JP2004275900A - Composite structure and its manufacturing method - Google Patents

Composite structure and its manufacturing method Download PDF

Info

Publication number
JP2004275900A
JP2004275900A JP2003071489A JP2003071489A JP2004275900A JP 2004275900 A JP2004275900 A JP 2004275900A JP 2003071489 A JP2003071489 A JP 2003071489A JP 2003071489 A JP2003071489 A JP 2003071489A JP 2004275900 A JP2004275900 A JP 2004275900A
Authority
JP
Japan
Prior art keywords
base material
substrate
fine particles
brittle material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003071489A
Other languages
Japanese (ja)
Other versions
JP4380187B2 (en
Inventor
Hironori Hatono
広典 鳩野
Atsushi Yoshida
篤史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2003071489A priority Critical patent/JP4380187B2/en
Publication of JP2004275900A publication Critical patent/JP2004275900A/en
Application granted granted Critical
Publication of JP4380187B2 publication Critical patent/JP4380187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve deformation of a composite structure caused by residual stress of the structure accompanying construction of the structure in a method for manufacturing a composite structure. <P>SOLUTION: In the process for forming the composite structure by an aerosol deposition method, the deformation is solved by the residual stress possessed by the structure formed with the composite structure by processes such as providing a cooling step of a base material, carrying out heat treatment of the composite structure, providing a tensile stress intermediate layer on a surface of the base material, previously machining the base material to a recessed shape by surface processing of the base material or forming the structure on both surfaces of the plate-like base material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子を含むエアロゾルを基材に吹き付け、微粒子材料からなる構造物を基材上に形成させることによって、基材と構造物からなる複合構造物を作製する方法に関する。
【0002】
【従来の技術】
基材表面に脆性材料からなる構造物を形成する方法として、微粒子ビーム堆積法あるいはエアロゾルデポジション法と呼ばれる名称のものが認知されている。これは脆性材料の微粒子をガス中に分散させたエアロゾルをノズルから基板に向けて噴射し、基材に脆性材料微粒子を衝突させ、この衝突の衝撃により脆性材料が変形あるいは破砕し、これにより基材上に脆性材料微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能なプロセスで、焼成体同等の機械的強度を保有する脆性材料構造物を得ることができる。
【0003】
この技術の改良を目的として、イオン、原子、分子ビームや低温プラズマなどの高エネルギービームを微粒子の流れに照射し、微粒子を活性化させて良好な膜物性と、良好な基板への密着性を確保する工夫がなされている(例えば、特許文献1参照。)。
【0004】
また、微粒子材料の吹きつけの流れの基板表面への入射角度を変化させることで、微粒子材料の膜の接合が十分で組織が緻密であり、表面が平滑であり、密度の均一なものを製造する工夫がなされている(例えば、特許文献2参照。)。
【0005】
更に、脆性材料微粒子に内部歪を印加する工程を行った後に、この脆性材料微粒子を基材表面に衝突させ、この衝突の衝撃によって微粒子同士を再結合せしめることで、基材との境界部にその一部が基材表面に食い込む脆性材料からなるアンカー部を形成し、このアンカー部の上に脆性材料からなる構造物を形成させる複合構造物の形成方法が提案され、構造物の形成速度を向上させる工夫がなされている(例えば、特許文献3参照。)。
【0006】
これらエアロゾルデポジション法で使用される基板としては、金属、ガラス、セラミックス、ある種のプラスチックなどが挙げられる。
【0007】
【特許文献1】
特許第3256741号
【特許文献2】
特許第3338422号
【特許文献3】
特許第3348154号
【0008】
【発明が解決しようとする課題】
これら構造物の品質を上げる発明がなされる一方、緻密質で強固であり、密着性の良好な構造物を形成すると、構造物内に圧縮残留応力が発生し、それゆえ基材が構造物を上にして凸の形にそる変形を起こすという問題がある。これは微粒子を衝突させるというこの手法の特徴ゆえに、構造物形成時に常に構造物は圧縮性衝撃力の印加にさらされ、内部に応力が蓄積されるとともに、構造物が鍛造されて押し広げられるためと考えられる。従ってこの手法にて形成される複合構造物の用途として、例えばシリコンウェハやガラスを平面度よく吸着させる静電チャックなどを考えたとき、板状の基材を用い、その要求特性に従って板の表面を研削・研磨して必要とされる平面度を確保して準備を進めた場合において、その表面に緻密で高強度の脆性材料の構造物を形成させるためにこの手法を採用すると、もとから確保していた平面度を劣化させ、凸にそった板状複合構造物として、要求品質を満たさないものが得られるという結果となる。
【0009】
本発明は、上記事情に鑑みてなされたものであり、脆性材料の構造物の形成に当たって、その工程中あるいは基材の準備段階あるいは工程後の加工の段階において適当な処置を行うことで、構造物に発生する残留応力による基材の変形を極力抑え、要求される表面形状の設計を容易にする複合構造物の形成方法についての提案である。
【0010】
【課題を解決するための手段】
まず基材の変形についての説明を行う。本件で扱う基材の材質は、金属、セラミックス、ガラス、プラスチックなどが挙げられ、形態としては円盤などを含む板状を基本とし、すなわち板の片面に構造物形成を行った場合、基材が撓む不具合が工業利用上認められる場合を扱う。塊状の基材を用いた場合においても、微少量の変形は免れないため本件は当てはまるものの、重要性においては一歩劣る。また板状の基材の表面に微細なデザインの凹凸が形成されていてもよいし、基材がフィルム状であってもよい。
【0011】
一般的に円盤状の基材のそりと基板上に形成された構造物(膜)の持つ応力との間には次式の関係があるとされている。
Z=3(1−ν)dσl/(2Et) ・・・・(1)
ここで、Z:基材のそり
σ:構造物(膜)の応力(プラスの場合引っ張り応力)
E:基材のヤング率
t:基材と構造物(膜)の合計厚み
l:基材の直径
ν:基材のポアソン比
d:構造物(膜)の厚み
【0012】
PVDやめっき法などの場合、膜の残留応力は引っ張りの場合が多いため、基材は凹状にそる。この場合上式のそりや応力は正値をとる。エアロゾルデポジション法によって円盤基材に構造物を形成した場合は、凸状にそるため、Zは負値とし、σを負値に表示して圧縮応力であることを示すと良い。例えば直径200mm、厚み20mm、ポアソン比0.33、ヤング率7200kgf/mmのアルミ合金基材を用いて、エアロゾルデポジション法にて脆性材料構造物を形成高さ20μmで基材表面に形成した場合において、20μmの凸状そりが発生した場合、残留応力値は72kgf/mmの値を得る。上述の試算における基材のそりは、エアロゾルデポジション法により酸化アルミニウムの緻密質構造物を形成させた場合に発生するそりとしてほぼ当てはまる値である。このレベルのそりが引き起こす問題としては、例えばひとつの試算として平面度よく研磨したアルミ合金基材の表面に構造物を形成させることにより20μmのそりを持つ8inch用静電チャックを考えた場合、吸着させる8inchウェハがチャック表面になじんで同じく20μmのそりが発生することで、ウェハへの電子ビーム露光や描画の精度に影響を与えることとなり、都合が悪い。
【0013】
そこでこのような基材のそりを緩和する手法として、本発明においては、脆性材料微粒子をガス中に分散させたエアロゾルを、基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、基材上に形成させる複合構造物形成方法において、基材を室温未満の温度に冷却した状態で、エアロゾルを基材に衝突させることを特徴とする複合構造物の形成方法を提案する。
【0014】
基材を冷却した場合、その材質の熱膨張率に従って体積が縮小する。そこでこの状態で構造物を形成する。構造物には圧縮残留応力が発生し、基材は凸に変形するが、構造物形成後基材を室温まで上昇させると、基材の体積が膨張するため変形を少なくする方向に形状は回復する。基材を冷却することには温度的な限界があり、完全にそりを解消させることは難しいものの、熱膨張率の大きな基材を用いる場合においては、有効な手段と考えられる。
【0015】
また本発明における別の態様として、脆性材料微粒子をガス中に分散させたエアロゾルを、基材に向けて噴射して衝突させ、この衝撃によって脆性材料微粒子の構成材料からなる脆性材料構造物を、基材上に形成させる工程と、次いで基材の融点未満の温度で熱処理を行い、基材にクリープ変形を起こさしめる工程、からなる複合構造物の形成方法を提案する。
【0016】
例えば金属やプラスチックなどの材料を基材として用いて、エアロゾルデポジション法により構造物を形成させた場合において、その後の工程でこの複合構造物を昇温し、基材を軟化せしめる。基材の降伏応力、強度が徐々に低下していくなかで、構造物の持つ残留応力を原動力として基材を緩やかに塑性流動変形をさせることにより、構造物の応力を解放してそりを緩和させる。
【0017】
また本発明における別の態様として、基材の表面に引張り応力を有する中間層を、めっき法または物理蒸着法または化学蒸着法にて形成する工程と、次いで脆性材料微粒子をガス中に分散させたエアロゾルを、引張り応力を有する中間層に向けて噴射して衝突させ、この衝撃によって脆性材料微粒子の構成材料からなる脆性材料構造物を、基材上に形成させる工程、からなる複合構造物の形成方法を提案する。
【0018】
物理蒸着法や化学蒸着法などで形成される金属薄膜の場合、膜厚が100nmを越えると10〜10kg/mmの引っ張り応力が発生する場合が多いことが知られている。またクロムめっきでは10.7〜43.2kg/mmのひっぱり応力、ニッケルめっきでは1.9〜22.5kg/mmの引っ張り応力が生じるなどの研究結果がある(「残留応力の発生と対策」米谷茂著、養賢堂発行、1987)。したがって予め平面度を確保した基板にこれらの引っ張り応力膜(中間層)を形成させて凹状にそりを発生させ、この表面にエアロゾルデポジション法により圧縮応力を有する脆性材料構造物を形成させることで、これら引っ張りと圧縮の応力をできる限り相殺させて、そりを緩和することが考えられる。そり量は応力値×層厚みによって制御されるため、(1)式にもとづき設計する脆性材料構造物の残留応力と厚みから発生するそり量相当分を、これら中間層の応力に応じた中間層厚みを設定して形成させるとよい。
【0019】
また本発明の別の態様として、基材の表面を、研削加工あるいは研磨加工あるいはダイキャスト加工により緩やかな凹曲面に加工する工程と、次いで脆性材料微粒子をガス中に分散させたエアロゾルを、前記基材上の凹曲面に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上に形成させる工程、からなる複合構造物の形成方法を提案する。
【0020】
この手法は実質的に板状の基材に対して構造物形成面を平面度よく得るための手法であり、従って緩やかな凹曲面とは、数〜数十kg/mmの残留応力をもち、数〜数百μmの形成高さで形成される脆性材料の構造物による(1)式に基づくような基材の変形をもとに、そりZにほぼ対応する深さ分を基材の表面から削って形成される曲面である。すなわち予めエアロゾルデポジション法にて形成させる構造物の形成高さとそれが持つ残留応力値を把握しておき、基材の形状、材質と併せて、そり量を予測することで、この基材の変形量分に応じて基材を凹状に加工することが好適であると考えられる。この凹曲面は球面の一部を構成する曲面を採用することが望ましい。この加工された基材に構造物を形成させることで所望の表面形態、特に平面度に優れる表面を有する複合構造物を得ることができる。
【0021】
また本発明の別の態様として、脆性材料微粒子をガス中に分散させたエアロゾルを、板状の基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、基材上の片面に形成させる工程と、次いで基板の構造物が形成されていない別の片面に、エアロゾルを噴射して衝突させ、脆性材料微粒子の構成材料からなる脆性材料構造物を形成させる工程、からなる複合構造物の形成方法を提案する。
【0022】
板の両面へ圧縮残留応力を持つ構造物を形成させることで、そりを解消することが可能となる。この場合、両面へ同じ面積同じ形成高さ、同じ形成条件にて構造物を形成させることが好適であるが、面積を変え、形成高さを変えて、そり量を任意に制御することも考えられる。
【0023】
また本発明の別の態様として、脆性材料微粒子をガス中に分散させたエアロゾルを、基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、基材上に形成させる複合構造物形成方法において、基材に外力を与え、基材を弾性変形させた状態で、エアロゾルを前記基材に衝突させることを特徴とする複合構造物の形成方法。
【0024】
基板としては弾性変形を起こしやすい板状のもとを使用することが好適であり、エアロゾルデポジション法で形成される構造物が圧縮応力を持つという特徴から、基板の構造物形成面が凹状にそるような、基板の裏面からの外的引っ張り応力に印加や、基板の側面からの外的圧縮応力の印加を行うとよい。この応力値すなわち基板をそらせておく量は、構造物のもつ残留応力と構造物形成高さに応じて適当となるよう設定する。このような状態の基板表面に向けて構造物を形成したのち、基板にかかる外的応力を取り去る。この処置で構造物形成ののちでも複合構造物のそりを緩和することができる。
【0025】
これらの手法は、それひとつでは完全にそりを解消させることが難しい処方もあり、従ってこれらの手法のいくつかを組み合わせて極力そりをなくすことがなお好適である。
【0026】
また本発明では、板状の基材の両表面にセラミックスや半導体などの脆性材料からなる構造物が形成された複合構造物であって、前記構造物は多結晶であり、前記構造物を構成する結晶は実質的に結晶配向性がなく、また前記結晶同士の界面にはガラス層からなる粒界層が実質的に存在せず、さらに前記構造物の一部は基材表面に食い込むアンカー部となっていることを特徴とする複合構造物を提供する。
【0027】
ここで、本発明を理解する上で重要となる語句の解釈を以下に行う。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(結晶配向性)
本件では多結晶である構造物中での結晶軸の配向具合を指し、配向性があるかないかは、一般には実質的に配向性のないと考えられる粉末X線回折などによって標準データとされたJCPDS(ASTM)データを指標として判断する。本件では後述する実施例12に示すような見方において、主要なピークのずれが30%以内に収まっている場合を実質的に配向性がないと称する。
(界面)
本件では結晶子同士の境界を構成する領域を指す。
(粒界層)
界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(アンカー部)
本件の場合には、基材と構造物の界面に形成された凹凸を指し、特に、予め基材に凹凸を形成させるのではなく、構造物形成時に、元の基材の表面精度を変化させて形成される凹凸のことを指す。
【0028】
表面に研削・研磨などを施し、平面度を良好にした板状の基材の片側面のみにエアロゾルデポジション法により構造物を形成させた場合には、構造物の持つ残留応力の影響を受けて、得られた複合構造物が構造物を有する表面を上にして凸状にそるという不具合があった。そこでこのような基材を用いて、その両平面に構造物を形成させた複合構造物を得ることにより、これら構造物の残留応力が拮抗して、複合構造物のそりを緩和することができ、すなわち平面度の高い複合構造物を獲得することができ、好適となる。基材の両面の構造物はそれぞれ、形成面積や形成高さがほぼ同一であることが平面度を高める上でよい。構造物形成後にいずれかあるいは両方の面の構造物を研削・研磨して、複合構造物のそりや外観を調整することも好適である。
【0029】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。まず本発明の場となるエアロゾルデポジション法における複合構造物作製装置の一態様について説明する。
【0030】
図1は複合構造物作製装置10を示したものであり、窒素ガスボンベ101の先にガス搬送管102を介してエアロゾル発生器103が設置され、その下流側にエアロゾル搬送管104を介して構造物形成室105内に例えば10mm×0.4mmの噴射開口をもつノズル106が設置されている。エアロゾル発生器103内には脆性材料微粒子例えば酸化アルミニウム微粒子粉体が充填されている。ノズル106の開口の先には基材108が配置され、基材108はXYステージ107に固定されている。構造物形成室105は真空ポンプ109と接続されている。
【0031】
以下にエアロゾルデポジション法に基づく複合構造物作製装置1の作用を述べる。窒素ガスボンベ101を開栓し、ガスをエアロゾル発生器103内に送り込み、同時にエアロゾル発生器103を運転させて脆性材料微粒子と窒素ガスが適当比で混合されたエアロゾルを発生させる。また真空ポンプ109を稼動させ、エアロゾル発生器103と構造物形成室105の間に差圧を生じさせる。このエアロゾルをエアロゾル搬送管104を通して加速させ、ノズル106より基材108に向けて噴射する。基材108はXYステージ107により揺動され、エアロゾル衝突位置を変化させつつ、微粒子の衝突により基材108上に膜状の脆性材料構造物が形成されていく。
【0032】
図2は請求項1に基づく基板を冷却する方法を採用する構造物形成装置20であり、ほぼ図1と同様であるが、基材108とXYステージ107の間に基材冷却ステージ201が設置される。例えば、ペルチェ素子を内蔵した冷却ステージや、液体窒素を通液あるいは液体窒素から発生したコールドガスを通気するパイプを連結した冷却ステージを用いる。また基板表面に熱電対202を取り付けて温度計203により温度管理を行い、基材を所望量体積低下させる。このような状態で上述した方法により構造物の形成を行ってのち、形成された構造物を室温まで温度上昇させることにより、変形を緩和させる。
【0033】
(実施例1)
実施例1は、形成された複合構造物に熱処理を行うことで変形を緩和する方法に関する。図1と同等の従来からの構造物形成装置を用いて、基材にφ30mm、厚み3mmのA5052アルミ合金を使用し、脆性材料微粒子に平均粒径0.6μm、純度99.8%の酸化アルミニウムを使用した。まず基材に熱処理炉にて270℃24時間の熱処理を行い、次いで基材の片側表面に酸化アルミニウムの構造物を形成して複合構造物を得た。続いてこの構造物を、温度を300℃12時間、310℃12時間、と10℃刻みで昇温させ、370℃12時間処理まで酸化アルミニウム構造物の結晶にほとんど影響を与えない温度範囲にて温度変化させながら熱処理炉にて熱処理して、基材にクリープ変形を起こさせた。
【0034】
そりの状態の把握としては、まず構造物形成前の基材の表面に中心から直径20mmの円をもうけ、これを十字に分割し、X方向とY方向として設定して、X方向20mm、Y方向20mmにつき、表面プロファイルを日本真空技術株式会社製触針式表面形状測定装置Dektak3030を用いて測定した。次いで270℃の基材の熱処理後に同じ領域の表面プロファイルを測定した。次いで構造物形成後に構造物形成によるそりを同じようにして評価した。続いて各熱処理を経る毎に基材を熱処理炉から取り出して室温まで冷却し、同じく測定した。その結果を表1に示す。値は負値が凸状のそりであり、正値が凹状のそりである。360℃の熱処理でほぼそりが解消されていることがわかる。また370℃12時間の処理を行った後のサンプルのY方向のプロファイルにおいて、距離2mmにおける表面粗さRaを、日本真空技術株式会社製触針式表面形状測定装置Dektak3030を用いて測定したところ、0.2μmの値を得た。
【0035】
【表1】

Figure 2004275900
【0036】
(実施例2)
実施例2は、板の両面への構造物形成の例である。図1と同等の従来からの構造物形成装置を用いて、縦15mm、横15mm、厚さ0.7mmのソーダライムガラス基材上へ、まず片面(おもて面)に形成高さ6.3μmで酸化アルミニウムの構造物の形成を全面に亘って行った。この基材のおもて面の表面プロファイルを日本真空技術株式会社製触針式表面形状測定装置Dektak3030を用いて、縦方向10mmの幅で測定したところ、6.4μmの凸状のそりが観察された。この後、基材の裏面に同様の操作にて形成高さ4.6μmの酸化アルミニウム構造物を全面に亘って形成した。この基材のおもて面の表面プロファイルを同様に測定したところ、1.25μmのそりが観察された。従って、両面への構造物形成により、基材の破損なく基材のそりをある程度解消させることができた。
【0037】
(実施例3)
実施例3は、基板に応力を印加しつつ構造物形成を行った例である。図3に示すように、縦30mm、横50mm、厚さ3mm、平面度5μm程度のSUS304ステンレス鋼基板301の中心に片側からネジ穴を空け、40mmの間隔で突起を形成した基板ホルダ302に設置し、基板ホルダ302の裏面からボルト303を挿入して基板301を固定し、さらにボルトを締めることにより、基板表面横方向でそりが生じるように基板301下面から引っ張り応力を与えた。図4はこのときの表面形状を日本真空技術株式会社製触針式表面形状測定装置Dektak3030にて計測した基板の表面プロファイルである。基板表面方向40mmにおいて、約100μm凹状にそっていることがわかる。この状態の基板ホルダを図1と同等の構造物形成装置のXYステージ107に設置し、構造物形成用粉体として、平均粒径0.6μmの酸化アルミニウム微粒子を用いてエアロゾルデポジション法により基板表面に40mm×30mmの面積、約20μmの形成高さで構造物形成を行った。このようにして作製した複合構造物を基板ホルダ302から取り外し、図4で計測した位置とほぼ同じ領域で表面プロファイルを計測した。この結果を図5に示す。ほぼフラットな表面を持つ構造物が形成されたことがわかる。このときの複合構造物表面の表面粗さを日本真空技術株式会社製触針式表面形状測定装置Dektak3030にて距離2mmで測定したところ、1μmの値を得た。
【0038】
(比較例)
この比較例は実施例2に対するものである。縦30mm、横50mm、厚さ3mm、平面度5μm程度のSUS304ステンレス鋼基板を応力を印加せずに図1と同等の構造物形成装置のXYステージ107に設置し、構造物形成用粉体として、平均粒径0.6μmの酸化アルミニウム微粒子を用いてエアロゾルデポジション法により基板表面に40mm×30mmの面積、約15μmの形成高さで構造物形成を行った。このようにして作製した複合構造物の横方向の表面プロファイルを日本真空技術株式会社製触針式表面形状測定装置Dektak3030にて計測した。この結果が図6である。フラットであった基板が構造物形成により、構造物の持つ圧縮残留応力の影響を受けて、凸状にそっていることがわかる。またこのときの複合構造物表面の表面粗さを日本真空技術株式会社製触針式表面形状測定装置Dektak3030にて距離2mmで測定したところ、2.4μmの値を得た。
【0039】
(実施例4)
この実施例は結晶配向性について行ったものである。
平均粒径0.4μmの酸化アルミニウム微粒子を用いて本発明の超微粒子ビーム堆積法によりステンレス基板上に厚さ20μmの酸化アルミニウム構造物を形成した。この構造物の結晶配向性をX線回折法(マックサイエンス社製MXP−18)により測定した。この結果を表2に示す。
【0040】
表2では代表的な面形のピーク4点の積分強度計算結果を{hkl}={113}を100とした強度比で示す。左から原料微粒子を薄膜光学系で測定した結果、構造物を薄膜光学系で測定した結果、JCPDSカード74−1081コランダム酸化アルミニウムデータ、原料微粒子を集中光学系で測定した結果を記載する。
【0041】
原料微粒子の集中光学系と薄膜光学系の結果がほぼ等しい為、原料粉体の薄膜光学系の結果を無配向状態と基準し、このときの構造物の強度比のずれを百分率表示したものを表3に示す。{113}を基準として、他の3ピークのずれは11%以内に収まっており、実質上構造物は結晶配向性がないと言える。
【0042】
【表2】
Figure 2004275900
【0043】
【表3】
Figure 2004275900
【0044】
(実施例5)
次に構造物形成に伴って形成されたアンカー部について、図7に示す。尚、図7において、上部は製膜前の基板表面の凹凸を測定した結果を示し、下部は製膜後に脆性材料の膜を剥がした後の基板の表面すなわちアンカー部の凹凸を測定した結果を示す。
【0045】
図1に示したものと同等の装置で、純度99.8%以上、サブミクロン粒径の酸化アルミニウム微粒子を窒素ガスと混合させてエアロゾルを発生させ、表面を鏡面に仕上げた真鍮基板に向けて、ガス流量7L/minの条件で噴射し、酸化アルミニウム膜を膜厚10μm程度で形成させた後、膜に引張り応力を与えて膜を基板より引き剥がしてアンカー部をむき出しにし、基板の表面粗さとアンカー部を日本真空技術株式会社製触針式表面形状測定器Dektak3030を用いて計測した。図7の上のプロファイルが構造物形成前の真鍮基板の表面プロファイルであり、下がアンカー部のプロファイルである。図より微粒子の衝突によりアンカー部が形成されている様子がわかる。また同表面形状測定器によりこれらの表面粗さRaは、スイープ距離200μmにおいて、基板表面が7.7nm、アンカー層が73.8nmであった。
【0046】
【発明の効果】
以上に説明したように本発明によれば、エアロゾルデポジション法によって複合構造物を形成させる工程において、基材の冷却工程を設ける、あるいは複合構造物の熱処理を行う、あるいは基材の表面に引っ張り応力中間層を設ける、あるいは基材の表面加工により基材を予め凹状に加工するなどの処置により、複合構造物が形成された構造物の持つ残留応力によって変形するという不具合を解消することが可能となる。
【図面の簡単な説明】
【図1】エアロゾルデポジション法で用いる構造物作製装置を示す模式図
【図2】エアロゾルデポジション法で用いる基材冷却ステージを有する構造物作製装置を示す模式図
【図3】基材に引っ張り応力を与える基材ホルダの模式図
【図4】引っ張り応力を与えて基材の表面プロファイル
【図5】基材に引っ張り応力を与えて形成した複合構造物の表面プロファイル
【図6】基材に引っ張り応力を与えず形成した複合構造物の表面プロファイル
【図7】アンカー層を示す図
【符号の説明】
10・・・複合構造物作製装置
101・・・窒素ガスボンベ
102・・・ガス搬送管
103・・・エアロゾル発生器
104・・・エアロゾル搬送管
105・・・構造物形成室
106・・・ノズル
107・・・XYステージ
108・・・基材
109・・・真空ポンプ
20・・・構造物形成装置
201・・・基材冷却ステージ
202・・・熱電対
203・・・温度計[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a composite structure composed of a substrate and a structure by spraying an aerosol containing the particles on the substrate and forming a structure composed of the particle material on the substrate.
[0002]
[Prior art]
As a method of forming a structure made of a brittle material on the surface of a base material, a method called a particle beam deposition method or an aerosol deposition method is known. In this method, an aerosol in which fine particles of a brittle material are dispersed in a gas is jetted from a nozzle toward a substrate, and the fine particles of the brittle material collide with the base material. The impact of the collision deforms or crushes the brittle material. It is characterized by directly forming a structure consisting of the constituent material of brittle material particles on the material, and it is a process that can form the structure at room temperature without the need for heating means. The retained brittle material structure can be obtained.
[0003]
For the purpose of improving this technology, high-energy beams such as ion, atom, and molecular beams and low-temperature plasma are applied to the flow of fine particles to activate the fine particles and improve the film properties and the adhesion to the substrate. Some measures have been taken to ensure this (see, for example, Patent Document 1).
[0004]
In addition, by changing the angle of incidence of the spray flow of the fine particle material on the substrate surface, it is possible to produce a fine particle material with sufficient bonding, a fine structure, a smooth surface, and a uniform density. (For example, see Patent Document 2).
[0005]
Further, after performing a step of applying internal strain to the brittle material fine particles, the brittle material fine particles collide with the surface of the base material, and the fine particles are recombined by the impact of the collision, so that the fine particles are formed at the boundary with the base material. A method of forming a composite structure in which an anchor portion made of a brittle material partially penetrates the base material surface and a structure made of a brittle material is formed on the anchor portion has been proposed. A device has been devised for improvement (for example, see Patent Document 3).
[0006]
Substrates used in these aerosol deposition methods include metals, glass, ceramics, and certain types of plastics.
[0007]
[Patent Document 1]
Japanese Patent No. 3256741
[Patent Document 2]
Patent No. 3338422
[Patent Document 3]
Patent No. 3348154
[0008]
[Problems to be solved by the invention]
On the other hand, while inventions for improving the quality of these structures are made, when a structure that is dense, strong, and has good adhesion is formed, a compressive residual stress is generated in the structure, and therefore, the base material forms the structure. There is a problem that a deformation along the convex shape is caused when it is turned upward. This is due to the feature of this method of colliding fine particles, because the structure is always exposed to the application of compressive impact force when forming the structure, stress is accumulated inside, and the structure is forged and expanded. it is conceivable that. Therefore, as an application of the composite structure formed by this method, for example, when considering an electrostatic chuck that suctions a silicon wafer or glass with good flatness, a plate-like base material is used, and the surface of the plate is used in accordance with the required characteristics. When the preparation is proceeded by securing the required flatness by grinding and polishing, if this method is adopted to form a dense and high-strength brittle material structure on its surface, As a result, the flatness that has been ensured is degraded, and a plate-shaped composite structure that does not satisfy the required quality is obtained as a convex composite structure.
[0009]
The present invention has been made in view of the above circumstances, and in forming a structure of a brittle material, by performing an appropriate treatment during the process or during a preparation stage of a base material or a processing stage after the process, It is a proposal for a method of forming a composite structure that minimizes deformation of a substrate due to residual stress generated in an object and facilitates design of a required surface shape.
[0010]
[Means for Solving the Problems]
First, the deformation of the base material will be described. The material of the base material to be dealt with in this case includes metal, ceramics, glass, plastic, and the like.The form is basically a plate shape including a disk, that is, when a structure is formed on one side of the plate, the base material is Handles cases where flexing failure is recognized for industrial use. Even when a massive base material is used, a small amount of deformation is unavoidable, so this case applies, but the importance is one step lower. Further, fine design irregularities may be formed on the surface of the plate-shaped base material, or the base material may be a film shape.
[0011]
In general, it is said that the following relationship exists between the warpage of a disk-shaped substrate and the stress of a structure (film) formed on the substrate.
Z = 3 (1-ν) dσl 2 / (2Et 2 ・ ・ ・ ・ ・ (1)
Here, Z: substrate warpage
σ: Stress of structure (film) (tensile stress in case of plus)
E: Young's modulus of substrate
t: Total thickness of substrate and structure (film)
l: diameter of substrate
ν: Poisson's ratio of the substrate
d: Thickness of structure (film)
[0012]
In the case of PVD, plating, or the like, since the residual stress of the film is often tensile, the substrate is curved in a concave shape. In this case, the warp and stress in the above equation take positive values. When the structure is formed on the disk base material by the aerosol deposition method, it is preferable that Z is set to a negative value and σ is displayed as a negative value to indicate that it is a compressive stress because the structure is formed in a convex shape. For example, diameter 200 mm, thickness 20 mm, Poisson's ratio 0.33, Young's modulus 7200 kgf / mm 2 In the case where a brittle material structure is formed at a height of 20 μm on the surface of a base material by an aerosol deposition method using an aluminum alloy base material of No. 1, a residual stress value of 72 kgf / mm 2 Get the value of The warpage of the base material in the above-mentioned calculation is a value which is substantially applicable to the warpage generated when a dense structure of aluminum oxide is formed by the aerosol deposition method. As a problem caused by this level of warpage, for example, when one considers an 8 inch electrostatic chuck having a warp of 20 μm by forming a structure on the surface of an aluminum alloy substrate polished with good flatness, If the 8 inch wafer to be adjusted is adapted to the chuck surface and the same warpage of 20 μm is generated, the accuracy of electron beam exposure and drawing on the wafer is affected, which is inconvenient.
[0013]
Therefore, as a technique for alleviating such warpage of the substrate, in the present invention, an aerosol in which fine particles of a brittle material are dispersed in a gas is jetted toward the substrate and collides with the fine particles. A method for forming a brittle material structure comprising the constituent material of the above, on a substrate, wherein the substrate is cooled to a temperature lower than room temperature, and the aerosol is impinged on the substrate. A method for forming a structure is proposed.
[0014]
When the substrate is cooled, the volume is reduced according to the coefficient of thermal expansion of the material. Therefore, a structure is formed in this state. A compressive residual stress is generated in the structure, and the substrate deforms convexly, but when the substrate is raised to room temperature after the structure is formed, the volume of the substrate expands, and the shape recovers in a direction to reduce the deformation. I do. Although there is a temperature limit in cooling the substrate, it is difficult to completely eliminate the warpage, but it is considered to be an effective means when a substrate having a large coefficient of thermal expansion is used.
[0015]
Further, as another aspect of the present invention, an aerosol in which brittle material fine particles are dispersed in a gas is jetted and collided toward a substrate, and a brittle material structure made of a constituent material of brittle material fine particles by the impact is used. The present invention proposes a method for forming a composite structure, comprising a step of forming a composite structure on a substrate, and a step of performing heat treatment at a temperature lower than the melting point of the substrate to cause creep deformation of the substrate.
[0016]
For example, when a structure is formed by aerosol deposition using a material such as a metal or a plastic as a base material, the temperature of the composite structure is increased in a subsequent step to soften the base material. As the yield stress and strength of the base material gradually decrease, the residual stress of the structure is used as a driving force to slowly plastically deform the base material, thereby releasing the stress of the structure and relaxing the warpage. Let it.
[0017]
In another embodiment of the present invention, a step of forming an intermediate layer having a tensile stress on the surface of the substrate by a plating method, a physical vapor deposition method, or a chemical vapor deposition method, and then dispersing brittle material fine particles in a gas. Aerosol is sprayed toward an intermediate layer having a tensile stress to cause collision, and the impact is used to form a brittle material structure composed of constituent materials of brittle material fine particles on a substrate, thereby forming a composite structure. Suggest a method.
[0018]
In the case of a metal thin film formed by a physical vapor deposition method or a chemical vapor deposition method, if the film thickness exceeds 100 nm, 10 0 -10 1 kg / mm 2 It is known that tensile stress is often generated. In the case of chrome plating, 10.7 to 43.2 kg / mm 2 Tensile stress, 1.9 to 22.5 kg / mm for nickel plating 2 There is a research result such as the generation of tensile stress ("Generation and countermeasures of residual stress" by Shigeru Yoneya, published by Yokendo, 1987). Therefore, these tensile stress films (intermediate layers) are formed on a substrate having a predetermined flatness to generate warpage in a concave shape, and a brittle material structure having a compressive stress is formed on the surface by aerosol deposition. It is conceivable to offset the tensile and compressive stresses as much as possible to reduce the warpage. Since the amount of warpage is controlled by the stress value × the thickness of the layer, the amount of warpage generated from the residual stress and thickness of the brittle material structure designed based on equation (1) is determined by the intermediate layer corresponding to the stress of these intermediate layers. It is good to form by setting thickness.
[0019]
Further, as another aspect of the present invention, a step of processing the surface of the substrate into a gentle concave curved surface by grinding or polishing or die casting, and then the aerosol in which the brittle material particles are dispersed in a gas, Jetting and colliding against the concave curved surface on the base material, and forming a brittle material structure made of the constituent material of the brittle material fine particles on the base material by the impact. Suggest.
[0020]
This method is a method for obtaining a structure-formed surface with good flatness with respect to a substantially plate-shaped base material. Therefore, a gentle concave curved surface means several to several tens kg / mm. 2 And a depth substantially corresponding to the warp Z, based on the deformation of the base material based on the equation (1) due to the brittle material structure formed at a formation height of several to several hundreds μm having the following residual stress: It is a curved surface formed by shaving a part from the surface of the base material. That is, the height of the structure to be formed by the aerosol deposition method and the residual stress value of the structure are grasped in advance, and the shape and the material of the base material, and the amount of warpage are predicted, whereby the base material of the base material is predicted. It is considered preferable to process the substrate into a concave shape according to the amount of deformation. It is desirable to adopt a curved surface constituting a part of the spherical surface as the concave curved surface. By forming a structure on the processed base material, a composite structure having a surface having a desired surface morphology, particularly excellent flatness, can be obtained.
[0021]
Further, as another embodiment of the present invention, an aerosol in which fine particles of a brittle material are dispersed in a gas is jetted toward a plate-shaped substrate to collide with the plate. A step of forming a structure on one side of the substrate, and then a jet of an aerosol to collide with another side of the substrate where the structure is not formed to form a brittle material structure comprising brittle material fine particles A method for forming a composite structure, comprising:
[0022]
By forming a structure having a compressive residual stress on both sides of the plate, it is possible to eliminate the warpage. In this case, it is preferable to form the structure on both surfaces under the same area, the same formation height, and the same formation conditions. However, it is also conceivable to change the area, change the formation height, and arbitrarily control the amount of warpage. Can be
[0023]
Further, as another aspect of the present invention, an aerosol in which brittle material fine particles are dispersed in a gas is jetted and collided toward a base material, and a brittle material structure made of a constituent material of the brittle material fine particles is formed by the impact. A method for forming a composite structure formed on a substrate, comprising applying an external force to the substrate and causing an aerosol to collide with the substrate while elastically deforming the substrate. .
[0024]
As the substrate, it is preferable to use a plate-shaped source that easily undergoes elastic deformation, and since the structure formed by the aerosol deposition method has a compressive stress, the structure forming surface of the substrate has a concave shape. It is preferable to apply such an external tensile stress from the back surface of the substrate or an external compressive stress from the side surface of the substrate. The stress value, that is, the amount by which the substrate is deflected is set to be appropriate according to the residual stress of the structure and the height at which the structure is formed. After forming the structure toward the substrate surface in such a state, the external stress applied to the substrate is removed. This procedure can reduce the warpage of the composite structure even after the formation of the structure.
[0025]
For some of these methods, it is difficult to completely eliminate warping by themselves. Therefore, it is still preferable to combine some of these methods to minimize warpage.
[0026]
Further, according to the present invention, a composite structure in which a structure made of a brittle material such as a ceramic or a semiconductor is formed on both surfaces of a plate-shaped substrate, wherein the structure is polycrystalline, The crystal to be formed has substantially no crystal orientation, and there is substantially no grain boundary layer made of a glass layer at the interface between the crystals, and furthermore, a part of the structure is an anchor portion that cuts into the surface of the base material. A composite structure is provided.
[0027]
Here, the interpretation of words and phrases important for understanding the present invention will be described below.
(Polycrystalline)
In this case, it refers to a structure formed by bonding and accumulating crystallites. The crystallites substantially constitute a single crystal and have a diameter of usually 5 nm or more. However, in rare cases, for example, the fine particles are taken into the structure without being crushed, but they are substantially polycrystalline.
(Crystal orientation)
In this case, it refers to the degree of orientation of the crystal axis in a polycrystalline structure, and the presence or absence of orientation was determined to be standard data by powder X-ray diffraction, which is generally considered to be substantially non-oriented. Judgment is made using JCPDS (ASTM) data as an index. In the present case, in the viewpoint as described in Example 12 described later, the case where the deviation of the main peak is within 30% is referred to as substantially having no orientation.
(interface)
In the present case, it refers to a region constituting a boundary between crystallites.
(Grain boundary layer)
A layer having a certain thickness (usually several nm to several μm) located at an interface or a grain boundary in a sintered body, usually has an amorphous structure different from the crystal structure in a crystal grain, and in some cases, segregation of impurities. Accompany.
(Anchor)
In the case of this case, it refers to the irregularities formed at the interface between the substrate and the structure.In particular, instead of forming the irregularities on the substrate in advance, when forming the structure, the surface accuracy of the original substrate is changed. Refers to the irregularities formed.
[0028]
When a structure is formed by aerosol deposition on only one side of a plate-shaped base material whose surface flatness has been improved by grinding / polishing, it is affected by the residual stress of the structure. Thus, there is a problem that the obtained composite structure is convexly curved with the surface having the structure facing upward. Therefore, by using such a base material to obtain a composite structure in which a structure is formed on both planes, the residual stress of these structures can be opposed and the warpage of the composite structure can be reduced. That is, a composite structure having high flatness can be obtained, which is preferable. The structures on both sides of the base material should have substantially the same formation area and height in order to enhance the flatness. It is also preferable to adjust the warp and appearance of the composite structure by grinding and polishing the structure on one or both surfaces after the formation of the structure.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, an embodiment of a composite structure manufacturing apparatus in the aerosol deposition method, which is the field of the present invention, will be described.
[0030]
FIG. 1 shows a composite structure manufacturing apparatus 10 in which an aerosol generator 103 is installed via a gas transport pipe 102 at the end of a nitrogen gas cylinder 101, and a structure is installed via an aerosol transport pipe 104 on the downstream side. A nozzle 106 having a jet opening of, for example, 10 mm × 0.4 mm is provided in the forming chamber 105. The aerosol generator 103 is filled with fine particles of a brittle material, for example, fine particles of aluminum oxide. A base material 108 is arranged at the end of the opening of the nozzle 106, and the base material 108 is fixed to the XY stage 107. The structure forming chamber 105 is connected to a vacuum pump 109.
[0031]
The operation of the composite structure manufacturing apparatus 1 based on the aerosol deposition method will be described below. The nitrogen gas cylinder 101 is opened, and the gas is sent into the aerosol generator 103. At the same time, the aerosol generator 103 is operated to generate an aerosol in which fine particles of brittle material and nitrogen gas are mixed at an appropriate ratio. Further, the vacuum pump 109 is operated to generate a pressure difference between the aerosol generator 103 and the structure forming chamber 105. This aerosol is accelerated through the aerosol transport pipe 104 and is jetted from the nozzle 106 toward the base material 108. The base material 108 is swung by the XY stage 107, and while changing the aerosol collision position, a film-like brittle material structure is formed on the base material 108 by the collision of the fine particles.
[0032]
FIG. 2 shows a structure forming apparatus 20 adopting the method for cooling a substrate according to the first embodiment, which is substantially the same as FIG. 1, except that a substrate cooling stage 201 is provided between the substrate 108 and the XY stage 107. Is done. For example, a cooling stage incorporating a Peltier element or a cooling stage connected with a pipe through which liquid nitrogen flows or through which a cold gas generated from liquid nitrogen is passed is used. Further, a thermocouple 202 is attached to the surface of the substrate, and the temperature is controlled by a thermometer 203 to reduce the volume of the base material by a desired amount. In such a state, after the structure is formed by the above-described method, the temperature of the formed structure is raised to room temperature to reduce the deformation.
[0033]
(Example 1)
Example 1 relates to a method of reducing deformation by performing a heat treatment on a formed composite structure. Using a conventional structure forming apparatus equivalent to that shown in FIG. 1, an A5052 aluminum alloy having a diameter of 30 mm and a thickness of 3 mm was used as a base material, and aluminum oxide having an average particle diameter of 0.6 μm and a purity of 99.8% was used as brittle material fine particles. It was used. First, the substrate was subjected to a heat treatment at 270 ° C. for 24 hours in a heat treatment furnace, and then an aluminum oxide structure was formed on one surface of the substrate to obtain a composite structure. Subsequently, the temperature of the structure is increased in steps of 300 ° C. for 12 hours, 310 ° C. for 12 hours, and 10 ° C. in a temperature range that hardly affects the crystal of the aluminum oxide structure until 370 ° C. for 12 hours. Heat treatment was performed in a heat treatment furnace while changing the temperature to cause creep deformation of the substrate.
[0034]
To grasp the state of the warp, first, a circle having a diameter of 20 mm is formed from the center on the surface of the base material before forming the structure, divided into a cross, set as the X direction and the Y direction, and set in the X direction at 20 mm and the Y direction. The surface profile was measured in a direction of 20 mm using a stylus type surface shape measuring device Dektak 3030 manufactured by Japan Vacuum Engineering Co., Ltd. Then, after the heat treatment of the substrate at 270 ° C., the surface profile of the same region was measured. Next, after the structure was formed, the warpage due to the structure formation was evaluated in the same manner. Subsequently, after each heat treatment, the substrate was taken out of the heat treatment furnace, cooled to room temperature, and measured similarly. Table 1 shows the results. As for the value, a negative value is a convex warp, and a positive value is a concave warp. It can be seen that the warpage was almost completely eliminated by the heat treatment at 360 ° C. Further, when the surface roughness Ra at a distance of 2 mm was measured using a stylus type surface shape measuring device Dektak 3030 manufactured by Japan Vacuum Engineering Co., Ltd. in the profile in the Y direction of the sample after performing the treatment at 370 ° C. for 12 hours, A value of 0.2 μm was obtained.
[0035]
[Table 1]
Figure 2004275900
[0036]
(Example 2)
Example 2 is an example of forming structures on both sides of a plate. Using a conventional structure forming apparatus equivalent to that shown in FIG. 1, a soda lime glass substrate having a length of 15 mm, a width of 15 mm and a thickness of 0.7 mm is first formed on one surface (front surface). The formation of the aluminum oxide structure at 3 μm was performed over the entire surface. When the surface profile of the front surface of this substrate was measured with a width of 10 mm in the vertical direction using a stylus type surface shape measuring device Dektak3030 manufactured by Japan Vacuum Engineering Co., Ltd., a convex warpage of 6.4 μm was observed. Was done. Thereafter, an aluminum oxide structure having a height of 4.6 μm was formed on the entire back surface of the substrate by the same operation. When the surface profile of the front surface of the substrate was measured in the same manner, a warp of 1.25 μm was observed. Therefore, by forming structures on both surfaces, it was possible to eliminate the warpage of the base material to some extent without damaging the base material.
[0037]
(Example 3)
Example 3 is an example in which a structure is formed while applying stress to a substrate. As shown in FIG. 3, a screw hole is made from one side in the center of a SUS304 stainless steel substrate 301 having a length of 30 mm, a width of 50 mm, a thickness of 3 mm, and a flatness of about 5 μm, and is mounted on a substrate holder 302 having projections formed at intervals of 40 mm. Then, a bolt 303 was inserted from the back surface of the substrate holder 302 to fix the substrate 301, and a bolt was tightened to apply a tensile stress from the lower surface of the substrate 301 so that warpage occurs in the lateral direction of the substrate surface. FIG. 4 shows a surface profile of the substrate measured by a stylus type surface shape measuring device Dektak 3030 manufactured by Japan Vacuum Engineering Co., Ltd. at this time. It can be seen that it is in a concave shape of about 100 μm in the substrate surface direction of 40 mm. The substrate holder in this state is set on the XY stage 107 of the structure forming apparatus equivalent to that of FIG. 1, and the substrate is formed by aerosol deposition using aluminum oxide fine particles having an average particle diameter of 0.6 μm as the structure forming powder. A structure was formed on the surface with an area of 40 mm × 30 mm and a formation height of about 20 μm. The composite structure manufactured in this manner was removed from the substrate holder 302, and the surface profile was measured in almost the same region as the position measured in FIG. The result is shown in FIG. It can be seen that a structure having a substantially flat surface was formed. The surface roughness of the composite structure at this time was measured at a distance of 2 mm with a stylus type surface shape measuring device Dektak 3030 manufactured by Japan Vacuum Engineering Co., Ltd., and a value of 1 μm was obtained.
[0038]
(Comparative example)
This comparative example is for Example 2. A SUS304 stainless steel substrate having a length of 30 mm, a width of 50 mm, a thickness of 3 mm, and a flatness of about 5 μm was placed on an XY stage 107 of a structure forming apparatus equivalent to that shown in FIG. A structure having an area of 40 mm × 30 mm and a height of about 15 μm was formed on the substrate surface by aerosol deposition using aluminum oxide fine particles having an average particle diameter of 0.6 μm. The lateral surface profile of the composite structure thus manufactured was measured by a stylus type surface shape measuring device Dektak3030 manufactured by Japan Vacuum Engineering Co., Ltd. FIG. 6 shows the result. It can be seen that the flat substrate has a convex shape under the influence of the compressive residual stress of the structure due to the formation of the structure. The surface roughness of the composite structure at this time was measured at a distance of 2 mm with a stylus type surface shape measuring device Dektak 3030 manufactured by Japan Vacuum Engineering Co., Ltd., and a value of 2.4 μm was obtained.
[0039]
(Example 4)
This example was conducted for the crystal orientation.
An aluminum oxide structure having a thickness of 20 μm was formed on a stainless steel substrate by the ultrafine particle beam deposition method of the present invention using aluminum oxide fine particles having an average particle diameter of 0.4 μm. The crystal orientation of this structure was measured by an X-ray diffraction method (MXP-18, manufactured by Mac Science). Table 2 shows the results.
[0040]
In Table 2, the integrated intensity calculation results of the four peaks of the representative surface shape are shown by an intensity ratio with {hkl} = {113} being 100. From the left, the results of measuring the raw material fine particles with the thin film optical system, the results of measuring the structure with the thin film optical system, the JCPDS card 74-1081 corundum aluminum oxide data, and the results of measuring the raw material fine particles with the concentrated optical system are described.
[0041]
Since the results of the concentrated optical system and the thin film optical system of the raw material particles are almost the same, the result of the thin film optical system of the raw material powder is regarded as the non-oriented state, and the deviation of the intensity ratio of the structure at this time is expressed as a percentage. It is shown in Table 3. The deviation of the other three peaks is within 11% based on {113}, and it can be said that the structure has substantially no crystal orientation.
[0042]
[Table 2]
Figure 2004275900
[0043]
[Table 3]
Figure 2004275900
[0044]
(Example 5)
Next, FIG. 7 shows an anchor portion formed along with the formation of the structure. In FIG. 7, the upper part shows the results of measuring the unevenness of the substrate surface before film formation, and the lower part shows the results of measuring the unevenness of the surface of the substrate after peeling the film of the brittle material after film formation, that is, the anchor part. Show.
[0045]
An apparatus equivalent to that shown in FIG. 1 is used. An aerosol is generated by mixing aluminum oxide fine particles having a purity of 99.8% or more and a submicron particle diameter with nitrogen gas, and directed toward a mirror-finished brass substrate. After spraying under a gas flow rate of 7 L / min to form an aluminum oxide film with a film thickness of about 10 μm, a tensile stress is applied to the film, the film is peeled off from the substrate to expose the anchor portion, and the surface roughness of the substrate is increased. The anchor portion was measured using a stylus type surface profiler Dektak3030 manufactured by Japan Vacuum Engineering Co., Ltd. The upper profile in FIG. 7 is the surface profile of the brass substrate before the structure is formed, and the lower profile is the profile of the anchor portion. From the figure, it can be seen that the anchor portion is formed by the collision of the fine particles. The surface roughness Ra was 7.7 nm on the substrate surface and 73.8 nm on the anchor layer at a sweep distance of 200 μm by the same surface shape measuring instrument.
[0046]
【The invention's effect】
As described above, according to the present invention, in the step of forming the composite structure by the aerosol deposition method, a cooling step of the base material is provided, or the heat treatment of the composite structure is performed, or the surface of the base material is pulled. It is possible to eliminate the problem of deformation due to the residual stress of the structure in which the composite structure is formed by providing a stress intermediate layer or processing the base material into a concave shape in advance by processing the surface of the base material. It becomes.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a structure manufacturing apparatus used in an aerosol deposition method.
FIG. 2 is a schematic view showing a structure manufacturing apparatus having a substrate cooling stage used in the aerosol deposition method.
FIG. 3 is a schematic view of a substrate holder that applies tensile stress to the substrate.
FIG. 4 shows a surface profile of a base material given a tensile stress.
FIG. 5 is a surface profile of a composite structure formed by applying a tensile stress to a substrate.
FIG. 6 is a surface profile of a composite structure formed without giving a tensile stress to a substrate.
FIG. 7 shows an anchor layer.
[Explanation of symbols]
10 ・ ・ ・ Composite structure manufacturing device
101 ・ ・ ・ Nitrogen gas cylinder
102 ... gas transfer pipe
103 ・ ・ ・ Aerosol generator
104 ・ ・ ・ Aerosol transport pipe
105 ・ ・ ・ Structure formation room
106 ・ ・ ・ Nozzle
107 ・ ・ ・ XY stage
108 ... substrate
109 ・ ・ ・ Vacuum pump
20 ・ ・ ・ Structure forming device
201: substrate cooling stage
202 ・ ・ ・ Thermocouple
203 ... thermometer

Claims (7)

脆性材料微粒子をガス中に分散させたエアロゾルを、基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上に形成させる複合構造物形成方法において、前記基材を室温未満の温度に冷却した状態で、前記エアロゾルを前記基材に衝突させることを特徴とする複合構造物の形成方法。An aerosol in which brittle material fine particles are dispersed in a gas is jetted toward a base material to collide with the base material, and the impact forms a brittle material structure made of a constituent material of the brittle material fine particles on the base material. In the method for forming a structure, a method for forming a composite structure, wherein the aerosol is caused to collide with the substrate while the substrate is cooled to a temperature lower than room temperature. 脆性材料微粒子をガス中に分散させたエアロゾルを、基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上に形成させる工程と、次いで前記基材の融点未満の温度で熱処理を行い、前記基材にクリープ変形を起こさしめる工程、からなる複合構造物の形成方法。An aerosol in which brittle material fine particles are dispersed in a gas, is jetted toward the base material and collides with the base material, and a brittle material structure made of a constituent material of the brittle material fine particles is formed on the base material by the impact. And then performing a heat treatment at a temperature lower than the melting point of the base material to cause creep deformation in the base material. 基材の表面に引張り応力を有する中間層を、めっき法または物理蒸着法または化学蒸着法にて形成する工程と、次いで脆性材料微粒子をガス中に分散させたエアロゾルを、前記引張り応力を有する中間層に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上に形成させる工程、からなる複合構造物の形成方法。A step of forming an intermediate layer having a tensile stress on the surface of the base material by a plating method or a physical vapor deposition method or a chemical vapor deposition method, and then forming an aerosol in which fine particles of a brittle material are dispersed in a gas, Forming a brittle material structure made of the constituent material of the brittle material fine particles on the substrate by jetting and colliding against the layer, and forming the composite structure by the impact. 基材の表面を、研削加工あるいは研磨加工あるいはダイキャスト加工により緩やかな凹曲面に加工する工程と、次いで脆性材料微粒子をガス中に分散させたエアロゾルを、前記基材上の凹曲面に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上に形成させる工程、からなる複合構造物の形成方法。A step of processing the surface of the base material into a gentle concave surface by grinding or polishing or die casting, and then aerosol in which fine particles of brittle material are dispersed in a gas is directed toward the concave surface on the base material. Injecting and colliding with each other, and forming a brittle material structure made of the constituent material of the brittle material fine particles on the base material by the impact. 脆性材料微粒子をガス中に分散させたエアロゾルを、板状の基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上の片面に形成させる工程と、次いで前記基板の前記構造物が形成されていない別の片面に、前記エアロゾルを噴射して衝突させ、前記脆性材料微粒子の構成材料からなる脆性材料構造物を形成させる工程、からなる複合構造物の形成方法。An aerosol in which brittle material fine particles are dispersed in a gas is jetted and collided toward a plate-like substrate, and the impact causes the brittle material structure made of the constituent material of the brittle material fine particles to fall on the base material. Forming the brittle material on the other side of the substrate, on which the structure is not formed, by injecting and colliding the aerosol to form a brittle material structure made of the constituent material of the brittle material fine particles. And a method for forming a composite structure. 脆性材料微粒子をガス中に分散させたエアロゾルを、基材に向けて噴射して衝突させ、この衝撃によって前記脆性材料微粒子の構成材料からなる脆性材料構造物を、前記基材上に形成させる複合構造物形成方法において、前記基材に外力を与え、前記基材を弾性変形させた状態で、前記エアロゾルを前記基材に衝突させることを特徴とする複合構造物の形成方法。An aerosol in which brittle material fine particles are dispersed in a gas is jetted toward a base material to collide with the base material, and the impact forms a brittle material structure made of a constituent material of the brittle material fine particles on the base material. In the method for forming a structure, a method for forming a composite structure is characterized in that an external force is applied to the substrate, and the aerosol collides with the substrate in a state where the substrate is elastically deformed. 板状の基材の両表面にセラミックスや半導体などの脆性材料からなる構造物が形成された複合構造物であって、前記構造物は多結晶であり、前記構造物を構成する結晶は実質的に結晶配向性がなく、また前記結晶同士の界面にはガラス層からなる粒界層が実質的に存在せず、さらに前記構造物の一部は基材表面に食い込むアンカー部となっていることを特徴とする複合構造物。A composite structure in which a structure made of a brittle material such as ceramics or a semiconductor is formed on both surfaces of a plate-like base material, wherein the structure is polycrystalline, and the crystals constituting the structure are substantially Has no crystal orientation, and there is substantially no grain boundary layer made of a glass layer at the interface between the crystals, and a part of the structure is an anchor portion that cuts into the substrate surface. A composite structure characterized by the following.
JP2003071489A 2003-03-17 2003-03-17 Composite structure and manufacturing method thereof Expired - Fee Related JP4380187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071489A JP4380187B2 (en) 2003-03-17 2003-03-17 Composite structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071489A JP4380187B2 (en) 2003-03-17 2003-03-17 Composite structure and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008245357A Division JP4711242B2 (en) 2008-09-25 2008-09-25 Composite structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004275900A true JP2004275900A (en) 2004-10-07
JP4380187B2 JP4380187B2 (en) 2009-12-09

Family

ID=33287918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071489A Expired - Fee Related JP4380187B2 (en) 2003-03-17 2003-03-17 Composite structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4380187B2 (en)

Also Published As

Publication number Publication date
JP4380187B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP5318090B2 (en) Uniform random crystal orientation, fine-grained, banding-free refractory metal sputtering target, method for producing such a film, and thin film-based devices and products made therefrom
US20110303535A1 (en) Sputtering targets and methods of forming the same
US6861122B2 (en) Ceramic member with fine protrusions on surface and method of producing the same
KR100966132B1 (en) Plasma-Resistant Ceramic Coated Substrate
US20140300064A1 (en) Member for semiconductor manufacturing device
TW200907087A (en) Sputtering target and method for production thereof
JP4006535B2 (en) Semiconductor or liquid crystal manufacturing apparatus member and manufacturing method thereof
EP3425087A1 (en) Ceramic laminate
CN113548909B (en) Diamond-metal interface structure, composite material and preparation method
WO2004035266A1 (en) Method for improving toughness of surface of ceramic and ceramic article
JP4711242B2 (en) Composite structure and manufacturing method thereof
KR101043588B1 (en) Method Of Forming Ceramic Coating Layer having the Resistant Plasma
JP4380187B2 (en) Composite structure and manufacturing method thereof
JP3996039B2 (en) Method for manufacturing ceramic base material with metal spray coating
JP3716913B2 (en) Brittle material composite structure and manufacturing method thereof
JP2005279953A (en) Ceramic structure and its manufacturing method
WO2005031036A1 (en) Ceramic film structure and forming method and device therefor
TWI438295B (en) Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
KR101543891B1 (en) Coating Method For Nano-structured Metallic Thin Films Using Supersonic Vacuum-Flow Deposition
CN113718093B (en) High-speed impact large-area preparation of amorphous/nanocrystalline composite coating and preparation process thereof
JP2006083429A (en) Composite structure
US20050082662A1 (en) Structure and method of manufacturing the same
Song et al. Nanoparticle deposition of Al2O3 powders on various substrates
King et al. Microstructural development in cold sprayed copper

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees