US20090061738A1 - Method of surface modification for thermal shock resistance and a member thereof - Google Patents
Method of surface modification for thermal shock resistance and a member thereof Download PDFInfo
- Publication number
- US20090061738A1 US20090061738A1 US12/262,252 US26225208A US2009061738A1 US 20090061738 A1 US20090061738 A1 US 20090061738A1 US 26225208 A US26225208 A US 26225208A US 2009061738 A1 US2009061738 A1 US 2009061738A1
- Authority
- US
- United States
- Prior art keywords
- thermal shock
- shock resistance
- blasting
- ceramics
- member made
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000035939 shock Effects 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000012986 modification Methods 0.000 title 1
- 230000004048 modification Effects 0.000 title 1
- 238000005422 blasting Methods 0.000 claims abstract description 53
- 239000000919 ceramic Substances 0.000 claims abstract description 32
- 239000003082 abrasive agent Substances 0.000 claims abstract description 19
- 239000010419 fine particle Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims abstract description 3
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 description 42
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 31
- 239000000463 material Substances 0.000 description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 16
- 239000010703 silicon Substances 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 13
- 150000004767 nitrides Chemical class 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 8
- 229910010271 silicon carbide Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052845 zircon Inorganic materials 0.000 description 6
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 5
- 229910052863 mullite Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- -1 SIALON Chemical compound 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 230000003028 elevating effect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 208000037998 chronic venous disease Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910017083 AlN Inorganic materials 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/53—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/91—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
Definitions
- the present invention relates to a method for improving thermal shock resistance of a member made of ceramics to which thermal shock resistance against rapid heating-cooling cycle in wide temperature range from room temperature to 1500° C. is required, further, relates to a member having thermal shock resistance obtained by said method.
- a member made of ceramics to which thermal shock resistance is required indicates a high temperature structural material to which heat cycle resistance and thermal shock resistance are required, for example, dome for etcher, electrostatic chuck, vacuum chuck, suscepter, handling arm, dummy wafer, wafer heater, window of high temperature reaction furnace, reaction tube of diffusion furnace and wafer boat which composes semiconductor producing equipment, and thermocouple protecting tube, radiant tube for aluminum alloy melting, stoke for low pressure casting, stirring propeller for aluminum alloy melting, sleeve for die cast, piping component, high temperature bearing, shaft, heat sink substrate for power module, heat radiation insulated substrate and turbine blade.
- an electrostatic chuck is used as a method to fix and maintain a semiconductor wafer in each process such as transportation of semiconductor wafer, pattern formation, formation of thin film of CVD or sputtering, plasma cleaning, etching or dicing.
- An electrostatic chuck is a member to fix and maintain a semiconductor wafer on an adsorption face of the electrostatic chuck by obtaining electrostatic adsorption force by charging electric voltage to the electrostatic chuck.
- a thin film forming process or a plasma cleaning process since the electrostatic chuck suffers rapid heating and cooling with adsorbing a semiconductor wafer, excellent thermal conductivity and high thermal shock resistance are required to the electrostatic chuck.
- a vacuum chuck which uses vacuum adsorption force is also used besides an electrostatic chuck. Also in this case, since rapid heating and cooling is loaded to the vacuum chuck with adsorbing a semiconductor wafer, excellent thermal conductivity and high thermal shock resistance are required to the electrostatic chuck.
- a suscepter which is used at placing a semiconductor wafer at forming process of epitaxial growth film on surface of semiconductor wafer by CVD method or for a dummy wafer which is used at investigation, evaluation or inspection of various treatment condition such as sputtering treatment, CVD treatment, ion implantation processing or thermal diffusion treatment or used for adherence prevention of contamination substance in producing process of semiconductor wafer.
- JP4-61331A publication (Document 1), among above mentioned structural members, subjects relates to dummy wafer are mentioned. That is, it is recorded that strength against strain caused by formed film thickness can be improved by enlarging thickness of silicon substrate. Further, in JP11-278966A publication (Document 2), it is recorded that by forming very fine and voidless SiC film on a surface of basic material which consists from any of sintered product of SiC, Si 3 N 4 or AlN at least, a member is remarkably excellent in resistance to heat cycle or resistance to thermal shock.
- a dummy wafer whose basic material is silicon mentioned in Document 1 has a problem of easily cracking by thermal shock caused by rapid temperature elevation.
- resistance for heat cycle or resistance to thermal shock of a member on which SiC is formed by chemical vapor deposition method mentioned in Document 2 are fairly improved.
- the member is not reaching the place which guarantees the sufficient reliability.
- shot blast condition is recited and relationship between blasting material or blasting pressure and toughening characteristic is discussed.
- relationship between shot blast and dislocation density of homogeneously distributed linear dislocation which can be measured by a transmission electron microscope or thermal shock resistance is not referred.
- the subject of the present invention is can be summarized as follows. That is, provision of a ceramic materials whose thermal shock resistance is improved, wherein said ceramic materials is characterized that being difficult to cause cracks by thermal shock by rapid temperature elevating and cooling, shortening cleaning time remarkably and being possible to improve productivity of silicon wafer thereby, further, provision of a method for improvement of thermal shock resistance of the ceramic materials.
- the inventors of the present invention make a trial of fine blast working at room temperature to a ceramics product to which thermal shock resistance is required, and find out that a dislocation which improves thermal shock resistance can be formed by a specific condition of fine blast working and the subject of the present invention is accomplished.
- a member which has strong mechanical strength against thermal shock accompanied to rapid temperature elevation can be designed, and by applying said technique to an electronics field, that is, to a producing apparatus of semiconductor, display or a optical communication device, said cleaning time can be remarkably shortened and can improve productivity of silicon wafer and others.
- the 1 st one of the present invention is (1) a method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required comprising, forming homogeneously distributed linear dislocation structure on the surface of the member made of ceramics to which thermal shock resistance is required by blasting abrasives composed of fine particles whose average particle size is from 5 ⁇ m to 200 ⁇ m and whose surface shape is convex, wherein Vickers hardness (HV) of said fine particles is 800 or more and equal to or less than the hardness of the member made of ceramics to which thermal shock resistance is required.
- HV Vickers hardness
- the 1st one of the present invention is (2) the method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required of (1), wherein working using blasting abrasives is carried out by blasting pressure; 0.1-0.5 MPa, blasting speed; 20 m/sec-250 m/sec, blasting amount 50 g/min-800 g/min, blasting time; 1 sec/cm 2 -60 sec/cm 2 .
- the 1st one of the present invention is (3) the method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required of (1) or (2), wherein the homogeneously distributed linear dislocation on the surface of the member made of ceramics to which thermal shock resistance is required forms a dislocation structure whose dislocation density is 1 ⁇ 10 4 -9 ⁇ 10 13 cm ⁇ 2 .
- the 2nd one of the present invention is (5) the thermal shock resistance member of (4), wherein the member made of ceramics to which thermal shock resistance is required is a dome for etcher, an electrostatic chuck, a vacuum chuck, a suscepter, a handling arm, a dummy wafer, a heater for wafer heating, window of a high temperature reaction furnace, a reaction tube of diffusion furnace, a wafer boat, a thermocouple protecting tube, a radiant tube for aluminum alloy melting, a stoke for low pressure casting, a stirring propeller for aluminum alloy melting, sleeve for die cast, piping component, a high temperature bearing, a shaft, a heat sink substrate for power module, heat radiation insulated substrate and turbine blade.
- the member made of ceramics to which thermal shock resistance is required is a dome for etcher, an electrostatic chuck, a vacuum chuck, a suscepter, a handling arm, a dummy wafer, a heater for wafer heating, window of a high temperature reaction furnace
- a structure member which is obtained by forming a structure having said characteristics and by treating, has a structure existing by less than several 10 micron of dislocation density from 1 ⁇ 10 4 to 9 ⁇ 10 13 cm ⁇ 2 , which is measured by a transmission electron microscope. And by having this structure, characteristics of thermal shock resistance and heat cycle resistance are improved.
- a basic material which can form said structure and can improve thermal shock resistance a basic material made of ceramics whose thermal shock resistance is high is basically desirable. Especially, single crystal alumina (sapphire), high purity alumina, silicon nitride, SIALON, aluminum nitride and silicon carbide are superior.
- FIG. 1 is a conceptual drawing of a device of the present invention which carries out blasting treatment to accomplish plastic working at ordinary temperature.
- 1 is a cabinet of the device
- 2 is a door of the cabinet
- 3 is a blasting nozzle
- 4 is a work piece to be processed (ceramics to be treated)
- 5 is X-Y table
- 6 is a driving part of the X-Y table
- 7 is a recovery equipment of blasting abrasives (blasting material for formation of surface toughening structure).
- FIG. 2 is a transmission electron microscopic picture of a structure forming homogeneously distributed linear dislocation obtained by a method for surface toughening of the present invention, allow mark indicates a treated surface and can be observed that dislocation density of surface side is higher.
- FIG. 3 shows the characteristics of thermal shock temperature difference of alumina specimen of Example 3 by relationship between temperature difference and progress of crack (length). It is obvious that thermal shock resistance is improved in the processed specimen.
- FIG. 1 is a device (Product of SINTOBRATOR, Ltd.; product name is microblaster MBI) to carry out fine blasting working treatment which accomplishes plastic working at ordinary temperature of the present invention. Since a work shown in FIG. 1 is a tabular ceramics product 4 , blasting abrasives for plastic working which are different along with the ceramic product to be treated are blasted from a blasting nozzle 3 toward the ceramic product to be treated which is held by a product holding parts composed of X-Y direction drivable table by adjusting blasting pressure and blasting amount B of blasting abrasives for plastic working. Same effect can be obtained by making the blasting nozzle possible to be driven to X-Y direction.
- Used blasting abrasives for plastic working can be recovered by a recovery equipment 7 and separated from degraded blasting abrasives, then reused.
- Blasting abrasives can be blasted with air or can be blasted with liquid same as liquid horning.
- Blasting speed 20 m/sec-250 m/sec is a condition when blasting abrasives are blasted vertically toward the surface of a specimen.
- the lower limit of blasting speed is a limitation from a view point of workability of plastic working (fine blast working) treatment, and the upper limit is to restrict the region in which a problem such as chipping is not caused.
- a ceramics which has excellent thermal shock resistance is desirable.
- the ceramics materials having high thermal shock resistance single crystal alumina (sapphire), high purity alumina, silicon nitride, SIALON, aluminum nitride and silicon carbide are selected and a test pieces are prepared using these materials and fine blast working treatment is carried out on these test pieces and deformed to have a structure existing by dislocation density from 1 ⁇ 10 4 to 9 ⁇ 10 13 cm ⁇ 2 measured by a transmission electron microscope by less than several 10 micron.
- JIS test piece size of each ceramics are prepared and surface treatment according to above mentioned item A is carried out.
- a test for thermal shock resistance prescribed in thermal shock test JIS R1615: This standard was abolished on Jan. 20, 2002. At the present, it is correspondent to JIS R1648.
- a test piece which is heated to the desired temperature, is thrown into water and an existence of the generation of the crack is investigated. This action is repeated by elevating heating temperature until a crack is observed in the test piece by the thermal shock. Thermal stress is caused on the test piece by the difference of cooling rate between surface part and inner part, and when said thermal stress generates stronger tensile stress than tensile strength of the test piece, crack occurs.
- Test conditions of said thermal shock resistance test are, (1) test piece size: 3 ⁇ 4 ⁇ 40 mm, (2) temperature of test piece: 150-1000° C., (3) temperature of water: 20° C.
- blasting abrasives Kind of blasting abrasives, blasting pressure, blasting amount and treating time can be experimentally decided in the conditions mentioned in claim 1 and claim 2 .
- Desirable condition of blasting pressure is 0.1-0.5 MPa.
- high purity alumina (alumina 99.5%) of hardness 1600HV, high purity alumina (alumina 99.99%) of hardness 1700HV, silicon nitride, SIALON, aluminum nitride and silicon carbide are used.
- Thermal shock resistance test is carried out in accordance with JIS R1615.
- Dislocation density mentioned in Table 1-1 and Table 1-2 are measuring results by TEM observation of specimen to which fine blast working is carried out vertically to the surface of specimen from thickness direction.
- Example 4 SIALON 1630 1050 zirconia 50 1380 0.35 600 70 10 0.113 0.149 4.9 ⁇ 10 13 950 1.46
- Example 5 nitride
- Example 9 aluminum 1060 390 zircon 200 810 0.15 400 30 4 0.161 0.172 7.7 ⁇ 10 11 500 1.66 nitride Comp.
- silicon 2700 610 — — — — — — — — — 0.247 — — 400 —
- Example 6 carbide
- silicon 2700 610 alumina 100 1500 0.35 400 60 4 0.247 0.331 8.3 ⁇ 10 12 600 1.50 carbide
- Test pieces of Examples 1-10 and Comparative Examples 1-6 which are prepared for previous thermal shock test are used for thermal shock test by heat cycle;
- Example 2 alumina 1700 400 — — — — — — — — — — 0.089 — — 10
- Example 2 alumina 1700 400 zircon 200 810 0.15 400 30 12 0.089 0.093 3.7 ⁇ 10 8 7 (99.99%)
- Example 3 alumina 1700 400 mullite 100 1020 0.25 400 50 8 0.089 0.096 2.8 ⁇ 10 13 0 (99.99%)
- Fine blast working treatment is carry out on an single crystal alumina test piece (shape 10 ⁇ 10 ⁇ 1 t mm) by conditions indicated in Table 1 and a specimen for thermal shock test is prepared.
- Table 2 TEM picture of linear dislocation formed on the surface of single crystal alumina test piece obtained by fine blast working. Indentations by Vickers Hardness tester is marked on prepared thermal shock test piece and heated and maintained at 300° C., 500° C. and 700° C. for 10 minutes then thrown in water (20° C.) and left for 5 minutes. After that, length of crack of indentations of said test piece is measured, and appearance of crack of test pieces to which dislocation is introduced and not introduced are observed. Results are shown in FIG. 3 . Compared with non-treated test piece, progress of crack can not be observed even in 700° C. and excellent effect is recognized.
- the present invention can be used in a process in which cycles of rapid heating and rapid cooling is included.
- the present invention can be applied to improve thermal shock resistance of a dome for etcher, an electrostatic chuck, a vacuum chuck, a susceptor, a handling arm, a dummy wafer, a heater for wafer heating, window of a high temperature reaction furnace, a reaction tube of diffusion furnace, a wafer boat, a thermocouple protecting tube, a radiant tube for aluminum alloy melting, a stoke for low pressure casting, a stirring propeller for aluminum alloy melting, sleeve for die cast, piping component, a high temperature bearing, a shaft, a heat sink substrate for power module, a heat radiation insulated substrate and a turbine blade.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Coating By Spraying Or Casting (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
A method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required comprising, forming homogeneously distributed linear dislocation structure on the surface of the member made of ceramics to which thermal shock resistance is required by blasting abrasives composed of fine particles whose average particle size is from 5 μm to 200 μm and whose surface shape is convex, wherein Vickers hardness (HV) of said fine particles is 800 or more and equal to or less than the hardness of the member made of ceramics to which thermal shock resistance is required.
Description
- The present invention relates to a method for improving thermal shock resistance of a member made of ceramics to which thermal shock resistance against rapid heating-cooling cycle in wide temperature range from room temperature to 1500° C. is required, further, relates to a member having thermal shock resistance obtained by said method.
- In the present invention, a member made of ceramics to which thermal shock resistance is required indicates a high temperature structural material to which heat cycle resistance and thermal shock resistance are required, for example, dome for etcher, electrostatic chuck, vacuum chuck, suscepter, handling arm, dummy wafer, wafer heater, window of high temperature reaction furnace, reaction tube of diffusion furnace and wafer boat which composes semiconductor producing equipment, and thermocouple protecting tube, radiant tube for aluminum alloy melting, stoke for low pressure casting, stirring propeller for aluminum alloy melting, sleeve for die cast, piping component, high temperature bearing, shaft, heat sink substrate for power module, heat radiation insulated substrate and turbine blade.
- At producing process for semiconductor, an electrostatic chuck is used as a method to fix and maintain a semiconductor wafer in each process such as transportation of semiconductor wafer, pattern formation, formation of thin film of CVD or sputtering, plasma cleaning, etching or dicing. An electrostatic chuck is a member to fix and maintain a semiconductor wafer on an adsorption face of the electrostatic chuck by obtaining electrostatic adsorption force by charging electric voltage to the electrostatic chuck. At a thin film forming process or a plasma cleaning process, since the electrostatic chuck suffers rapid heating and cooling with adsorbing a semiconductor wafer, excellent thermal conductivity and high thermal shock resistance are required to the electrostatic chuck.
- Further, as a member to fix and to hold a semiconductor wafer, a vacuum chuck which uses vacuum adsorption force is also used besides an electrostatic chuck. Also in this case, since rapid heating and cooling is loaded to the vacuum chuck with adsorbing a semiconductor wafer, excellent thermal conductivity and high thermal shock resistance are required to the electrostatic chuck.
- Furthermore, excellent resistance to multiple heat cycle or thermal shock are required for a suscepter which is used at placing a semiconductor wafer at forming process of epitaxial growth film on surface of semiconductor wafer by CVD method or for a dummy wafer which is used at investigation, evaluation or inspection of various treatment condition such as sputtering treatment, CVD treatment, ion implantation processing or thermal diffusion treatment or used for adherence prevention of contamination substance in producing process of semiconductor wafer.
- In JP4-61331A publication (Document 1), among above mentioned structural members, subjects relates to dummy wafer are mentioned. That is, it is recorded that strength against strain caused by formed film thickness can be improved by enlarging thickness of silicon substrate. Further, in JP11-278966A publication (Document 2), it is recorded that by forming very fine and voidless SiC film on a surface of basic material which consists from any of sintered product of SiC, Si3N4 or AlN at least, a member is remarkably excellent in resistance to heat cycle or resistance to thermal shock.
- However, in a case to shorten a temperature elevating time for further shortening of a cleaning time aiming to improve productivity, above mentioned conventional technology has following problem.
- A dummy wafer whose basic material is silicon mentioned in
Document 1 has a problem of easily cracking by thermal shock caused by rapid temperature elevation. In the meanwhile, resistance for heat cycle or resistance to thermal shock of a member on which SiC is formed by chemical vapor deposition method mentioned inDocument 2 are fairly improved. However, to the requirement for further rapid temperature elevation along with the recent requirement for effectiveness of current semiconductor production process, the member is not reaching the place which guarantees the sufficient reliability. In W. Pfeiffer and T. Frey. “Shot Peening of Ceramics: Damage or Benefit”, Ceramic forum international Cfi/Ber. Dkag79 No. 4, E25 (2002) (Document 3), shot blast condition is recited and relationship between blasting material or blasting pressure and toughening characteristic is discussed. However, in this Document, relationship between shot blast and dislocation density of homogeneously distributed linear dislocation which can be measured by a transmission electron microscope or thermal shock resistance is not referred. - Concerning above mentioned problems which conventional technology has, the subject of the present invention is can be summarized as follows. That is, provision of a ceramic materials whose thermal shock resistance is improved, wherein said ceramic materials is characterized that being difficult to cause cracks by thermal shock by rapid temperature elevating and cooling, shortening cleaning time remarkably and being possible to improve productivity of silicon wafer thereby, further, provision of a method for improvement of thermal shock resistance of the ceramic materials.
- For the purpose to find out a method to improve thermal shock resistance of a ceramics materials, the inventors of the present invention make a trial of fine blast working at room temperature to a ceramics product to which thermal shock resistance is required, and find out that a dislocation which improves thermal shock resistance can be formed by a specific condition of fine blast working and the subject of the present invention is accomplished. By finding out above mentioned technique, a member which has strong mechanical strength against thermal shock accompanied to rapid temperature elevation can be designed, and by applying said technique to an electronics field, that is, to a producing apparatus of semiconductor, display or a optical communication device, said cleaning time can be remarkably shortened and can improve productivity of silicon wafer and others.
- The 1st one of the present invention is (1) a method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required comprising, forming homogeneously distributed linear dislocation structure on the surface of the member made of ceramics to which thermal shock resistance is required by blasting abrasives composed of fine particles whose average particle size is from 5 μm to 200 μm and whose surface shape is convex, wherein Vickers hardness (HV) of said fine particles is 800 or more and equal to or less than the hardness of the member made of ceramics to which thermal shock resistance is required. Desirably, the 1st one of the present invention is (2) the method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required of (1), wherein working using blasting abrasives is carried out by blasting pressure; 0.1-0.5 MPa, blasting speed; 20 m/sec-250 m/sec, blasting amount 50 g/min-800 g/min, blasting time; 1 sec/cm2-60 sec/cm2. More desirably the 1st one of the present invention is (3) the method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required of (1) or (2), wherein the homogeneously distributed linear dislocation on the surface of the member made of ceramics to which thermal shock resistance is required forms a dislocation structure whose dislocation density is 1×104-9×1013 cm−2.
- And, the 2nd one of the present invention is (4) a thermal shock resistance member comprising, a basic material composing a member made of ceramics to which thermal shock resistance is required is at least consists from any of alumina, silicon nitride, SIALON, aluminum nitride or silicon carbide, forming a dislocation structure of dislocation density from 1×104 to 9×1013 cm−2 of homogeneously distributed linear dislocation which is measured by a transmission electron microscope on the surface of the basic material.
- Desirably, the 2nd one of the present invention is (5) the thermal shock resistance member of (4), wherein the member made of ceramics to which thermal shock resistance is required is a dome for etcher, an electrostatic chuck, a vacuum chuck, a suscepter, a handling arm, a dummy wafer, a heater for wafer heating, window of a high temperature reaction furnace, a reaction tube of diffusion furnace, a wafer boat, a thermocouple protecting tube, a radiant tube for aluminum alloy melting, a stoke for low pressure casting, a stirring propeller for aluminum alloy melting, sleeve for die cast, piping component, a high temperature bearing, a shaft, a heat sink substrate for power module, heat radiation insulated substrate and turbine blade.
- A structure member, which is obtained by forming a structure having said characteristics and by treating, has a structure existing by less than several 10 micron of dislocation density from 1×104 to 9×1013 cm−2, which is measured by a transmission electron microscope. And by having this structure, characteristics of thermal shock resistance and heat cycle resistance are improved. As a basic material which can form said structure and can improve thermal shock resistance, a basic material made of ceramics whose thermal shock resistance is high is basically desirable. Especially, single crystal alumina (sapphire), high purity alumina, silicon nitride, SIALON, aluminum nitride and silicon carbide are superior.
-
FIG. 1 is a conceptual drawing of a device of the present invention which carries out blasting treatment to accomplish plastic working at ordinary temperature. 1 is a cabinet of the device, 2 is a door of the cabinet, 3 is a blasting nozzle, 4 is a work piece to be processed (ceramics to be treated), 5 is X-Y table, 6 is a driving part of the X-Y table and 7 is a recovery equipment of blasting abrasives (blasting material for formation of surface toughening structure). -
FIG. 2 is a transmission electron microscopic picture of a structure forming homogeneously distributed linear dislocation obtained by a method for surface toughening of the present invention, allow mark indicates a treated surface and can be observed that dislocation density of surface side is higher. -
FIG. 3 shows the characteristics of thermal shock temperature difference of alumina specimen of Example 3 by relationship between temperature difference and progress of crack (length). It is obvious that thermal shock resistance is improved in the processed specimen. -
FIG. 1 is a device (Product of SINTOBRATOR, Ltd.; product name is microblaster MBI) to carry out fine blasting working treatment which accomplishes plastic working at ordinary temperature of the present invention. Since a work shown inFIG. 1 is atabular ceramics product 4, blasting abrasives for plastic working which are different along with the ceramic product to be treated are blasted from ablasting nozzle 3 toward the ceramic product to be treated which is held by a product holding parts composed of X-Y direction drivable table by adjusting blasting pressure and blasting amount B of blasting abrasives for plastic working. Same effect can be obtained by making the blasting nozzle possible to be driven to X-Y direction. Used blasting abrasives for plastic working can be recovered by a recovery equipment 7 and separated from degraded blasting abrasives, then reused. Blasting abrasives can be blasted with air or can be blasted with liquid same as liquid horning. Blasting speed 20 m/sec-250 m/sec is a condition when blasting abrasives are blasted vertically toward the surface of a specimen. And the lower limit of blasting speed is a limitation from a view point of workability of plastic working (fine blast working) treatment, and the upper limit is to restrict the region in which a problem such as chipping is not caused. - A. As mentioned above, as a basic material, a ceramics which has excellent thermal shock resistance is desirable. Among the ceramics materials having high thermal shock resistance, single crystal alumina (sapphire), high purity alumina, silicon nitride, SIALON, aluminum nitride and silicon carbide are selected and a test pieces are prepared using these materials and fine blast working treatment is carried out on these test pieces and deformed to have a structure existing by dislocation density from 1×104 to 9×1013 cm−2 measured by a transmission electron microscope by less than several 10 micron.
- B. Technical effect of the present invention is indicated. Actual testing method for thermal shock resistance of polycrystal will be illustrated as follows.
- A square test piece prescribed in JIS test piece size of each ceramics are prepared and surface treatment according to above mentioned item A is carried out. On the square test piece, a test for thermal shock resistance prescribed in thermal shock test (JIS R1615: This standard was abolished on Jan. 20, 2002. At the present, it is correspondent to JIS R1648.) is carried out.
- That is, a test piece, which is heated to the desired temperature, is thrown into water and an existence of the generation of the crack is investigated. This action is repeated by elevating heating temperature until a crack is observed in the test piece by the thermal shock. Thermal stress is caused on the test piece by the difference of cooling rate between surface part and inner part, and when said thermal stress generates stronger tensile stress than tensile strength of the test piece, crack occurs.
- Test conditions of said thermal shock resistance test are, (1) test piece size: 3×4×40 mm, (2) temperature of test piece: 150-1000° C., (3) temperature of water: 20° C.
- Kind of blasting abrasives, blasting pressure, blasting amount and treating time can be experimentally decided in the conditions mentioned in
claim 1 andclaim 2. Desirable condition of blasting pressure is 0.1-0.5 MPa. - The present invention will be illustrated more in detail according to Examples. However, these Examples are intending to make the usefulness of the present invention more clear, and not intending to limit the scope of the present invention.
- Instrument for Measurement;
- (1) Dislocation density and structure: Thin film specimen for TEM observation is prepared by an Focused Ion Beam Apparatus (Hitachi F-2000) and the structural characteristics is observed by a transmission electron microscope (TEM) JEOL-200CX (accelerating voltage: 200 kV), product of JAPAN ELECTRON OPTICS LABORATORY CO., Ltd. Dislocation density can be obtained by measuring the dislocation length per unit volume. Concretely, the dislocation density is measured by following procedure, that is, (1) measure the thickness of a thin film specimen, (2) take a TEM observation picture of the point where dislocation density is measured, (3) measure the length of dislocation contained in the unit volume.
(2) Thermal shock resistance test: JIS R1615 - In Table 1-1 and Table 1-2, surface roughness, dislocation density, thermal shock resistance and improved ratio of thermal shock resistance temperature of a structural member obtained by changing blasting abrasives and blasting condition (Example 1-10) are shown in comparison with specimen of Comparative Examples (Comparative Examples 1-6) to which blast working is not carried out.
- As a specimen, high purity alumina (alumina 99.5%) of hardness 1600HV, high purity alumina (alumina 99.99%) of hardness 1700HV, silicon nitride, SIALON, aluminum nitride and silicon carbide are used. Thermal shock resistance test is carried out in accordance with JIS R1615.
- Dislocation density mentioned in Table 1-1 and Table 1-2 are measuring results by TEM observation of specimen to which fine blast working is carried out vertically to the surface of specimen from thickness direction.
-
TABLE 1-1 Thermal shock test results (1) surface improved roughness ratio of specimen blasting abrasives blasting condition Ra μm thermal thermal hard- bending hard- blasting after dislocation shock shock ness strength size ness pressure amt. speed time before pro- density/ resistance resistance No. material HV MPa material μm HV MPa g/m m/s sec/cm2 process cess cm2 temp. ° C. temp. Comp. alumina 1600 360 — — — — — — — 0.130 — — 200 — Example 1 (99.5%) Example 1 alumina 1600 360 mullite 100 1020 0.25 400 50 6 0.130 0.159 2.3 × 1012 400 2.00 (99.5%) Comp. alumina 1700 400 — — — — — — — 0.089 — — 200 — Example 2 (99.99%) Example 2 alumina 1700 400 zircon 200 810 0.15 400 30 12 0.089 0.093 3.7 × 108 250 1.25 (99.99%) Example 3 alumina 1700 400 mullite 100 1020 0.25 400 50 8 0.089 0.096 2.8 × 1013 400 2.00 (99.99%) Example 4 alumina 1700 400 zirconia 50 1380 0.25 600 60 4 0.089 0.102 6.1 × 1012 400 2.00 (99.99%) Comp. silicon 1370 1115 — — — — — — — 0.033 — — 700 — Example 3 nitride Example 5 silicon 1370 1115 zircon 200 810 0.15 400 30 10 0.033 0.034 7.1 × 108 800 1.14 nitride -
TABLE 1-2 Thermal shock test results (2) surface improved roughness thermal ratio of specimen blasting abrasives blasting condition Ra μm resist- thermal hard- bending hard- blasting after dislocation ance shock ness strength size ness pressure amt. speed time before proc- density/ temp. resistance No. material HV MPa material μm HV MPa g/m m/s sec/cm2 process ess cm2 ° C. temp. Example 6 silicon 1370 1115 zirconia 50 1380 0.15 600 50 10 0.033 0.035 4.9 × 1012 950 1.36 nitride Example 7 silicon 1370 1115 zirconia 50 1380 0.35 600 70 6 0.033 0.040 5.8 × 1013 950 1.36 nitride Comp. SIALON 1630 1050 — — — — — — — 0.113 — — 650 — Example 4 Example 8 SIALON 1630 1050 zirconia 50 1380 0.35 600 70 10 0.113 0.149 4.9 × 1013 950 1.46 Comp. aluminum 1060 390 — — — — — — — 0.161 — — 300 — Example 5 nitride Example 9 aluminum 1060 390 zircon 200 810 0.15 400 30 4 0.161 0.172 7.7 × 1011 500 1.66 nitride Comp. silicon 2700 610 — — — — — — — 0.247 — — 400 — Example 6 carbide Example 10 silicon 2700 610 alumina 100 1500 0.35 400 60 4 0.247 0.331 8.3 × 1012 600 1.50 carbide - From the results recorded in Tables 1-1 and 1-2, compared with thermal shock resistance of non-treated specimen (refer to column of Comparative Examples), thermal shock resistance of a specimen which is treated by a method of this invention is improved along with increase of dislocation density of linear dislocation formed on the surface of specimen after plastic working (fine blast working), and is improved to have durability at temperature difference of 400° C. in a case of alumina, 950° C. in a case of silicon nitride, 950° C. in a case of SIALON, 500° C. in a case of aluminum nitride and 600° C. in a case of silicon carbide.
- Test pieces of Examples 1-10 and Comparative Examples 1-6 which are prepared for previous thermal shock test are used for thermal shock test by heat cycle;
- 10 pieces each of said test pieces are set into an infrared heating furnace and the temperature is elevated from ordinary temperature to 1200° C. by 10 minutes and maintained for 15 minutes, then cooled down to ordinary temperature. This cycle is repeated for 50 cycles and occurrence of crack on each specimen is observed. Results are shown in Tables 2-1 and 2-2. Numerical values mentioned in heat cycle resistance indicate numbers of specimen on which any crack is observed.
-
TABLE 2-1 Heat cycle test results (1) surface heat cycle specimen blasting abrasives blasting condition roughness resistance hard- bending hard- blasting Ra μm dislocation (numbers of test ness strength size ness pressure amt. speed time before after density/ pieces in which No. material HV MPa material μm HV MPa g/m m/s sec/cm2 process process cm2 crack is observed) Comp. alumina 1600 360 — — — — — — — 0.130 — — 10 Example 1 (99.5%) Example 1 alumina 1600 360 mullite 100 1020 0.25 400 50 6 0.130 0.159 2.3 × 1012 0 (99.5%) Comp. alumina 1700 400 — — — — — — — 0.089 — — 10 Example 2 (99.99%) Example 2 alumina 1700 400 zircon 200 810 0.15 400 30 12 0.089 0.093 3.7 × 108 7 (99.99%) Example 3 alumina 1700 400 mullite 100 1020 0.25 400 50 8 0.089 0.096 2.8 × 1013 0 (99.99%) Example 4 alumina 1700 400 zirconia 50 1380 0.25 600 60 4 0.089 0.102 6.1 × 1012 0 (99.99%) Comp. silicon 1370 1115 — — — — — — — 0.033 — — 2 Example 3 nitride Example 5 silicon 1370 1115 zircon 200 810 0.15 400 30 10 0.033 0.034 7.1 × 108 1 nitride -
TABLE 2-2 Heat cycle test results (2) heat cycle surface resistance specimen blasting abrasives blasting condition roughness (numbers of test hard- bending hard- blasting Ra μm dislocation pieces in which ness strength size ness pressure amt. speed time before after density/ crack is No. material HV MPa material μm HV MPa g/m m/s sec/cm2 process process cm2 observed) Example 6 silicon 1370 1115 zirconia 50 1380 0.15 600 50 10 0.033 0.035 4.9 × 1012 0 nitride Example 7 silicon 1370 1115 zirconia 50 1380 0.35 600 70 6 0.033 0.040 5.8 × 1013 0 nitride Comp. SIALON 1630 1050 — — — — — — — 0.113 — — 2 Example 4 Example 8 SIALON 1630 1050 zirconia 50 1380 0.35 600 70 10 0.113 0.149 4.9 × 1013 0 Comp. aluminum 1060 390 — — — — — — — — — 6 Example 5 nitride Example 9 aluminum 1060 390 zircon 200 810 0.15 400 30 4 0.161 0.172 7.7 × 1011 0 nitride Comp. silicon 2700 610 — — — — — — — — — 4 Example 6 carbide Example 10 silicon 2700 610 alumina 100 1500 0.35 400 60 4 0.247 0.331 8.3 × 1012 0 carbide - As clearly understood from Tables 2-1 and 2-2, regarding a specimen which is treated by a method of this invention, dislocation density of linear dislocation formed on the surface of specimen increases after plastic working (fine blast working) and on a test piece to which heat cycle test is carried out any crack becomes not to be observed. On the contrary, crack is observed on a non-treated test piece by a method of this invention. As mentioned above, it becomes clear that the heat cycle characteristic is remarkably improved and effectiveness of the present invention can be confirmed.
- Experiment using thermal shock resistance test piece of single crystal alumina;
- Fine blast working treatment is carry out on an single crystal alumina test piece (shape 10×10×1 t mm) by conditions indicated in Table 1 and a specimen for thermal shock test is prepared. In Table 2, TEM picture of linear dislocation formed on the surface of single crystal alumina test piece obtained by fine blast working. Indentations by Vickers Hardness tester is marked on prepared thermal shock test piece and heated and maintained at 300° C., 500° C. and 700° C. for 10 minutes then thrown in water (20° C.) and left for 5 minutes. After that, length of crack of indentations of said test piece is measured, and appearance of crack of test pieces to which dislocation is introduced and not introduced are observed. Results are shown in
FIG. 3 . Compared with non-treated test piece, progress of crack can not be observed even in 700° C. and excellent effect is recognized. -
TABLE 3 Preparation condition of thermal shock test piece (single crystal alumina) surface specimen blasting condition roughness bending blasting abrasives blasting Ra μm dislocation hardness strength size hardness pressure amt. speed time before after density/ No. material HV MPa material μm HV MPa g/min m/s sec/cm2 process process cm2 Comparative single 1630 — — — — — — — — — — — Example 1 crystal alumina Example 1 single 1630 — mullite 100 1020 0.45 80 85 12 0.016 0.059 1.6 × 1012 crystal alumina - The present invention can be used in a process in which cycles of rapid heating and rapid cooling is included. For example, the present invention can be applied to improve thermal shock resistance of a dome for etcher, an electrostatic chuck, a vacuum chuck, a susceptor, a handling arm, a dummy wafer, a heater for wafer heating, window of a high temperature reaction furnace, a reaction tube of diffusion furnace, a wafer boat, a thermocouple protecting tube, a radiant tube for aluminum alloy melting, a stoke for low pressure casting, a stirring propeller for aluminum alloy melting, sleeve for die cast, piping component, a high temperature bearing, a shaft, a heat sink substrate for power module, a heat radiation insulated substrate and a turbine blade.
Claims (6)
1. A method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required comprising, forming homogeneously distributed linear dislocation structure on the surface of the member made of ceramics to which thermal shock resistance is required by blasting abrasives composed of fine particles whose average particle size is from 5 μm to 200 μm and whose surface shape is convex, wherein Vickers hardness (HV) of said fine particles is 800 or more and equal to or less than the hardness of the member made of ceramics to which thermal shock resistance is required wherein the homogeneously distributed linear dislocation on the surface of the member made of ceramics to which thermal shock resistance is required forms a dislocation structure whose dislocation density is measured with the transmission electron microscope and is from 1×104 to 9×1013 cm−2.
2. (canceled)
3. The method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required of claim 1 , wherein working using blasting abrasives is carried out by blasting pressure; 0.1-1.0 MPa, blasting rate; 20 m/sec-250 m/sec, blasting amount; 50 g/min-800 g/min, blasting time; 1 sec/cm2-60 sec/cm2.
4. The method for improving surface thermal shock resistance of a member made of ceramics to which thermal shock resistance is required of claim 3 , wherein the homogeneously distributed linear dislocation on the surface of the member made of ceramics to which thermal shock resistance is required forms a dislocation structure whose dislocation density is measured with the transmission electron microscope and is from 1×104 to 9×1013 cm−2.
5. (canceled)
6. (canceled)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/262,252 US20090061738A1 (en) | 2004-04-12 | 2008-10-31 | Method of surface modification for thermal shock resistance and a member thereof |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2004/116529 | 2004-04-12 | ||
| JP2004116529 | 2004-04-12 | ||
| US10/599,604 US20080146432A1 (en) | 2004-04-12 | 2005-04-06 | Method of Surface Modification for Thermal Shock Resistance and Member Thereof |
| PCT/JP2005/007111 WO2005100283A1 (en) | 2004-04-12 | 2005-04-06 | Method of surface modification for thermal shock resistance and member thereof |
| US12/262,252 US20090061738A1 (en) | 2004-04-12 | 2008-10-31 | Method of surface modification for thermal shock resistance and a member thereof |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2005/007111 Continuation WO2005100283A1 (en) | 2004-04-12 | 2005-04-06 | Method of surface modification for thermal shock resistance and member thereof |
| US11/599,604 Continuation US8202376B2 (en) | 2005-11-15 | 2006-11-14 | High-strength motor-vehicle frame part with targeted crash |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090061738A1 true US20090061738A1 (en) | 2009-03-05 |
Family
ID=35149917
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/599,604 Abandoned US20080146432A1 (en) | 2004-04-12 | 2005-04-06 | Method of Surface Modification for Thermal Shock Resistance and Member Thereof |
| US12/262,252 Abandoned US20090061738A1 (en) | 2004-04-12 | 2008-10-31 | Method of surface modification for thermal shock resistance and a member thereof |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/599,604 Abandoned US20080146432A1 (en) | 2004-04-12 | 2005-04-06 | Method of Surface Modification for Thermal Shock Resistance and Member Thereof |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US20080146432A1 (en) |
| EP (1) | EP1741688A1 (en) |
| JP (1) | JPWO2005100283A1 (en) |
| KR (1) | KR20060130266A (en) |
| CN (1) | CN1942416A (en) |
| TW (1) | TW200536809A (en) |
| WO (1) | WO2005100283A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090116534A1 (en) * | 2006-03-16 | 2009-05-07 | Robert Bosch Gmbh | Method for operating a gas sensor |
| US20170103908A1 (en) * | 2015-10-12 | 2017-04-13 | Applied Materials, Inc. | Substrate carrier for active/passive bonding and de-bonding of a substrate |
| US11780051B2 (en) | 2019-12-31 | 2023-10-10 | Cold Jet, Llc | Method and apparatus for enhanced blast stream |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007113714A (en) * | 2005-10-21 | 2007-05-10 | Nsk Ltd | Rolling device |
| JP5061478B2 (en) * | 2006-03-15 | 2012-10-31 | 日本精工株式会社 | Rolling support device |
| US9556074B2 (en) * | 2011-11-30 | 2017-01-31 | Component Re-Engineering Company, Inc. | Method for manufacture of a multi-layer plate device |
| CN103878703B (en) * | 2014-03-18 | 2016-03-02 | 广州大学 | A kind of strengthening Ginding process of antifriction alloy steel workpiece surface |
| JP6570581B2 (en) * | 2017-07-13 | 2019-09-04 | 株式会社不二製作所 | Ceramic surface treatment method and ceramic product |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6884386B2 (en) * | 2000-09-21 | 2005-04-26 | Sintokogio, Ltd. | Method of toughening and modifying ceramic and ceramic products |
| US20060213127A1 (en) * | 2003-05-26 | 2006-09-28 | Hiroyasu Saka | Method for toughening surface of sinterred material cutting tool and sintered material cutting tool having long life |
| US20060293165A1 (en) * | 2002-10-15 | 2006-12-28 | Hiroyasu Saka | Surface toughening method of ceramics and a ceramics product |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH05201783A (en) * | 1992-01-27 | 1993-08-10 | Toyota Motor Corp | Surface processing method of ceramic sintered body |
| JPH05200720A (en) * | 1992-01-27 | 1993-08-10 | Toyota Motor Corp | Ceramic sintered body and surface processing method thereof |
| JPH07157362A (en) * | 1993-12-01 | 1995-06-20 | Mitsubishi Materials Corp | Aluminum oxide-based ceramic having high strength and high toughness |
| JPH08295569A (en) * | 1995-04-27 | 1996-11-12 | Kyocera Corp | Silicon nitride sintered body and method for manufacturing the same |
| JP3869172B2 (en) * | 1999-12-21 | 2007-01-17 | 独立行政法人科学技術振興機構 | Surface toughening method for brittle materials |
| JP2003236755A (en) * | 2002-02-19 | 2003-08-26 | Sinto Brator Co Ltd | Surface toughening method of functional hard material |
| JP4183969B2 (en) * | 2002-04-19 | 2008-11-19 | 独立行政法人科学技術振興機構 | Fabrication method of single crystal material in which high-density dislocations are arranged linearly in one dimension |
-
2005
- 2005-03-09 TW TW094107066A patent/TW200536809A/en unknown
- 2005-04-06 US US10/599,604 patent/US20080146432A1/en not_active Abandoned
- 2005-04-06 EP EP05730145A patent/EP1741688A1/en not_active Withdrawn
- 2005-04-06 JP JP2006512347A patent/JPWO2005100283A1/en active Pending
- 2005-04-06 CN CNA2005800110689A patent/CN1942416A/en active Pending
- 2005-04-06 KR KR1020067023074A patent/KR20060130266A/en not_active Withdrawn
- 2005-04-06 WO PCT/JP2005/007111 patent/WO2005100283A1/en active Application Filing
-
2008
- 2008-10-31 US US12/262,252 patent/US20090061738A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6884386B2 (en) * | 2000-09-21 | 2005-04-26 | Sintokogio, Ltd. | Method of toughening and modifying ceramic and ceramic products |
| US20060293165A1 (en) * | 2002-10-15 | 2006-12-28 | Hiroyasu Saka | Surface toughening method of ceramics and a ceramics product |
| US20060213127A1 (en) * | 2003-05-26 | 2006-09-28 | Hiroyasu Saka | Method for toughening surface of sinterred material cutting tool and sintered material cutting tool having long life |
| US7320716B2 (en) * | 2003-05-26 | 2008-01-22 | Japan Science And Technology Agency | Method for toughening surface of sintered material cutting tool and sintered material cutting tool having long life |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090116534A1 (en) * | 2006-03-16 | 2009-05-07 | Robert Bosch Gmbh | Method for operating a gas sensor |
| US8201993B2 (en) * | 2006-03-16 | 2012-06-19 | Robert Bosch Gmbh | Method for operating a gas sensor |
| US20170103908A1 (en) * | 2015-10-12 | 2017-04-13 | Applied Materials, Inc. | Substrate carrier for active/passive bonding and de-bonding of a substrate |
| US10607870B2 (en) * | 2015-10-12 | 2020-03-31 | Applied Materials, Inc. | Substrate carrier for active/passive bonding and de-bonding of a substrate |
| US11780051B2 (en) | 2019-12-31 | 2023-10-10 | Cold Jet, Llc | Method and apparatus for enhanced blast stream |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2005100283A1 (en) | 2005-10-27 |
| TW200536809A (en) | 2005-11-16 |
| EP1741688A1 (en) | 2007-01-10 |
| US20080146432A1 (en) | 2008-06-19 |
| KR20060130266A (en) | 2006-12-18 |
| JPWO2005100283A1 (en) | 2008-05-22 |
| CN1942416A (en) | 2007-04-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090061738A1 (en) | Method of surface modification for thermal shock resistance and a member thereof | |
| TWI321337B (en) | Methods of making silicon carbide articles capable of reducing wafer contamination | |
| KR100789021B1 (en) | Strengthening method of ceramics and ceramic products | |
| KR101439380B1 (en) | Heat Treatment Method and Apparatus for Sapphier Single Crystal | |
| JP7481509B2 (en) | Sintered ceramic bodies containing magnesium aluminate spinel | |
| US11551962B2 (en) | Ceramic substrate and susceptor | |
| US20220285502A1 (en) | METHOD FOR MANUFACTURING SiC SUBSTRATE | |
| KR102818334B1 (en) | Controlled porosity yttrium oxide for etching applications | |
| JP7089707B2 (en) | Semiconductor manufacturing equipment and display manufacturing equipment equipped with semiconductor manufacturing equipment members and semiconductor manufacturing equipment members | |
| KR101073734B1 (en) | Surface toughening method of ceramics and ceramics products | |
| JP4570195B2 (en) | BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER | |
| EP0990630A1 (en) | Structural body comprising aluminum nitride and method of producing the same | |
| WO2023100821A1 (en) | Height adjustment member, heat treatment apparatus and electrostatic chuck device | |
| KR100961279B1 (en) | Method for manufacturing internal material of plasma processing container using coating method and internal material manufactured by the method | |
| JP4711242B2 (en) | Composite structure and manufacturing method thereof | |
| TW202228861A (en) | Clamping jig and cleaning apparatus | |
| KR20230062621A (en) | Large dimension yttrium oxide sintered body | |
| JP2007048923A (en) | Wafer crack evaluating apparatus and method therefor | |
| JPH11186168A (en) | Protective cover for wafer holding surface | |
| JP2016199419A (en) | Coated graphite member | |
| Ito et al. | GSW0171 Surface toughening of ceramics by the shot blasting | |
| JP2004275900A (en) | Composite structure and its manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |