US20080166523A1 - Tab leader tape made of polyphenylene ether-based resin - Google Patents
Tab leader tape made of polyphenylene ether-based resin Download PDFInfo
- Publication number
- US20080166523A1 US20080166523A1 US11/649,162 US64916207A US2008166523A1 US 20080166523 A1 US20080166523 A1 US 20080166523A1 US 64916207 A US64916207 A US 64916207A US 2008166523 A1 US2008166523 A1 US 2008166523A1
- Authority
- US
- United States
- Prior art keywords
- mass
- parts
- polyphenylene ether
- leader tape
- based resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920001955 polyphenylene ether Polymers 0.000 title claims abstract description 108
- 229920005989 resin Polymers 0.000 title claims abstract description 92
- 239000011347 resin Substances 0.000 title claims abstract description 92
- -1 silane compound Chemical class 0.000 claims description 65
- 229920000728 polyester Polymers 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 33
- 229910000077 silane Inorganic materials 0.000 claims description 27
- 229920002554 vinyl polymer Polymers 0.000 claims description 16
- 239000011256 inorganic filler Substances 0.000 claims description 15
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 9
- 125000003277 amino group Chemical group 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 description 25
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 22
- 150000002736 metal compounds Chemical class 0.000 description 21
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 16
- 239000008188 pellet Substances 0.000 description 15
- 238000011156 evaluation Methods 0.000 description 14
- 229920001577 copolymer Polymers 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 10
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- NXXYKOUNUYWIHA-UHFFFAOYSA-N 2,6-Dimethylphenol Chemical compound CC1=CC=CC(C)=C1O NXXYKOUNUYWIHA-UHFFFAOYSA-N 0.000 description 8
- 230000032798 delamination Effects 0.000 description 8
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 239000011787 zinc oxide Substances 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 7
- 229920005669 high impact polystyrene Polymers 0.000 description 7
- 239000004797 high-impact polystyrene Substances 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 239000011133 lead Substances 0.000 description 6
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 6
- 239000000347 magnesium hydroxide Substances 0.000 description 6
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011112 polyethylene naphthalate Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 5
- 150000004756 silanes Chemical class 0.000 description 5
- QQOMQLYQAXGHSU-UHFFFAOYSA-N 2,3,6-Trimethylphenol Chemical compound CC1=CC=C(C)C(O)=C1C QQOMQLYQAXGHSU-UHFFFAOYSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- 229920000106 Liquid crystal polymer Polymers 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 239000011342 resin composition Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 239000004697 Polyetherimide Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229920001400 block copolymer Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 229920006351 engineering plastic Polymers 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000007306 functionalization reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920001601 polyetherimide Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- RRPHVJFXXYIHMH-UHFFFAOYSA-N 3-cyclohexa-2,5-dien-1-ylidenecyclohexa-1,4-diene Chemical group C1=CCC=CC1=C1C=CCC=C1 RRPHVJFXXYIHMH-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- INNSZZHSFSFSGS-UHFFFAOYSA-N acetic acid;titanium Chemical compound [Ti].CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O INNSZZHSFSFSGS-UHFFFAOYSA-N 0.000 description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000007602 hot air drying Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 230000000266 injurious effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 235000012254 magnesium hydroxide Nutrition 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- 239000004246 zinc acetate Substances 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- OPGZBHOFTGSDNP-UHFFFAOYSA-N 1-phenyl-3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCC(N)C1=CC=CC=C1 OPGZBHOFTGSDNP-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- QTNKAUVVWGYBNU-UHFFFAOYSA-N 2,6-dimethylphenol;styrene Chemical compound C=CC1=CC=CC=C1.CC1=CC=CC(C)=C1O QTNKAUVVWGYBNU-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- QJPPPLJETZSLMG-UHFFFAOYSA-N 2-(3-trimethoxysilylpropylamino)ethylurea Chemical compound CO[Si](OC)(OC)CCCNCCNC(N)=O QJPPPLJETZSLMG-UHFFFAOYSA-N 0.000 description 1
- KUNNUNBSGQSGDY-UHFFFAOYSA-N 2-butyl-6-methylphenol Chemical compound CCCCC1=CC=CC(C)=C1O KUNNUNBSGQSGDY-UHFFFAOYSA-N 0.000 description 1
- VBVTYKYFWSUNFZ-UHFFFAOYSA-N 2-dimethoxysilylethanethiol Chemical compound CO[SiH](CCS)OC VBVTYKYFWSUNFZ-UHFFFAOYSA-N 0.000 description 1
- DVNPFNZTPMWRAX-UHFFFAOYSA-N 2-triethoxysilylethanethiol Chemical compound CCO[Si](CCS)(OCC)OCC DVNPFNZTPMWRAX-UHFFFAOYSA-N 0.000 description 1
- LOSLJXKHQKRRFN-UHFFFAOYSA-N 2-trimethoxysilylethanethiol Chemical compound CO[Si](OC)(OC)CCS LOSLJXKHQKRRFN-UHFFFAOYSA-N 0.000 description 1
- UZQJSDJLHIHJRJ-UHFFFAOYSA-N 3-[diethoxy(ethyl)silyl]propane-1-thiol Chemical compound CCO[Si](CC)(OCC)CCCS UZQJSDJLHIHJRJ-UHFFFAOYSA-N 0.000 description 1
- MBNRBJNIYVXSQV-UHFFFAOYSA-N 3-[diethoxy(methyl)silyl]propane-1-thiol Chemical compound CCO[Si](C)(OCC)CCCS MBNRBJNIYVXSQV-UHFFFAOYSA-N 0.000 description 1
- ZYAASQNKCWTPKI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propan-1-amine Chemical compound CO[Si](C)(OC)CCCN ZYAASQNKCWTPKI-UHFFFAOYSA-N 0.000 description 1
- IKYAJDOSWUATPI-UHFFFAOYSA-N 3-[dimethoxy(methyl)silyl]propane-1-thiol Chemical compound CO[Si](C)(OC)CCCS IKYAJDOSWUATPI-UHFFFAOYSA-N 0.000 description 1
- IYMZEPRSPLASMS-UHFFFAOYSA-N 3-phenylpyrrole-2,5-dione Chemical compound O=C1NC(=O)C(C=2C=CC=CC=2)=C1 IYMZEPRSPLASMS-UHFFFAOYSA-N 0.000 description 1
- DCQBZYNUSLHVJC-UHFFFAOYSA-N 3-triethoxysilylpropane-1-thiol Chemical compound CCO[Si](OCC)(OCC)CCCS DCQBZYNUSLHVJC-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- LVACOMKKELLCHJ-UHFFFAOYSA-N 3-trimethoxysilylpropylurea Chemical compound CO[Si](OC)(OC)CCCNC(N)=O LVACOMKKELLCHJ-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- IHLDFUILQQSDCQ-UHFFFAOYSA-L C(C)(=O)[O-].[Ge+2].C(C)(=O)[O-] Chemical compound C(C)(=O)[O-].[Ge+2].C(C)(=O)[O-] IHLDFUILQQSDCQ-UHFFFAOYSA-L 0.000 description 1
- FGAAZDHHGVLUAQ-UHFFFAOYSA-L C(CCCCCCCCCCCCCCCCC)(=O)[O-].[Ge+2].C(CCCCCCCCCCCCCCCCC)(=O)[O-] Chemical compound C(CCCCCCCCCCCCCCCCC)(=O)[O-].[Ge+2].C(CCCCCCCCCCCCCCCCC)(=O)[O-] FGAAZDHHGVLUAQ-UHFFFAOYSA-L 0.000 description 1
- YUDVXSACWSWLAL-UHFFFAOYSA-M C.C.C.C.C.C.COCCC(C)=O.COCOC.COc1ccc(C(C)=O)cc1.COc1ccc2cc(C(C)=O)ccc2c1.I.II.I[IH]I.[V]I Chemical compound C.C.C.C.C.C.COCCC(C)=O.COCOC.COc1ccc(C(C)=O)cc1.COc1ccc2cc(C(C)=O)ccc2c1.I.II.I[IH]I.[V]I YUDVXSACWSWLAL-UHFFFAOYSA-M 0.000 description 1
- XBUHYQAVRQKADD-UHFFFAOYSA-N C.C.C.CC.CCC.Cc1ccc(-c2ccc(C)cc2)cc1.Cc1ccc(C(C)(C)c2ccc(C)cc2)cc1.Cc1ccc(C)cc1.Cc1ccc(C)cc1.Cc1ccc(Cc2ccc(C)cc2)cc1.Cc1ccc(Oc2ccc(C)cc2)cc1.Cc1ccc(Sc2ccc(C)cc2)cc1.Cc1ccc2cc(C)ccc2c1.Cc1cccc(C)c1 Chemical compound C.C.C.CC.CCC.Cc1ccc(-c2ccc(C)cc2)cc1.Cc1ccc(C(C)(C)c2ccc(C)cc2)cc1.Cc1ccc(C)cc1.Cc1ccc(C)cc1.Cc1ccc(Cc2ccc(C)cc2)cc1.Cc1ccc(Oc2ccc(C)cc2)cc1.Cc1ccc(Sc2ccc(C)cc2)cc1.Cc1ccc2cc(C)ccc2c1.Cc1cccc(C)c1 XBUHYQAVRQKADD-UHFFFAOYSA-N 0.000 description 1
- UZDBUKQAPJYQQF-UHFFFAOYSA-N COCOCOCC(C)=O.[V] Chemical compound COCOCOCC(C)=O.[V] UZDBUKQAPJYQQF-UHFFFAOYSA-N 0.000 description 1
- HREFHOJYRQYTRK-UHFFFAOYSA-N COc1ccc(C(C)=O)cc1.COc1ccc2cc(C(C)=O)ccc2c1 Chemical compound COc1ccc(C(C)=O)cc1.COc1ccc2cc(C(C)=O)ccc2c1 HREFHOJYRQYTRK-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- VXWOQARWNCWEDU-UHFFFAOYSA-N N(C(=O)N)CCCC(C)O[Si](OCC)(OCC)C Chemical compound N(C(=O)N)CCCC(C)O[Si](OCC)(OCC)C VXWOQARWNCWEDU-UHFFFAOYSA-N 0.000 description 1
- ZOQLPVXRDQIOHL-UHFFFAOYSA-N N(C(=O)N)CCCCO[Si](OC)(OC)C Chemical compound N(C(=O)N)CCCCO[Si](OC)(OC)C ZOQLPVXRDQIOHL-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- 229910011011 Ti(OH)4 Inorganic materials 0.000 description 1
- 229910003080 TiO4 Inorganic materials 0.000 description 1
- 229920013629 Torelina Polymers 0.000 description 1
- 239000004742 Torelina™ Substances 0.000 description 1
- 229920004747 ULTEM® 1000 Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000004733 Xyron Substances 0.000 description 1
- 0 [1*]C1=C(OC)C([4*])=C([3*])C(C)=C1[2*] Chemical compound [1*]C1=C(OC)C([4*])=C([3*])C(C)=C1[2*] 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- XDEOZZDFNYGLHY-UHFFFAOYSA-K antimony(3+);octadecanoate Chemical compound [Sb+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XDEOZZDFNYGLHY-UHFFFAOYSA-K 0.000 description 1
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 1
- GLQMDRJYEQDASO-UHFFFAOYSA-N antimony;trihydrate Chemical compound O.O.O.[Sb] GLQMDRJYEQDASO-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- LHQLJMJLROMYRN-UHFFFAOYSA-L cadmium acetate Chemical compound [Cd+2].CC([O-])=O.CC([O-])=O LHQLJMJLROMYRN-UHFFFAOYSA-L 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- GWOWVOYJLHSRJJ-UHFFFAOYSA-L cadmium stearate Chemical compound [Cd+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O GWOWVOYJLHSRJJ-UHFFFAOYSA-L 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- WCOATMADISNSBV-UHFFFAOYSA-K diacetyloxyalumanyl acetate Chemical compound [Al+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WCOATMADISNSBV-UHFFFAOYSA-K 0.000 description 1
- JVLRYPRBKSMEBF-UHFFFAOYSA-K diacetyloxystibanyl acetate Chemical compound [Sb+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JVLRYPRBKSMEBF-UHFFFAOYSA-K 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N ethyl ethylene Natural products CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 229910001679 gibbsite Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- FBNXYLDLGARYKQ-UHFFFAOYSA-N methoxy-dimethyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(C)CCCOCC1CO1 FBNXYLDLGARYKQ-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 1
- GKTNLYAAZKKMTQ-UHFFFAOYSA-N n-[bis(dimethylamino)phosphinimyl]-n-methylmethanamine Chemical class CN(C)P(=N)(N(C)C)N(C)C GKTNLYAAZKKMTQ-UHFFFAOYSA-N 0.000 description 1
- MNZMMCVIXORAQL-UHFFFAOYSA-N naphthalene-2,6-diol Chemical compound C1=C(O)C=CC2=CC(O)=CC=C21 MNZMMCVIXORAQL-UHFFFAOYSA-N 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- JMWUYEFBFUCSAK-UHFFFAOYSA-L nickel(2+);octadecanoate Chemical compound [Ni+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O JMWUYEFBFUCSAK-UHFFFAOYSA-L 0.000 description 1
- 229910021508 nickel(II) hydroxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- JFOJYGMDZRCSPA-UHFFFAOYSA-J octadecanoate;tin(4+) Chemical compound [Sn+4].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O JFOJYGMDZRCSPA-UHFFFAOYSA-J 0.000 description 1
- MCCIMQKMMBVWHO-UHFFFAOYSA-N octadecanoic acid;titanium Chemical compound [Ti].CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O.CCCCCCCCCCCCCCCCCC(O)=O MCCIMQKMMBVWHO-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000010690 paraffinic oil Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006111 poly(hexamethylene terephthalamide) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006128 poly(nonamethylene terephthalamide) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical group C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229910021509 tin(II) hydroxide Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- YJGJRYWNNHUESM-UHFFFAOYSA-J triacetyloxystannyl acetate Chemical compound [Sn+4].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O YJGJRYWNNHUESM-UHFFFAOYSA-J 0.000 description 1
- UDUKMRHNZZLJRB-UHFFFAOYSA-N triethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OCC)(OCC)OCC)CCC2OC21 UDUKMRHNZZLJRB-UHFFFAOYSA-N 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910021511 zinc hydroxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/145—Organic substrates, e.g. plastic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/48—Polymers modified by chemical after-treatment
- C08G65/485—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/4985—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/538—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
- H01L23/5387—Flexible insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24372—Particulate matter
- Y10T428/24405—Polymer or resin [e.g., natural or synthetic rubber, etc.]
Definitions
- the present invention relates to a TAB leader tape comprising a polyphenylene ether-based resin excellent in resistance to water absorption.
- a printed tape having many semiconductor devices automatically mounted thereon namely, a tape for tape automated bonding (hereinafter referred to as TAB), is wound around a reel in a form carried on a spacer tape for protecting the tape.
- TAB leader tape used in mounting semiconductor drivers is connected to TAB tapes, in the winding start and winding end.
- the TAB leader tape is required to have heat resistance to exhibit no deformation even under heating in an oven in the process of curing a sealing agent for semiconductor devices mounted on TAB; thus, a super engineering plastic such as polyimide, polyether imide, and polyethylene naphthalate is used as a material thereof.
- a super engineering plastic such as polyimide, polyether imide, and polyethylene naphthalate is used as a material thereof.
- a polyimide film is used for applications in which the lead tape is employed at a temperature of 180° C. or lower; polyether imide is employed for applications in which the lead tape is employed at a temperature of 160° C. or lower.
- Japanese Patent Laid-Open No. 2002-29939 discloses a biaxially oriented film containing polyethylene-2,6-naphthalenedicarboxylate as a main component, the film being a polyester film for use in a TAB leader tape, having a film thickness of 75 ⁇ m or more.
- a TAB leader tape comprising a super engineering plastic is highly water-absorbing and has a limitation to the frequency of recycling. It has been also shown that when guide holes for meshing with a roll are punched out in opposite sides of a tape material for a TAB leader tape, as burrs, elongated whisker-like pieces project from the tape and powder is generated. The elongated whisker-like pieces generated as burrs are particularly problematic because they can be injurious to semiconductor devices.
- a TAB leader tape comprising polyethylene-2,6-naphthalenedicarboxylate also has problems, e.g., that it is highly water-absorbing, generates burrs when punched out, and is large in dimension change due to water absorption and temperature dependency of elastic modulus.
- an object of the present invention is to provide a TAB leader tape excellent in resistance to water absorption.
- TAB leader tape 45 parts by mass or more of whose resin component is a polyphenylene ether-based resin is excellent in resistance to water absorption, thereby accomplishing the present invention.
- the TAB leader tape of the present invention comprises 45 parts by mass or more of a polyphenylene ether-based resin based on 100 parts by mass of the resin component thereof.
- the content of the polyphenylene ether-based resin is preferably 70 parts by mass or more, particularly preferably 90 parts by mass or more based on 100 parts by mass of the resin component constituting the TAB leader tape.
- the content of the polyphenylene ether is preferably 50 to 99.5 parts by mass based on 100 parts by mass of the polyphenylene ether-based resin.
- the resin component of the TAB leader tape preferably comprises a liquid crystalline polyester in addition to the polyphenylene ether-based resin.
- the resin component preferably comprises 50 to 99.5 parts by mass of the polyphenylene ether-based resin and 0.5 to 50 parts by mass of the liquid crystalline polyester, and more preferably comprises 70 to 99.5 parts by mass of the polyphenylene ether-based resin and 0.5 to 30 parts by mass of the liquid crystalline polyester.
- the polyphenylene ether-based resin preferably comprises 50 to 99.5 parts by mass of the polyphenylene ether and 0.5 to 50 parts by mass of an aromatic vinyl-based polymer, and more preferably comprises 70 to 99.5 parts by mass of the polyphenylene ether and 0.5 to 30 parts by mass of the aromatic vinyl-based polymer.
- the TAB leader tape comprises the liquid crystalline polyester
- it preferably also contains a compound comprising one of monovalent, divalent, trivalent, and tetravalent metal elements.
- the preferred content of the metal compound is 0.1 to 10 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin.
- the one of monovalent, divalent, trivalent, and tetravalent metal elements is particularly preferably at least one of a Zn element and a Mg element.
- the TAB leader tape preferably contains a silane compound.
- the preferred content of the silane compound is 0.1 to 5 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin.
- the silane compound particularly preferably has an amino group.
- the TAB leader tape preferably contains an inorganic filler.
- the preferred content of the inorganic filler is (a) 0.1 to 150 parts by mass based on 100 parts by mass of the polyphenylene ether-based resin when the resin component is composed only of the resin and (b) 0.1 to 150 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin when the resin component is composed of these resins.
- the TAB leader tape of the present invention is excellent in resistance to water absorption.
- FIG. 1 is a graph showing stain-stress curves (S-S curve) of a polyphenylene ether (PPE) film obtained in Example 1, a polyethylene naphthalate (PEN) film manufactured by Teijin Chemicals Ltd., and a polyethylene terephthalate (PET) film manufactured by Toray Industries, Inc.
- PPE polyphenylene ether
- PEN polyethylene naphthalate
- PET polyethylene terephthalate
- the resin component of the TAB leader tape is a polyphenylene ether-based resin, and 55 parts by mass or less thereof is composed of a component other than the polyphenylene ether-based resin, shown below as component B.
- the TAB leader tape may contain one of monovalent, divalent, trivalent, and tetravalent metal compounds; a silane compound; an inorganic filler other than the metal compound; and so on.
- the polyphenylene ether-based resin includes a resin composed only of a polyphenylene ether, and a mixture of a polyphenylene ether and an aromatic vinyl-based polymer.
- the content of the polyphenylene ether-based resin is 45 parts by mass or more, preferably 70 parts by mass or more, particularly preferably 90 parts by mass based on 100 parts by mass of the resin component constituting the TAB leader tape.
- the resin composed only of a polyphenylene ether is difficult to process using conventional melt extrusion because it has an extremely high melt viscosity, but can be molded by, for example, a solution casting into a film.
- the content of the polyphenylene ether is preferably 99.5 parts by mass or less, more preferably 99 parts by mass or less, particularly preferably 98 parts by mass or less based on 100 parts by mass of the polyphenylene ether-based resin when the total mass amount thereof is regarded as 100 parts by mass.
- the glass transition temperature (Tg) of the polyphenylene ether-based resin is preferably 150° C. or higher, more preferably 170° C. or higher, particularly preferably 190° C. or higher in view of the heat resistance and heat shrinkability of the TAB leader tape.
- a polyphenylene ether content of about 45 parts by mass or more based on 100 parts by mass of the polyphenylene ether-based resin when the total mass amount thereof is regarded as 100 parts by mass provides a Tg of 150° C. or higher; about 60 parts by mass or more provides a Tg of 170° C. or higher; and about 75 parts by mass or more provides a Tg of 190° C. or higher.
- the Tg can be determined by a general method, but can be also determined in a simple manner, using a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the transition temperature based on the polyphenylene ether-based resin is determined when a sample is cut out of the TAB leader tape, scanned from 50° C. to 300° C. at a rate of temperature increase of 20° C./min., and kept at the temperature for one minute, followed by scanning from 300° C. to 50° C. at a rate of temperature decrease of 20° C./min., keeping the sample at the temperature for one minute and further scanning from 50° C. to 300° C. at a rate of temperature increase of 20° C./min.
- the polyphenylene ether is at least one of a homopolymer and a copolymer which comprise a repeating unit structure represented by formula 1 below and have a reduced viscosity (as measured in a 0.5 g/dl chloroform solution at 30° C.) ranging from 0.15 to 1.0 dl/g.
- the preferred reduced viscosity is in the range of from 0.20 to 0.70 dl/g, most preferably from 0.40 to 0.60 dl/g.
- R 1 and R 4 are each independently one of hydrogen, primary and secondary lower alkyl, phenyl, aminoalkyl, and hydrocarbonoxy; R 2 and R 3 are each independently one of hydrogen, primary and secondary lower alkyl, and phenyl.
- polyphenylene ether specifically include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6-phenyl-1,4-phenylene ether), and poly(2,6-dichloro-1,4-phenylene ether), and also include polyphenylene ether copolymers such as copolymers of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol and 2-methyl-6-butylphenol).
- Examples of a method for producing the polyphenylene ether include a method involving oxidation polymerizing 2,6-xylenol using a complex of a cuprous salt and an amine as described in U.S. Pat. No. 3,306,874 specification.
- the polyphenylene ether may be used directly in the form of a powder obtained by polymerization, or may be pelletized by melt kneading in a nitrogen or non-nitrogen atmosphere and then under devolatilization or non-devolatilization conditions.
- the polyphenylene ethers also include polyphenylene ethers functionalized with various dienophile compounds.
- various dienophile compounds include, for example, compounds such as maleic anhydride, maleic acid, fumaric acid, phenylmaleimide, itaconic acid, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, and styrene.
- a method for functionalization thereof with these dienophile compounds may also involve functionalization in a molten state under devolatilization or non-devolatilization conditions using, for example, an extruder in the presence or absence of a radical generator.
- the functionalization may be carried out in a non-molten state, i.e., in a temperature range between room temperature or higher and melting point or lower in the presence or absence of a radical generator.
- the melting point of the polyphenylene ether is defined as the peak top temperature of a peak observed on a temperature-heat flow graph obtained when heating up at 20° C./minute in measurement using a differential scanning calorimeter (DSC); when a plurality of peak top temperatures are present, the melting point is defined as the highest of these temperatures.
- the aromatic vinyl-based polymer refers to a homopolymer or copolymer consisting mainly of an aromatic vinyl compound.
- the aromatic vinyl compound include styrene, ⁇ -methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene, which may be used alone or a mixture of two kinds or more thereof; among others, styrene is preferable.
- Examples of the aromatic vinyl-based polymer include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, and acrylonitrile-styrene copolymer.
- a mixture of the polyphenylene ether and the aromatic vinyl-based polymer can be easily molded as compared to a resin composed only of the polyphenylene ether; however, an excessive content of the aromatic vinyl-based polymer may lead to the impairment of characteristics such as heat resistance.
- the preferred content of the aromatic vinyl-based polymer is 0.5 to 50 parts by mass, more preferably 1 to 35 parts by mass, particularly preferably 2 to 30 parts by mass based on 100 parts by mass of the polyphenylene ether-based resin.
- An aromatic vinyl-based polymer content of 30 parts by mass or less based on 100 parts by mass of the polyphenylene ether-based resin leads to the distortion temperature under load (DTUL) (using ASTM D648 under a load of 1.82 MPa at a test piece thickness of 3.2 mm) of the polyphenylene ether-based resin tending to have a preferable value of 150 to 190° C.
- DTUL distortion temperature under load
- Component B Component Other than the Polyphenylene Ether-Based Resin (Hereinafter Referred to as Component B)
- the component other than the polyphenylene ether-based resin may be any component which can confer flowability while maintaining the heat resistance of the polyphenylene ether, and is selected from at least one of a thermoplastic resin and a plasticizer, and blended to such an extent that the advantages of the present invention are not impaired.
- thermoplastic resin examples include, in addition to liquid crystalline polyesters, semiaromatic polyesters typified by polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate; polyamides typified by polyamide 6, polyamide 6,6, polyamide 6T, and polyamide 9T; polyolefins typified by polyethylene, and polypropylene; polyvinyl chloride, polyvinylidene chloride, and polyvinylidene fluoride; polyacrylic polymers typified by polymethyl methacrylate, polymethyl acrylate, polymethacrylic acid, and polyacrylic acid; thermoplastic polyimide; copolymers of acrylic monomers and olefins; and polyurethane.
- semiaromatic polyesters typified by polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate
- polyamides typified by polyamide 6, polyamide 6,6, polyamide 6T, and polyamide 9T
- plasticizer examples include hindered phenols; phosphates; paraffinic oils; low molecular weight polyethylene; epoxidized soybean oil; polyethylene glycol; fatty acid esters; and organophosphates and phosphazene compounds widely known as flame retardants for polyphenylene ethers.
- the liquid crystalline polyester is a polyester called a thermotropic liquid crystalline polymer, may be a known one without any specific limitation. Examples thereof include a thermotropic liquid crystalline polymer comprising p-hydroxybenzoic acid and polyethylene terephthalate as main constitutional units, a thermotropic liquid crystalline polymer comprising p-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid as main constitutional units, and a thermotropic liquid crystalline polymer comprising p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl, and terephthalic acid as main constitutional units.
- the liquid crystalline polyester is preferably composed of at least one of structural units (I) and (II) below and, as needed, at least one of structural units (III) and (IV) below.
- the structural units (I) and (II) are a structural unit of a polyester produced from p-hydroxybenzoic acid and a structural unit produced from 2-hydroxy-6-naphthoic acid, respectively.
- a TAB leader tape comprising a liquid crystalline polyester having the structural units (I) and (II) is excellent in heat resistance and has the good balance of mechanical characteristics such as flowability and rigidity.
- Xs in the above structural units (III) and (IV) are each independently one kind or more selected from formulas (2).
- the structural formula (III) is preferably a structural unit produced from each of ethylene glycol, hydroquinone, 4,4′-dihydroxybiphenyl, 2,6-dihydroxynaphthalene, and bisphenol A, more preferably a structural unit produced from each of ethylene glycol, 4,4′-dihydroxybiphenyl, and hydroquinone, particularly preferably a structural unit produced from each of ethylene glycol and 4,4′-dihydroxybiphenyl.
- the structural formula (IV) is preferably a structural unit produced from each of terephthalic acid, isophthalic acid, and 2,6-dicarboxynaphthalene, more preferably a structural unit produced from each of terephthalic acid and isophthalic acid.
- the structural formulas (III) and (IV) can be each used in combination of at least one kind or more of the above-listed structural units.
- specific examples of the structural formula (III) can include (1) a structural unit produced from ethylene glycol/a structural unit produced from hydroquinone, (2) a structural unit produced from ethylene glycol/a structural unit produced from 4,4′-dihydrobiphenyl, and (3) a structural unit produced from hydroquinone/a structural unit produced from 4,4′-dihydrobiphenyl.
- Such specific examples of the structural formula (IV) can include (1) a structural unit produced from terephthalic acid/a structural unit produced from isophthalic acid and (2) a structural unit produced from terephthalic acid/a structural unit produced from 2,6-dicarboxynaphthalene.
- terephthalic acid based on the total weight of the two components, terephthalic acid preferably has a content of 40 wt % or more, more preferably 60 wt % or more, particularly preferably 80 wt % or more.
- Terephthalic acid of 40 wt % or more based on the total weight of the two components makes the resin composition relatively excellent in flowability and heat resistance.
- the usage proportions of the structural units (I), (II), (III), and (IV) in the liquid crystalline polyester are not particularly limited. However, the structural units (III) and (IV) are essentially in nearly equimolar amounts.
- the following structural unit (V) consisting of the structural units (III) and (IV) may be also used as a structural unit in the liquid crystalline polyester.
- Specific examples thereof can include (1) a structural unit produced from ethylene glycol and terephthalic acid, (2) a structural unit produced from hydroquinone and terephthalic acid, (3) a structural unit produced from 4,4′-dihydroxybiphenyl and terephthalic acid, (4) a structural unit produced from 4,4′-dihydroxybiphenyl and isophthalic acid, and (5) a structural unit produced from bisphenol A and terephthalic acid.
- the liquid crystalline polyester component may also comprise, as needed, other structural units produced from an aromatic dicarboxylic acid, an aromatic diol, and an aromatic hydroxycarboxylic acid in the range of such small amounts that the advantages of the present invention are not impaired.
- liquid crystal starting temperature The temperature of the liquid crystalline polyester starting to show a liquid crystalline state when melted (hereinafter referred to as liquid crystal starting temperature) is preferably 150 to 350° C., more preferably 180 to 320° C. Setting the liquid crystal starting temperature to the range is preferable because black inclusions (substances considered to be mainly formed by gelation of PPE) are decreased in the resultant resin sheet.
- the TAB leader tape preferably contains a compound comprising one of monovalent, divalent, trivalent, and tetravalent metal elements (hereinafter simply referred to as a metal compound).
- the metal compound may be essentially any compound which comprises a metal element as a main component, and may be an inorganic or organic compound.
- the one of monovalent, divalent, trivalent, and tetravalent metal elements may be any of the metal elements which can take these valences; specific examples thereof include Li, Na, K, Zn, Cd, Sn, Cu, Ni, Pd, Co, Fe, Ru, Mn, Pb, Mg, Ca, Sr, Ba, Al, Ti, Ge, and Sb.
- the metal element is more preferably at least one of Zn and Mg elements, particularly preferably a Zn element.
- the metal compound is preferably an oxide, hydroxide, alkoxide salt, aliphatic carboxylate, or acetate of each of the above-described metal elements.
- Preferred examples of the oxide include ZnO, MgO, TiO 4 , TiO 2 , PbO, CdO, SnO, SbO, Sb 2 O 3 , NiO, Al 2 O 3 , and GeO.
- Preferred examples of the hydroxide include Zn(OH) 2 , Mg(OH) 2 , Ti(OH) 4 , Ti(OH) 2 , Pb(OH) 2 , Cd(OH) 2 , Sn(OH) 2 , Sb(OH) 2 , Sb(OH) 3 , Ni(OH) 2 , Al(OH) 3 , and Ge(OH) 2 .
- Preferred examples of the alkoxide salt include Ti(O-iso-Pr) 4 and Ti(O-n-Bu) 4 .
- Preferred examples of the aliphatic carboxylate include zinc stearate, magnesium stearate, titanium stearate, lead stearate, cadmium stearate, tin stearate, antimony stearate, nickel stearate, aluminium stearate, and germanium stearate.
- Preferred examples of the acetate include zinc acetate, magnesium acetate, titanium acetate, lead acetate, cadmium acetate, tin acetate, antimony acetate, nickel acetate, aluminium acetate, germanium acetate, and titanium acetate.
- metal compounds more preferred examples include ZnO, Mg(OH) 2 , Ti(O-iso-Pr) 4 , Ti(O-n-Bu) 4 , zinc acetate, zinc stearate, and aluminium stearate.
- ZnO and Mg(OH) 2 are more preferable; ZnO is particularly preferable.
- the metal compound may also contain impurities in such a range that the advantages of the present invention are not impaired.
- the metal compound acts as an agent for mixing the polyphenylene ether-based resin and the liquid crystalline polyester to reduce the delamination thereof.
- the TAB leader tape comprising the liquid crystalline polyester also contains the metal compound, the generation of whisker-like pieces as burrs and powder is reduced in punching out the guide holes.
- the tape is excellent in punchability, so to speak.
- the silane compound refers to a functional group-containing silane compound, and is a silane compound containing at least one functional group selected from the group consisting of an amino group, a ureido group, an epoxy group, an isocyanate group, and a mercapto group.
- the functional group-containing silane compound may be typically one containing any one of these functional groups in the molecule, but, in some cases, may be also one containing two or more of these functional groups in the molecule.
- the preferred silane compound is an alkoxysilane containing a functional group described above in the molecule.
- the functional group-containing silane compound include amino group-containing silane compounds such as ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -phenyl- ⁇ -aminopropyltrimethoxysilane; and ureido group-containing silane compounds such as ⁇ -ureidopropyltrimethoxysilane, ⁇ -ureidopropylmethyltrimethoxysilane, ⁇ -ureidopropyltriethoxysilane, ⁇
- epoxy group-containing silane compounds such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyldimethylmethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane; and isocyanate group-containing silane compounds such as ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropylmethyldimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane, ⁇ -isocyanatepropylmethyldiethoxysilane, ⁇ -isocyanatepropylethyldimethoxysilane, ⁇ -iso
- mercapto group-containing silane compounds such as ⁇ -mercaptopropylmethyldimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropylethyldiethoxysilane, ⁇ -mercaptopropylmethyldiethoxysilane, ⁇ -mercaptoethyltrimethoxysilane, ⁇ -mercaptoethyltriethoxysilane, and ⁇ -mercaptoethyldimethoxysilane.
- the silane compound also acts as an agent for mixing the polyphenylene ether-based resin and the liquid crystalline polyester; therefore, when the TAB leader tape comprising the liquid crystalline polyester also contains the silane compound, the tape is excellent in punchability.
- the inorganic filler is an inorganic compound other than the above-described metal compound, and preferably one imparting strength to TAB leader tape made of the polyphenylene ether-based resin.
- the strength-imparting agent include glass fiber, metal fiber, potassium titanate, carbon fiber, silicon carbide, ceramic, silicon nitride, mica, nepheline syenite, talc, wollastonite, slag fiber, ferrite, glass bead, glass powder, glass balloon, quartz, quartz glass, fused silica, titanium oxide, and calcium carbonate.
- calcium carbonate, talc, wollastonite, and fused silica are preferable in view of sheet forming and thermal shrinkage rate.
- inorganic fillers is not intended to be limited and may be optionally selected from forms such as fiber, a plate, and a sphere, but plate and sphere forms are preferable in view of sheet forming and thermal shrinkage rate.
- These inorganic fillers may be used in combination of two kinds or more thereof.
- the filler may be used, as needed, by pretreating with a coupling agent such as silanic and titanic ones for use.
- additional components including, for example, an antioxidant, an elastomer (an olefinic copolymer such as ethylene/propylene copolymer, ethylene/1-butene copolymer, ethylene/propylene/non-conjugated diene copolymer, ethylene/ethyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer, and ethylene/vinyl acetate/glycidyl methacrylate copolymer, ethylene/propylene-g-maleic anhydride copolymer, and ABS; polyester-polyether elastomer; polyester-polyester elastomer; a vinyl aromatic compound-conjugated diene compound block copolymer; or a hydrogenated product of a vinyl aromatic compound-conjugated diene compound block copolymer), a flame retardant auxiliary, a weather resistance-improving agent, a light resistance-
- an antioxidant an elastomer
- the content of the polyphenylene ether-based resin is preferably 50 parts by mass or more in view of preventing the thickness nonuniformity and delamination of the tape, and preferably 99.5 parts by mass or less, more preferably 70 to 99.5 parts by mass, still more preferably 75 to 98 parts by mass in view of the flowability of the resin composition and extruder torque (load on the extruder) during sheeting and thermal shrinkage rate, based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin.
- the blending amount of the resin other than the polyphenylene ether-based resin is preferably 0.5 to 50 parts by mass, more preferably 1 to 30 parts by mass, particularly preferably 2 to 25 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and the resin other than the polyphenylene ether-based resin in view of thermal shrinkage rate.
- the blending amount of the liquid crystalline polyester is preferably 0.5 parts by mass or more in view of flowability and the prevention of occurrence of black inclusions in the sheet, and preferably 50 parts by mass or less, more preferably 0.5 to 30 parts by mass, still more preferably 2 to 25 parts by mass in view of preventing the thickness nonuniformity of the sheet due to the anisotropy of the liquid crystalline polyester, based on the total 100 parts by mass of the polyphenylene ether-based resin and the liquid crystalline polyester.
- the preferred contents of the metal compound, silane compound, and inorganic filler will be described based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin.
- the preferred content of the metal compound is 0.1 part by mass or more in view of preventing the delamination of the sheet, and 10 parts by mass or less, more preferably 0.2 to 5 parts by mass, particularly preferably 0.4 to 3 parts by mass in view of the density and heat resistance of the composition.
- the preferred content of the silane compound is 0.1 part by mass or more in view of preventing the delamination of the sheet, and 5 parts by mass or less, more preferably 0.2 to 3 parts by mass, particularly preferably 0.3 to 1 part by mass in view of the stability and weather resistance of the composition.
- the metal compound and the silane compound may be used in combination.
- the preferred content of the inorganic filler is 0.1 to 150 parts by mass, and more preferably 1 to 100 parts by mass, still more preferably 2 to 20 parts by mass particularly in view of sheet forming and thermal shrinkage rate.
- the order of kneading is not particularly limited, but it is desirable, in view of process simplicity and the improvement of physical properties, that these components are collectively kneaded.
- the metal compound and the silane compound when used in combination, these compounds may be simultaneously kneaded with the polyphenylene ether-based resin or the polyphenylene ether-based resin and liquid crystalline polyester, but in order to inhibit delamination of the sheet more effectively, it is desirable that the metal compound is kneaded therewith before the silane compound is kneaded with the kneaded product, or that the silane compound is kneaded therewith before the metal compound is kneaded with the kneaded product.
- the inorganic filler may be also kneaded with the other kneaded components when it is desired for the filler to be prevented from being crushed by kneading.
- the resin composition can be produced by various methods. Examples thereof include heat melt kneading methods using a single-screw extruder, a twin-screw extruder, a roll, a kneader, a Brabender Plastograph, a Banbery mixer and the like; among others, the melt kneading method using a twin-screw extruder is most preferable.
- the melt kneading temperature is not intended to be particularly limited, but may typically be optionally selected from the range of 150 to 350° C.
- the TAB leader tape may be produced by slitting a sheet once made into a tape form, or may be produced by continuously slitting a sheet directly from a sheeting machine into a tape form.
- the TAB leader tape has a thickness of 0.001 to 2.0 mm, preferably 0.005 to 0.50 mm, more preferably 0.05 to 0.20 mm.
- the tape may be occasionally called a film. Its suitable thickness is often, 0.075 mm, 0.125 mm or the like.
- the TAB leader tape has a width of 10 to 100 mm, preferably 20 to 90 mm, more preferably 30 to 80 mm. Widths of, for example, 35 mm, 48 mm, and 70 mm are often suitable.
- the TAB leader tape has the above-described width and thickness and guide holes about 0.5 to 2 mm square in opposite sides thereof, punched out using a punching machine.
- the TAB leader tape can be obtained by extrusion sheeting using a composition comprising the polyphenylene ether-based resin as a raw material, or can be obtained by directly throwing a composition comprising the polyphenylene ether-based resin into an extrusion sheeting machine to simultaneously perform the blending and sheeting thereof.
- the TAB leader tape can be produced using a method called tubular extrusion, or also an inflation method. It is essential in making the sheet uniformly thick and free from delamination to control the temperature of a parison through the circular die by selecting a proper temperature in the range of 50 to 290° C. so that the parison is not rapidly cooled.
- the TAB leader tape can be produced by T-die extrusion.
- the sheet may be used directly in its non-oriented form, or after uniaxial or biaxial orientation to provide the tape.
- a desired increase in the strength of the sheet can be achieved by orientation.
- the TAB leader tape of the present invention is excellent in water absorption resistance and punchability.
- PPE-1 is poly(2,6-dimethyl-1,4-phenylene ether) in powder form having a reduced viscosity (as measured in a 0.5 g/dl chloroform solution at 30° C.) of 0.42, obtained by oxidation polymerizing 2,6-dimethylphenol.
- the resultant pellets of each composition were subjected to sheeting by tubular extrusion blowing using an extruder with a screw diameter of 50 mm set at a cylinder temperature of 290° C. and a cylindrical dice temperature of 290° C.
- the blowing air pressure was set so as to provide a sheet thickness of 125 ⁇ m.
- the resultant sheets were each cut to a width of 35 mm.
- the TAB leader tapes obtained in the tape forming step (1) were each used to cut out samples therefrom to have a length of 1 m, which were then exposed to a hot and humid environment of a temperature of 85° C. and a relative humidity of 95% for 48 hours using a thermo-hygrostat (PL-3FP manufactured by Tabai Espec Corporation), followed by determining the weight increase rate ( ⁇ w) according to the following equation. The mean value in the respective two samples was taken.
- Weight increase rate ( ⁇ w )(%) ( w 1 ⁇ w 0)/ w 0 ⁇ 100
- w1 is the weight (g) of the tape which has been taken out of the thermo-hygrostat after 48 hours of exposure to the hot and humid environment, subjected to wiping-off of dew on the tape surface, and allowed to stand for 30 minutes in a room controlled at a temperature of 23° C. and a relative humidity of 50%; and w0 is the weight (g) of a tape which, before the warming and humidifying, has been dried in a hot air drier at 100° C. for 2 hours and cooled to room temperature in a desiccator.
- the water absorption resistance of the tapes was evaluated based on the following criteria.
- ⁇ w is less than 0.1%.
- the tapes obtained in the tape forming step (1) were each used to cut out samples therefrom to have a length of 20 cm, which were then placed in a hot air drying oven (Perfect Oven PHH-201 manufactured by Espec Corporation) set at a temperature of 170° C. for one hour, followed by taking out the samples and observing the presence of the deformation thereof with eyes.
- a hot air drying oven Perfect Oven PHH-201 manufactured by Espec Corporation
- the TAB leader tapes obtained in the tape forming step (1) were each used to cut out samples therefrom to have a length of 1 m, which were then placed in a hot air drying oven (Perfect Oven PHH-201 manufactured by Espec Corporation) set at a temperature of 170° C. for one hour, followed by taking out the samples.
- the samples were sufficiently cooled to room temperature, and the length thereof was then measured, followed by determining the dimensional change rates ( ⁇ L) according to the following equation. The mean value in the respective two samples was taken.
- the thermal shrinkage of the tapes was evaluated based on the following criteria.
- the dimensional change rate is less than 0.05%.
- the dimensional change rate is 0.05% to less than 0.1%.
- the dimensional change rate is 0.1% to less than 0.2%.
- the dimensional change rate is 0.2% or more.
- Films 300 m long from the tapes were each subjected to the punching of holes 1 mm per side at an interval of 5 mm thereinto using a continuous film-punching machine, and the punchability thereof was evaluated according to the following criteria.
- a sample was cut out of the resultant TAB leader tape, and the glass transition temperature thereof during the second heating (2nd scan) was measured using DSC (Diamond DSC manufactured by Perkin-Elmer). Specifically, the transition temperature based on the polyphenylene ether-based resin was determined when the sample temperature was scanned from 50° C. to 300° C. (1st scan) at a rate of temperature increase of 20° C./min. before keeping the temperature for one minute, followed by scanning from 300° C. to 50° C. at a rate of temperature decrease of 20° C./min., keeping the temperature for one minute, and further scanning from 50° C. to 300° C. (2nd scan) at a rate of temperature increase of 20° C./min. As a result, the Tg was 213° C.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 1 except for the use of a high impact polystyrene (HIPS, H9405 manufactured by PS Japan Corporation) as well as a polyphenylene ether (PPE-1) as component A and a hydrogenated product of a vinyl aromatic compound-conjugated diene compound block copolymer (SEBS, Tuftec H1051 (registered trade name) manufactured by Asahi Kasei Chemicals Corporation) as another component (component F) to blend these components in the proportions (part by mass) shown in Table 1.
- HIPS high impact polystyrene
- PPE-1 polyphenylene ether
- SEBS vinyl aromatic compound-conjugated diene compound block copolymer
- SEBS vinyl aromatic compound-conjugated diene compound block copolymer
- Tuftec H1051 registered trade name
- component F component
- Pellets were obtained and subjected to sheeting before obtaining tapes in the same way as in Example 2 except for the use of a high impact polystyrene (HIPS, H9405 manufactured by PS Japan Corporation) for blending in the proportions (part by mass) shown in Table 1.
- HIPS high impact polystyrene
- Table 1 The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 1 except for the use of Aerosil R972 (hydrophobic type, special product, manufactured by Nippon Aerosil Co., Ltd.), a fumed silica, as an inorganic filler (component E) and the blending thereof in the proportion (part by mass) shown in Table 1.
- Aerosil R972 hydrophobic type, special product, manufactured by Nippon Aerosil Co., Ltd.
- a fumed silica as an inorganic filler (component E)
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 3 except for the setting of the blending amounts of the polyphenylene ether (PPE-1) and the high impact polystyrene to the proportions (part by mass) shown in Table 1.
- the tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- the glass transition temperature thereof was measured in the same way as in Example 1. As a result, the Tg was 162° C.
- pellets was obtained in the same way as in Example 1 after setting the zones 2 to 7 and die head of an extruder at 330° C. Processing of the pellets was attempted according to the above-described method after changing the preset temperature of the sheeting machine to 310° C. However, the forming thereof into a film was given up because the film tube was not stabilized and the die line was conspicuous.
- PPE-1 polyphenylene ether
- Sheeting was carried out before obtaining a tape in the same way as in Example 1 except for the use of polyphenylene ether imide (PEI, Ultem 1000 (registered trade name) manufactured by GE Plastics) as pellets and the setting of the cylinder temperature in sheeting to 350° C.
- PEI polyphenylene ether imide
- Ultem 1000 registered trade name manufactured by GE Plastics
- Sheeting was carried out before obtaining a tape in the same way as in Example 1 except for the use of polyethylene naphthalate having an intrinsic viscosity (as determined at 35° C. in a phenol/tetrachlroethine mixed solvent) of 0.62 dl/g as pellets.
- the tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Table 1 shows that the tape made of a polyphenylene ether-based resin, obtained by the present invention, is excellent in water absorption resistance, heat resistance, heat shrinkability, and punchability and that the tape is a non-conventional, inexpensive, and excellent TAB leader tape.
- the above-described films were each slit at a width of 25 mm along the longitudinal MD direction, and subjected to tensile testing at a distance between chucks of 50 mm and a pulling rate of 50 mm/min. using a universal testing machine (Model 5581, 5t (load cell capacity: 0.5 kN) manufactured by Instron Corporation).
- the initial moduli (Young's moduli) (MPa) thereof were each measured at ambient temperatures of 23° C., 140° C., and 170° C. The results are shown in Table 2.
- S-S carves Strain-stress curves (S-S carves) based on data at 140° C. are shown in FIG. 1 .
- PPE The 125 ⁇ m thick film of the present invention, obtained in Example 1.
- PEN Teonex (registered trade name) Q51, a polyethylene naphthalate film manufactured by Teijin Chemicals Ltd. Thickness: 125 ⁇ m.
- PET Lumirror (registered trade name) T60, a polyethylene terephthalate film manufactured by Toray Industries, Inc. Thickness: 125 ⁇ m.
- the TAB leader tape made of a polyphenylene ether-based resin of the present invention has a reduced temperature dependency of initial modulus and exhibits a sufficiently high initial modulus even at a high temperature of 170° C. As such, the TAB leader tape has a sufficient hot rigidity; therefore, it is little stretched even in a state of applying tension thereto.
- the TAB leader tape comprising a polyphenylene ether-based resin of the present invention is excellent in water absorption resistance and punchability. It is necessary that a TAB leader tape do not become deformed even when heated in an oven in the process of curing a sealing agent for semiconductor devices mounted on the TAB and exhibit a substantially equivalent thermal shrinkage rate as compared to a TAB tape and a TAB spacer tape.
- a TAB leader tape which is inexpensive, low in density, and excellent in water absorption resistance and, particularly, which is excellent in punchability because elongated whisker-like pieces generated as burrs can be injurious to semiconductor devices.
- the TAB leader tape comprising a polyphenylene ether-based resin of the present invention has highly suitable TAB leader tape characteristics and is of extremely high industrial value.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The TAB leader tape of the present invention comprises 45 parts by mass or more of a polyphenylene ether-based resin based on 100 parts by mass of the resin component thereof.
Description
- 1. Field of the Invention
- The present invention relates to a TAB leader tape comprising a polyphenylene ether-based resin excellent in resistance to water absorption.
- 2. Description of the Related Art
- A printed tape having many semiconductor devices automatically mounted thereon, namely, a tape for tape automated bonding (hereinafter referred to as TAB), is wound around a reel in a form carried on a spacer tape for protecting the tape. A TAB leader tape used in mounting semiconductor drivers is connected to TAB tapes, in the winding start and winding end.
- The TAB leader tape is required to have heat resistance to exhibit no deformation even under heating in an oven in the process of curing a sealing agent for semiconductor devices mounted on TAB; thus, a super engineering plastic such as polyimide, polyether imide, and polyethylene naphthalate is used as a material thereof. Specifically, a polyimide film is used for applications in which the lead tape is employed at a temperature of 180° C. or lower; polyether imide is employed for applications in which the lead tape is employed at a temperature of 160° C. or lower.
- The TAB leader tape has been poorly discussed for necessary performances thereof other than heat resistance perhaps because it is used only in a small amount on the winding start and winding end of a TAB tape; it has probably been thought that the mounting can just have to be carried out at an acceptable cost. For example, Japanese Patent Laid-Open No. 2002-29939 discloses a biaxially oriented film containing polyethylene-2,6-naphthalenedicarboxylate as a main component, the film being a polyester film for use in a TAB leader tape, having a film thickness of 75 μm or more. It is further disclosed that instead of employing an extremely expensive film having high heat resistance, the use of this polyester film also imparts heat resistance to an extent durable for practical use to the lead tape; necessary performances other than heat resistance are not addressed although attention is directed toward the high cost of a super engineering plastic.
- However, as a result of studies by the present inventors, it has been found that a TAB leader tape comprising a super engineering plastic is highly water-absorbing and has a limitation to the frequency of recycling. It has been also shown that when guide holes for meshing with a roll are punched out in opposite sides of a tape material for a TAB leader tape, as burrs, elongated whisker-like pieces project from the tape and powder is generated. The elongated whisker-like pieces generated as burrs are particularly problematic because they can be injurious to semiconductor devices. A TAB leader tape comprising polyethylene-2,6-naphthalenedicarboxylate also has problems, e.g., that it is highly water-absorbing, generates burrs when punched out, and is large in dimension change due to water absorption and temperature dependency of elastic modulus.
- Thus, an object of the present invention is to provide a TAB leader tape excellent in resistance to water absorption.
- As a result of intensive studies of technologies for achieving the above-described object, the present inventor has found that a TAB leader tape 45 parts by mass or more of whose resin component is a polyphenylene ether-based resin is excellent in resistance to water absorption, thereby accomplishing the present invention.
- Thus, the TAB leader tape of the present invention comprises 45 parts by mass or more of a polyphenylene ether-based resin based on 100 parts by mass of the resin component thereof.
- The content of the polyphenylene ether-based resin is preferably 70 parts by mass or more, particularly preferably 90 parts by mass or more based on 100 parts by mass of the resin component constituting the TAB leader tape. The content of the polyphenylene ether is preferably 50 to 99.5 parts by mass based on 100 parts by mass of the polyphenylene ether-based resin. The resin component of the TAB leader tape preferably comprises a liquid crystalline polyester in addition to the polyphenylene ether-based resin. The resin component preferably comprises 50 to 99.5 parts by mass of the polyphenylene ether-based resin and 0.5 to 50 parts by mass of the liquid crystalline polyester, and more preferably comprises 70 to 99.5 parts by mass of the polyphenylene ether-based resin and 0.5 to 30 parts by mass of the liquid crystalline polyester.
- The polyphenylene ether-based resin preferably comprises 50 to 99.5 parts by mass of the polyphenylene ether and 0.5 to 50 parts by mass of an aromatic vinyl-based polymer, and more preferably comprises 70 to 99.5 parts by mass of the polyphenylene ether and 0.5 to 30 parts by mass of the aromatic vinyl-based polymer.
- When the TAB leader tape comprises the liquid crystalline polyester, it preferably also contains a compound comprising one of monovalent, divalent, trivalent, and tetravalent metal elements. The preferred content of the metal compound is 0.1 to 10 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin. The one of monovalent, divalent, trivalent, and tetravalent metal elements is particularly preferably at least one of a Zn element and a Mg element. In addition, the TAB leader tape preferably contains a silane compound. The preferred content of the silane compound is 0.1 to 5 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin. The silane compound particularly preferably has an amino group.
- The TAB leader tape preferably contains an inorganic filler. The preferred content of the inorganic filler is (a) 0.1 to 150 parts by mass based on 100 parts by mass of the polyphenylene ether-based resin when the resin component is composed only of the resin and (b) 0.1 to 150 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin when the resin component is composed of these resins.
- The TAB leader tape of the present invention is excellent in resistance to water absorption.
-
FIG. 1 is a graph showing stain-stress curves (S-S curve) of a polyphenylene ether (PPE) film obtained in Example 1, a polyethylene naphthalate (PEN) film manufactured by Teijin Chemicals Ltd., and a polyethylene terephthalate (PET) film manufactured by Toray Industries, Inc. - Forty-five parts by mass or more of the resin component of the TAB leader tape is a polyphenylene ether-based resin, and 55 parts by mass or less thereof is composed of a component other than the polyphenylene ether-based resin, shown below as component B. In addition to these resin components, the TAB leader tape may contain one of monovalent, divalent, trivalent, and tetravalent metal compounds; a silane compound; an inorganic filler other than the metal compound; and so on.
- The polyphenylene ether-based resin includes a resin composed only of a polyphenylene ether, and a mixture of a polyphenylene ether and an aromatic vinyl-based polymer. The content of the polyphenylene ether-based resin is 45 parts by mass or more, preferably 70 parts by mass or more, particularly preferably 90 parts by mass based on 100 parts by mass of the resin component constituting the TAB leader tape.
- The resin composed only of a polyphenylene ether is difficult to process using conventional melt extrusion because it has an extremely high melt viscosity, but can be molded by, for example, a solution casting into a film. In view of moldability, the content of the polyphenylene ether is preferably 99.5 parts by mass or less, more preferably 99 parts by mass or less, particularly preferably 98 parts by mass or less based on 100 parts by mass of the polyphenylene ether-based resin when the total mass amount thereof is regarded as 100 parts by mass.
- The glass transition temperature (Tg) of the polyphenylene ether-based resin is preferably 150° C. or higher, more preferably 170° C. or higher, particularly preferably 190° C. or higher in view of the heat resistance and heat shrinkability of the TAB leader tape. A polyphenylene ether content of about 45 parts by mass or more based on 100 parts by mass of the polyphenylene ether-based resin when the total mass amount thereof is regarded as 100 parts by mass provides a Tg of 150° C. or higher; about 60 parts by mass or more provides a Tg of 170° C. or higher; and about 75 parts by mass or more provides a Tg of 190° C. or higher. The Tg can be determined by a general method, but can be also determined in a simple manner, using a differential scanning calorimeter (DSC). For obtaining the Tg using DSC, for example, the transition temperature based on the polyphenylene ether-based resin is determined when a sample is cut out of the TAB leader tape, scanned from 50° C. to 300° C. at a rate of temperature increase of 20° C./min., and kept at the temperature for one minute, followed by scanning from 300° C. to 50° C. at a rate of temperature decrease of 20° C./min., keeping the sample at the temperature for one minute and further scanning from 50° C. to 300° C. at a rate of temperature increase of 20° C./min.
- The polyphenylene ether is at least one of a homopolymer and a copolymer which comprise a repeating unit structure represented by formula 1 below and have a reduced viscosity (as measured in a 0.5 g/dl chloroform solution at 30° C.) ranging from 0.15 to 1.0 dl/g. The preferred reduced viscosity is in the range of from 0.20 to 0.70 dl/g, most preferably from 0.40 to 0.60 dl/g.
- (wherein R1 and R4 are each independently one of hydrogen, primary and secondary lower alkyl, phenyl, aminoalkyl, and hydrocarbonoxy; R2 and R3 are each independently one of hydrogen, primary and secondary lower alkyl, and phenyl.)
- Examples of the polyphenylene ether specifically include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl-6-phenyl-1,4-phenylene ether), and poly(2,6-dichloro-1,4-phenylene ether), and also include polyphenylene ether copolymers such as copolymers of 2,6-dimethylphenol and other phenols (for example, 2,3,6-trimethylphenol and 2-methyl-6-butylphenol). Among others, preferred are poly(2,6-dimethyl-1,4-phenylene ether) and a copolymer of 2,6-dimethylphenol and 2,3,6-trimethylphenol; poly(2,6-dimethyl-1,4-phenylene ether) is more preferable.
- Examples of a method for producing the polyphenylene ether include a method involving oxidation polymerizing 2,6-xylenol using a complex of a cuprous salt and an amine as described in U.S. Pat. No. 3,306,874 specification.
- Methods as described, for example, in the specifications of U.S. Pat. Nos. 3,306,875, 3,257,357, and 3257358 and the publications of Japanese Patent Publication No. 52-17880 and Japanese Patent Laid-Open Nos. 50-51197 and 63-152628 are also preferable as methods for producing the polyphenylene ether.
- The polyphenylene ether may be used directly in the form of a powder obtained by polymerization, or may be pelletized by melt kneading in a nitrogen or non-nitrogen atmosphere and then under devolatilization or non-devolatilization conditions.
- The polyphenylene ethers also include polyphenylene ethers functionalized with various dienophile compounds. Examples of various dienophile compounds include, for example, compounds such as maleic anhydride, maleic acid, fumaric acid, phenylmaleimide, itaconic acid, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, glycidyl acrylate, glycidyl methacrylate, stearyl acrylate, and styrene. A method for functionalization thereof with these dienophile compounds may also involve functionalization in a molten state under devolatilization or non-devolatilization conditions using, for example, an extruder in the presence or absence of a radical generator. Alternatively, the functionalization may be carried out in a non-molten state, i.e., in a temperature range between room temperature or higher and melting point or lower in the presence or absence of a radical generator. Here, the melting point of the polyphenylene ether is defined as the peak top temperature of a peak observed on a temperature-heat flow graph obtained when heating up at 20° C./minute in measurement using a differential scanning calorimeter (DSC); when a plurality of peak top temperatures are present, the melting point is defined as the highest of these temperatures.
- The aromatic vinyl-based polymer refers to a homopolymer or copolymer consisting mainly of an aromatic vinyl compound. Examples of the aromatic vinyl compound include styrene, α-methylstyrene, vinyltoluene, p-tert-butylstyrene, and diphenylethylene, which may be used alone or a mixture of two kinds or more thereof; among others, styrene is preferable. Examples of the aromatic vinyl-based polymer include atactic polystyrene, high impact polystyrene, syndiotactic polystyrene, and acrylonitrile-styrene copolymer.
- A mixture of the polyphenylene ether and the aromatic vinyl-based polymer can be easily molded as compared to a resin composed only of the polyphenylene ether; however, an excessive content of the aromatic vinyl-based polymer may lead to the impairment of characteristics such as heat resistance. In view of moldability and heat resistance, the preferred content of the aromatic vinyl-based polymer is 0.5 to 50 parts by mass, more preferably 1 to 35 parts by mass, particularly preferably 2 to 30 parts by mass based on 100 parts by mass of the polyphenylene ether-based resin. An aromatic vinyl-based polymer content of 30 parts by mass or less based on 100 parts by mass of the polyphenylene ether-based resin leads to the distortion temperature under load (DTUL) (using ASTM D648 under a load of 1.82 MPa at a test piece thickness of 3.2 mm) of the polyphenylene ether-based resin tending to have a preferable value of 150 to 190° C.
- (1-B) Component Other than the Polyphenylene Ether-Based Resin (Hereinafter Referred to as Component B)
- The component other than the polyphenylene ether-based resin may be any component which can confer flowability while maintaining the heat resistance of the polyphenylene ether, and is selected from at least one of a thermoplastic resin and a plasticizer, and blended to such an extent that the advantages of the present invention are not impaired. Examples of the thermoplastic resin include, in addition to liquid crystalline polyesters, semiaromatic polyesters typified by polyethylene terephthalate, polybutylene terephthalate, and polytrimethylene terephthalate; polyamides typified by polyamide 6, polyamide 6,6, polyamide 6T, and polyamide 9T; polyolefins typified by polyethylene, and polypropylene; polyvinyl chloride, polyvinylidene chloride, and polyvinylidene fluoride; polyacrylic polymers typified by polymethyl methacrylate, polymethyl acrylate, polymethacrylic acid, and polyacrylic acid; thermoplastic polyimide; copolymers of acrylic monomers and olefins; and polyurethane. Examples of the plasticizer include hindered phenols; phosphates; paraffinic oils; low molecular weight polyethylene; epoxidized soybean oil; polyethylene glycol; fatty acid esters; and organophosphates and phosphazene compounds widely known as flame retardants for polyphenylene ethers.
- The liquid crystalline polyester is a polyester called a thermotropic liquid crystalline polymer, may be a known one without any specific limitation. Examples thereof include a thermotropic liquid crystalline polymer comprising p-hydroxybenzoic acid and polyethylene terephthalate as main constitutional units, a thermotropic liquid crystalline polymer comprising p-hydroxybenzoic acid and 2-hydroxy-6-naphthoic acid as main constitutional units, and a thermotropic liquid crystalline polymer comprising p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl, and terephthalic acid as main constitutional units. The liquid crystalline polyester is preferably composed of at least one of structural units (I) and (II) below and, as needed, at least one of structural units (III) and (IV) below.
- Here, the structural units (I) and (II) are a structural unit of a polyester produced from p-hydroxybenzoic acid and a structural unit produced from 2-hydroxy-6-naphthoic acid, respectively. A TAB leader tape comprising a liquid crystalline polyester having the structural units (I) and (II) is excellent in heat resistance and has the good balance of mechanical characteristics such as flowability and rigidity. Xs in the above structural units (III) and (IV) are each independently one kind or more selected from formulas (2).
- The structural formula (III) is preferably a structural unit produced from each of ethylene glycol, hydroquinone, 4,4′-dihydroxybiphenyl, 2,6-dihydroxynaphthalene, and bisphenol A, more preferably a structural unit produced from each of ethylene glycol, 4,4′-dihydroxybiphenyl, and hydroquinone, particularly preferably a structural unit produced from each of ethylene glycol and 4,4′-dihydroxybiphenyl.
- The structural formula (IV) is preferably a structural unit produced from each of terephthalic acid, isophthalic acid, and 2,6-dicarboxynaphthalene, more preferably a structural unit produced from each of terephthalic acid and isophthalic acid.
- The structural formulas (III) and (IV) can be each used in combination of at least one kind or more of the above-listed structural units. In the case of the combined use of two kinds or more, specific examples of the structural formula (III) can include (1) a structural unit produced from ethylene glycol/a structural unit produced from hydroquinone, (2) a structural unit produced from ethylene glycol/a structural unit produced from 4,4′-dihydrobiphenyl, and (3) a structural unit produced from hydroquinone/a structural unit produced from 4,4′-dihydrobiphenyl.
- Such specific examples of the structural formula (IV) can include (1) a structural unit produced from terephthalic acid/a structural unit produced from isophthalic acid and (2) a structural unit produced from terephthalic acid/a structural unit produced from 2,6-dicarboxynaphthalene. Here, based on the total weight of the two components, terephthalic acid preferably has a content of 40 wt % or more, more preferably 60 wt % or more, particularly preferably 80 wt % or more. Terephthalic acid of 40 wt % or more based on the total weight of the two components makes the resin composition relatively excellent in flowability and heat resistance. The usage proportions of the structural units (I), (II), (III), and (IV) in the liquid crystalline polyester are not particularly limited. However, the structural units (III) and (IV) are essentially in nearly equimolar amounts.
- The following structural unit (V) consisting of the structural units (III) and (IV) may be also used as a structural unit in the liquid crystalline polyester. Specific examples thereof can include (1) a structural unit produced from ethylene glycol and terephthalic acid, (2) a structural unit produced from hydroquinone and terephthalic acid, (3) a structural unit produced from 4,4′-dihydroxybiphenyl and terephthalic acid, (4) a structural unit produced from 4,4′-dihydroxybiphenyl and isophthalic acid, and (5) a structural unit produced from bisphenol A and terephthalic acid.
- The liquid crystalline polyester component may also comprise, as needed, other structural units produced from an aromatic dicarboxylic acid, an aromatic diol, and an aromatic hydroxycarboxylic acid in the range of such small amounts that the advantages of the present invention are not impaired.
- The temperature of the liquid crystalline polyester starting to show a liquid crystalline state when melted (hereinafter referred to as liquid crystal starting temperature) is preferably 150 to 350° C., more preferably 180 to 320° C. Setting the liquid crystal starting temperature to the range is preferable because black inclusions (substances considered to be mainly formed by gelation of PPE) are decreased in the resultant resin sheet.
- The TAB leader tape preferably contains a compound comprising one of monovalent, divalent, trivalent, and tetravalent metal elements (hereinafter simply referred to as a metal compound). The metal compound may be essentially any compound which comprises a metal element as a main component, and may be an inorganic or organic compound. The one of monovalent, divalent, trivalent, and tetravalent metal elements may be any of the metal elements which can take these valences; specific examples thereof include Li, Na, K, Zn, Cd, Sn, Cu, Ni, Pd, Co, Fe, Ru, Mn, Pb, Mg, Ca, Sr, Ba, Al, Ti, Ge, and Sb. Among others, Zn, Mg, Ti, Pb, Cd, Sn, Sb, Ni, Al, and Ge elements are preferable; Zn, Mg, and Ti elements are more preferable. In view of producing no delamination and greatly improving the sheet toughness, the metal element is more preferably at least one of Zn and Mg elements, particularly preferably a Zn element.
- The metal compound is preferably an oxide, hydroxide, alkoxide salt, aliphatic carboxylate, or acetate of each of the above-described metal elements. Preferred examples of the oxide include ZnO, MgO, TiO4, TiO2, PbO, CdO, SnO, SbO, Sb2O3, NiO, Al2O3, and GeO. Preferred examples of the hydroxide include Zn(OH)2, Mg(OH)2, Ti(OH)4, Ti(OH)2, Pb(OH)2, Cd(OH)2, Sn(OH)2, Sb(OH)2, Sb(OH)3, Ni(OH)2, Al(OH)3, and Ge(OH)2. Preferred examples of the alkoxide salt include Ti(O-iso-Pr)4 and Ti(O-n-Bu)4. Preferred examples of the aliphatic carboxylate include zinc stearate, magnesium stearate, titanium stearate, lead stearate, cadmium stearate, tin stearate, antimony stearate, nickel stearate, aluminium stearate, and germanium stearate. Preferred examples of the acetate include zinc acetate, magnesium acetate, titanium acetate, lead acetate, cadmium acetate, tin acetate, antimony acetate, nickel acetate, aluminium acetate, germanium acetate, and titanium acetate.
- Of these metal compounds, more preferred examples include ZnO, Mg(OH)2, Ti(O-iso-Pr)4, Ti(O-n-Bu)4, zinc acetate, zinc stearate, and aluminium stearate. In view of producing no delamination, at least one of ZnO and Mg(OH)2 is more preferable; ZnO is particularly preferable. The metal compound may also contain impurities in such a range that the advantages of the present invention are not impaired.
- The metal compound acts as an agent for mixing the polyphenylene ether-based resin and the liquid crystalline polyester to reduce the delamination thereof. Thus, when the TAB leader tape comprising the liquid crystalline polyester also contains the metal compound, the generation of whisker-like pieces as burrs and powder is reduced in punching out the guide holes. The tape is excellent in punchability, so to speak.
- The silane compound refers to a functional group-containing silane compound, and is a silane compound containing at least one functional group selected from the group consisting of an amino group, a ureido group, an epoxy group, an isocyanate group, and a mercapto group. The functional group-containing silane compound may be typically one containing any one of these functional groups in the molecule, but, in some cases, may be also one containing two or more of these functional groups in the molecule.
- The preferred silane compound is an alkoxysilane containing a functional group described above in the molecule. Specific examples of the functional group-containing silane compound include amino group-containing silane compounds such as γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane, and γ-phenyl-γ-aminopropyltrimethoxysilane; and ureido group-containing silane compounds such as γ-ureidopropyltrimethoxysilane, γ-ureidopropylmethyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-ureidopropylmethyltriethoxysilane, and γ-(2-ureidoethyl)aminopropyltrimethoxysilane.
- Specific examples thereof also include epoxy group-containing silane compounds such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyldimethylmethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltriethoxysilane; and isocyanate group-containing silane compounds such as γ-isocyanatepropyltrimethoxysilane, γ-isocyanatepropylmethyldimethoxysilane, γ-isocyanatepropyltriethoxysilane, γ-isocyanatepropylmethyldiethoxysilane, γ-isocyanatepropylethyldimethoxysilane, γ-isocyanatepropylethyldiethoxysilane, and γ-isocyanatepropyltrochlorosilane.
- In addition, specific examples thereof include mercapto group-containing silane compounds such as γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylethyldiethoxysilane, γ-mercaptopropylmethyldiethoxysilane, β-mercaptoethyltrimethoxysilane, β-mercaptoethyltriethoxysilane, and β-mercaptoethyldimethoxysilane.
- Like the metal compound, the silane compound also acts as an agent for mixing the polyphenylene ether-based resin and the liquid crystalline polyester; therefore, when the TAB leader tape comprising the liquid crystalline polyester also contains the silane compound, the tape is excellent in punchability.
- The inorganic filler is an inorganic compound other than the above-described metal compound, and preferably one imparting strength to TAB leader tape made of the polyphenylene ether-based resin. Examples of the strength-imparting agent include glass fiber, metal fiber, potassium titanate, carbon fiber, silicon carbide, ceramic, silicon nitride, mica, nepheline syenite, talc, wollastonite, slag fiber, ferrite, glass bead, glass powder, glass balloon, quartz, quartz glass, fused silica, titanium oxide, and calcium carbonate. Among others, calcium carbonate, talc, wollastonite, and fused silica are preferable in view of sheet forming and thermal shrinkage rate.
- The form of these inorganic fillers is not intended to be limited and may be optionally selected from forms such as fiber, a plate, and a sphere, but plate and sphere forms are preferable in view of sheet forming and thermal shrinkage rate. These inorganic fillers may be used in combination of two kinds or more thereof. In addition, the filler may be used, as needed, by pretreating with a coupling agent such as silanic and titanic ones for use.
- In addition to the above-described components, other additional components including, for example, an antioxidant, an elastomer (an olefinic copolymer such as ethylene/propylene copolymer, ethylene/1-butene copolymer, ethylene/propylene/non-conjugated diene copolymer, ethylene/ethyl acrylate copolymer, ethylene/glycidyl methacrylate copolymer, and ethylene/vinyl acetate/glycidyl methacrylate copolymer, ethylene/propylene-g-maleic anhydride copolymer, and ABS; polyester-polyether elastomer; polyester-polyester elastomer; a vinyl aromatic compound-conjugated diene compound block copolymer; or a hydrogenated product of a vinyl aromatic compound-conjugated diene compound block copolymer), a flame retardant auxiliary, a weather resistance-improving agent, a light resistance-improving agent, a nucleating agent for polyolefins, and various colorants may be added as needed in such a range that the advantages of the present invention are not impaired.
- The content of the polyphenylene ether-based resin is preferably 50 parts by mass or more in view of preventing the thickness nonuniformity and delamination of the tape, and preferably 99.5 parts by mass or less, more preferably 70 to 99.5 parts by mass, still more preferably 75 to 98 parts by mass in view of the flowability of the resin composition and extruder torque (load on the extruder) during sheeting and thermal shrinkage rate, based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin.
- The blending amount of the resin other than the polyphenylene ether-based resin is preferably 0.5 to 50 parts by mass, more preferably 1 to 30 parts by mass, particularly preferably 2 to 25 parts by mass based on the total 100 parts by mass of the polyphenylene ether-based resin and the resin other than the polyphenylene ether-based resin in view of thermal shrinkage rate.
- When the resin component is the polyphenylene ether-based resin and the liquid crystalline polyester, the blending amount of the liquid crystalline polyester is preferably 0.5 parts by mass or more in view of flowability and the prevention of occurrence of black inclusions in the sheet, and preferably 50 parts by mass or less, more preferably 0.5 to 30 parts by mass, still more preferably 2 to 25 parts by mass in view of preventing the thickness nonuniformity of the sheet due to the anisotropy of the liquid crystalline polyester, based on the total 100 parts by mass of the polyphenylene ether-based resin and the liquid crystalline polyester.
- The preferred contents of the metal compound, silane compound, and inorganic filler will be described based on the total 100 parts by mass of the polyphenylene ether-based resin and a resin other than the polyphenylene ether-based resin.
- The preferred content of the metal compound is 0.1 part by mass or more in view of preventing the delamination of the sheet, and 10 parts by mass or less, more preferably 0.2 to 5 parts by mass, particularly preferably 0.4 to 3 parts by mass in view of the density and heat resistance of the composition.
- The preferred content of the silane compound is 0.1 part by mass or more in view of preventing the delamination of the sheet, and 5 parts by mass or less, more preferably 0.2 to 3 parts by mass, particularly preferably 0.3 to 1 part by mass in view of the stability and weather resistance of the composition.
- The metal compound and the silane compound may be used in combination.
- The preferred content of the inorganic filler is 0.1 to 150 parts by mass, and more preferably 1 to 100 parts by mass, still more preferably 2 to 20 parts by mass particularly in view of sheet forming and thermal shrinkage rate.
- When the polyphenylene ether-based resin is kneaded with at least one of the metal compound, the silane compound, and the inorganic filler, or when the polyphenylene ether-based resin and the liquid crystalline polyester are kneaded with at least one of the metal compound, the silane compound, and the inorganic filler, the order of kneading is not particularly limited, but it is desirable, in view of process simplicity and the improvement of physical properties, that these components are collectively kneaded. However, when the metal compound and the silane compound are used in combination, these compounds may be simultaneously kneaded with the polyphenylene ether-based resin or the polyphenylene ether-based resin and liquid crystalline polyester, but in order to inhibit delamination of the sheet more effectively, it is desirable that the metal compound is kneaded therewith before the silane compound is kneaded with the kneaded product, or that the silane compound is kneaded therewith before the metal compound is kneaded with the kneaded product. The inorganic filler may be also kneaded with the other kneaded components when it is desired for the filler to be prevented from being crushed by kneading.
- The resin composition can be produced by various methods. Examples thereof include heat melt kneading methods using a single-screw extruder, a twin-screw extruder, a roll, a kneader, a Brabender Plastograph, a Banbery mixer and the like; among others, the melt kneading method using a twin-screw extruder is most preferable. In this case, the melt kneading temperature is not intended to be particularly limited, but may typically be optionally selected from the range of 150 to 350° C.
- The TAB leader tape may be produced by slitting a sheet once made into a tape form, or may be produced by continuously slitting a sheet directly from a sheeting machine into a tape form. Here, the TAB leader tape has a thickness of 0.001 to 2.0 mm, preferably 0.005 to 0.50 mm, more preferably 0.05 to 0.20 mm. The tape may be occasionally called a film. Its suitable thickness is often, 0.075 mm, 0.125 mm or the like.
- The TAB leader tape has a width of 10 to 100 mm, preferably 20 to 90 mm, more preferably 30 to 80 mm. Widths of, for example, 35 mm, 48 mm, and 70 mm are often suitable.
- The TAB leader tape has the above-described width and thickness and guide holes about 0.5 to 2 mm square in opposite sides thereof, punched out using a punching machine.
- The TAB leader tape can be obtained by extrusion sheeting using a composition comprising the polyphenylene ether-based resin as a raw material, or can be obtained by directly throwing a composition comprising the polyphenylene ether-based resin into an extrusion sheeting machine to simultaneously perform the blending and sheeting thereof.
- The TAB leader tape can be produced using a method called tubular extrusion, or also an inflation method. It is essential in making the sheet uniformly thick and free from delamination to control the temperature of a parison through the circular die by selecting a proper temperature in the range of 50 to 290° C. so that the parison is not rapidly cooled.
- The TAB leader tape can be produced by T-die extrusion. In this case, the sheet may be used directly in its non-oriented form, or after uniaxial or biaxial orientation to provide the tape. A desired increase in the strength of the sheet can be achieved by orientation.
- The TAB leader tape of the present invention is excellent in water absorption resistance and punchability.
- The present invention will be described below with reference to Examples. However, the invention is not limited to Examples is the scope thereof is maintained.
- PPE-1 is poly(2,6-dimethyl-1,4-phenylene ether) in powder form having a reduced viscosity (as measured in a 0.5 g/dl chloroform solution at 30° C.) of 0.42, obtained by oxidation polymerizing 2,6-dimethylphenol.
- p-Hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, and acetic anhydride were charged, heat melted, and polycondensated in a nitrogen atmosphere to provide a liquid crystalline polyester (LCP-1) having the following theoretical structural formula. In this respect, the component ratio of the composition is indicated by a molar ratio.
- Forming of resin compositions into tapes and the evaluation of the physical properties of the tapes were performed according to the following methods.
- The resultant pellets of each composition were subjected to sheeting by tubular extrusion blowing using an extruder with a screw diameter of 50 mm set at a cylinder temperature of 290° C. and a cylindrical dice temperature of 290° C. The blowing air pressure was set so as to provide a sheet thickness of 125 μm. The resultant sheets were each cut to a width of 35 mm.
- The TAB leader tapes obtained in the tape forming step (1) were each used to cut out samples therefrom to have a length of 1 m, which were then exposed to a hot and humid environment of a temperature of 85° C. and a relative humidity of 95% for 48 hours using a thermo-hygrostat (PL-3FP manufactured by Tabai Espec Corporation), followed by determining the weight increase rate (Δw) according to the following equation. The mean value in the respective two samples was taken.
-
Weight increase rate (Δw)(%)=(w1−w0)/w0×100 - (where w1 is the weight (g) of the tape which has been taken out of the thermo-hygrostat after 48 hours of exposure to the hot and humid environment, subjected to wiping-off of dew on the tape surface, and allowed to stand for 30 minutes in a room controlled at a temperature of 23° C. and a relative humidity of 50%; and w0 is the weight (g) of a tape which, before the warming and humidifying, has been dried in a hot air drier at 100° C. for 2 hours and cooled to room temperature in a desiccator.)
- The water absorption resistance of the tapes was evaluated based on the following criteria.
- Good: Δw is less than 0.1%.
- Fair: Δw is 0.1% to less than 0.4%.
- Poor: Δw is more than 0.4%.
- The tapes obtained in the tape forming step (1) were each used to cut out samples therefrom to have a length of 20 cm, which were then placed in a hot air drying oven (Perfect Oven PHH-201 manufactured by Espec Corporation) set at a temperature of 170° C. for one hour, followed by taking out the samples and observing the presence of the deformation thereof with eyes.
- Good: No deformation is observed.
- Poor: Deformation is observed.
- The TAB leader tapes obtained in the tape forming step (1) were each used to cut out samples therefrom to have a length of 1 m, which were then placed in a hot air drying oven (Perfect Oven PHH-201 manufactured by Espec Corporation) set at a temperature of 170° C. for one hour, followed by taking out the samples. The samples were sufficiently cooled to room temperature, and the length thereof was then measured, followed by determining the dimensional change rates (ΔL) according to the following equation. The mean value in the respective two samples was taken.
-
Dimensional change rate (ΔL)(%)=(L1−L0)/L0×100 - (where L1 is the length after heating; and L0 is the length before heating)
- The thermal shrinkage of the tapes was evaluated based on the following criteria.
- Excellent: The dimensional change rate is less than 0.05%.
- Good: The dimensional change rate is 0.05% to less than 0.1%.
- Fair: The dimensional change rate is 0.1% to less than 0.2%.
- Poor: The dimensional change rate is 0.2% or more.
- Films 300 m long from the tapes were each subjected to the punching of holes 1 mm per side at an interval of 5 mm thereinto using a continuous film-punching machine, and the punchability thereof was evaluated according to the following criteria.
- Good: Burrs extending like whiskers on the top and bottom of the holes are not seen at all and the occurrence of powder is also not noted at all, in observing the film just from the side under a light microscope (50× magnification); microscopic cracks are also not seen around the hole in observing the film from above.
- Fair: Burrs extending like whiskers on the top and bottom of the holes were not seen and the occurrence of powder was also not noted at all, in observing the film just from the side under a light microscope (50× magnification), but the occurrence of microscopic cracks are sometimes noted in the hole in observing the film from above.
- Poor: Burrs extending like whiskers on the top and bottom of the holes are seen, or the occurrence of powder is noted, in observing the film just from the side under a light microscope (50× magnification).
- A polyphenylene ether (PPE-1) as component A, a liquid crystalline polyester (LCP-1) as component B, and zinc oxide (special grade ZnO manufactured by Wako Pure Chemical Industries Ltd.) as component C were blended in the proportions (part by mass) shown in Table 1, and melt kneaded using a twin-screw extruder equipped with a vent port (ZSK-25 manufactured by Coperion Corporation, screw diameter=25 mm, (screw length)/(screw diameter)=42) in which zone 1 on the feed side was set at 250° C. and
zones 2 to 7 and the die head were set at 310° C., with a rotation speed of 300 rpm and a discharge rate of 12 kg/hr to provide pellets. - Using the pellets, a tape 125 μm thick and 35 mm wide was obtained by the above-described method. The tape evaluation was carried out according to the above-described method. The results are shown in Table 1.
- A sample was cut out of the resultant TAB leader tape, and the glass transition temperature thereof during the second heating (2nd scan) was measured using DSC (Diamond DSC manufactured by Perkin-Elmer). Specifically, the transition temperature based on the polyphenylene ether-based resin was determined when the sample temperature was scanned from 50° C. to 300° C. (1st scan) at a rate of temperature increase of 20° C./min. before keeping the temperature for one minute, followed by scanning from 300° C. to 50° C. at a rate of temperature decrease of 20° C./min., keeping the temperature for one minute, and further scanning from 50° C. to 300° C. (2nd scan) at a rate of temperature increase of 20° C./min. As a result, the Tg was 213° C.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 1 except for the blending of an amino group-containing silane compound (silane 1, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, KBM-603 manufactured by Shin-Etsu Chemical Co., Ltd.) as component D in the proportion (part by mass) shown in Table 1. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 1 except for the use of a high impact polystyrene (HIPS, H9405 manufactured by PS Japan Corporation) as well as a polyphenylene ether (PPE-1) as component A and a hydrogenated product of a vinyl aromatic compound-conjugated diene compound block copolymer (SEBS, Tuftec H1051 (registered trade name) manufactured by Asahi Kasei Chemicals Corporation) as another component (component F) to blend these components in the proportions (part by mass) shown in Table 1. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Sheeting was carried out before obtaining a tape in the same way as in Example 1 except for the use of a modified PPE resin (Xyron X9102 (registered trade name) manufactured by Asahi Kasei Chemicals Corporation) (component A) as pellets. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Tapes were obtained in the same way as in Example 1 except for the setting of the blending amounts of PPE-1, LCP-1, and zinc oxide, and PPE-1 and LCP-1 to the proportions shown in Table 1, followed by performing the tape evaluation. The results are shown together in Table 1.
- Pellets were obtained and subjected to sheeting before obtaining tapes in the same way as in Example 2 except for the use of a high impact polystyrene (HIPS, H9405 manufactured by PS Japan Corporation) for blending in the proportions (part by mass) shown in Table 1. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 1 except for the use of Aerosil R972 (hydrophobic type, special product, manufactured by Nippon Aerosil Co., Ltd.), a fumed silica, as an inorganic filler (component E) and the blending thereof in the proportion (part by mass) shown in Table 1. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 5 except for the use of magnesium hydroxide (special grade Mg(OH)2 manufactured by Wako Pure Chemical Industries Ltd.) as component C in the proportion (part by mass) shown in Table 1. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Pellets were obtained and subjected to sheeting before obtaining a tape in the same way as in Example 3 except for the setting of the blending amounts of the polyphenylene ether (PPE-1) and the high impact polystyrene to the proportions (part by mass) shown in Table 1. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- The glass transition temperature thereof was measured in the same way as in Example 1. As a result, the Tg was 162° C.
- Using a polyphenylene ether (PPE-1), pellets was obtained in the same way as in Example 1 after setting the
zones 2 to 7 and die head of an extruder at 330° C. Processing of the pellets was attempted according to the above-described method after changing the preset temperature of the sheeting machine to 310° C. However, the forming thereof into a film was given up because the film tube was not stabilized and the die line was conspicuous. - Sheeting was carried out before obtaining a tape in the same way as in Example 1 except for the use of polyphenylene ether imide (PEI, Ultem 1000 (registered trade name) manufactured by GE Plastics) as pellets and the setting of the cylinder temperature in sheeting to 350° C. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Sheeting was carried out before obtaining a tape in the same way as in Example 1 except for the use of polyphenylene sulfide (PPS, Torelina A900 (registered trade name) manufactured by Toray Industries, Inc.) as pellets. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Sheeting was carried out before obtaining a tape in the same way as in Example 1 except for the use of polyethylene naphthalate having an intrinsic viscosity (as determined at 35° C. in a phenol/tetrachlroethine mixed solvent) of 0.62 dl/g as pellets. The tape evaluation was carried out according to the above-described methods. The results are shown in Table 1.
- Table 1 shows that the tape made of a polyphenylene ether-based resin, obtained by the present invention, is excellent in water absorption resistance, heat resistance, heat shrinkability, and punchability and that the tape is a non-conventional, inexpensive, and excellent TAB leader tape. Table 1
-
TABLE 1 Ref. Comp. Comp. Comp. Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 11 Ex. Ex. 1 Ex. 2 Ex. 3 Composition (A) PPE-1 95 95 85 93 93 65 35 94 93 60 100 HIPS 15 10 10 40 (B) LCP-1 5 5 7 7 25 55 6 7 (C) ZnO 0.8 0.9 0.8 (C) Mg(OH)2 0.9 (D) Silane 1 0.2 0.5 0.5 (E) Inorganic 4 Filler Others SEBS 3 Modified 100 PPE X9102 PEI 100 PPS 100 PEN 100 Evaluation Water Good Good Good Good Good Good Good Good Good Good Good — Poor Good Fair Absorption Resistance Heat Good Good Good Good Good Good Good Good Good Good Fair — Good Good Good Resistance Thermal Ex- Ex- Good Good Good Good Ex- Ex- Ex Good Fair — Good Fair Poor Shrinkage cel- cel- cel- cel- cel- Punchability lent lent lent lent lent Good Good Good Good Good Fair Fair Poor Good Good Good — Poor Poor Poor - The above-described films were each slit at a width of 25 mm along the longitudinal MD direction, and subjected to tensile testing at a distance between chucks of 50 mm and a pulling rate of 50 mm/min. using a universal testing machine (Model 5581, 5t (load cell capacity: 0.5 kN) manufactured by Instron Corporation).
- The initial moduli (Young's moduli) (MPa) thereof were each measured at ambient temperatures of 23° C., 140° C., and 170° C. The results are shown in Table 2.
- Strain-stress curves (S-S carves) based on data at 140° C. are shown in
FIG. 1 . - PPE: The 125 μm thick film of the present invention, obtained in Example 1.
- PEN: Teonex (registered trade name) Q51, a polyethylene naphthalate film manufactured by Teijin Chemicals Ltd. Thickness: 125 μm.
- PET: Lumirror (registered trade name) T60, a polyethylene terephthalate film manufactured by Toray Industries, Inc. Thickness: 125 μm.
- As shown in Table 2 and
FIG. 1 , the TAB leader tape made of a polyphenylene ether-based resin of the present invention has a reduced temperature dependency of initial modulus and exhibits a sufficiently high initial modulus even at a high temperature of 170° C. As such, the TAB leader tape has a sufficient hot rigidity; therefore, it is little stretched even in a state of applying tension thereto. -
TABLE 2 Table 2. Young's Modulus (MPa) Temp (° C.) 23 140 170 PPE 2100 1600 1400 PEN 6100 1600 800 PET 4200 800 400 - The TAB leader tape comprising a polyphenylene ether-based resin of the present invention is excellent in water absorption resistance and punchability. It is necessary that a TAB leader tape do not become deformed even when heated in an oven in the process of curing a sealing agent for semiconductor devices mounted on the TAB and exhibit a substantially equivalent thermal shrinkage rate as compared to a TAB tape and a TAB spacer tape. In addition, there is a need for a TAB leader tape which is inexpensive, low in density, and excellent in water absorption resistance and, particularly, which is excellent in punchability because elongated whisker-like pieces generated as burrs can be injurious to semiconductor devices. Thus, the TAB leader tape comprising a polyphenylene ether-based resin of the present invention has highly suitable TAB leader tape characteristics and is of extremely high industrial value.
Claims (13)
1. A TAB leader tape comprising 45 parts by mass or more of a polyphenylene ether-based resin based on 100 parts by mass of the resin component thereof.
2. The TAB leader tape according to claim 1 , wherein polyphenylene ether of 50 to 99.5 parts by mass is contained based on 100 parts by mass of the polyphenylene ether-based resin.
3. The TAB leader tape according to claim 1 , comprising a liquid crystalline polyester.
4. The TAB leader tape according to claim 3 , comprising 50 to 99.5 parts by mass of the polyphenylene ether-based resin and 0.5 to 50 parts by mass of the liquid crystalline polyester.
5. The TAB leader tape according to claim 4 , comprising 70 to 99.5 parts by mass of the polyphenylene ether-based resin and 0.5 to 30 parts by mass of the liquid crystalline polyester.
6. The TAB leader tape according to claim 1 , comprising 0.5 to 30 parts by mass of an aromatic vinyl-based polymer based on the total 100 parts by mass of the polyphenylene ether and the aromatic vinyl-based polymer.
7. The TAB leader tape according to claim 3 , further comprising 0.1 to 10 parts by mass of a compound having a monovalent, divalent, trivalent, or tetravalent metal based on the total 100 parts by mass of the polyphenylene ether-based resin and the liquid crystalline polyester.
8. The TAB leader tape according to claim 7 , wherein the monovalent, divalent, trivalent, or tetravalent metal is at least one of Zn element and Mg element.
9. The TAB leader tape according to claim 3 , further comprising 0.1 to 5 parts by mass of a silane compound based on the total 100 parts by mass of the polyphenylene ether-based resin and the liquid crystalline polyester.
10. The TAB leader tape according to claim 7 , further comprising 0.1 to 5 parts by mass of a silane compound based on the total 100 parts by mass of the polyphenylene ether-based resin and the liquid crystalline polyester.
11. The TAB leader tape according to claim 9 or 10 , wherein the silane compound has an amino group.
12. The TAB leader tape according to claim 1 , further comprising 0.1 to 150 parts by mass of an inorganic filler based on 100 parts by mass of the polyphenylene ether-based resin.
13. The TAB leader tape according to claim 3 , further comprising 0.1 to 150 parts by mass of an inorganic filler based on the total 100 parts by mass of the polyphenylene ether-based resin and the liquid crystalline polyester.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/649,162 US20080166523A1 (en) | 2007-01-04 | 2007-01-04 | Tab leader tape made of polyphenylene ether-based resin |
US12/656,609 US8916633B2 (en) | 2004-06-15 | 2010-02-04 | TAB leader tape made of polyphenylene ether-based resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/649,162 US20080166523A1 (en) | 2007-01-04 | 2007-01-04 | Tab leader tape made of polyphenylene ether-based resin |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/656,609 Division US8916633B2 (en) | 2004-06-15 | 2010-02-04 | TAB leader tape made of polyphenylene ether-based resin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080166523A1 true US20080166523A1 (en) | 2008-07-10 |
Family
ID=39594542
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/649,162 Abandoned US20080166523A1 (en) | 2004-06-15 | 2007-01-04 | Tab leader tape made of polyphenylene ether-based resin |
US12/656,609 Active 2029-02-17 US8916633B2 (en) | 2004-06-15 | 2010-02-04 | TAB leader tape made of polyphenylene ether-based resin |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/656,609 Active 2029-02-17 US8916633B2 (en) | 2004-06-15 | 2010-02-04 | TAB leader tape made of polyphenylene ether-based resin |
Country Status (1)
Country | Link |
---|---|
US (2) | US20080166523A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030050374A1 (en) * | 2000-04-25 | 2003-03-13 | Hiroshi Kamo | Resin composition |
US6759460B2 (en) * | 2001-03-08 | 2004-07-06 | Asahi Kasei Kabushiki Kaisha | Resin composition |
US20070003763A1 (en) * | 2003-04-18 | 2007-01-04 | Hiroshi Kamo | Release film for printed wiring board production |
US20070270530A1 (en) * | 2004-10-14 | 2007-11-22 | Hiroshi Kamo | Resin Composition |
US20070290391A1 (en) * | 2005-01-07 | 2007-12-20 | Hiroshi Kamo | Inner Part Of Hard Disk Drive |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4841099A (en) * | 1988-05-02 | 1989-06-20 | Xerox Corporation | Electrically insulating polymer matrix with conductive path formed in situ |
JP2812813B2 (en) * | 1991-03-22 | 1998-10-22 | 住友ベークライト株式会社 | TAB Leader Tape |
US5508107A (en) * | 1993-07-28 | 1996-04-16 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive tapes for electronics applications |
US5521756A (en) * | 1994-01-12 | 1996-05-28 | Leica Inc. | Antistatic microscope |
US5914186A (en) * | 1994-05-06 | 1999-06-22 | Minnesota Mining And Manufacturing Company | High temperature resistant antistatic pressure-sensitive adhesive tape |
WO1995030720A1 (en) * | 1994-05-06 | 1995-11-16 | Minnesota Mining And Manufacturing Company | High temperature resistant antistatic pressure-sensitive adhesive tape |
US6194497B1 (en) * | 1997-07-23 | 2001-02-27 | General Electric Company | Anti-static resin composition containing fluorinated phosphonium sulfonates |
US6451238B1 (en) * | 1998-04-07 | 2002-09-17 | Honda Giken Kogyo Kabushiki Kaisha | Process for producing intake member of resin, and intake member of resin |
US6033128A (en) * | 1998-12-03 | 2000-03-07 | Eastman Kodak Company | Rolled film backing paper with cinch tabs |
JP2002299391A (en) | 2001-04-03 | 2002-10-11 | Teijin Ltd | Polyester film for tab lead tape |
JP5005161B2 (en) | 2002-12-19 | 2012-08-22 | 旭化成ケミカルズ株式会社 | Polyphenylene ether resin sheet |
JP2005041930A (en) | 2003-07-23 | 2005-02-17 | Sumitomo Bakelite Co Ltd | Thermoplastic resin sheet and container for transporting electronic part |
JP4518383B2 (en) | 2004-06-15 | 2010-08-04 | 旭化成ケミカルズ株式会社 | TAB lead tape made of polyphenylene ether resin |
US7086283B2 (en) * | 2004-07-15 | 2006-08-08 | Riken Keiki Co., Ltd. | Explosion-proof portable gas detector |
-
2007
- 2007-01-04 US US11/649,162 patent/US20080166523A1/en not_active Abandoned
-
2010
- 2010-02-04 US US12/656,609 patent/US8916633B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030050374A1 (en) * | 2000-04-25 | 2003-03-13 | Hiroshi Kamo | Resin composition |
US6815485B2 (en) * | 2000-04-25 | 2004-11-09 | Asahi Kasei Kabushiki Kaisha | Resin composition |
US6759460B2 (en) * | 2001-03-08 | 2004-07-06 | Asahi Kasei Kabushiki Kaisha | Resin composition |
US20070003763A1 (en) * | 2003-04-18 | 2007-01-04 | Hiroshi Kamo | Release film for printed wiring board production |
US20070270530A1 (en) * | 2004-10-14 | 2007-11-22 | Hiroshi Kamo | Resin Composition |
US20070290391A1 (en) * | 2005-01-07 | 2007-12-20 | Hiroshi Kamo | Inner Part Of Hard Disk Drive |
Also Published As
Publication number | Publication date |
---|---|
US20100168303A1 (en) | 2010-07-01 |
US8916633B2 (en) | 2014-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101331465B1 (en) | Biaxially oriented polyarylene sulfide film | |
US20020077399A1 (en) | Polyester resin composition | |
JP5005161B2 (en) | Polyphenylene ether resin sheet | |
JP2008303286A (en) | Poly-3-hydroxybutyrate-based polymer resin composition | |
JP2007301784A (en) | Laminated polyarylene sulfide film | |
JP4716585B2 (en) | Resin composition sheet | |
US8916633B2 (en) | TAB leader tape made of polyphenylene ether-based resin | |
JP5553441B2 (en) | Conductive thermoplastic resin film or sheet | |
JP4804165B2 (en) | Manufacturing method of resin sheet | |
JP4518383B2 (en) | TAB lead tape made of polyphenylene ether resin | |
JP4286726B2 (en) | TAB spacer tape made of polyphenylene ether resin | |
JP2005057000A (en) | Film for flexible printed circuit board | |
JP4854095B2 (en) | TAB lead tape made of polyphenylene ether resin | |
JP2009046524A (en) | Thermoplastic resin composition, film for electronic material, and reinforcement material for flexible substrate | |
JP7069683B2 (en) | Pellets of polyarylene sulfide resin compositions, molded bodies and methods for producing them. | |
JP2009274411A (en) | Laminated film and method of manufacturing the same | |
JP2002241601A (en) | Sheet made of flame retardant resin composition | |
JPH05247239A (en) | Flame-retardant sheet made from polyester resin composition and thermoformed product thereof | |
JP4876551B2 (en) | Flame retardant polyester film | |
JP2007168260A (en) | Extrusion molding method and polyphenylene ether based resin film | |
JP5004595B2 (en) | Polyphenylene ether resin tray and method for producing the same | |
JP2005329580A (en) | Biaxially oriented laminated thermoplastic resin film | |
JP3400571B2 (en) | Conductive resin composition | |
JP2001181491A (en) | Flame-retardant polyester resin composition | |
JP2000143957A (en) | Polyester resin sheet for ic card and laminate and ic card using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASAHI KASEI CHEMICALS CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAMO, HIROSHI;REEL/FRAME:018774/0944 Effective date: 20061219 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: VERTICAL CIRCUITS, INC., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:VERTICAL CIRCUITS SOLUTIONS, INC.;REEL/FRAME:029686/0255 Effective date: 20070912 |