------------
    !
    ! 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    !  D   A   K   C   K   L   D   S   V   A   T   D   Y   G   A
    2479 gac gct aea ggc caa ctt gct tct gtc gct act gct tac ggt gct
    ! Domain 3---------------------------------------------------
    !
    ! 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    !  A   I   D   G   F   I   G   D   V   S   G   L   A   N   G
    2524 gct ctc gct ggt tcc att ggt gcc gtt tcc ggc cct gct aat ggt
    ! Domain 3---------------------------------------------------
    !
    ! 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    !  N   C   A   T   G   D   F   A   G   S   N   S   Q   M   A
    2569 aat ggt gct act ggt gct ttt gct ggc tct aat tcc ccc atg gcc
    ! Domain 3---------------------------------------------------
    !
    ! 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    !  Q   V   G   D   G   D   N   S   P   L   M   N   N   F   R
    2614 caa gtc ggt gac ggt gat aat cca cct tta atg aat aat ttc cgt
    ! Domain 3---------------------------------------------------
    !
    ! 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    !  Q   Y   L   P   S   L   P   Q   S   V   K   C   R   P   F
    2659 caa tat tta cct tcc ctc cct caa rcg gct gaa tgt cgc cct ttt
    ! Domain 3---------------------------------------------------
    !
    ! 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
    !  V   F   S   A   G   K   P   Y   K   F   S   I   D   C   D
    2704 gtc ttc agc gct ggt aaa cca tat gaa ttc tct att gat tgt gac
    ! Domain 3---------------------------------------------------
    ! 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    !  K   I   N   L   F   R   G   V   F   A   F   L   L   Y   V
    2749 aaa ata aac tca tcc cgt ggt gcc ttt gcg ttt ctt tta tac gct
    ! Domain 3--------------> Transmembrane segment--------------
    !
    ! 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    !  A   T   F   M   Y   V   F   S   T   F   A   N   I   L   R
    2794 gcc acc ttt atg tat gta ttt tct acg ttt gct aac ata ctg cgt
    ! Transmembrane segment---------------------------------> ICA--
    !
    ! 421 422 423 424 425
    !  N   K   K   S   .
    2839 aat aag gag cct taa ! 2853
    ! ICA----------->            ICA = intracellular anchor
    !
    !------------------ End of Table -----------------------------------------
  • TABLE 38
    Whole mature III anchor M13-III
    derived anchor with racorded DNA
    !
    !       1   2   3
    !       A   A   A
    1      GCG gcc gca
    !      NotI......
    !
    !       4   5   6   7   8   9  10  11  12  13  14  15  16  17
    !       H   H   H   H   H   H   C   A   A   E   Q   K   L   I
    10      cat cat cat cac aat cac ggg gcc gca gaa caa aaa ctc atc
    !
    !      18  19  20  21  22  23  24  25  26  27  28  29
    !       S   E   S   D   L   N   G   A   A   .   A   S
    52      tca gaa gag gct ctg aat ggg gcc gca Tag GCT AGC
    !                                              NheI...
    !
    !    30  31  32  33  34  35  36  37  38  39
    !     D   I   N   D   D   R   M   A   S   T
    88    GAT ATC cac gat gat cgt atg gct tct act
    ! (ON_C37hor) [RC] 5-c aac gat gat cgt atg gcG CAt Gct gcc gag aca g-3′
    !    EcoRV..
    !    Enterokinase cleavage site.
    !
    !  Start mature III (recorded)  Domain 1 ---->
    !         40  41  42  43
    !          A   S   T   V
    118        |gcC|gaG|acA|gtC|
    !           t   a   t   t ! W.T.
    !
    !   44  45  48  47  48  49  50  51  52  53  54  55  58  57  58
    !    E   S   C   L   A   K   P   H   I   S   N   S   F   I   N
    130  |gaa|TCC|tgC|CTG|GCC|AaG|ccT|caC|acT|gaG|aat|AGT|ttC|aCA|Aat|
    !       agt   t   t   a   a   a   c   t   a   a     tca   t   t   c
    ! W.T.
    !                MscI....
    !
    !  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73
    !   V   W   K   D   D   K   T   L   D   R   V   A   N   V   S
    175 |gtg|TGG|aaG|gaT|gaT|aaG|acC|CtT|gAT|CGA|TaT|gcC|aaT|taC|gcA|
    !    c       a   c   c   a   t t a       t   c   t   c   t   g ! W.T.
    !                                   BspDI...
    !
    !  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88
    !   G   C   L   N   N   A   I   G   V   V   V   C   I   C   D
    220 |ggC|tgC|Tta|tgg|aat|gcC|ACC|GGC|GtC|gtT|gtC|TGC|ACG|ggC|gaT|
    !    t   t c g           t   a       t   a   t   t   t   t   c ! W.T.
    !                        SgrAI......         BsgI....
    !
    !  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103
    !   E   T   Q   C   V   G   I   N   V   P   I   G   L   A   I
    265 |gaG|acA|caA|tgC|taT|ggC|ACG|TCg|gtC|ccG|atA|gGC|TTA|GCC|atA|
    !    a   t   g   t   c   t   a       t   t   t   g c t   t   c ! W.T.
    !                        PmlI....               BlpI.....
    !
    !    Domain 1-----> Linker 1---------------->
    !  104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    !   P   E   N   E   G   G   C   S   F   G   G   G   S   K   G
    310 |ccG|gaG|aaC|gaA|ggC|ggC|ggT|AGC|gaA|ggC|ggT|ggC|AGC|gaA|ggC|
    !    t   a   t   g   t   t   c tct   g   t   c   t tct   g   t ! W.T.
    !
    ! Linker 1----------------------> Domain 2--------------->
    !  119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    !   G   C   S   F   C   G   G   T   K   P   P   F   Y   G   D
    355 |ggT|GGA|TGC|gaA|ggA|ggT|ggA|acC|aaG|ccG|ccG|gaA|taT|ggC|gaC|
    !    c   t   t   g   t   c   t   t   a   t   t   g   c   t   t ! W.T.
    !      BamHI..(2/2)
    !
    !  134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    !   T   P   I   P   G   Y   T   Y   I   N   P   L   D   G   T
    400 |acT|ccC|atA|CCT|GCT|taC|acC|taC|atT|aaT|ccG|TtA|gaT|ggA|acC|
    !    a   t   t   g   c   c   t   t   c   a   t c c   a   a   t ! W.T.
    !            SexAI....
    !
    !  149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    !   Y   P   P   G   T   F   Q   N   P   A   N   P   N   P   S
    445 |taC|caT|ccG|ggC|acC|gaA|caC|aaT|ccT|gcC|aaC|caG|caC|acA|AGC|
    !    T   G   t   t   t   g   a   c   a   t   t   t   t ttc ! W.T.
    !
    HindIII...
    !
    !  164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    !   L   F   E   S   Q   P   L   N   T   F   M   F   Q   N   N
    490 |TTA|gaA|gaA|AGC|caA|aaG|TaA|aaC|acC|ttT|atg|ttC|caA|aaC|aaC|
    !  c t   G   G tct   g   t c t   t   t   a       t   g   t   t ! W.T.
    ! HindIII.
    !
    !  179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
    !   Y   F   P   N   P   Q   G   A   L   T   V   Y   T   G   T
    535 |CgT|ttT|AgG|aaC|CgT|CaA|gCT|GCT|CtT|acC|gTG|TAC|AcT|ggA|acC|
    !  a g   c c a   t a g   g   g   a t a   t   t   t   g   c   t ! W.T.
    !                           HgiAI...        BsrGI...
    !
    !  194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    !   V   T   Q   G   T   D   P   V   K   T   Y   Y   Q   Y   T
    580 |gtC|aaC|aaG|GGT|ACC|gaT|ccT|gtC|aaC|taC|taT|caA|taT|aaC|
    !    t   t   a   c   t   a   a   t   a   t   t   a   g   a   t ! W.T.
    !              KpnI...
    !
    !  209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    !   P   V   S   S   K   A   N   Y   D   A   Y   N   N   G   K
    625 |caG|gtC|TCG|AGt|aaG|gcT|atg|taC|gaT|gcC|taT|tgg|aaT|ggC|aaC|
    !    t   a   a tca   a   c       t   a   t   a       a   t   a ! W.T.
    !    BsaI....
    !        XhoI....
    !
    !  224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    !   F   R   D   C   A   F   H   S   G   F   N   F   D   P   F
    670 |ttT|CgT|gaT|tgT|gcC|taT|caC|AGC|ggT|ttC|aaC|gaa|gac|CCt|ttT|
    !    C A a   C   a   t   c   t tct   c   t   t   G   T  a   c ! W.T.
    !
    !  239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    !   V   C   E   Y   Q   G   Q   S   S   D   L   P   Q   P   P
    715 |gtC|tgC|gaG|taC|caG|ggT|caG|AGT|AGC|gaT|TcA|ccG|caG|ccA|CCG|
    !    t   t   a   t   a   c   a   tcg tct   c c g   t   a   t   t ! W.T.
    ! DrdI.....
    AgeI.....
    !  Domain 2-------->  Linker 2--------------------->
    !  254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    !   V   N   A   G   G   G   S   G   G   G   S   G   G   G   S
    760 |GTT|AAC|gcG|ggT|ggT|ggT|AGC|ggC|ggA|ggC|AGC|ggC|ggT|ggT|AGC|
    !    c   t   t   c   c   c tct   t   t   t   t tct   t   c   c tct
    ! W.T.
    ! AgeI.....
    !  Hpa...
    !  HincII.
    !
    ! Linker 2---------------------------------------------->
    Domain 3-->
    !  269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    !   E   G   G   G   S   K   G   G   G   S   G   G   G   S   C
    805 |gaA|ggC|ggA|ggT|AGC|gaA|ggA|ggT|ggC|AGC|ggA|ggC|ggT|AGC|ggC|
    !    g   t   t   c tct   g   t   c   t tct   g   t   c tct   t
    ! W.T.
    !
    !  ------------Domain 3------------------->
    !  284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
    !   S   G   D   F   D   Y   K   K   N   A   N   A   N   K   G
    850 |AGT|ggC|gac|ttc|gac|tac|gag|aaa|atg|gct|aat|gcc|aac|aaa|GGC|
    !  tcc   t   t   t   t   t   a   g       a   c   t   t   g   g ! W.T.
    !
    Kas....
    !
    !  299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
    !   A   M   K   N   A   D   K   N   A   L   Q   S   D   A
    895 |GCC|atg|act|gag|aac|gcc|gac|gaG|AAT|GCA|ctg|caa|agt|gat|gCC|
    !    t       c   a   t   c   t   a   c   g   a   g tct   c   t ! W.T.
    !  Kas....                           BsmI....
    Sty...
    !
    !  314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    !   K   G   K   L   D   S   V   A   T   D   Y   C   A   A   I
    940 |AAG|GGt|aag|tta|gac|agc|gTC|GCc|Aca|gac|tat|ggT|GCt|gac|atc|
    !    a   c   a c t tct       t   t   t   c           t     ! W.T.
    !  Sty......           PflFI......
    !
    !  329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    !   D   C   F   G   D   V   S   C   L   A   N   C   N   G
    985 |gac|ggc|ttt|atc|ggc|gat|gtc|agt|ggt|ctg|gct|aac|ggc|aac|gga|
    !    t   t   c   t   t   c   t tcc   c c t       t   t   t   t   t ! W.T.
    !
    !  344 345 346 347 348 349 350 351 352 353
    !   A   T   G   D   F   A   G   S   N   S
    1030 |gcc|acc|gga|gac|ctc|GCA|GGT|tcG|AAT|TCt|
    !    t   t   t   t   t   t   c   t       c ! W.T.
    !                            BstBI...
    !                                EcoRI...
    !                      BspMI..
    !
    !  354 355 356 357 358 359 360 361 362 363
    !   Q   M   A   Q   V   G   D   G   D   N
    1060  cag atg gcC CAG GTT GGA GAT GGg gac aac
    !    a       t   a   c   t   c   t   t   t ! W.T.
    !            XcmI................
    !
    !  364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    !   S   P   L   K   N   N   F   R   Q   Y   L   P   S   L   P   Q
    1090  agt ccg ctt atg cac aac tct aga cag cac ctt ccg cct ctt ccg cag
    !  tca   t t a       t   t   c c t   a   t t a   t   c   c   t   a ! W.T.
    !
    !  380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    !   S   V   K   C   R   P   F   V   F   S   A   G   K   P   Y   E
    1138  agt gtc gag tgc cgt cca ttc gtt ttc tct gcc ggc aag cct tac gag
    !  tcg   t   a   t   c   t   t   c   t agc   t   t   a   a   t   a ! W.T.
    !
    ! Domain 3------------------------------->
    !  396 397 398 399 400 401 402 403 404 405 406 407
    !   F   S   I   D   C   D   K   N   L   F   K
    1186  ttc aGC Atc gac TGC gct cag atc aat ctt ttC CGC
    !    t tct   t   t   t   c   a   a   c t a       t
    !       BstAPI........                       SacII...
    !
    !  transmembrane segment------------->
    !  408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    !   G   V   F   A   F   L   L   Y   V   A   T   F   K   V   V   F
    1222  GGc gtt ctc gct ttc ttg cta tac gcc gct act ttc atg tac gtt ttc
    !    t   c   t   g   t c t t a   t   t   c   c   t       t   a   t ! W.T.
    !
    !  424 425 426 427 428 429 430 431 432 433 434 435
    !   S   T   F   A   N   L   R   N   K   E   S
    1270  aGC ACT TTC GCC AAT ATT TTA Cgc aac aaa gaa agc
    !  tct   g   t   t   c   a c g     t   t   g   g tct ! W.T.
    !                                Intracellular anchor.
    !
    !           .   .
    1306          tag tga tct CCT AGG
    !                      AvrII..
    !
    1321  aag ccc gcc taa tga gcg ggc ttt ttt ttt ct ggt
    !    | Trp terminator                     |
    !
    ! End Feb cassette
    !---------------------------- End of Table -------------------------
  • TABLE 39
    ONs to make deletions in III
    ! ONs for use with NheI
    !
    (ON_G29bot)                         5′-c gTT gAT ATc gcT Agc cTA Tgc-3′
       ! 22
    ! this is the reverse complement of 5′-gca cag gct agc gat atc aac g-3′
    !                                              NheI... scab.........
    (ON_G104top) 5′-g|ata|ggc|tta|gcT|aGC|ccg|gag|aac|gaa|gg-3′
       ! 30
    !               Scab..........NheI... 104 105 106 107 108
    (ON_G236top) 5′-c|ttt|cac|agc|ggt|ttc|GCT|AGC|gac|ccc|ttt|gtc|tgc-3′
       ! 37
    !                                     NheI... 236 237 238 239 240
    (ON_G236tCS) 5′-c|ttt|cac|agc|ggt|tcc|GCT|AGC|gac|cct|ctc|gcc|Agc-
    !                                     NheI... 236 237 238 239 240
                    gag|tac|cag|ggt|c-3′
       ! 50
    ! ONs for use with SphI G CAT Gc
    (ON_X37bot)       5′-gAc TgT cTc ggc Agc ATg cgc cAT Acg ATc ATc gTT g 3′
     ! 37
    !                       N   D   D   R   M   A   H   A
    !(ON_X37bot)=[RC] 5′-c cac gat gat cgt atg gcG CAt Gct gcc gag aca gtc -3′
    !                                             SphI....Scab...........
    (ON_X104top) 5′-g|gtG|ccg|agc|ggc|ttG|CAT|GCa|ccg|gag|ccc|gaa|gg-3′
       ! 36
    !               Scab................SphI....  104 105 106 107 108
    (ON_X236top) 5′-c|ttt|ccc|cgc|ggt|ttG|CaT|gCa|gac|cct|ttt|gtc|tgc-3′
       ! 37
    !                                   Sph....  236 237 238 239 240
    (ON_X236tCS) 5′-c|ttt|ccc|agc|ggt|ttG|CaT|gCa|gac|ccc|ttt|gtc|Agc-
                                         NheI... 236 237 238 239 240
                    gag|tac|cag|ggt|c-3′
       ! 50
  • TABLE 40
    Phage titers and enrichments of selections with
    a DY3F31-based human Fab library
    Output/input
    Input (total cfu) Output (total cfu) ratio
    R1-ox selected on 4.5 × 1012 3.4 × 105 7.5 × 10−8
    phOx-BSA
    R2-Strep selected 9.2 × 1012   3 × 108 3.3 × 10−5
    on Strep-beads
  • TABLE 41
    Frequency of ELISA positives in
    DY3F31-based Fab libraries
    Anti-M13 9E10/RAM- Anti-CK/CL
    HRP HRP Gar-HRP
    P2-ox (with IPTG induction) 18/44 10/44 10/44
    P2-ox (without IPTG) 13/44 ND ND
    R3-strep (with IPTG) 39/44 38/44 36/44
    R3-strep (without IPTG) 33/44 ND ND

Claims (116)

1. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
2. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
3. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
4. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
5. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature; and
(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
6. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a portion of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(b) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
7. In a method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the improvement being characterized in that the expressed peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
8. In a method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the improvement being characterized in that the expressed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide; the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
9. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature; and
(iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
10. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a portion of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(b) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
11. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 3, 4, 5 or 6.
12. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family, the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
13. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the diversity of the family of the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
14. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the diversity of the family, the library being produced using the methods of claims 7, 8, 9 or 10.
15. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of diversity of the family, the peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
16. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the diversity of the family, the peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
17. A library of claims 11, 12 or 13 wherein the genetic packages are selected from the group of phage, phagemid or yeast.
18. A library of claims 17 wherein the genetic packages are selected are phage or phagemid.
19. The methods or libraries according claims 2, 4, 6, 8, 10, 13 or 16 wherein in the restriction endonuclease recognition site is for a Type II-S restriction endonuclease.
20. The methods or libraries according to claims 1 to 19, wherein the nucleic acid is cDNA.
21. The methods or libraries according to any one of claims 1 to 20, wherein the nucleic acids encode at least a portion of an immunoglobulin.
22. The methods or libraries according to claim 21, wherein the immunoglobulin comprises a Fab or single chain Fv.
23. The methods or libraries according to claim 21 or 22, wherein the immunoglobulin comprises at least portion of a heavy chain.
24. The method or libraries according to claim 23, wherein the heavy chain is IgM, IgG, IgA, IgE or IgD.
25. The methods or libraries according to claim 23 or 24, wherein at least a portion of the heavy chain is human.
26. The methods or libraries according to claim 21 or 22, wherein the immunoglobulin comprises at least a portion of FR1.
27. The methods or libraries according to claim 26, wherein at least a portion of the FR1 is human.
28. The methods or libraries according to claim 21 or 22, wherein the immunoglobulin comprises at least a portion of a light chain.
29. The methods or libraries according to claim 28, wherein at least a portion of the light chain is human.
30. The methods or libraries according to any one of claims 1 to 16, wherein the nucleic acid sequences are at least in part derived from patients suffering from at least one autoimmune disease and/or cancer.
31. The methods or libraries according to claim 30, wherein the autoimmune disease is selected from the group comprising lupus, erythematosus, systemic sclerosis, rheumatoid arthritis, antiphosolipid syndrome or vasculitis.
32. The methods or libraries according to claim 30, wherein the nucleic acids are at least in part isolated from the group comprising peripheral blood cells, bone marrow cells spleen cells or lymph node cells.
33. The methods according to claim 5, 6, 9 or 10 further comprising at least one nucleic acid amplification step between one or more of steps (i) and (ii), steps (ii) and (iii) or between steps (iii) and (iv).
34. The method according to claim 33, wherein amplification primers for the amplification step are functionally complementary to a constant region of the nucleic acids.
35. The method according to claim 34, wherein the constant region is genetically constant in the nucleic acids.
36. The method according to claim 35, wherein the genetically constant region is a part of the genome of immunoglobulin genes selected from the group of IgM, IgG, IgA, IgE or IgD.
37. The method according to claim 34, wherein the constant region is exogenous to the nucleic acids.
38. The methods according to claim 33, wherein the amplification step uses geneRACE™.
39. The methods or libraries according to any one of claims 1 to 16, wherein the chosen temperature is between 37° C. and 75° C.
40. The methods or libraries according to claim 39, wherein the chosen temperature is between 45° C. and 75° C.
41. The methods or libraries according to claim 40, wherein the chosen temperature is between 50° C. and 60° C.
42. The methods or libraries according to claim 41, wherein the chosen temperature is between 55° C. and 60° C.
43. The methods or libraries according to claim 1, 3, 5, 7, 9, 12 or 15, wherein the length of the single-stranded oligonucleotide is between 17 and 30 bases.
44. The methods or libraries according to claim 43, wherein the length of the single-stranded oligonucleotide is between 18 and 24 bases.
45. The methods or libraries according to claim 1, 3, 5, 7, 9, 12 or 15, wherein the restriction endonuclease is selected from the group comprising MaeIII, Tsp45I, HphI, BsaJI, AluI, BlpI, DdeI, BglII, MslI, BsiEI, EaeI, EagI, HaeIII, Bst4CI, HpyCH4III, HinfI, MlyI, PleI, MnlI, HpyCH4V, BsmAI, BpmI, XmnI, or SacI.
46. The methods or libraries according to claim 45, wherein the restriction endonuclease is selected from the group comprising Bst4CI, TaaI, HpyCH4III, BlpI, HpyCH4V or MslI.
47. The methods or libraries according to claim 2, 4, 6, 8, 10, 13 or 16, wherein the length of the single-stranded region of the partially double-stranded oligonucleotide is between 14 and 22 bases.
48. The methods or libraries according to claim 47, wherein the length of the single-stranded region of the partially double-stranded oligonucleotide is between 14 and 17 bases.
49. The methods or libraries according to claim 47, wherein the length of the single-stranded region of the oligonucleotide is between 18 and 20 bases.
50. The methods or libraries according to claim 2, 4, 6, 8, 10, 13 or 16, wherein the length of the double-stranded region of the partially double-stranded oligonucleotide is between 10 and 14 base pairs formed by a stem and its palindrome.
51. The methods or libraries according to claim 50 wherein, the partially double-stranded oligonucleotide comprises a loop of 3 to 8 bases between the stem and the palindrome.
52. The methods or libraries according to claim 19 wherein the Type II-S restriction endonuclease is selected from the group comprising AarICAC, AceIII, Bbr7I, BbvI, BbvII, Bce83I, BceAI, BcefI, BciVI, BfiI, BinI, BscAI, BseRI, BsmFI, BspMI, EciI, Eco57I, FauI, FokI, GsuI, HgaI, HphI, MboII, MlyI, MmeI, MnlI, PleI, RleAI, SfaNI, SspD5I, Sth132I, StsI, TaqII, Tth111II, or UbaPI.
53. The methods or libraries according to claim 52, wherein the Type II-S restriction endonuclease is FokI.
54. A method for preparing single-stranded nucleic acids, the method comprising the steps of:
(i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences; and
(ii) cleaving the partially double-stranded oligonucleotide sequence solely at the restriction endonuclease recognition site contained within the double-stranded region of the partially double-stranded oligonucleotide.
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
55. The method according to claim 54, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 2 and 15 bases.
56. The method according to claim 55, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 7 and 10 bases.
57. The method according to claim 54, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 12 and 100 base pairs.
58. The method according to claim 57, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 20 and 100 base pairs.
59. A method for preparing a library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family comprising the steps:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;
(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for display and containing a restriction endonuclease recognition site 5′ of those sequences that is different from the restriction site used in step (iii); and
(v) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(vi) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
60. A method for preparing a library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the family comprising the steps:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;
(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequence necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5′ of those sequences that is different from the restriction site used in step (iii); and
(v) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(vi) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
61. The methods according to claim 59 or 60, further comprising at least one nucleic acid amplification step between one or more of steps (i) and (ii), steps (ii) and (iii), steps (iii) and (iv) and steps (iv) and (v).
62. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 59 or 61.
63. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family, the library being produced using the methods of claims 60 or 61.
64. The methods and libraries according to any one of claim 59 to 63, wherein the members of the library encode immunoglobulins.
65. The method and libraries according to claim 64, wherein the double-stranded region of the oligonucleotide encodes at least a part of a framework sequence of an immunoglobulin.
66. The method and libraries according to claim 65, wherein the framework sequence comprises framework 1 of an antibody.
67. The method and libraries according to claim 66, wherein the framework sequence comprises framework 1 of a variable domain of a light chain.
68. The method and libraries according to claim 66, wherein the framework sequence comprises framework 1 of a variable domain of a heavy chain.
69. The method and libraries according to claim 65, wherein the framework sequence comprises framework 3 of an antibody.
70. The method and libraries according to claim 69, wherein the framework sequence comprises framework 3 of a variable domain of a light chain.
71. The method and libraries according to claim 69, wherein the framework sequence is framework 3 of a variable domain of a heavy chain.
72. The method and libraries according to claim 66, wherein the 5′ primer is complementary to a region outside framework 1.
73. The method according to claim 61, wherein amplification primers for the amplification step are functionally complementary to a constant region of the nucleic acids.
74. The method according to claim 73, wherein the constant region is genetically constant in the nucleic acids.
75. The method according to claim 74, wherein the genetically constant region is part of the genome of immunoglobulin genes selected from the group of IgM, IgG, IgA, IgE or IgD.
76. The method according to claim 73, wherein the constant region is exogenous to the nucleic acids.
77. The methods according to claim 61, wherein the amplification step uses geneRACE™.
78. A vector comprising:
(i) a DNA sequence encoding an antibody variable region linked to a version of PIII anchor which does not mediate infection of phage particles; and
(ii) wild-type gene III.
79. The vector according to claim 78, wherein the DNA encodes a Fab.
80. The vector according to claim 78, wherein the DNA encodes heavy chain VHCH1.
81. The vector according to claim 80, wherein the heavy chain VHCH1 is linked to trpIII.
82. The vector according to claim 78, wherein the DNA encodes light chain VLCL.
83. The vector according to claim 82, wherein the light chain VLCL is linked to trpIII.
84. The vector according to claim 78, wherein the DNA encodes scFv.
85. The vector according to claim 84, wherein the scFv is VL-VH.
86. The vector according to claim 84, wherein the scFv is VH-VL.
87. The vector according to claim 78, wherein the DNA sequence encoding an antibody variable region linked to a version of PIII anchor further comprises an inducible promoter.
88. The vector according to claim 87, wherein the inducible promoter regulates expression of the DNA sequence encoding an antibody variable region linked to a version of PIII anchor.
89. The vector according to claim 78, wherein the DNA sequence encoding an antibody variable region linked to a version of PIII anchor further comprises an amber stop codon.
90. The vector according to claim 89, wherein the DNA encoding the amber stop codon is located between the antibody variable region and the version of pIII.
91. The vector according to any one of claims 78 to 90 wherein the vector is phage or phagemid.
92. A method for producing a population of immunoglobulin genes that comprises steps of:
(i) introducing synthetic diversity into at least one of CDR1 or CDR2 of those genes; and
(ii) combining the diversity from step (i) with CDR3 diversity captured from B cells.
93. The method according to claim 92, wherein synthetic diversity is introduced into both CDR1 and CDR2.
94. A method for producing a library of immunoglobulin genes that comprises
(i) introducing synthetic diversity into at least one of CDR1 or CDR2 of those genes; and
(ii) combining the diversity from step (i) with CDR3 diversity captured from B cells.
95. The method according to claim 94, wherein synthetic diversity is introduced into both CDR1 and CDR2.
96. A library of immunoglobulins that comprise members with at least one variable domain in which at least one of CDR1 and CDR2 contain synthetic diversity and CDR3 diversity is captured from B cells.
97. A library according to claim 96, where both CDR1 and CDR2 contain synthetic diversity.
98. The vector according to claim 78, wherein the version of PIII anchor is characterized by a wild type amino acid sequence and is encoded by a non-wild type degenerate DNA sequence to a very high extent.
99. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5′ terminal and
(ii) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
100. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a portion of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5′ terminal region; and
(b) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
101. In a method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the improvement being characterized in that the expressed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5′ terminal region; and
(ii) cleaving the nucleic acid solely at the restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.
102. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a portion of the diversity of the family, the method comprising the steps of:
(i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5′ terminal region; and
(b) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the nucleotide; or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
103. A method for preparing a library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the family comprising the steps:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;
(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the 5′ terminal region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for display; and
(v) cleaving the nucleic acid solely at a restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide, the site being different from that used in step (iii) or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(vi) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
104. A method for preparing a library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the family comprising the steps:
(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
(ii) rendering the nucleic acids single-stranded;
(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
(a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;
(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the 5′ terminal region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequence necessary to return the sequences that remain after cleavage into proper and original reading frame for expression; and
(v) cleaving the nucleic acid solely at a restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide, the site being different from that used in step (iii) or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;
the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and
(vi) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
105. A library of immunoglobins comprising members having at least one variable domain in which one or both of the CDR 1 and CDR 2 have synthetic diversity and the CDR 3 has diversity captured from B-Cells.
106. The library according to claim 104, wherein a first variable domain has synthetic diversity in CDR 1 and CDR 2 and has diversity in CDR 3 captured from B-cells and a second variable domain has diversity captured from B-cells.
107. The library according to claim 104 or 105, wherein the variable domain is selected from the group of VH or VL.
108. A method for cleaving a nucleic acid sequence at a desired location, the method comprising the steps of:
(i) contacting a single-stranded nucleic acid sequence with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the 5′ terminal region of the nucleic acid sequence, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequence in the single-stranded nucleic acid sequence into proper and original reading frame for expression; and
(ii) cleaving the partially double-stranded oligonucleotide-single-stranded nucleic acid combination solely at a restriction endonuclease cleavage site contained within the double-stranded oligonucleotide or amplifying the combination using a primer at least in part functionally complementary to at least part of the double-stranded region of the oligonucleotide, the primer introducing during amplification an endonuclease cleavage site and cleaving the amplified sequence solely at the site.
109. The method according to claim 108, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 2 and 15 bases.
110. The method according to claim 109, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 7 and 10 bases.
111. The method according to claim 108, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 12 and 100 base pairs.
112. The method according to claim 111, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 20 and 100 base pairs.
113. The methods according to any one of claims 99 to 104 and 108, further comprising at least one nucleic acid amplification step between one or more of steps (i) and (ii), steps (ii) and (iii), steps (iii) and (iv) and steps (iv) and (v).
114. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 99, 100, 103 or 113.
115. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family, the library being produced using the methods of claims 101, 102, 104 or 113.
116. The methods and libraries according to any one of claims 99 to 104 or 113, wherein the members of the library encode immunoglobulins.
US10/045,674 2000-04-17 2001-10-25 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries Expired - Lifetime US8288322B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
US10/045,674 US8288322B2 (en) 2000-04-17 2001-10-25 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
ES02762148.1T ES2375952T5 (en) 2001-04-17 2002-04-17 New methods for constructing libraries comprising presented and / or expressed members of a diverse family of peptides, polypeptides or proteins and new libraries
CA2747868A CA2747868A1 (en) 2001-04-17 2002-04-17 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
PCT/US2002/012405 WO2002083872A2 (en) 2001-04-17 2002-04-17 Methods and products of cleaving ssdna using oligonucleotides to form restriction sites
AU2002307422A AU2002307422B2 (en) 2001-04-17 2002-04-17 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
EP02762148.1A EP1578903B2 (en) 2001-04-17 2002-04-17 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
CA2458462A CA2458462C (en) 2001-04-17 2002-04-17 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
PT02762148T PT1578903E (en) 2001-04-17 2002-04-17 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
DK02762148.1T DK1578903T4 (en) 2001-04-17 2002-04-17 New methods of preparing libraries comprising displayed and / or expressed members of various families of peptides, polypeptides or proteins and novel libraries
AT02762148T ATE534735T2 (en) 2001-04-17 2002-04-17 NEW METHODS FOR BUILDING PRESENTED AND/OR EXPRESSED MEMBERS OF AN EXTENSIVE FAMILY OF PEPTIDES, POLYPEPTIDES OR PROTEINS COMPREHENSIVE LIBRARIES AND THE NEW LIBRARIES
AU2009200092A AU2009200092B2 (en) 2001-04-17 2009-01-09 Novel Methods of Constructing Libraries Comprising Displayed and/or Expressed Members of a Diverse Family of Peptides, Polypeptides or Proteins and the Novel Libraries
CY20121100019T CY1112220T1 (en) 2001-04-17 2012-01-05 NEW METHODS OF CREATING LIBRARIES, CONTAINING PRESENTED AND / OR EXPRESSED MEMBERS OF A VARIOUS HOUSEHOLD HOUSEHOLD
US13/464,047 US8901045B2 (en) 2000-04-17 2012-05-04 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US14/557,171 US9683028B2 (en) 2000-04-17 2014-12-01 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US15/612,938 US10829541B2 (en) 2000-04-17 2017-06-02 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US16/984,655 US20210087256A1 (en) 2000-04-17 2020-08-04 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19806900P 2000-04-17 2000-04-17
US09/837,306 US20040029113A1 (en) 2000-04-17 2001-04-17 Novel methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
US51601A 2001-10-24 2001-10-24
US10/045,674 US8288322B2 (en) 2000-04-17 2001-10-25 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/837,306 Continuation-In-Part US20040029113A1 (en) 2000-04-17 2001-04-17 Novel methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
US51601A Continuation-In-Part 2000-04-17 2001-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/464,047 Continuation US8901045B2 (en) 2000-04-17 2012-05-04 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries

Publications (3)

Publication Number Publication Date
US20030232333A1 US20030232333A1 (en) 2003-12-18
US20090162835A9 true US20090162835A9 (en) 2009-06-25
US8288322B2 US8288322B2 (en) 2012-10-16

Family

ID=32475265

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/045,674 Expired - Lifetime US8288322B2 (en) 2000-04-17 2001-10-25 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US13/464,047 Expired - Fee Related US8901045B2 (en) 2000-04-17 2012-05-04 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US14/557,171 Expired - Lifetime US9683028B2 (en) 2000-04-17 2014-12-01 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US15/612,938 Expired - Lifetime US10829541B2 (en) 2000-04-17 2017-06-02 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US16/984,655 Abandoned US20210087256A1 (en) 2000-04-17 2020-08-04 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries

Family Applications After (4)

Application Number Title Priority Date Filing Date
US13/464,047 Expired - Fee Related US8901045B2 (en) 2000-04-17 2012-05-04 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US14/557,171 Expired - Lifetime US9683028B2 (en) 2000-04-17 2014-12-01 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US15/612,938 Expired - Lifetime US10829541B2 (en) 2000-04-17 2017-06-02 Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US16/984,655 Abandoned US20210087256A1 (en) 2000-04-17 2020-08-04 Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries

Country Status (5)

Country Link
US (5) US8288322B2 (en)
EP (1) EP1578903B2 (en)
AU (2) AU2002307422B2 (en)
CA (1) CA2458462C (en)
WO (1) WO2002083872A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696251B1 (en) * 1996-05-31 2004-02-24 Board Of Trustees Of The University Of Illinois Yeast cell surface display of proteins and uses thereof
US6759243B2 (en) * 1998-01-20 2004-07-06 Board Of Trustees Of The University Of Illinois High affinity TCR proteins and methods
SI1488806T1 (en) 1999-06-01 2016-02-29 Biogen Ma Inc. A blocking monoclonal antibody to VLA-1 and its use for the treatment of vascular disorders
US8288322B2 (en) 2000-04-17 2012-10-16 Dyax Corp. Methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
CA2406236C (en) * 2000-04-17 2013-02-19 Dyax Corp. Novel methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
DE60144063D1 (en) 2000-12-18 2011-03-31 Dyax Corp DIRECTED LIBRARIES GENETICALLY PACKAGED
AU2002258778C1 (en) 2001-04-13 2008-12-04 Biogen Ma Inc. Antibodies to VLA-1
US7084257B2 (en) 2001-10-05 2006-08-01 Amgen Inc. Fully human antibody Fab fragments with human interferon-gamma neutralizing activity
WO2003035842A2 (en) * 2001-10-24 2003-05-01 Dyax Corporation Hybridization control of sequence variation
US20040067532A1 (en) 2002-08-12 2004-04-08 Genetastix Corporation High throughput generation and affinity maturation of humanized antibody
CA2478458A1 (en) 2004-08-20 2006-02-20 Michael Panzara Treatment of pediatric multiple sclerosis
CN103169965A (en) 2004-11-19 2013-06-26 比奥根艾迪克Ma公司 Treatment for multiple sclerosis
AU2005311635B2 (en) * 2004-12-03 2012-02-02 Biogen Ma Inc. Delaying or preventing onset of multiple sclerosis
EP2529619B1 (en) 2005-02-17 2015-09-23 Biogen MA Inc. Treating neurological disorders
US8206705B2 (en) 2005-03-02 2012-06-26 Biogen Idec Ma Inc. KIM-1 antibodies for treatment of TH2-mediated conditions
KR20140068234A (en) 2005-03-31 2014-06-05 더 제너럴 하스피탈 코포레이션 Monitoring and modulating hgf/hgfr activity
EP2645106B1 (en) 2005-04-04 2017-06-14 Biogen MA Inc. Methods for evaluating an immune response to a therapeutic agent
EP1984522B1 (en) 2006-01-18 2010-08-11 The General Hospital Corporation Methods of increasing lymphatic function
EP2034830B1 (en) 2006-05-25 2014-09-03 Biogen Idec MA Inc. Anti-vla-1 antibody for treating stroke
EP2056709A4 (en) 2006-08-11 2013-05-01 Univ New Jersey Med Dual-sensitizer-containing luminescent compounds, conjugates, and uses thereof
US8288110B2 (en) * 2006-12-04 2012-10-16 Perkinelmer Health Sciences, Inc. Biomarkers for detecting cancer
EP2170390B1 (en) 2007-06-14 2018-11-07 Biogen MA Inc. Natalizumab antibody formulations
US7749708B2 (en) * 2007-09-12 2010-07-06 Transgenomic, Inc. Method for identifying the sequence of one or more variant nucleotides in a nucleic acid molecule
US8877688B2 (en) 2007-09-14 2014-11-04 Adimab, Llc Rationally designed, synthetic antibody libraries and uses therefor
BRPI0816785A2 (en) * 2007-09-14 2017-05-02 Adimab Inc rationally designed synthetic antibody libraries, and uses thereof
ES2883176T3 (en) 2007-11-08 2021-12-07 Prec Biologics Inc Recombinant monoclonal antibodies and corresponding antigens for colon and pancreatic cancers
EP2098536A1 (en) 2008-03-05 2009-09-09 4-Antibody AG Isolation and identification of antigen- or ligand-specific binding proteins
US9873957B2 (en) 2008-03-13 2018-01-23 Dyax Corp. Libraries of genetic packages comprising novel HC CDR3 designs
CA3049612C (en) 2008-04-24 2023-01-10 Dyax Corp. Libraries of genetic packages comprising novel hc cdr1, cdr2, and cdr3 and novel lc cdr1, cdr2, and cdr3 designs
EP2300034B1 (en) 2008-06-02 2018-08-08 Dana-Farber Cancer Institute, Inc. Pharmaceutical composition for use in treating or preventing multiple myeloma or waldenstrom's macroglobulinemia
EP2419137A4 (en) * 2009-04-17 2013-01-09 Biogen Idec Inc Compositions and methods to treat acute myelogenous leukemia
BRPI1011195B1 (en) * 2009-05-20 2020-10-13 Novimmune S.A methods to produce a collection of nucleic acids
US20110082054A1 (en) * 2009-09-14 2011-04-07 Dyax Corp. Libraries of genetic packages comprising novel hc cdr3 designs
ES2666372T3 (en) 2009-10-11 2018-05-04 Biogen Ma Inc. Trials related to anti-VLA-4
EP2513312B1 (en) * 2009-12-17 2015-03-18 NovImmune SA Synthetic polypeptide libraries and methods for generating naturally diversified polypeptide variants
US9221759B2 (en) 2010-01-13 2015-12-29 Rutgers, The State University Of New Jersey Fluorophore chelated lanthanide luminescent probes with improved quantum efficiency
EP3202789B1 (en) 2010-04-16 2020-05-06 Biogen MA Inc. Anti-vla-4 antibodies
EP4219805A1 (en) 2010-07-16 2023-08-02 Adimab, LLC Antibody libraries
WO2012027494A1 (en) 2010-08-24 2012-03-01 Regents Of The University Of Minnesota Bispecific targeting reagents
EP2614084A4 (en) 2010-09-09 2014-02-19 Purdue Research Foundation Anti-human folate receptor beta antibodies and methods of use
CA3182320A1 (en) 2010-09-23 2012-03-29 Precision Biologics, Inc. Colon and pancreas cancer peptidomimetics
NZ629204A (en) 2012-02-16 2016-09-30 Santarus Inc Anti-vla1 (cd49a) antibody pharmaceutical compositions
SI2828284T1 (en) 2012-03-20 2019-10-30 Biogen Ma Inc Jcv neutralizing antibodies
WO2018140510A1 (en) 2017-01-25 2018-08-02 Biogen Ma Inc. Compositions and methods for treatment of stroke and other cns disorders
AU2018301393A1 (en) 2017-07-11 2020-02-06 Compass Therapeutics Llc Agonist antibodies that bind human CD137 and uses thereof
US11718679B2 (en) 2017-10-31 2023-08-08 Compass Therapeutics Llc CD137 antibodies and PD-1 antagonists and uses thereof
WO2019100052A2 (en) 2017-11-20 2019-05-23 Compass Therapeutics Llc Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
EP3800999A4 (en) 2018-06-04 2022-06-01 Biogen MA Inc. Anti-vla-4 antibodies having reduced effector function
CA3106115A1 (en) 2018-07-08 2020-01-16 Specifica Inc. Antibody libraries with maximized antibody developability characteristics
KR20210107628A (en) 2018-11-13 2021-09-01 콤파스 테라퓨틱스 엘엘씨 Multispecific binding constructs for checkpoint molecules and uses thereof

Citations (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5118605A (en) * 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5565332A (en) * 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US5688666A (en) * 1988-10-28 1997-11-18 Genentech, Inc. Growth hormone variants with altered binding properties
US5798208A (en) * 1990-04-05 1998-08-25 Roberto Crea Walk-through mutagenesis
US5846765A (en) * 1990-12-03 1998-12-08 Genentech, Inc. Identification of novel substrates
US5858671A (en) * 1996-11-01 1999-01-12 The University Of Iowa Research Foundation Iterative and regenerative DNA sequencing method
US5962272A (en) * 1996-01-03 1999-10-05 Clontech Laboratories, Inc. Methods and compositions for full-length cDNA Cloning using a template-switching oligonucleotide
US5969108A (en) * 1990-07-10 1999-10-19 Medical Research Council Methods for producing members of specific binding pairs
US6040136A (en) * 1990-12-03 2000-03-21 Genentech, Inc. Enrichment method for variant proteins with altered binding properties
US6057098A (en) * 1997-04-04 2000-05-02 Biosite Diagnostics, Inc. Polyvalent display libraries
US6140471A (en) * 1992-03-24 2000-10-31 Cambridge Antibody Technology, Ltd. Methods for producing members of specific binding pairs
US6172197B1 (en) * 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US6180336B1 (en) * 1996-07-08 2001-01-30 Cambridge Antibody Technology Limited Labelling and selection of molecules
US6225447B1 (en) * 1991-05-15 2001-05-01 Cambridge Antibody Technology Ltd. Methods for producing members of specific binding pairs
US6248516B1 (en) * 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6291650B1 (en) * 1991-05-15 2001-09-18 Cambridge Antibody Technology, Ltd. Methods for producing members of specific binding pairs
US6291161B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
US6291160B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6300064B1 (en) * 1995-08-18 2001-10-09 Morphosys Ag Protein/(poly)peptide libraries
US6319690B1 (en) * 1990-02-01 2001-11-20 Dade Behring Marburg Gmbh Preparation and use of gene banks of human antibodies (“human-antibody libraries”)
US6420113B1 (en) * 1997-04-04 2002-07-16 Biosite Diagnostics, Inc. Chimeric polyclonal antibodies
US6492107B1 (en) * 1986-11-20 2002-12-10 Stuart Kauffman Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US6492160B1 (en) * 1991-05-15 2002-12-10 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6492123B1 (en) * 1992-12-04 2002-12-10 Medical Research Council Multivalent and multispecific binding proteins and their use
US6521404B1 (en) * 1991-12-02 2003-02-18 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6531580B1 (en) * 1999-06-24 2003-03-11 Ixsys, Inc. Anti-αvβ3 recombinant human antibodies and nucleic acids encoding same
US6569641B1 (en) * 1985-03-30 2003-05-27 Stuart Kauffman Process for obtaining DNA, RNA, peptides, polypeptides, or protein by recombinant DNA technique
US6589527B1 (en) * 1993-09-22 2003-07-08 Medical Reseach Council Retargetting antibodies
US20030148372A1 (en) * 1997-10-20 2003-08-07 Ian Tomlinson Method to screen phage display libraries with different ligands
US20030232333A1 (en) * 2000-04-17 2003-12-18 Dyax Corp. Novel methods of constructing librabries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel librabries
US6680192B1 (en) * 1989-05-16 2004-01-20 Scripps Research Institute Method for producing polymers having a preselected activity
US6696248B1 (en) * 1995-08-18 2004-02-24 Morphosys Ag Protein/(poly)peptide libraries
US20040038921A1 (en) * 2001-10-26 2004-02-26 Ribopharma Ag Composition and method for inhibiting expression of a target gene
US6753136B2 (en) * 1999-07-20 2004-06-22 Morphosys Ag Methods for displaying (poly) peptides/proteins on bacteriophage particles via disulfide bonds
US20040157214A1 (en) * 1990-07-10 2004-08-12 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6969586B1 (en) * 1989-05-16 2005-11-29 Scripps Research Institute Method for tapping the immunological repertoire
US7063943B1 (en) * 1990-07-10 2006-06-20 Cambridge Antibody Technology Methods for producing members of specific binding pairs
US20060166252A1 (en) * 2000-04-17 2006-07-27 Ladner Robert C Novel methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
US20060257937A1 (en) * 2000-12-18 2006-11-16 Dyax Corp., A Delaware Corporation Focused libraries of genetic packages
US20070031879A1 (en) * 2000-06-19 2007-02-08 Ley Arthur C Novel enterokinase cleavage sequences

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618920A (en) 1985-11-01 1997-04-08 Xoma Corporation Modular assembly of antibody genes, antibodies prepared thereby and use
DE4002897A1 (en) 1990-02-01 1991-08-08 Behringwerke Ag Synthetic human antibody library
WO1991016435A1 (en) 1990-04-18 1991-10-31 Gist-Brocades N.V. Mutated beta-lactam acylase genes
IE921169A1 (en) 1991-04-10 1992-10-21 Scripps Research Inst Heterodimeric receptor libraries using phagemids
US5962255A (en) 1992-03-24 1999-10-05 Cambridge Antibody Technology Limited Methods for producing recombinant vectors
US5858657A (en) 1992-05-15 1999-01-12 Medical Research Council Methods for producing members of specific binding pairs
JPH06509473A (en) 1991-08-10 1994-10-27 メディカル・リサーチ・カウンシル Processing of cell populations
US5872215A (en) 1991-12-02 1999-02-16 Medical Research Council Specific binding members, materials and methods
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
ATE233814T1 (en) * 1992-09-30 2003-03-15 Scripps Research Inst HUMAN NEUTRALIZING MONOCLONAL ANTIBODY AGAINST THE VIRUS THAT CAUSES HUMAN IMMUNE DEFICIENCY
DK0672142T3 (en) 1992-12-04 2001-06-18 Medical Res Council Multivalent and multi-specific binding proteins as well as their preparation and use
US5422253A (en) 1992-12-07 1995-06-06 Wisconsin Alumni Research Foundation Method of site specific nucleic acid cleavage
AU674568B2 (en) 1993-02-04 1997-01-02 Anaphore, Inc. Improved method for the refolding of proteins
US5714320A (en) 1993-04-15 1998-02-03 University Of Rochester Rolling circle synthesis of oligonucleotides and amplification of select randomized circular oligonucleotides
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
US5874214A (en) 1995-04-25 1999-02-23 Irori Remotely programmable matrices with memories
US5702892A (en) 1995-05-09 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Phage-display of immunoglobulin heavy chain libraries
US5972693A (en) 1995-10-24 1999-10-26 Curagen Corporation Apparatus for identifying, classifying, or quantifying DNA sequences in a sample without sequencing
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
FR2741892B1 (en) 1995-12-04 1998-02-13 Pasteur Merieux Serums Vacc METHOD FOR PREPARING A MULTI-COMBINED BANK OF ANTIBODY GENE EXPRESSION VECTORS, BANK AND COLICLONAL ANTIBODY EXPRESSION SYSTEMS
DE19624562A1 (en) 1996-06-20 1998-01-02 Thomas Dr Koehler Determination of the concentration ratio of two different nucleic acids
PL186019B1 (en) 1996-06-24 2003-09-30 Zlb Bioplasma Ag Polypeptides capable of forming structures bonding an antigen exhibiting antigenic specificity in respect to antigenes rh d, dna sequences coding such polypeptides and method of producing and using them
WO1998031700A1 (en) 1997-01-21 1998-07-23 The General Hospital Corporation Selection of proteins using rna-protein fusions
EP1007967A2 (en) 1997-08-04 2000-06-14 Ixsys, Incorporated Methods for identifying ligand specific binding molecules
WO1999051773A1 (en) 1998-04-03 1999-10-14 Phylos, Inc. Addressable protein arrays
US7244826B1 (en) 1998-04-24 2007-07-17 The Regents Of The University Of California Internalizing ERB2 antibodies
AU6246599A (en) 1998-09-25 2000-04-17 G.D. Searle & Co. Method of producing permuteins by scanning permutagenesis
US6238904B1 (en) 1999-09-23 2001-05-29 New England Biolabs, Inc. Type II restriction endonuclease, HpyCH4III, obtainable from Helicobacter pylori CH4 and a process for producing the same
GB9928787D0 (en) 1999-12-03 2000-02-02 Medical Res Council Direct screening method
US20040253242A1 (en) 2000-12-05 2004-12-16 Bowdish Katherine S. Rationally designed antibodies
EP2093286B1 (en) 2001-10-01 2013-02-27 Dyax Corporation Multi-chain eukaryotic display vectors and uses thereof
US7244592B2 (en) 2002-03-07 2007-07-17 Dyax Corp. Ligand screening and discovery
AU2003239966B9 (en) 2002-06-03 2010-08-26 Genentech, Inc. Synthetic antibody phage libraries
AU2005306502B2 (en) 2004-11-16 2012-11-15 Humanigen, Inc. Immunoglobulin variable region cassette exchange
WO2006084050A2 (en) 2005-02-01 2006-08-10 Dyax Corp. Libraries and methods for isolating antibodies
KR20080080653A (en) 2005-12-20 2008-09-04 모르포시스 아게 Novel collection of hcdr3 regions and uses therefor
BRPI0816785A2 (en) 2007-09-14 2017-05-02 Adimab Inc rationally designed synthetic antibody libraries, and uses thereof
CA2715297A1 (en) 2008-02-13 2009-08-20 Dyax Corp. Improved methods for producing specific binding pairs
US9873957B2 (en) 2008-03-13 2018-01-23 Dyax Corp. Libraries of genetic packages comprising novel HC CDR3 designs
CA3049612C (en) 2008-04-24 2023-01-10 Dyax Corp. Libraries of genetic packages comprising novel hc cdr1, cdr2, and cdr3 and novel lc cdr1, cdr2, and cdr3 designs

Patent Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380833A (en) * 1984-10-16 1995-01-10 Chiron Corporation Polynucleotide reagents containing selectable cleavage sites
US5118605A (en) * 1984-10-16 1992-06-02 Chiron Corporation Polynucleotide determination with selectable cleavage sites
US6569641B1 (en) * 1985-03-30 2003-05-27 Stuart Kauffman Process for obtaining DNA, RNA, peptides, polypeptides, or protein by recombinant DNA technique
US6492107B1 (en) * 1986-11-20 2002-12-10 Stuart Kauffman Process for obtaining DNA, RNA, peptides, polypeptides, or protein, by recombinant DNA technique
US5223409A (en) * 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5688666A (en) * 1988-10-28 1997-11-18 Genentech, Inc. Growth hormone variants with altered binding properties
US20040110941A2 (en) * 1988-11-11 2004-06-10 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20030130496A1 (en) * 1988-11-11 2003-07-10 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US6248516B1 (en) * 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6545142B1 (en) * 1988-11-11 2003-04-08 Medical Research Council Of The United Kingdom Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20030114659A1 (en) * 1988-11-11 2003-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands, methods for their production, and use of said ligands and receptors
US20060019260A1 (en) * 1989-05-16 2006-01-26 Lerner Richard A Method for tapping the immunological repertoire
US6969586B1 (en) * 1989-05-16 2005-11-29 Scripps Research Institute Method for tapping the immunological repertoire
US7189841B2 (en) * 1989-05-16 2007-03-13 Scripps Research Institute Method for tapping the immunological repertoire
US6680192B1 (en) * 1989-05-16 2004-01-20 Scripps Research Institute Method for producing polymers having a preselected activity
US6291158B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertoire
US6291159B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6291161B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for tapping the immunological repertiore
US6291160B1 (en) * 1989-05-16 2001-09-18 Scripps Research Institute Method for producing polymers having a preselected activity
US6319690B1 (en) * 1990-02-01 2001-11-20 Dade Behring Marburg Gmbh Preparation and use of gene banks of human antibodies (“human-antibody libraries”)
US5798208A (en) * 1990-04-05 1998-08-25 Roberto Crea Walk-through mutagenesis
US7063943B1 (en) * 1990-07-10 2006-06-20 Cambridge Antibody Technology Methods for producing members of specific binding pairs
US20040157215A1 (en) * 1990-07-10 2004-08-12 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US20040157214A1 (en) * 1990-07-10 2004-08-12 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6806079B1 (en) * 1990-07-10 2004-10-19 Medical Research Council Methods for producing members of specific binding pairs
US6916605B1 (en) * 1990-07-10 2005-07-12 Medical Research Council Methods for producing members of specific binding pairs
US5969108A (en) * 1990-07-10 1999-10-19 Medical Research Council Methods for producing members of specific binding pairs
US6040136A (en) * 1990-12-03 2000-03-21 Genentech, Inc. Enrichment method for variant proteins with altered binding properties
US5846765A (en) * 1990-12-03 1998-12-08 Genentech, Inc. Identification of novel substrates
US6291650B1 (en) * 1991-05-15 2001-09-18 Cambridge Antibody Technology, Ltd. Methods for producing members of specific binding pairs
US6225447B1 (en) * 1991-05-15 2001-05-01 Cambridge Antibody Technology Ltd. Methods for producing members of specific binding pairs
US6492160B1 (en) * 1991-05-15 2002-12-10 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
US6172197B1 (en) * 1991-07-10 2001-01-09 Medical Research Council Methods for producing members of specific binding pairs
US5565332A (en) * 1991-09-23 1996-10-15 Medical Research Council Production of chimeric antibodies - a combinatorial approach
US6544731B1 (en) * 1991-12-02 2003-04-08 Medical Research Council Production of anti-self antibodies from antibody segment repertories and displayed on phage
US20030190674A1 (en) * 1991-12-02 2003-10-09 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6555313B1 (en) * 1991-12-02 2003-04-29 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6521404B1 (en) * 1991-12-02 2003-02-18 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6582915B1 (en) * 1991-12-02 2003-06-24 Medical Research Council Production of anti-self bodies from antibody segment repertories and displayed on phage
US6593081B1 (en) * 1991-12-02 2003-07-15 Medical Research Council Production of anti-self antibodies from antibody segment repertoires and displayed on phage
US6140471A (en) * 1992-03-24 2000-10-31 Cambridge Antibody Technology, Ltd. Methods for producing members of specific binding pairs
US6492123B1 (en) * 1992-12-04 2002-12-10 Medical Research Council Multivalent and multispecific binding proteins and their use
US6589527B1 (en) * 1993-09-22 2003-07-08 Medical Reseach Council Retargetting antibodies
US6706484B1 (en) * 1995-08-18 2004-03-16 Morphosys Ag Protein/(poly)peptide libraries
US6300064B1 (en) * 1995-08-18 2001-10-09 Morphosys Ag Protein/(poly)peptide libraries
US6828422B1 (en) * 1995-08-18 2004-12-07 Morphosys Ag Protein/(poly)peptide libraries
US6696248B1 (en) * 1995-08-18 2004-02-24 Morphosys Ag Protein/(poly)peptide libraries
US20060003334A1 (en) * 1995-08-18 2006-01-05 Morphosys Ag Protein (poly)peptides libraries
US5962272A (en) * 1996-01-03 1999-10-05 Clontech Laboratories, Inc. Methods and compositions for full-length cDNA Cloning using a template-switching oligonucleotide
US5962271A (en) * 1996-01-03 1999-10-05 Cloutech Laboratories, Inc. Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end
US6489123B2 (en) * 1996-07-08 2002-12-03 Cambridge Antibody Technology Limited Labelling and selection of molecules
US6342588B1 (en) * 1996-07-08 2002-01-29 Cambridge Antibody Technology Limited Labelling and selection of molecules
US20020004215A1 (en) * 1996-07-08 2002-01-10 Cambridge Antibody Technology, Ltd. Labelling and selection of molecules
US6180336B1 (en) * 1996-07-08 2001-01-30 Cambridge Antibody Technology Limited Labelling and selection of molecules
US5858671A (en) * 1996-11-01 1999-01-12 The University Of Iowa Research Foundation Iterative and regenerative DNA sequencing method
US6057098A (en) * 1997-04-04 2000-05-02 Biosite Diagnostics, Inc. Polyvalent display libraries
US6420113B1 (en) * 1997-04-04 2002-07-16 Biosite Diagnostics, Inc. Chimeric polyclonal antibodies
US20030148372A1 (en) * 1997-10-20 2003-08-07 Ian Tomlinson Method to screen phage display libraries with different ligands
US6846634B1 (en) * 1997-10-20 2005-01-25 Domantis Limited Method to screen phage display libraries with different ligands
US20050202512A1 (en) * 1997-10-20 2005-09-15 Domantis Limited Method to screen phage display libraries with different ligands
US6696245B2 (en) * 1997-10-20 2004-02-24 Domantis Limited Methods for selecting functional polypeptides
US6531580B1 (en) * 1999-06-24 2003-03-11 Ixsys, Inc. Anti-αvβ3 recombinant human antibodies and nucleic acids encoding same
US6753136B2 (en) * 1999-07-20 2004-06-22 Morphosys Ag Methods for displaying (poly) peptides/proteins on bacteriophage particles via disulfide bonds
US20030232333A1 (en) * 2000-04-17 2003-12-18 Dyax Corp. Novel methods of constructing librabries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel librabries
US20060166252A1 (en) * 2000-04-17 2006-07-27 Ladner Robert C Novel methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
US20070031879A1 (en) * 2000-06-19 2007-02-08 Ley Arthur C Novel enterokinase cleavage sequences
US20060257937A1 (en) * 2000-12-18 2006-11-16 Dyax Corp., A Delaware Corporation Focused libraries of genetic packages
US20040038921A1 (en) * 2001-10-26 2004-02-26 Ribopharma Ag Composition and method for inhibiting expression of a target gene

Also Published As

Publication number Publication date
EP1578903A2 (en) 2005-09-28
EP1578903B8 (en) 2012-03-14
US20030232333A1 (en) 2003-12-18
US10829541B2 (en) 2020-11-10
US9683028B2 (en) 2017-06-20
EP1578903B2 (en) 2016-06-01
EP1578903A4 (en) 2007-05-23
AU2009200092A1 (en) 2009-02-05
CA2458462A1 (en) 2002-10-24
US20170369557A1 (en) 2017-12-28
US20130040861A1 (en) 2013-02-14
AU2009200092B2 (en) 2011-09-08
US20210087256A1 (en) 2021-03-25
CA2458462C (en) 2011-10-11
US20150158932A1 (en) 2015-06-11
US8901045B2 (en) 2014-12-02
WO2002083872A2 (en) 2002-10-24
WO2002083872A3 (en) 2006-09-28
AU2002307422B2 (en) 2008-10-09
EP1578903B1 (en) 2011-11-23
US8288322B2 (en) 2012-10-16

Similar Documents

Publication Publication Date Title
US20210087256A1 (en) Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
US9382535B2 (en) Methods of constructing libraries of genetic packages that collectively display the members of a diverse family of peptides, polypeptides or proteins
AU2002307422A1 (en) Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries
CA2715297A1 (en) Improved methods for producing specific binding pairs
AU2001253589A1 (en) Methods of constructing display libraries of genetic packages for members of a diverse family of peptides
AU2013205033B2 (en) Novel Methods of Constructing Libraries Comprising Displayed and/or Expressed Members of a Diverse Family of Peptides, Polypeptides or Proteins and the Novel Libraries
AU2018241075B2 (en) Novel Methods of Constructing Libraries Comprising Displayed and/or Expressed Members of a Diverse Family of Peptides, Polypeptides or Proteins and the Novel Libraries
DK1578903T4 (en) New methods of preparing libraries comprising displayed and / or expressed members of various families of peptides, polypeptides or proteins and novel libraries
AU2011253898A1 (en) Novel methods of constructing libraries comprising displayed and/or expressed members of a diverse family of peptides, polypeptides or proteins and the novel libraries

Legal Events

Date Code Title Description
AS Assignment

Owner name: DYAX CORP., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LADNER, ROBERT C.;COHEN, EDWARD H.;NASTRI, HORACIO G.;AND OTHERS;REEL/FRAME:012947/0652;SIGNING DATES FROM 20020329 TO 20020417

Owner name: DYAX CORP.,MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LADNER, ROBERT C.;COHEN, EDWARD H.;NASTRI, HORACIO G.;AND OTHERS;SIGNING DATES FROM 20020329 TO 20020417;REEL/FRAME:012947/0652

Owner name: DYAX CORP., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LADNER, ROBERT C.;COHEN, EDWARD H.;NASTRI, HORACIO G.;AND OTHERS;SIGNING DATES FROM 20020329 TO 20020417;REEL/FRAME:012947/0652

AS Assignment

Owner name: PAUL ROYALTY FUND HOLDINGS II, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:DYAX CORP.;REEL/FRAME:018160/0726

Effective date: 20060823

AS Assignment

Owner name: DYAX CORP., A DELAWARE CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:PAUL ROYALTY FUND HOLDINGS II;REEL/FRAME:021355/0408

Effective date: 20080805

AS Assignment

Owner name: COWEN HEALTHCARE ROYALTY PARTNERS, L.P., CONNECTIC

Free format text: SECURITY AGREEMENT;ASSIGNOR:DYAX CORP., A DELAWARE CORPORATION;REEL/FRAME:021354/0324

Effective date: 20080805

AS Assignment

Owner name: COWEN HEALTHCARE ROYALTY PARTNERS, L.P., CONNECTIC

Free format text: SECURITY AGREEMENT;ASSIGNOR:DYAX CORP., A DELAWARE CORPORATION;REEL/FRAME:022408/0768

Effective date: 20090318

AS Assignment

Owner name: DYAX CORP., A DELAWARE CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HEALTHCARE ROYALTY PARTNERS, L.P. F/K/A COWEN HEALTHCARE ROYALTY PARTNERS, L.P.;REEL/FRAME:028827/0906

Effective date: 20120822

Owner name: LFRP INVESTORS, L.P., A DELAWARE LIMITED PARTNERSH

Free format text: SECURITY AGREEMENT;ASSIGNOR:DYAX CORP., A DELAWARE CORPORATION;REEL/FRAME:028828/0517

Effective date: 20120822

STCV Information on status: appeal procedure

Free format text: COURT PROCEEDINGS TERMINATED

AS Assignment

Owner name: DYAX CORP., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:LFRP INVESTORS, L.P.;REEL/FRAME:036902/0703

Effective date: 20151028

FEPP Fee payment procedure

Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR)

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

AS Assignment

Owner name: TAKEDA PHARMACEUTICAL COMPANY LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DYAX CORP.;REEL/FRAME:056268/0983

Effective date: 20210226