US20080230823A1 - Semiconductor device and manufacturing method therefor - Google Patents

Semiconductor device and manufacturing method therefor Download PDF

Info

Publication number
US20080230823A1
US20080230823A1 US12/045,482 US4548208A US2008230823A1 US 20080230823 A1 US20080230823 A1 US 20080230823A1 US 4548208 A US4548208 A US 4548208A US 2008230823 A1 US2008230823 A1 US 2008230823A1
Authority
US
United States
Prior art keywords
electrode
semiconductor device
forming
manufacturing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/045,482
Inventor
Hisao Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Assigned to KABUSHIKI KAISHA TOSHIBA reassignment KABUSHIKI KAISHA TOSHIBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWASAKI, HISAO
Publication of US20080230823A1 publication Critical patent/US20080230823A1/en
Priority to US13/115,251 priority Critical patent/US8587094B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Definitions

  • the present invention relates to a microwave monolithic integrated circuit (hereinafter, abbreviated as MMIC) using a compound semiconductor substrate and more particular to a semiconductor device having an active element and a metal-insulator-metal (hereinafter, abbreviated as MIM) capacitor and to a manufacturing method therefor.
  • MMIC microwave monolithic integrated circuit
  • MIM metal-insulator-metal
  • an active element such as a field effect transistor (hereinafter, abbreviated as an FET) and an MIM capacitor as a passive element are formed.
  • an active element such as a field effect transistor (hereinafter, abbreviated as an FET) and an MIM capacitor as a passive element are formed.
  • the active element and passive element are manufactured by different manufacturing processes.
  • a source electrode and a drain electrode composed of an ohmic metal AuGe/Au respectively are formed and a gate electrode composed of a Schottky metal Ti/Pt/Au is formed between these electrodes in an active area on a GaAs substrate.
  • a lower electrode composed of a Al or Ti/Al metal film is formed on the GaAs substrate and a dielectric layer composed of an SiN film, for example, is formed on the lower electrode.
  • the SiN film is formed also on a surface of the FET.
  • Upper electrodes are formed also on the surfaces of the source, drain and gate electrodes of the FET via contact holes formed in the SiN film.
  • the step for forming the lower electrode of the MIM capacitor is carried out as a separate step from the step for forming the FET elements.
  • the whole manufacturing steps become longer, resulting in low throughput.
  • the reason why the manufacturing steps of the two must be different from each other is that the lower electrode of the MIM capacitor and the electrodes of the PET must be formed by different metallic materials. Therefore, a semiconductor device is desired, which realizes short manufacturing steps and enhances reliability of active and passive element portions.
  • One of the objects of the present invention is to provide an element structure of the MMIC having the active element and MIM capacitor enabling a reduction in the number of the manufacturing steps of the MMIC and also to provide a manufacturing method therefor.
  • a semiconductor device including an active element having an ohmic electrode and an MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode is provided on a semiconductor substrate, wherein the lower electrode has substantially the same structure as that of the ohmic electrode.
  • a method for manufacturing the a semiconductor device including steps of forming an active element having an ohmic electrode, forming an MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode on the semiconductor substrate, thereby the lower electrode being manufactured simultaneously with the ohmic electrode.
  • the lower electrode of the MIM capacitor may have the same structure as that of an n-type ohmic electrode or a p-type ohmic electrode, when the active element is a PIN diode. That is, an electrode structure composed of a single layer made of the same metallic material or a plurality of laminated layers. Further, the lower electrode of the MIM capacitor may have the same structure as that of the source electrode or drain electrode of the FET when the active element is a FET.
  • the lower electrode of the MIM capacitor can be formed simultaneously with the ohmic electrode of the active element, so that the number of the manufacturing steps are reduced and the throughput is improved.
  • FIG. 1 is a schematic cross sectional view of the MMIC according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a first step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 2B is a diagram showing a second step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 2C is a diagram showing a third step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 2D is a diagram showing a fourth step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 2E is a diagram showing a fifth step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 2F is a diagram showing a sixth step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 2G is a diagram showing a seventh step of the manufacturing method for the MMIC shown in FIG. 1 .
  • FIG. 3 is a schematic cross sectional view of the MMIC according to a second embodiment of the present invention.
  • FIG. 4A is a diagram showing a first step of the manufacturing method of the MMIC shown in FIG. 3 .
  • FIG. 4B is a diagram showing a second step of the manufacturing method for the MMIC shown in FIG. 3 .
  • FIG. 4C is a diagram showing a third step of the manufacturing method for the MMIC shown in FIG. 3 .
  • FIG. 4D is a diagram showing a fourth step diagram of the manufacturing method for the MMIC shown in FIG. 3 .
  • FIG. 4E is a diagram showing a fifth step of the manufacturing method for the MMIC shown in FIG. 3 .
  • FIG. 4F is a diagram showing a sixth step of the manufacturing method for the MMIC shown in FIG. 3 .
  • FIG. 4G is a diagram showing a seventh step of the manufacturing method for the MMIC shown in FIG. 3 .
  • FIG. 1 The schematic cross sectional view of the MMIC according to a first embodiment is shown in FIG. 1 .
  • An MMIC 100 has a structure that an FET element portion 101 as an active element portion and an MIM capacitor portion 102 are formed on a GaAs substrate 10 which is a compound semiconductor substrate.
  • the FET element portion 101 is formed on an active layer (channel layer) 12 formed on the GaAs substrate 10 .
  • a pair of insulating films 14 a and 14 b is formed at a predetermined interval on the active layer 12 .
  • a source electrode 16 a and a drain electrode 16 b are formed on both sides of the pair of insulating films 14 a and 14 b on the active layer 12 .
  • a gate electrode 18 a is formed between the pair of insulating films 14 a and 14 b on the active layer 12 .
  • a surface protective film 20 a is provided to cover surfaces of the pair of insulating films 14 a and 14 b , gate electrode 18 a , a part of the source electrode 16 a and a part of the drain electrode 16 b .
  • Upper electrodes 22 a and 22 b are formed on portions on the source electrode 16 a and drain electrode 16 b , where is not covered by the surface protective film 20 a.
  • the MIM capacitor portion 102 is formed on an insulating film 14 c formed on the GaAs substrate 10 .
  • a lower electrode 16 c is formed in a predetermined area on the insulating film 14 c .
  • a dielectric layer 20 b is formed on the insulating film 14 c to cover the area where the lower electrode 18 b is not formed and a predetermined area of the lower electrode 16 c .
  • An upper electrode 22 c is formed on the dielectric layer 20 b so as to hold the dielectric layer 20 b between it and the lower electrode 161 c.
  • FIGS. 2A to 2H show the manufacturing steps.
  • an insulating film 14 is formed uniformly on the active layer 12 provided on the GaAs substrate 10 . Openings are formed in the insulating film at portions where the source electrode 16 a and drain electrode 16 b of the FET element portion are formed by removing the insulating film by etching. Thus, the insulating film is divided into an insulating film 14 a formed in the FET element portion and an insulating film 14 c formed in the MIM capacitor portion.
  • the insulating layer 14 is provided to separate the lower electrode 18 b of the MIM capacitor portion from the GaAs substrate 10 , so as to prevent a leak current between them and a reduction in withstand voltage. Therefore, when such a leak current does not influence the characteristics of the MMIC 100 , the insulation film 14 is not always necessary.
  • the insulating films 14 a to 14 c may be formed using the lift-off method depending on the material used for the insulating film 14 .
  • a resist film 52 is formed at portions where the area for forming the source electrode and drain electrode is opened as shown in FIG. 2B .
  • the resist film 52 is formed by coating a resist film all over the surface of the substrate 10 and then using a photolithographic technology including steps of exposing and developing using a mask pattern. Thereafter, a metal film 16 for ohmic contact is deposited over the entire surface. AuGe/Au is preferably used as a metal film 16 .
  • the resist film 52 and the metal film 16 on the resist film 52 are then removed by the lift-off method, as shown in FIG. 2C . Then, heat treatment (alloying) is performed so as to permit the metal film 16 to make ohmic contact with the active layer 12 .
  • heat treatment alloying
  • the source electrode 16 a and the drain electrode 16 b which are positioned on both sides of the insulating films 14 a and 14 b , are simultaneously formed with the lower electrode 11 c in the MIM capacitor portion.
  • the source 16 a and the drain electrode 16 b which are ohmic electrodes of the FET element portion, and the lower electrode 16 c of the MIM capacitor portion are formed simultaneously, thereby decreasing the number of the manufacturing steps.
  • the surface roughness of the lower electrode 16 c and deformation of the edge portion cause a reduction in the reliability of the MIM capacitor, so that it is preferable to maintain the shape, which used to be before the heat treatment is performed as far as possible.
  • the heat treatment temperature is preferably controlled to 400° C. or lower thereby satisfactorily keeping the shape before the heat treatment is performed. Further, the lower limit of the heat treatment temperature for alloying depends on the kind of metal composing the ohmic electrode.
  • the resist film 54 is provided, in which a portion where the gate electrode 18 a is opened.
  • exposed portion of the insulating film 14 a is removed by RIE etching, for example.
  • the metal film 18 composed by Ti/Pt/Au, for example, is deposited over the entire surface as shown in FIG. 2D .
  • the resist film 54 and the metal film 18 thereon are removed by the lift-off method, and thus the gate electrode 18 a is formed as shown in FIG. 2E .
  • the surface protective film 20 a and dielectric layer 20 can be simultaneously formed respectively on the FET element portion and MIM capacitor portion, for example, by steps of laminating an SiN film on the entire surface, forming an etching mask with a resist layer, for example, with a predetermined pattern, forming contact holes for forming the source electrode 16 a and the drain electrode 16 b of the FET element portion and a contact hole (not drawn) of the gate electrode 18 a on the SiN film by etching, and removing the etching mask.
  • the surface protective film 20 a of the FET element portion and the dielectric layer 20 b of the MIM capacitor portion can be formed simultaneously, so that the number of the manufacturing steps can be reduced.
  • a resist film 56 is coated over entire surface except for a part of the surfaces of the source electrode 16 a and drain electrode 16 b , a part (not drawn) of the surface of the gate electrode 18 a , a predetermined area of the dielectric layer 20 b on the lower electrode 16 c and a part (not drawn) of the surface of the lower electrode 16 c .
  • a metal film 22 composed of Ti/Pt/Au, for example, is deposited over the entire surface.
  • the Ti layer is formed on the dielectric layer 20 b , so that high adhesion can be obtained between them.
  • the resist film 56 and metal film 22 formed thereon are removed by the lift-off method.
  • the MMIC 100 shown in FIG. 1 is completed by forming the upper electrodes 22 a and 22 b of the drain electrode 16 a and source electrode 16 b respectively, the upper electrode (not drawn) of the gate electrode 18 a , the upper electrode 22 c and metallic wires (not drawn) connected to lower electrode 16 c of the MIM capacitor which are shown in FIG. 1 .
  • FIG. 3 the schematic cross sectional view of the MMIC according to a second embodiment is shown in FIG. 3 .
  • the PIN diode portion 101 as an active element portion and the MIM capacitor portion 102 are formed on a GaAs substrate 10 A of the semi-insulating semiconductor substrate.
  • the PIN diode portion 101 includes an n-type semiconductor layer 32 formed on the GaAs substrate 10 A, a high-resistance semiconductor layer 36 formed on the n-type semiconductor layer 32 , a p-type semiconductor layer 38 formed on the high-resistance semiconductor layer 36 , an insulating layer 40 , an n-type ohmic electrode 42 a formed on the n-type semiconductor layer 32 , a p-type ohmic electrode 44 a formed on the p-type semiconductor layer 38 , an upper electrode 48 a formed on the n-type ohmic electrode 42 a , and an upper electrode 48 b formed on the p-type ohmic electrode 44 a.
  • the MIM capacitor portion 102 includes a highly-resistant layer 34 formed on the GaAs substrate 10 A, the insulating film 40 formed on the highly-resistant layer 34 , a lower electrode 45 formed on the insulating film 40 , a dielectric layer 46 formed on the lower electrode 45 , and an upper electrode 48 c formed on the dielectric layer 46 .
  • the lower electrode 45 has a two-layer structure composed of a lower layer portion 42 b and an upper layer portion 44 b.
  • FIGS. 4A to 4G are diagrams showing manufacturing steps.
  • the n-type semiconductor layer 32 , the high-resistance semiconductor layer 36 and the p-type semiconductor layer 38 are laminated on the GaAs substrate 10 A. Unnecessary portions are removed from the high-resistance semiconductor layer 36 and the p-type semiconductor layer 38 by mesa-etching.
  • a high resistance layer 34 is formed on the n-type semiconductor layer 32 other than the PIN diode portion using an ion injection isolation method.
  • the insulating film 40 is formed on the entire surface.
  • the portions where the electrode is formed on the n-type semiconductor layer 32 and on the p-type semiconductor layer 38 are removed, for example, by the etching process using a resist film as an etching mask. Further, the insulating film 40 is formed in the MIM capacitor portion in order to prevent a leak current flowing through the lower electrode 45 and to reduce the withstand voltage of the MIM capacitor.
  • a resist film 62 is formed having openings at portions on the n-type semiconductor layer 32 and on a part of the MIM capacitor. Then a metal film 42 composed of AuGe/Au, for example, enabling ohmic contact is deposited on the entire surface. Thereafter, the resist film 62 and the metal film 42 on the resist film 42 are removed by the lift-off method as shown in FIG. 4C .
  • a resist film 64 is formed, having openings at a part of the p-type semiconductor layer 38 and at a portion where the metal film 42 of the MIM capacitor portion is formed. Then a metal film 44 composed of AuZu, for example, enabling the ohmic contact is deposited on the entire surface.
  • the resist film 64 and the metal film 44 on the resist film 64 are removed by the lift-off method as shown in FIG. 4E .
  • the heat treatment for alloying is performed so as to permit the metal films 42 and 44 to make ohmic contact with the underlying substrates.
  • the heat treatment temperature is set at 400° C. or lower, similar to the case of the MMIC 100 explained previously. Thus the reliability of the MIM capacitor can be enhanced.
  • the metal film 42 on the n-type semiconductor layer 32 is changed to the n-type ohmic electrode 42 a
  • the metal film 44 on the p-type semiconductor layer 38 is changed to the p-type ohmic electrode 44 a
  • the metal films 42 and 44 on the insulating film 40 are also changed to the lower electrode 45 of the MIM capacitor.
  • the lower electrode 45 has a two-layer structure having the lower layer portion 42 b composed of the metal film 42 and the upper layer portion 44 b composed of the metal film 44 .
  • the lower layer portion 42 b has the same structure as that of the n-type ohmic electrode 42 a
  • the upper layer portion 44 b has the same structure as that of the p-type ohmic electrode 44 a.
  • the ohmic electrodes 42 a and 44 a of the PIN diode portion and the lower electrode 45 of the MIM capacitor are thus formed simultaneously, the number of the manufacturing steps are reduced. Further, the lower electrode 45 is composed of an ohmic contact metal film of both n-type and p-type semiconductors, so that the sheet resistance of the lower electrode 45 can be lowered.
  • the heat treatment of alloying for obtaining such an ohmic electrode can be performed respectively after removal of the resist film 62 as shown in FIG. 4C and after removal of the resist film 64 as shown in FIG. 4E .
  • the first heat treatment temperature is preferably selected higher than the next heat treatment temperature. It is possible to set such heat treatment temperature by selecting the composition of the metal films 42 and 44 .
  • the lower electrode 45 is composed of only the upper layer portion 44 b which is a p-type ohmic electrode when the resist film 62 is formed to cover the lower electrode area of the MIM capacitor.
  • the lower electrode 45 is composed of only the lower layer portion 42 b which is an n-type ohmic electrode when the resist film 62 is formed to cover the metal film 42 remaining on the MIM capacitor portion.
  • Such an electrode structure can be adopted, as long as the resistance of the lower electrode 45 can be controlled to its allowable magnitude, for example, when the metal films 42 and 44 are made thicker.
  • the dielectric layer 46 composed of a SiN film is provided by forming the SiN film on the entire surface, forming an etching mask composed of a resist film having a predetermined pattern on the SiN film, forming a contact holes on the SiN film by etching and removing the etching mask.
  • the contact holes are formed on the n-type ohmic electrode 42 a , on the p-type ohmic electrode 44 a and on the lower electrode 45 for connecting a metallic wire (not drawn) to the lower electrode 45 .
  • a resist film 66 is formed having openings on the tops of the n-type ohmic electrode 42 a , the p-type ohmic electrode 44 a and on a part of the dielectric layer 46 .
  • a metal film 48 composed of Ti/Pt/Au, for example, is deposited on the entire surface via the resist film 66 .
  • the resist film 66 is removed by the lift-off method.
  • the upper electrode 48 a connected to the n-type ohmic electrode 42 a , the upper electrode 48 b connected to the p-type ohmic electrode 44 a and the upper electrode 48 c of the MIM capacitor are formed, thereby completing the MMIC 110 .
  • the ohmic electrode composing the active element and the lower electrode composing the MIM capacitor can be formed simultaneously in the MMICs 100 and 110 , so that there is no need to manufacture the active element and MIM capacitor in the different manufacturing steps from each other. Thus the number of the manufacturing steps can be reduced and the throughput is improved.
  • the present invention is not limited to the embodiments aforementioned and can be modified and executed variously within a range not deviated from the objects of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

A semiconductor device having an active element and an MIM capacitor and a structure capable of reducing the number of the manufacturing steps thereof and a manufacturing method therefor are provided. The semiconductor device has a structure that the active element having an ohmic electrode and the MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode are formed on a semiconductor substrate, wherein the lower electrode and ohmic electrode have the same structure.
In an MMIC 100 in which an FET as an active element and the MIM capacitor are formed on a GaAs substrate 10, for example, a source electrode 16 a and a drain electrode 16 b, which are ohmic electrodes of the FET, are manufactured simultaneously with a lower electrode 16 c of the MIM capacitor. Here the electrodes are formed with the same metal.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2007-70053, filed on Mar. 19, 2007; the entire contents of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present invention relates to a microwave monolithic integrated circuit (hereinafter, abbreviated as MMIC) using a compound semiconductor substrate and more particular to a semiconductor device having an active element and a metal-insulator-metal (hereinafter, abbreviated as MIM) capacitor and to a manufacturing method therefor.
  • BACKGROUND ART
  • In the microwave monolithic integrated circuit using a compound semiconductor substrate, conventionally, on the same compound semiconductor substrate such as GaAs, an active element such as a field effect transistor (hereinafter, abbreviated as an FET) and an MIM capacitor as a passive element are formed. (Refer to FIG. 1, Japanese Patent Application 2002-184946).
  • In conventional processes for manufacturing such an MMIC, the active element and passive element are manufactured by different manufacturing processes. For example, in the processes for manufacturing FET as an active element, a source electrode and a drain electrode composed of an ohmic metal AuGe/Au respectively are formed and a gate electrode composed of a Schottky metal Ti/Pt/Au is formed between these electrodes in an active area on a GaAs substrate.
  • On the other hand, in the MIM capacitor, a lower electrode composed of a Al or Ti/Al metal film is formed on the GaAs substrate and a dielectric layer composed of an SiN film, for example, is formed on the lower electrode. The SiN film is formed also on a surface of the FET. Then, an upper electrode composed of Ti/Pt/Au, for example, is formed on the SiN film. Upper electrodes are formed also on the surfaces of the source, drain and gate electrodes of the FET via contact holes formed in the SiN film. Thus the MMIC is completed.
  • However, in the MMIC having such structure as mentioned above, the step for forming the lower electrode of the MIM capacitor is carried out as a separate step from the step for forming the FET elements. Thus, the whole manufacturing steps become longer, resulting in low throughput. The reason why the manufacturing steps of the two must be different from each other is that the lower electrode of the MIM capacitor and the electrodes of the PET must be formed by different metallic materials. Therefore, a semiconductor device is desired, which realizes short manufacturing steps and enhances reliability of active and passive element portions.
  • One of the objects of the present invention is to provide an element structure of the MMIC having the active element and MIM capacitor enabling a reduction in the number of the manufacturing steps of the MMIC and also to provide a manufacturing method therefor.
  • DISCLOSURE OF THE INVENTION
  • According to a first aspect of the present invention, a semiconductor device including an active element having an ohmic electrode and an MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode is provided on a semiconductor substrate, wherein the lower electrode has substantially the same structure as that of the ohmic electrode.
  • According to a second aspect of the present invention, a method for manufacturing the a semiconductor device is provided, including steps of forming an active element having an ohmic electrode, forming an MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode on the semiconductor substrate, thereby the lower electrode being manufactured simultaneously with the ohmic electrode.
  • As an active element, a PIN diode and a field effect transistor (FET) may be cited. The lower electrode of the MIM capacitor may have the same structure as that of an n-type ohmic electrode or a p-type ohmic electrode, when the active element is a PIN diode. That is, an electrode structure composed of a single layer made of the same metallic material or a plurality of laminated layers. Further, the lower electrode of the MIM capacitor may have the same structure as that of the source electrode or drain electrode of the FET when the active element is a FET.
  • According to the present invention, the lower electrode of the MIM capacitor can be formed simultaneously with the ohmic electrode of the active element, so that the number of the manufacturing steps are reduced and the throughput is improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross sectional view of the MMIC according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing a first step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 2B is a diagram showing a second step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 2C is a diagram showing a third step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 2D is a diagram showing a fourth step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 2E is a diagram showing a fifth step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 2F is a diagram showing a sixth step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 2G is a diagram showing a seventh step of the manufacturing method for the MMIC shown in FIG. 1.
  • FIG. 3 is a schematic cross sectional view of the MMIC according to a second embodiment of the present invention.
  • FIG. 4A is a diagram showing a first step of the manufacturing method of the MMIC shown in FIG. 3.
  • FIG. 4B is a diagram showing a second step of the manufacturing method for the MMIC shown in FIG. 3.
  • FIG. 4C is a diagram showing a third step of the manufacturing method for the MMIC shown in FIG. 3.
  • FIG. 4D is a diagram showing a fourth step diagram of the manufacturing method for the MMIC shown in FIG. 3.
  • FIG. 4E is a diagram showing a fifth step of the manufacturing method for the MMIC shown in FIG. 3.
  • FIG. 4F is a diagram showing a sixth step of the manufacturing method for the MMIC shown in FIG. 3.
  • FIG. 4G is a diagram showing a seventh step of the manufacturing method for the MMIC shown in FIG. 3.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, the embodiments of the present invention will be explained in detail with reference to the accompanied drawings. The schematic cross sectional view of the MMIC according to a first embodiment is shown in FIG. 1. An MMIC 100 has a structure that an FET element portion 101 as an active element portion and an MIM capacitor portion 102 are formed on a GaAs substrate 10 which is a compound semiconductor substrate.
  • The FET element portion 101 is formed on an active layer (channel layer) 12 formed on the GaAs substrate 10. Namely, a pair of insulating films 14 a and 14 b is formed at a predetermined interval on the active layer 12. A source electrode 16 a and a drain electrode 16 b are formed on both sides of the pair of insulating films 14 a and 14 b on the active layer 12. Further, a gate electrode 18 a is formed between the pair of insulating films 14 a and 14 b on the active layer 12. A surface protective film 20 a is provided to cover surfaces of the pair of insulating films 14 a and 14 b, gate electrode 18 a, a part of the source electrode 16 a and a part of the drain electrode 16 b. Upper electrodes 22 a and 22 b are formed on portions on the source electrode 16 a and drain electrode 16 b, where is not covered by the surface protective film 20 a.
  • Further, the MIM capacitor portion 102 is formed on an insulating film 14 c formed on the GaAs substrate 10. In a predetermined area on the insulating film 14 c, a lower electrode 16 c is formed. A dielectric layer 20 b is formed on the insulating film 14 c to cover the area where the lower electrode 18 b is not formed and a predetermined area of the lower electrode 16 c. An upper electrode 22 c is formed on the dielectric layer 20 b so as to hold the dielectric layer 20 b between it and the lower electrode 161 c.
  • The manufacturing method for the MMIC 100 having such a structure will be explained by referring to FIGS. 2A to 2H which show the manufacturing steps.
  • Firstly, an insulating film 14 is formed uniformly on the active layer 12 provided on the GaAs substrate 10. Openings are formed in the insulating film at portions where the source electrode 16 a and drain electrode 16 b of the FET element portion are formed by removing the insulating film by etching. Thus, the insulating film is divided into an insulating film 14 a formed in the FET element portion and an insulating film 14 c formed in the MIM capacitor portion.
  • Further, The insulating layer 14 is provided to separate the lower electrode 18 b of the MIM capacitor portion from the GaAs substrate 10, so as to prevent a leak current between them and a reduction in withstand voltage. Therefore, when such a leak current does not influence the characteristics of the MMIC 100, the insulation film 14 is not always necessary. Here, the insulating films 14 a to 14 c may be formed using the lift-off method depending on the material used for the insulating film 14.
  • Then, a resist film 52 is formed at portions where the area for forming the source electrode and drain electrode is opened as shown in FIG. 2B. The resist film 52 is formed by coating a resist film all over the surface of the substrate 10 and then using a photolithographic technology including steps of exposing and developing using a mask pattern. Thereafter, a metal film 16 for ohmic contact is deposited over the entire surface. AuGe/Au is preferably used as a metal film 16.
  • The resist film 52 and the metal film 16 on the resist film 52 are then removed by the lift-off method, as shown in FIG. 2C. Then, heat treatment (alloying) is performed so as to permit the metal film 16 to make ohmic contact with the active layer 12. Thus, the source electrode 16 a and the drain electrode 16 b, which are positioned on both sides of the insulating films 14 a and 14 b, are simultaneously formed with the lower electrode 11 c in the MIM capacitor portion.
  • As mentioned above, the source 16 a and the drain electrode 16 b, which are ohmic electrodes of the FET element portion, and the lower electrode 16 c of the MIM capacitor portion are formed simultaneously, thereby decreasing the number of the manufacturing steps.
  • Due to the heat treatment for obtaining the ohmic electrodes, there is a fear that surface roughness of the ohmic electrodes and deformation of the edge portion may be caused. Such a change in a shape is related deeply to the heat treatment temperature, in such a manner that the surface becomes rough and the edge portion is more deformed as the temperature rises.
  • The surface roughness of the lower electrode 16 c and deformation of the edge portion cause a reduction in the reliability of the MIM capacitor, so that it is preferable to maintain the shape, which used to be before the heat treatment is performed as far as possible. From such a viewpoint, the heat treatment temperature is preferably controlled to 400° C. or lower thereby satisfactorily keeping the shape before the heat treatment is performed. Further, the lower limit of the heat treatment temperature for alloying depends on the kind of metal composing the ohmic electrode.
  • Then, the resist film 54 is provided, in which a portion where the gate electrode 18 a is opened. Using the resist film 54 as an etching mask, exposed portion of the insulating film 14 a is removed by RIE etching, for example. Thereafter, the metal film 18 composed by Ti/Pt/Au, for example, is deposited over the entire surface as shown in FIG. 2D. Then, the resist film 54 and the metal film 18 thereon are removed by the lift-off method, and thus the gate electrode 18 a is formed as shown in FIG. 2E.
  • Next, as shown in FIG. 2F, the surface protective film 20 a and dielectric layer 20 can be simultaneously formed respectively on the FET element portion and MIM capacitor portion, for example, by steps of laminating an SiN film on the entire surface, forming an etching mask with a resist layer, for example, with a predetermined pattern, forming contact holes for forming the source electrode 16 a and the drain electrode 16 b of the FET element portion and a contact hole (not drawn) of the gate electrode 18 a on the SiN film by etching, and removing the etching mask. The surface protective film 20 a of the FET element portion and the dielectric layer 20 b of the MIM capacitor portion can be formed simultaneously, so that the number of the manufacturing steps can be reduced.
  • Thereafter, as shown in FIG. 2G, a resist film 56 is coated over entire surface except for a part of the surfaces of the source electrode 16 a and drain electrode 16 b, a part (not drawn) of the surface of the gate electrode 18 a, a predetermined area of the dielectric layer 20 b on the lower electrode 16 c and a part (not drawn) of the surface of the lower electrode 16 c. A metal film 22 composed of Ti/Pt/Au, for example, is deposited over the entire surface. Here, in the MIM capacitor portion, the Ti layer is formed on the dielectric layer 20 b, so that high adhesion can be obtained between them.
  • Thereafter, the resist film 56 and metal film 22 formed thereon are removed by the lift-off method. As a result, the MMIC 100 shown in FIG. 1 is completed by forming the upper electrodes 22 a and 22 b of the drain electrode 16 a and source electrode 16 b respectively, the upper electrode (not drawn) of the gate electrode 18 a, the upper electrode 22 c and metallic wires (not drawn) connected to lower electrode 16 c of the MIM capacitor which are shown in FIG. 1.
  • Next, the schematic cross sectional view of the MMIC according to a second embodiment is shown in FIG. 3. In an MMIC 110, the PIN diode portion 101 as an active element portion and the MIM capacitor portion 102 are formed on a GaAs substrate 10A of the semi-insulating semiconductor substrate.
  • The PIN diode portion 101 includes an n-type semiconductor layer 32 formed on the GaAs substrate 10A, a high-resistance semiconductor layer 36 formed on the n-type semiconductor layer 32, a p-type semiconductor layer 38 formed on the high-resistance semiconductor layer 36, an insulating layer 40, an n-type ohmic electrode 42 a formed on the n-type semiconductor layer 32, a p-type ohmic electrode 44 a formed on the p-type semiconductor layer 38, an upper electrode 48 a formed on the n-type ohmic electrode 42 a, and an upper electrode 48 b formed on the p-type ohmic electrode 44 a.
  • The MIM capacitor portion 102 includes a highly-resistant layer 34 formed on the GaAs substrate 10A, the insulating film 40 formed on the highly-resistant layer 34, a lower electrode 45 formed on the insulating film 40, a dielectric layer 46 formed on the lower electrode 45, and an upper electrode 48 c formed on the dielectric layer 46. The lower electrode 45 has a two-layer structure composed of a lower layer portion 42 b and an upper layer portion 44 b.
  • A method for manufacturing the MMIC 100 having a structure described will be explained by referring to FIGS. 4A to 4G which are diagrams showing manufacturing steps.
  • Firstly, as shown in FIG. 4A, the n-type semiconductor layer 32, the high-resistance semiconductor layer 36 and the p-type semiconductor layer 38 are laminated on the GaAs substrate 10A. Unnecessary portions are removed from the high-resistance semiconductor layer 36 and the p-type semiconductor layer 38 by mesa-etching. A high resistance layer 34 is formed on the n-type semiconductor layer 32 other than the PIN diode portion using an ion injection isolation method. The insulating film 40 is formed on the entire surface.
  • In the insulating film 40, the portions where the electrode is formed on the n-type semiconductor layer 32 and on the p-type semiconductor layer 38 are removed, for example, by the etching process using a resist film as an etching mask. Further, the insulating film 40 is formed in the MIM capacitor portion in order to prevent a leak current flowing through the lower electrode 45 and to reduce the withstand voltage of the MIM capacitor.
  • Then, as shown in FIG. 4B, a resist film 62 is formed having openings at portions on the n-type semiconductor layer 32 and on a part of the MIM capacitor. Then a metal film 42 composed of AuGe/Au, for example, enabling ohmic contact is deposited on the entire surface. Thereafter, the resist film 62 and the metal film 42 on the resist film 42 are removed by the lift-off method as shown in FIG. 4C.
  • Next, as shown in FIG. 4D, a resist film 64 is formed, having openings at a part of the p-type semiconductor layer 38 and at a portion where the metal film 42 of the MIM capacitor portion is formed. Then a metal film 44 composed of AuZu, for example, enabling the ohmic contact is deposited on the entire surface.
  • Thereafter, the resist film 64 and the metal film 44 on the resist film 64 are removed by the lift-off method as shown in FIG. 4E.
  • In the state that the metal film 42, the metal film 44 and the metal films 42 and 44 respectively remain on the n-type semiconductor layer 32, on the p-type semiconductor layer 38 and on the insulating film 40, the heat treatment for alloying is performed so as to permit the metal films 42 and 44 to make ohmic contact with the underlying substrates. The heat treatment temperature is set at 400° C. or lower, similar to the case of the MMIC 100 explained previously. Thus the reliability of the MIM capacitor can be enhanced.
  • With the heat treatment, the metal film 42 on the n-type semiconductor layer 32 is changed to the n-type ohmic electrode 42 a, and the metal film 44 on the p-type semiconductor layer 38 is changed to the p-type ohmic electrode 44 a. The metal films 42 and 44 on the insulating film 40 are also changed to the lower electrode 45 of the MIM capacitor. The lower electrode 45 has a two-layer structure having the lower layer portion 42 b composed of the metal film 42 and the upper layer portion 44 b composed of the metal film 44. Needless to say, the lower layer portion 42 b has the same structure as that of the n-type ohmic electrode 42 a and the upper layer portion 44 b has the same structure as that of the p-type ohmic electrode 44 a.
  • When the ohmic electrodes 42 a and 44 a of the PIN diode portion and the lower electrode 45 of the MIM capacitor are thus formed simultaneously, the number of the manufacturing steps are reduced. Further, the lower electrode 45 is composed of an ohmic contact metal film of both n-type and p-type semiconductors, so that the sheet resistance of the lower electrode 45 can be lowered.
  • The heat treatment of alloying for obtaining such an ohmic electrode can be performed respectively after removal of the resist film 62 as shown in FIG. 4C and after removal of the resist film 64 as shown in FIG. 4E. In this case, the first heat treatment temperature is preferably selected higher than the next heat treatment temperature. It is possible to set such heat treatment temperature by selecting the composition of the metal films 42 and 44.
  • Further, at the step shown in FIG. 4S in the manufacturing steps aforementioned, the lower electrode 45 is composed of only the upper layer portion 44 b which is a p-type ohmic electrode when the resist film 62 is formed to cover the lower electrode area of the MIM capacitor. On the other hand, at the step shown in FIG. 4D in the manufacturing steps aforementioned, the lower electrode 45 is composed of only the lower layer portion 42 b which is an n-type ohmic electrode when the resist film 62 is formed to cover the metal film 42 remaining on the MIM capacitor portion. Such an electrode structure can be adopted, as long as the resistance of the lower electrode 45 can be controlled to its allowable magnitude, for example, when the metal films 42 and 44 are made thicker.
  • After the PIN diode is completed in this way, as shown in FIG. 4F, the dielectric layer 46 composed of a SiN film, for example, is provided by forming the SiN film on the entire surface, forming an etching mask composed of a resist film having a predetermined pattern on the SiN film, forming a contact holes on the SiN film by etching and removing the etching mask. The contact holes are formed on the n-type ohmic electrode 42 a, on the p-type ohmic electrode 44 a and on the lower electrode 45 for connecting a metallic wire (not drawn) to the lower electrode 45.
  • Thereafter, as shown in FIG. 4G, a resist film 66 is formed having openings on the tops of the n-type ohmic electrode 42 a, the p-type ohmic electrode 44 a and on a part of the dielectric layer 46. Then, a metal film 48 composed of Ti/Pt/Au, for example, is deposited on the entire surface via the resist film 66.
  • Finally, the resist film 66 is removed by the lift-off method. Thus the upper electrode 48 a connected to the n-type ohmic electrode 42 a, the upper electrode 48 b connected to the p-type ohmic electrode 44 a and the upper electrode 48 c of the MIM capacitor are formed, thereby completing the MMIC 110.
  • As mentioned above, the ohmic electrode composing the active element and the lower electrode composing the MIM capacitor can be formed simultaneously in the MMICs 100 and 110, so that there is no need to manufacture the active element and MIM capacitor in the different manufacturing steps from each other. Thus the number of the manufacturing steps can be reduced and the throughput is improved.
  • Further, the present invention is not limited to the embodiments aforementioned and can be modified and executed variously within a range not deviated from the objects of the present invention.

Claims (18)

1. A semiconductor device comprising:
an active element having an ohmic electrode formed on a semiconductor substrate; and
a MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode provided on the semiconductor substrate;
wherein the lower electrode has substantially the same structure as that of the ohmic electrode.
2. The semiconductor device according to claim 1, wherein the active element is a field effect transistor and the ohmic electrode is a source electrode or a drain electrode.
3. The semiconductor device according to claim 1, wherein;
the semiconductor substrate is a semi-insulating semiconductor substrate,
the active element is a PIN diode including
an n-type semiconductor layer formed on the substrate,
a first ohmic electrode formed on the n-type semiconductor layer,
a p-type semiconductor layer formed on the substrate, and
a second ohmic electrode formed On the p-type semiconductor layer,
wherein the lower electrode has substantially the same structure as that of the first ohmic electrode or the second ohmic electrode.
4. The semiconductor device according to claim 1, wherein the lower electrode has a structure that the first ohmic electrode and the second ohmic electrode are laminated.
5. The semiconductor device according to claim 1, wherein an insulating film is formed between the substrate and the lower electrode.
6. A method for manufacturing a semiconductor device, the method comprising:
forming an active element having an ohmic electrode, and
forming an MIM capacitor having a dielectric layer arranged between a lower electrode and an upper electrode on a semiconductor substrate,
wherein the lower electrode is manufactured simultaneously with the ohmic electrode.
7. The method for manufacturing a semiconductor device according to claim 6, wherein the lower electrode and the ohmic electrode are formed by laminating a plurality of metal layers, being subject to heat-treating at 400° C. or lower and alloying the laminating metal layers.
8. The method for manufacturing a semiconductor device according to claim 7, wherein the active element is a field effect transistor and the ohmic electrode is a source electrode or a drain electrode.
9. The method for manufacturing a semiconductor device according to claim 7, wherein;
the semiconductor substrate is a semi-insulating semiconductor substrate,
the active element is a PIN diode including
an n-type semiconductor layer formed on the substrate,
a first ohmic electrode formed on the n-type semiconductor layer,
a p-type semiconductor layer formed on the substrate, and
a second ohmic electrode formed on the p-type semiconductor layer, and wherein
the lower electrode has substantially the same structure as that of the first ohmic electrode or the second ohmic electrode.
10. The method for manufacturing a semiconductor device according to claim 7,
wherein the lower electrode of the MIM capacitor has a two-layer structure composed of an upper layer portion and a lower layer portion and
the lower layer portion of the lower electrode is formed simultaneously with the first ohmic electrode and the upper layer portion of the lower electrode is formed simultaneously with the second ohmic electrode.
11. The method for manufacturing a semiconductor device having a field effect transistor and an MIM capacitor formed on a semi-insulating semiconductor substrate according to claim 7, the method further comprising:
forming an active layer on a part of the semiconductor substrate;
forming an insulating film in a portion on the active layer excluding a area for forming the source and drain electrodes composing the field effect transistor and a portion of the semiconductor substrate excluding the active layer;
forming a first resist film on the insulating film having openings at portions for forming the source and drain electrode and at a portion for forming the lower electrode of the MIM capacitor;
forming a first metal layer for making ohmic contact with the active layer on the entire surface of the substrate via the first resist film; and
removing the resist film and the first metal film thereon by a lift-off method, thereby forming the source and drain electrodes and the lower electrode of the MIM capacitor.
12. The method for manufacturing a semiconductor device according to claim 11, wherein the semi-insulating semiconductor substrate is a GaAs substrate.
13. The method for manufacturing a semiconductor device according to claim 12, wherein the first metal film is formed with AuGe/Au.
14. The method for a semiconductor device according to claim 12, further comprising:
forming a second resist film having an opening on a portion of a surface where the gate electrode of the field effect transistor is formed;
forming a second metal film on the entire surface on the substrate via the second resist film,
removing the resist film and the second metal film thereon by a lift-off method, thereby forming the gate electrode;
forming an insulating film to cover a part of the gate electrode, the source electrode and the drain electrode and a surface of the lower electrode of the MIM capacitor,
forming on the insulating film a third resist film having an opening to expose a part of the source and drain electrodes and a part of the insulating film on the lower electrode of the MIM capacitor,
forming a third metal film over an entire surface of the active layer via the third resist film, and
removing the resist film and the third metal film thereon by the lift-off method, thereby forming the upper electrodes of the source and drain electrodes and the upper electrode of the MIM capacitor.
15. The method for manufacturing a semiconductor device according to claim 12, wherein the semi-insulating semiconductor substrate is a GaAs substrate.
16. The method for manufacturing a semiconductor device according to claim 15, wherein the second metal film is formed with AuGe/Au.
17. The method for manufacturing a semiconductor device according to claim 15, wherein the third metal film is formed with Ti/Pt/Au.
18. The method for manufacturing a semiconductor device according to claim 12, wherein the insulating film is formed with SiN.
US12/045,482 2007-03-19 2008-03-10 Semiconductor device and manufacturing method therefor Abandoned US20080230823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/115,251 US8587094B2 (en) 2007-03-19 2011-05-25 Semiconductor device using a compound semiconductor subtrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-070053 2007-03-19
JP2007070053A JP2008235403A (en) 2007-03-19 2007-03-19 Semiconductor device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/115,251 Division US8587094B2 (en) 2007-03-19 2011-05-25 Semiconductor device using a compound semiconductor subtrate

Publications (1)

Publication Number Publication Date
US20080230823A1 true US20080230823A1 (en) 2008-09-25

Family

ID=39643817

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/045,482 Abandoned US20080230823A1 (en) 2007-03-19 2008-03-10 Semiconductor device and manufacturing method therefor
US13/115,251 Expired - Fee Related US8587094B2 (en) 2007-03-19 2011-05-25 Semiconductor device using a compound semiconductor subtrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/115,251 Expired - Fee Related US8587094B2 (en) 2007-03-19 2011-05-25 Semiconductor device using a compound semiconductor subtrate

Country Status (4)

Country Link
US (2) US20080230823A1 (en)
EP (1) EP1976009B1 (en)
JP (1) JP2008235403A (en)
TW (1) TWI413234B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586505B2 (en) 2010-02-18 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN115579299A (en) * 2022-11-21 2023-01-06 常州承芯半导体有限公司 Semiconductor structure and forming method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013026540A (en) * 2011-07-25 2013-02-04 Renesas Electronics Corp Semiconductor integrated circuit device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789645A (en) * 1987-04-20 1988-12-06 Eaton Corporation Method for fabrication of monolithic integrated circuits
US4959705A (en) * 1988-10-17 1990-09-25 Ford Microelectronics, Inc. Three metal personalization of application specific monolithic microwave integrated circuit
US5162258A (en) * 1988-10-17 1992-11-10 Lemnios Zachary J Three metal personalization of application specific monolithic microwave integrated circuit
US5382821A (en) * 1992-12-14 1995-01-17 Sumitomo Electric Industries, Ltd. High power field effect transistor
US5552335A (en) * 1991-03-29 1996-09-03 Electronic Decisions, Inc. Acoustic charge transport integrated circuit process
US5714410A (en) * 1995-12-07 1998-02-03 Lg Semicon Co., Ltd. Method for fabricating CMOS analog semiconductor
US5882946A (en) * 1994-07-27 1999-03-16 Fujitsu Limited High-permittivity thin film capacitor for a semiconductor integrated circuit and a fabrication method thereof
US6075266A (en) * 1997-01-09 2000-06-13 Kabushiki Kaisha Toshiba Semiconductor device having MIS transistors and capacitor
US6246084B1 (en) * 1997-12-05 2001-06-12 Hyundai Electronics Industries Co., Ltd. Method for fabricating semiconductor device comprising capacitor and resistor
US20040022025A1 (en) * 2000-11-21 2004-02-05 Toshiya Yokogawa Equipment for communication system and semiconductor integrated circuit device
US6762109B2 (en) * 2002-04-16 2004-07-13 Renesas Technology Corp. Method of manufacturing semiconductor device with reduced number of process steps for capacitor formation
US20050040430A1 (en) * 2001-12-11 2005-02-24 Infineon Technologies Ag Diode circuit and method of producing a diode circuit
US20050127393A1 (en) * 2003-12-12 2005-06-16 Atsushi Kurokawa Semiconductor device and manufacturing method of the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5225706A (en) * 1987-12-04 1993-07-06 Thomson-Csf Matrix of photosensitive elements associating a photodiode or a phototransistor and a storage capacitor
JPH01264250A (en) 1988-04-15 1989-10-20 Hitachi Ltd Semiconductor device
US4959725A (en) * 1988-07-13 1990-09-25 Sony Corporation Method and apparatus for processing camera an image produced by a video camera to correct for undesired motion of the video camera
JPH0376262A (en) 1989-08-18 1991-04-02 Nec Corp Semiconductor device
JPH03225861A (en) 1990-01-30 1991-10-04 Toshiba Corp Manufacture of semiconductor integrated circuit
GB9113795D0 (en) * 1991-06-26 1991-08-14 Philips Electronic Associated Thin-film rom devices and their manufacture
EP0725447B1 (en) * 1995-02-02 2007-11-14 Sumitomo Electric Industries, Ltd. Pin type light-receiving device and its fabrication process
JP3408019B2 (en) 1995-06-12 2003-05-19 シャープ株式会社 Semiconductor device and method of manufacturing semiconductor device
JPH09102585A (en) 1995-10-05 1997-04-15 Sony Corp Semiconductor device and manufacture thereof
JP3347947B2 (en) 1996-08-01 2002-11-20 日本電信電話株式会社 Method for manufacturing semiconductor device
JP3731277B2 (en) 1997-03-04 2006-01-05 ソニー株式会社 Semiconductor integrated circuit device
JPH11330378A (en) * 1998-05-19 1999-11-30 Murata Mfg Co Ltd Semiconductor device
JP3532812B2 (en) 1999-04-30 2004-05-31 富士通カンタムデバイス株式会社 Compound semiconductor device and manufacturing method thereof
JP2001024155A (en) 1999-07-05 2001-01-26 Murata Mfg Co Ltd Mim capacitor, its manufacture, semiconductor device, air-bridge metallic wiring and its manufacture
JP2002184946A (en) 2000-12-11 2002-06-28 Murata Mfg Co Ltd Mim capacitor and its manufacturing method
JP3674917B2 (en) 2001-10-19 2005-07-27 本田技研工業株式会社 Manufacturing method of semiconductor device
US7034332B2 (en) * 2004-01-27 2006-04-25 Hewlett-Packard Development Company, L.P. Nanometer-scale memory device utilizing self-aligned rectifying elements and method of making
JP2007070053A (en) 2005-09-07 2007-03-22 Toshiba Elevator Co Ltd Remotely monitoring terminal device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789645A (en) * 1987-04-20 1988-12-06 Eaton Corporation Method for fabrication of monolithic integrated circuits
US4959705A (en) * 1988-10-17 1990-09-25 Ford Microelectronics, Inc. Three metal personalization of application specific monolithic microwave integrated circuit
US5162258A (en) * 1988-10-17 1992-11-10 Lemnios Zachary J Three metal personalization of application specific monolithic microwave integrated circuit
US5552335A (en) * 1991-03-29 1996-09-03 Electronic Decisions, Inc. Acoustic charge transport integrated circuit process
US5382821A (en) * 1992-12-14 1995-01-17 Sumitomo Electric Industries, Ltd. High power field effect transistor
US5882946A (en) * 1994-07-27 1999-03-16 Fujitsu Limited High-permittivity thin film capacitor for a semiconductor integrated circuit and a fabrication method thereof
US5714410A (en) * 1995-12-07 1998-02-03 Lg Semicon Co., Ltd. Method for fabricating CMOS analog semiconductor
US6075266A (en) * 1997-01-09 2000-06-13 Kabushiki Kaisha Toshiba Semiconductor device having MIS transistors and capacitor
US6246084B1 (en) * 1997-12-05 2001-06-12 Hyundai Electronics Industries Co., Ltd. Method for fabricating semiconductor device comprising capacitor and resistor
US20040022025A1 (en) * 2000-11-21 2004-02-05 Toshiya Yokogawa Equipment for communication system and semiconductor integrated circuit device
US20050040430A1 (en) * 2001-12-11 2005-02-24 Infineon Technologies Ag Diode circuit and method of producing a diode circuit
US6762109B2 (en) * 2002-04-16 2004-07-13 Renesas Technology Corp. Method of manufacturing semiconductor device with reduced number of process steps for capacitor formation
US20050127393A1 (en) * 2003-12-12 2005-06-16 Atsushi Kurokawa Semiconductor device and manufacturing method of the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10586505B2 (en) 2010-02-18 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11170728B2 (en) 2010-02-18 2021-11-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11455969B2 (en) 2010-02-18 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11769462B2 (en) 2010-02-18 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US12100368B2 (en) 2010-02-18 2024-09-24 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN115579299A (en) * 2022-11-21 2023-01-06 常州承芯半导体有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
US20110221036A1 (en) 2011-09-15
TWI413234B (en) 2013-10-21
EP1976009A2 (en) 2008-10-01
JP2008235403A (en) 2008-10-02
TW200849554A (en) 2008-12-16
EP1976009A3 (en) 2008-12-17
EP1976009B1 (en) 2013-07-17
US8587094B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
US20030025175A1 (en) Schottky barrier diode
US20050179106A1 (en) Schottky barrier diode
US8587094B2 (en) Semiconductor device using a compound semiconductor subtrate
EP1976010B1 (en) Semiconductor device and manufacturing method therefor
JP2005353993A (en) Compound semiconductor device and manufacturing method thereof
US5631479A (en) Semiconductor device with laminated refractory metal schottky barrier gate electrode
US20060237753A1 (en) Semiconductor device and method for manufacturing the same
US6420739B1 (en) GaAs semiconductor device having a capacitor
US6682968B2 (en) Manufacturing method of Schottky barrier diode
KR100612189B1 (en) Schottky barrier diode and method of fabricating the same
KR100612186B1 (en) Schottky barrier diode and method of fabricating the same
JP5175880B2 (en) Semiconductor device
KR100205018B1 (en) Method for manufacturing capacitor using base layer of heterojunction transistor
JPH09102585A (en) Semiconductor device and manufacture thereof
JP3281204B2 (en) Wiring structure and method for forming via hole
EP1280210A2 (en) Schottky barrier diode and manufacturing method of schottky barrier diode
JPH10154667A (en) Plate wiring and its method of manufacturing the same
JP2003069046A (en) Schottky barrier diode and manufacturing method thereof
JP2000100935A (en) Manufacture of semiconductor device
JP2000236027A (en) Manufacture of semiconductor device
JPS624377A (en) Field effect transistor and manufacture thereof
JP2003046093A (en) Schottky barrier diode and method of manufacturing the same
JPS62245679A (en) Short channel schottky type field-effect transistor
JPS6077469A (en) Manufacture of semiconductor device
JPS61294872A (en) Manufacture of field effect type transistor

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA TOSHIBA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAWASAKI, HISAO;REEL/FRAME:020899/0215

Effective date: 20080306

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION