US20080276649A1 - Isopipe sag control using improved end support conditions - Google Patents

Isopipe sag control using improved end support conditions Download PDF

Info

Publication number
US20080276649A1
US20080276649A1 US12/151,794 US15179408A US2008276649A1 US 20080276649 A1 US20080276649 A1 US 20080276649A1 US 15179408 A US15179408 A US 15179408A US 2008276649 A1 US2008276649 A1 US 2008276649A1
Authority
US
United States
Prior art keywords
isopipe
pipe
sag
vertical
restraint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/151,794
Other languages
English (en)
Inventor
Eunyoung PARK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Priority to US12/151,794 priority Critical patent/US20080276649A1/en
Assigned to CORNING INCORPORATED reassignment CORNING INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARK, EUNYOUNG
Publication of US20080276649A1 publication Critical patent/US20080276649A1/en
Priority to US13/172,165 priority patent/US9120691B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling

Definitions

  • the invention is directed the isopipes that are used in the production of sheet glass by the fusion process, and in particular to the techniques that are used for controlling the sag which such pipes exhibit during use.
  • the fusion process is one of the basic techniques used in the glass making art to produce sheet glass. (See A. K. Varshneya, “Flat Glass”, Fundamentals of Inorganic Glasses (Academic Press Inc., Boston 1994), Chapter 20, section 4.2, pages 534-540.) Compared to other processes known in the art, for example, the float and slot-draw processes, the fusion process produces glass sheets whose surfaces have superior flatness and smoothness. As a result, the fusion process has become highly important for the production of glass substrates that are used in the manufacture of liquid crystal displays (LCDs) and other substrates that require superior flatness and smoothness.
  • the fusion process, and particularly the overflow downdrawn fusion process is discussed in commonly assigned U.S. Pat. Nos. 3,338,696 and 3,682,609 to Stuart Dockerty, and U.S. Pat. No. 3,437,470 to Overman, the teaching of which are incorporated herein by reference.
  • the molten glass is fed into an isopipe and evenly flows over both sides to form a sheet of flat glass with pristine surfaces.
  • the isopipe is designed to deliver the molten glass at a uniform flow rate, and the use of the isopipe and uniform flow rate are critical for the production of glass with uniform thickness. Due to high operating temperature and the gravitational load caused by isopipe itself and the molten glass, the isopipe sags over time with creep behavior. This causes the flow rate to change along the isopipe and affects the final glass quality. Methods of “sag control” have been described in commonly assigned US. Patent Application Publication Nos. 2003/0192349 A1 and 2004/0055338 A1; and also in Japanese Patent Application Publication Nos.
  • FIG. 1 is an illustration from US Patent application Publication No. 2002/019349 illustrating the construction of a fusion pipe (an isopipe) for use in the overflow drawdown fusion process.
  • the system includes a supply pipe 9 which provides molten glass to a collection trough 11 formed in a refractory body 13 known as an “isopipe.”
  • molten glass passes from the supply pipe to the trough and then overflows the top of the trough on both sides, thus forming two sheets of glass that flow downward and then inward along the outer surfaces of the fusion pipe.
  • the two sheets meet at the bottom or root 15 of the pipe, where they fuse together into a single sheet of glass (un-numbered).
  • the single sheet is then fed to drawing equipment (represented schematically by arrows 17 ), which controls the thickness of the sheet by the rate at which the sheet is drawn away from the root.
  • the drawing equipment is located well downstream of the root so that the single sheet has cooled and become rigid before coming into contact with the equipment.
  • the outer surfaces of the final glass sheet do not contact any part of the outside surface of the fusion pipe during any part of the process. Rather, these surfaces only see the ambient atmosphere.
  • the inner surfaces of the two half sheets which form the final sheet do contact the pipe, but those inner surfaces fuse together at the root of the pipe and are thus buried in the body of the final sheet. In this way, the superior properties of the outer surfaces of the final sheet are achieved.
  • fusion pipe 13 is critical to the success of the fusion process.
  • the dimensional stability of the fusion pipe is of great importance since changes in pipe geometry affect the overall success of the process.
  • the fusion pipe must operate at elevated temperatures on the order of 1000° C. and above.
  • the pipe in the case of the overflow downdrawn fusion process, the pipe must operate at these elevated temperatures while supporting its own weight as well as the weight of the molten glass overflowing its sides and in trough 11 , and at least some tensional force that is transferred back to the pipe through the fused glass as it is being drawn.
  • the pipe can have an unsupported length of 1.5 meters or more. Because of the high temperatures at which the process operates, the material of the pipe is susceptible to creep. Hence, the pipe sags steadily under gravity. Eventually the sag reaches a point where the quality and/or the dimensions of the finished glass are no longer within specifications and the pipe needs to be taken out of service and replaced. It is accordingly desirable to reduce the sag rate of the pipe, and thereby extend its useful life.
  • FIG. 2 is a schematic drawing illustrating the use of off-center axial forces to control sag.
  • pipe 13 is supported at its ends by supports 21 and has a neutral axis 19 .
  • the neutral axis is that axis which does not elongate or contract as pipe 13 undergoes bending based on its mass distribution, its temperature distribution, and its material properties as a function of temperature. Put another way, the neutral axis is that axis which would not elongate or contract if pipe 13 were to undergo bending in the absence of axial forces F of FIG. 2 but with all other conditions the same. As shown in FIG.
  • axial forces F are applied horizontally to fusion pipe 13 at a distance H below neutral axis 19 . Accordingly, the axial forces produce end moments of magnitude FH at the ends of the pipe. The sense of these moments is such that they reduce the tendency of the pipe to sag under the force of gravity. The moments produced by the axial forces will not eliminate all deformation of the pipe, but as illustrated by the comparative example presented below, a suitable choice of F and H will significantly prolong the useful life of the pipe. However, applying and maintaining the axial forces F is undesirable for reasons explained above
  • the invention is directed to a method of preventing isopipe sag when using the overflow drawdown fusion process for making flat glass sheets.
  • the method of the invention applies a vertical restraint on at least one end of an isopipe resting on a support.
  • the invention is further directed to a method for reducing the sag or sag rate of an isopipe, illustrated in FIG. 4 , having a longitudinal axis 100 (shown below the FIG. 4 structure), a middle region and first and second end regions 72 and 74 , respectively; first end region 72 being the inlet end and second end region 74 being also called the compression side due to the weight on the isopipe and glass when present on the support 80 .
  • the isopipe is supported at its end regions by placement of the end regions on supports 80 and a vertical restraint is placed above the isopipe at least one of the end regions to oppose sag due to gravitational forces.
  • FIG. 4 illustrates an embodiment using two vertical restraints represented as elements 92 and 94 .
  • one or both of regions 72 and 74 of isopipe 70 can each, independently, be supported by a one or a plurality of clamps for applying a force [for example without limitation, a C-type clamp having a moveable element (not illustrated) for tightening], such clamps being represented in FIG. 6 as the crosshatched elements 192 and 194 .
  • Clamps 192 and 194 can have the support blocks 80 of FIG. 3 intergrated into the clamps so that the clamps both support and clamp; or isopipe 70 can be placed on supports 80 as illustrated in FIG. 3 , and clamps 192 and 194 positioned about both the isopipe and the support blocks.
  • the invention is further directed to a method for reducing the sag or sag rate of an isopipe by an amount of at least forty percent (40%) relative to a method that does not include the use of at least one vertical restraint as described herein or compressive force applied to the sides of the isopipe.
  • FIG. 1 is a schematic drawing from US Patent Application No, 2003/0192349 illustrating a representative construction for a fusion pipe (isopipe) for use in an overflow downdrawn fusion process for making flat glass sheets.
  • FIG. 2 is a schematic drawing from US Patent Application No, 2003/0192349 illustration the off-center coaxial forces used to control sag.
  • FIG. 3 is an illustration of a conventional isopipe and its boundary condition in which the isopipe sits on supports to prevent vertical translation of the ends of the isopipe.
  • FIG. 4 is an illustration of the present invention in which, in addition to the supports as shown in FIG. 3 , a vertical displacement restraint 92 is placed on the top surface of the inlet end of the isopipe to control sag; and, optionally, a further restraint 94 is placed on the compression end of the isopipe.
  • FIG. 5 is a graph illustrating sag as measured from the inlet end of an isopipe using only pier blocks or supports to control sag and an isopipe according to the invention which includes an additional vertical restraint.
  • FIG. 6 is an illustration of the present invention in which, in addition to the supports as shown in FIG. 3 , an adjustable clamp restraint 192 is placed at the inlet end of the isopipe to control sag; and, optionally, a further adjustable clamp restraint 194 on the compression end of the isopipe.
  • FIG. 3 is a schematic drawing illustrating isopipe 70 is shown resting on supports 80 .
  • the isopipe 70 has a longitudinal axis shown by double arrow 100 shown below FIG. 4 . No axial forces F are applied isopipe 70 as is the case with isopipe 13 in FIG. 2 .
  • the deflection profile can be described as a function of the distance from the inlet end, x such that:
  • u 1 ⁇ ( x ) ⁇ o EI ⁇ ⁇ - 1 24 ⁇ x 4 + L 12 ⁇ x 3 - L 3 24 ⁇ x ⁇
  • u 2 ⁇ ( x ) ⁇ o EI ⁇ ⁇ - 1 24 ⁇ x 4 + 5 ⁇ L 48 ⁇ x 3 - L 3 16 ⁇ x 2 ⁇
  • FIG. 5 is a graph in is plotted u 1 , u 2 where 0 ⁇ 1 after setting all constants, ⁇ o , E, I and L a unit number. Assuming that all other conditions are identical, the magnitude of the isopipe sag is shown to decrease from a value of approximately 0.013 for the simple beam case (curve A) to 0.0054 by the addition of restraint 92 to one of the ends of isopipe 72 . As a result, in one embodiment of the invention using a single vertical restraint 92 on the isopipe inlet side 72 , the sag has been reduced by approximately 59%. It is only 41.5% of the one with simply supported condition (curve B).
  • a second vertical displacement restraint 94 on the end 74 opposite the inlet side 72 can further reduce the sag since in this case both ends of the isopipe are restrained or clamped.
  • the vertical restraint is a fixed constraint which does not allow any vertical movement of the surface with which it is in contact.
  • the rigidity of the restraint is controlled, in addition to reducing the sag of the isopipe the sag profile from inlet end to compression end can also be controlled which results in further improvements in the attributes and quality of the resulting glass product.
  • the restraint can thus be either a fixed rigid restraint or an adjustable restraint (for example without limitation, a C-type clamp) that permits adjustment of the force applied by the restraint to prevent movement in a vertical direction or allow a selected amount of movement in a vertical direction.
  • the invention is thus, in one aspect, directed to an isopipe for use in a fusion drawing process wherein said isopipe is a longitudinally-extending refractory element having an opening extending longitudinally there-through to facilitate the unobstructed flow of molten glass along opposite sides of said element, and said element is supported on its first and second end by a support under said ends, the improvement being in the addition of a vertical support member above and in contact with at least one of said first and second ends of said pipe to oppose sag due to gravitational forces; wherein said vertical restraint above and in contact with said pipe applies a force to said pipe to prevent vertical motion of said pipe and reduce sag and/or the rate of sag of said isopipe.
  • the vertical restraint member can be a fixed, rigid vertical restraint member or an adjustable vertical restraint member.
  • one or both of regions 72 and 74 of isopipe 70 can each, independently, be supported by a one or a plurality of adjustable clamps for applying a force [for example without limitation, a C-type clamp having a moveable element (not illustrated) for tightening], such clamps being represented in FIG. 6 as the crosshatched elements 192 and 194 .
  • Clamps 192 and 194 can have the support blocks 80 of FIG. 3 intergrated into the clamps so that the clamps both support and clamp; or isopipe 70 can be placed on supports 80 as illustrated in FIG. 3 , and clamps 192 and 194 positioned about both the isopipe and the support blocks.
  • the invention is thus directed to a method for reducing the sag rate of an isopipe used in the fusion glass-making process, the method comprising having at least the steps of providing a pipe having a longitudinal axis, a middle region and a first and second end region; supporting the first and second end regions by placing said end regions on top of a support to thereby prevent the downward vertical motion of said end; and placing a vertical restraint above and in contact with at least one of said first and second ends of said pipe to oppose sag due to gravitational forces; wherein said vertical restraint above and in contact with said pipe applies a force to said pipe to prevent vertical motion of said pipe and reduce sag and/or the rate of sag of said isopipe.
  • the vertical restraint member used in the method can be a fixed, rigid vertical restraint member or an adjustable vertical restraint member.
  • the method of the invention reduces the sage and/or rate of sag by at least 40 percent relative to a method in which a vertical restraint member is not used on at least one end of the isopipe or compressive force applied to the sides of the isopipe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Joints Allowing Movement (AREA)
US12/151,794 2007-05-11 2008-05-09 Isopipe sag control using improved end support conditions Abandoned US20080276649A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/151,794 US20080276649A1 (en) 2007-05-11 2008-05-09 Isopipe sag control using improved end support conditions
US13/172,165 US9120691B2 (en) 2007-05-11 2011-06-29 Isopipe sag control using improved end support conditions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92872607P 2007-05-11 2007-05-11
US12/151,794 US20080276649A1 (en) 2007-05-11 2008-05-09 Isopipe sag control using improved end support conditions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/172,165 Division US9120691B2 (en) 2007-05-11 2011-06-29 Isopipe sag control using improved end support conditions

Publications (1)

Publication Number Publication Date
US20080276649A1 true US20080276649A1 (en) 2008-11-13

Family

ID=39531377

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/151,794 Abandoned US20080276649A1 (en) 2007-05-11 2008-05-09 Isopipe sag control using improved end support conditions
US13/172,165 Expired - Fee Related US9120691B2 (en) 2007-05-11 2011-06-29 Isopipe sag control using improved end support conditions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/172,165 Expired - Fee Related US9120691B2 (en) 2007-05-11 2011-06-29 Isopipe sag control using improved end support conditions

Country Status (6)

Country Link
US (2) US20080276649A1 (zh)
JP (1) JP5291704B2 (zh)
KR (1) KR101379529B1 (zh)
CN (1) CN101679095B (zh)
TW (1) TWI393680B (zh)
WO (1) WO2008140682A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047008A1 (en) * 2009-10-14 2011-04-21 Corning Incorporated Method and apparatus for controlling sheet thickness
WO2017123459A1 (en) * 2016-01-11 2017-07-20 Corning Incorporated Method and apparatuse for supporting forming bodies of glass forming apparatuses
US10703664B2 (en) 2014-09-30 2020-07-07 Corning Incorporated Isopipe with curb at the compression end and method for forming a glass ribbon
CN115190869A (zh) * 2020-02-03 2022-10-14 康宁公司 用于制造玻璃带的方法和设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412622B1 (ko) 2014-12-19 2022-06-23 코닝 인코포레이티드 아이소파이프 지지 및 처짐 완화를 위한 방법 및 장치
DE102019120065A1 (de) * 2019-07-24 2021-01-28 Schott Ag Vorrichtung und Verfahren zur Herstellung von Glasbändern
WO2022131177A1 (ja) * 2020-12-16 2022-06-23 日本電気硝子株式会社 ガラス成形装置
WO2022131179A1 (ja) * 2020-12-16 2022-06-23 日本電気硝子株式会社 ガラス成形装置
WO2024191679A1 (en) * 2023-03-15 2024-09-19 Corning Incorporated Fusion glass forming bodies and corresponding support structures

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1618107A (en) * 1923-12-31 1927-02-15 Libbey Owens Sheet Glass Co Drawing sheet glass
US3338696A (en) * 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
US3437470A (en) * 1966-06-17 1969-04-08 Corning Glass Works Constant force internal support for glass overflow wedge
US3682609A (en) * 1969-10-06 1972-08-08 Corning Glass Works Controlling thickness of newly drawn glass sheet
US20020019349A1 (en) * 2000-02-09 2002-02-14 Conrad Kirk P. Use of relaxin treat diseases related to vasoconstriction
US20030192349A1 (en) * 2002-04-12 2003-10-16 Corning Incorporated Method for controlling fusion pipe sag
US20040055338A1 (en) * 2000-12-01 2004-03-25 Corning Incorporated Sag control of isopipes used in making sheet glass by the fusion process
US20050178159A1 (en) * 2002-07-08 2005-08-18 Asahi Glass Company, Limited Apparatus for manufacturing sheet glass
US20050183455A1 (en) * 2004-02-23 2005-08-25 Pitbladdo Richard B. Sheet width control for overflow downdraw sheet glass forming apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2291289A (en) * 1939-09-28 1942-07-28 Owens Corning Fiberglass Corp Apparatus for making siliceous fibers
US5603193A (en) * 1995-10-11 1997-02-18 Koertge; Richard J. Sealing system for multi-panel ceiling
US6748765B2 (en) * 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
US8042361B2 (en) * 2004-07-20 2011-10-25 Corning Incorporated Overflow downdraw glass forming method and apparatus
JP2006248855A (ja) * 2005-03-11 2006-09-21 Nippon Electric Glass Co Ltd 板ガラスの成形装置及び板ガラスの成形方法
JP2006298736A (ja) * 2005-04-25 2006-11-02 Nippon Electric Glass Co Ltd 板ガラスの成形装置、板ガラス装置用支持部材及び板ガラスの成形方法
US20060236722A1 (en) * 2005-04-26 2006-10-26 Robert Delia Forming apparatus with extensions attached thereto used in a glass manufacturing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1618107A (en) * 1923-12-31 1927-02-15 Libbey Owens Sheet Glass Co Drawing sheet glass
US3338696A (en) * 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
US3437470A (en) * 1966-06-17 1969-04-08 Corning Glass Works Constant force internal support for glass overflow wedge
US3682609A (en) * 1969-10-06 1972-08-08 Corning Glass Works Controlling thickness of newly drawn glass sheet
US20020019349A1 (en) * 2000-02-09 2002-02-14 Conrad Kirk P. Use of relaxin treat diseases related to vasoconstriction
US20040055338A1 (en) * 2000-12-01 2004-03-25 Corning Incorporated Sag control of isopipes used in making sheet glass by the fusion process
US20030192349A1 (en) * 2002-04-12 2003-10-16 Corning Incorporated Method for controlling fusion pipe sag
US20050178159A1 (en) * 2002-07-08 2005-08-18 Asahi Glass Company, Limited Apparatus for manufacturing sheet glass
US20050183455A1 (en) * 2004-02-23 2005-08-25 Pitbladdo Richard B. Sheet width control for overflow downdraw sheet glass forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047008A1 (en) * 2009-10-14 2011-04-21 Corning Incorporated Method and apparatus for controlling sheet thickness
CN102648164A (zh) * 2009-10-14 2012-08-22 康宁股份有限公司 用于控制平板厚度的方法和装置
US10703664B2 (en) 2014-09-30 2020-07-07 Corning Incorporated Isopipe with curb at the compression end and method for forming a glass ribbon
WO2017123459A1 (en) * 2016-01-11 2017-07-20 Corning Incorporated Method and apparatuse for supporting forming bodies of glass forming apparatuses
US9840431B2 (en) 2016-01-11 2017-12-12 Corning Incorporated Methods and apparatuses for supporting forming bodies of glass forming apparatuses
CN115190869A (zh) * 2020-02-03 2022-10-14 康宁公司 用于制造玻璃带的方法和设备

Also Published As

Publication number Publication date
WO2008140682A1 (en) 2008-11-20
KR101379529B1 (ko) 2014-03-31
JP2010526761A (ja) 2010-08-05
KR20100029760A (ko) 2010-03-17
TW200906742A (en) 2009-02-16
JP5291704B2 (ja) 2013-09-18
CN101679095A (zh) 2010-03-24
US20110253226A1 (en) 2011-10-20
TWI393680B (zh) 2013-04-21
US9120691B2 (en) 2015-09-01
CN101679095B (zh) 2012-09-05

Similar Documents

Publication Publication Date Title
US9120691B2 (en) Isopipe sag control using improved end support conditions
US8001805B2 (en) Overflow downdraw glass forming method and apparatus
US8720225B2 (en) Overflow downdraw glass forming method and apparatus
KR101485273B1 (ko) 조절된 냉각을 이용한 유리시트의 제조 방법
US20070130994A1 (en) Method and apparatus for drawing a low liquidus viscosity glass
US11795094B2 (en) Method and device for manufacturing glass article
US20080047300A1 (en) Defect reduction in manufacture glass sheets by fusion process
KR100573054B1 (ko) 용융파이프의 처짐 제어 방법
CN101925546A (zh) 玻璃基板的制造方法以及玻璃基板
US9840431B2 (en) Methods and apparatuses for supporting forming bodies of glass forming apparatuses
US20050268657A1 (en) Isopipe mass distribution for forming glass substrates
JP2004284843A (ja) 板ガラス成形装置及び板ガラス成形方法
KR102493166B1 (ko) 유리 물품의 제조 방법 및 제조 장치
US20190284082A1 (en) Forming bodies for forming continuous glass ribbons and glass forming apparatuses comprising the same
KR20170003405A (ko) 유리 기판의 제조 방법
WO2018232092A2 (en) Glass forming apparatuses with moveable end block assemblies
TWI538890B (zh) A manufacturing method of a glass plate and a manufacturing apparatus for a glass plate

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING INCORPORATED, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PARK, EUNYOUNG;REEL/FRAME:020985/0202

Effective date: 20080509

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION