US20080087665A1 - Freight container - Google Patents

Freight container Download PDF

Info

Publication number
US20080087665A1
US20080087665A1 US11/870,792 US87079207A US2008087665A1 US 20080087665 A1 US20080087665 A1 US 20080087665A1 US 87079207 A US87079207 A US 87079207A US 2008087665 A1 US2008087665 A1 US 2008087665A1
Authority
US
United States
Prior art keywords
tank
freight container
psi
range
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/870,792
Inventor
Trevor M. Rummel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COLUMBIANA BOILER Co LLC
Original Assignee
COLUMBIANA BOILER Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COLUMBIANA BOILER Co LLC filed Critical COLUMBIANA BOILER Co LLC
Priority to US11/870,792 priority Critical patent/US20080087665A1/en
Assigned to COLUMBIANA BOILER COMPANY, LLC reassignment COLUMBIANA BOILER COMPANY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RUMMEL, TREVOR M.
Priority to PCT/US2007/081224 priority patent/WO2008048889A2/en
Priority to JP2009532600A priority patent/JP2010506804A/en
Priority to EP07853998A priority patent/EP2074348A2/en
Priority to RU2009117847/06A priority patent/RU2009117847A/en
Priority to KR1020097006382A priority patent/KR20090075671A/en
Publication of US20080087665A1 publication Critical patent/US20080087665A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • B65D88/128Large containers rigid specially adapted for transport tank containers, i.e. containers provided with supporting devices for handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/12Large containers rigid specially adapted for transport
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/52Anti-slosh devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/08Mounting arrangements for vessels
    • F17C13/083Mounting arrangements for vessels for medium-sized mobile storage vessels, e.g. tank vehicles or railway tank vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/035Orientation with substantially horizontal main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0107Frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/0126One vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0157Details of mounting arrangements for transport
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0171Trucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0173Railways

Definitions

  • This invention relates generally to a freight container for pressurized fluid commonly known as a tank container.
  • a freight container is considered an article of transport equipment having an internal volume of 1 m 3 (35.3 ft 3 ) or more.
  • a freight container is intended for repeated use, and it is specifically designed to facilitate the carriage of goods by one or more modes of transportation, without intermediate reloading.
  • a freight container may be fitted with devices permitting its ready handling, such as its transfer from one mode of transport to another.
  • An ISO container is a freight container complying with relevant ISO container standards in existence at the time of its manufacture.
  • the ISO is an international standards setting organization, and compliance with its standards may not be mandatory.
  • International Standards ISO 668 (5th edition) and ISO 1496-3 (4th edition) are hereby incorporated by reference.
  • the present application particularly concerns freight containers used to transport pressurized materials such as, for example, pressure liquefied gases including chlorine, anhydrous ammonia, and fluorocarbons. Fluids such as these are shipped in tank containers with a maximum allowable working pressure between 100 and 500 psi.
  • the upper limit, 500 psi is not a theoretical limit, but a regulatory one, and the applicant expects that if and when the pertinent regulations allow higher pressures, freight containers will be built to sustain such higher working pressures.
  • Freight containers including the freight container of the embodiments of the present invention, for the transport of pressurized materials such as pressure liquefied gasses may be mounted on a transport vehicle (such as a truck, ship, or railroad car), before or after being filled with a pressurized material, and then transported to a remote location.
  • a transport vehicle such as a truck, ship, or railroad car
  • freight containers must be approved for use by a competent authority (or its designated body) appointed by the specific country's government.
  • these freight containers must be approved by the Department of Transportation (D.O.T.).
  • the competent authority adopts in whole or in part, a recognized pressure vessel code.
  • ASME American Society of Mechanical Engineers
  • T s ( P design *R i )/(( E*S DIV.1 ) ⁇ (0.6 *P design )), where
  • P design the internal design pressure for the tank
  • R i inside radius of tank's shell
  • S DIV.1 tensile strength factor relating to the maximum allowable stress
  • the joint efficiency, E has a value of between 0 and 1, depending on the extent of radiography of the welded joints. When all welded joints are fully X-rayed, E has a value of 1 and essentially drops out of the equation. (In Division 2, all welded joints are required to be fully X-rayed, so this factor does not appear in the equation.)
  • Tank containers made according to Division 1 of the ASME Boiler and Pressure Vessel Code, Section VIII which have a capacity of about 4500 U.S.W.G. (U.S. water gallons) and a design pressure of between 335 and 400 psi, have had a tare weight of between about 17,000 lbs and 20,000 lbs.
  • U.S.W.G. U.S. water gallons
  • a design pressure of between 335 and 400 psi have had a tare weight of between about 17,000 lbs and 20,000 lbs.
  • the tank container can easily cause the truck to exceed the weight limits established for such roads.
  • a tank container should not exceed 53,000 lbs. when loaded.
  • many tank containers can be filled only partially, depending on the density of the fluid being shipped, and this can make them inefficient.
  • a freight container for transporting a pressurized fluid also termed a tank container, includes a tank (or shell) and a framework (or frame) surrounding the tank.
  • the tank may incorporate various pipes and fittings which are designed to contain the cargo carried and to permit the tank to be filled and emptied.
  • the tank may be formed from a cylindrical shell and two heads, one closing each end of the cylindrical shell.
  • the dimensions of the shell include an outer radius R o and an inner radius R i , the difference there between defining the shell's thickness T s .
  • the shell and heads of a tank container may be constructed of a material meeting the requirements of the approved pressure vessel code or approved by the competent authority.
  • the shell and heads of tank containers have been made from a high strength steel, for example SA612N, having an ultimate tensile strength (S u ) of 81,000 psi.
  • the framework of an ISO freight container for pressurized fluids includes tank mountings, end structures and other load-bearing elements which may not be present for the purposes of containing the fluid.
  • the framework functions to transmit static and dynamic forces arising out of the lifting, handling, securing, and transporting of the freight container as a whole.
  • the framework may include eight corner fittings (four top corner fittings and four bottom corner fittings), rails, posts, and braces which form its base structure, its end structure and its side structure and may satisfy the requirements of ISO 1496-3 Sections 5.1-5.5.
  • the term “ISO frame” means a framework which satisfies the framework requirements of these sections.
  • An ISO freight container for pressurized fluid may also include certain additional components depending on the intended use of the container. For example, if the pressurized fluid is temperature sensitive and/or if the transportation will occur in a temperature extreme environment (i.e., hot or cold ambient temperatures), the freight container may include sunscreens, linings, jacketing (cladding), insulations, air baffles, etc.
  • the embodiments of the present invention provide a novel ISO freight container having a tank design which results in a decrease in the freight container's tare weight.
  • the present invention provides a freight container for transporting a fluid at a pressure P, typically between 100 psi and 500 psi.
  • the freight container may include a tank and an ISO frame.
  • the tank may be made with a shell and heads that have an ultimate tensile strength (S u ) of substantially 81,000 psi.
  • the shell of the cylindrical vessel may have a thickness T s , given by:
  • T s ( P w *R i )/(( S u /X a ) ⁇ ( X b *P w )), where:
  • R i inside radius of tank's shell
  • X a scalar factor relating to the maximum allowable stress
  • X b scalar factor relating to the internal design pressure
  • X a is greater than 1.5. More specifically X a may be in the range between 1.5 and 3.0. In one embodiment, X a may be substantially 2.5.
  • the scalar factor X b may be in the range between 0 and 1. More specifically, X b may be 0.5. However, it is contemplated in another embodiment that X b may be between 1 and 5. It is noted here that the shell may be manufactured to the above thickness with a typical manufacturing tolerance of (plus or minus) +/ ⁇ 6%.
  • Freight containers according to the embodiments of the present invention have satisfied the requirements of The United States Department of Transportation.
  • a freight container according to the embodiments of the present invention may be mounted on a transport vehicle (such as a truck or railroad car), before or after being filled with a pressurized fluid, and then transported to a remote location.
  • Freight containers according to the embodiments of the present invention have a tare weight approximately 2000 lbs less than comparable prior art freight containers where both have a capacity of about 4500 U.S.W.G. and a design pressure of 335 to 365 psi.
  • FIG. 1 is a side view of a freight container according to the present invention.
  • FIG. 2 is a top view of the freight container of FIG. 1 .
  • FIG. 3 is an end view of the freight container of FIG. 1 .
  • FIG. 4 is a schematic view of the freight container of FIG. 1 mounted on a transport vehicle.
  • a freight container 10 for transporting pressurized fluids having a service (or design) pressure P w of at least 100 psi and not over 500 psi is shown in FIGS. 1-3 .
  • the freight container 10 has a novel tank design which results in a decrease in the container's tare weight when compared to prior art freight containers. While the aforementioned is described having a working pressure P w between 100 psi and 500 psi, it is contemplated that the freight container of the embodiments of the subject invention may have a working pressure in the range between 50 psi and 750 psi.
  • the freight container 10 may includes a tank 12 and a frame 14 .
  • the tank 12 may include a shell 24 , which may be generally cylindrical, and two heads 26 affixed on distal ends of the shell 24 .
  • the dimensions of the shell 24 may be defined by an outer radius R o and an inner radius R i , the difference there between resulting in the shell's thickness T s .
  • the heads 26 may include an elliptical end portion 30 and a straight flange 32 extending from the outer circumference of the elliptical end portion 32 to the respective axial end of the cylindrical shell 24 .
  • the affixed heads 26 may be welded to the shell 24 .
  • Both the shell 24 and the heads 26 may be constructed of a high strength steel, for example SA612N, which for the thicknesses involved has an ultimate tensile strength S u of about 81,000 psi.
  • SA612N high strength steel
  • other material may be used having a tensile strength in the more general range of 60,000 psi and 100,000 psi. More specifically materials having a tensile strength in the range between 70,000 psi and 90,000 psi may be utilized to construct the freight container 10 .
  • the frame 14 may function to transmit static and dynamic forces arising out of the lifting, handling, securing, and transporting of the freight container as a whole.
  • the frame 14 may include posts 52 , rails 54 , braces 56 , skirt support members 58 and other load-bearing elements which are not present for the purposes of containing cargo. These components of the frame 14 are joined at eight corner fittings 60 to form its base structure, its end structure and its side structure.
  • the frame 12 may fully or only partially satisfy the requirements of ISO 1496-3 Sections 5.1-5.5. Other frame structures which satisfy the requirements of ISO 1496-3 Sections 5.1-5.5 are possible with, and are contemplated by, the embodiments of the present invention.
  • the skirt support members 58 provide connections between the frame 14 and the tank 12 .
  • the skirt support members 58 are cylindrical extensions of the shell 24 .
  • the skirt support members are welded to the braces 62 , shown in FIG. 3 , which extends between the posts 52 and the rails 54 of each end of the freight container 10 .
  • the freight container 10 may also include certain additional components, such as a sun screen 72 ( FIGS. 1 and 2 ) if necessary in view of the pressurized fluid being temperature sensitive and/or if the transportation will occur in an environment of temperature extremes.
  • the freight container 10 may also include internal baffles 74 to limit surging when the vehicle carrying the freight container stops or starts.
  • the tank 12 may be manufactured in accordance with Section VIII Division 2 of the ASME Boiler and Pressure Vessel Code covering unfired pressure vessels. The entire disclosure is this Division is hereby incorporated by reference.
  • the minimum thickness T s of the shell 24 is substantially:
  • T s ( P w *R i )/(( S u /X a ) ⁇ ( X b *P w )), where
  • R i inside radius of tank's shell
  • X a scalar factor relating to the maximum allowable stress
  • X b scalar factor relating to the internal design pressure
  • X a is generally in the range greater than 1.5. More specifically X a may be in the range between 1.5 and 3.0. In one embodiment, X a may be substantially 2.5.
  • the scalar X b may in the range from 0 to 1. In one embodiment, X b may be substantially 0.5.
  • Calculations may be performed to determine the minimum thickness for the shell at three different design pressures (335, 400, and 455 psig) and an ultimate tensile strength of about 69,900 psi.
  • the pressures selected represent three different common design pressures of freight containers for fluids under pressure, and the tensile strength represents typical container material.
  • a value of 0.5 was assumed for the scalar factor X b .
  • the weight of the shell of the tank 12 is reduced by an amount greater than 25% and the weight of the heads by 6% from that of otherwise identical tanks made according to Division 1, Section VIII of the ASME Code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A freight container for transporting a pressurized fluid at a design pressure P, including a tank and mounted within an ISO frame. The tank includes a vessel formed of a material having an ultimate tensile strength SU. The vessel has a cylindrical shell having an inside radius RI and a thickness Ts which is less than that of prior art freight containers and substantially equal to: (P*Ri)/((Su/Xa)−(Xb*P)). Such a vessel conforms to ASME Boiler and Pressure Vessel Code, Section VIII, Division 2. The freight container may be mounted on a transport vehicle, before or after being filled with the pressurized fluid, and transported to a remote location.

Description

  • This utility patent application claims priority to U.S. provisional patent application Ser. No. 60/829,418 filed on Oct. 13, 2006, which is incorporated herein by reference.
  • TECHNICAL FIELD
  • This invention relates generally to a freight container for pressurized fluid commonly known as a tank container.
  • BACKGROUND OF THE INVENTION
  • Conventionally, a freight container is considered an article of transport equipment having an internal volume of 1 m3 (35.3 ft3) or more. A freight container is intended for repeated use, and it is specifically designed to facilitate the carriage of goods by one or more modes of transportation, without intermediate reloading. A freight container may be fitted with devices permitting its ready handling, such as its transfer from one mode of transport to another.
  • An ISO container is a freight container complying with relevant ISO container standards in existence at the time of its manufacture. The ISO is an international standards setting organization, and compliance with its standards may not be mandatory. International Standards ISO 668 (5th edition) and ISO 1496-3 (4th edition) are hereby incorporated by reference.
  • The present application particularly concerns freight containers used to transport pressurized materials such as, for example, pressure liquefied gases including chlorine, anhydrous ammonia, and fluorocarbons. Fluids such as these are shipped in tank containers with a maximum allowable working pressure between 100 and 500 psi. The upper limit, 500 psi, is not a theoretical limit, but a regulatory one, and the applicant expects that if and when the pertinent regulations allow higher pressures, freight containers will be built to sustain such higher working pressures.
  • Freight containers, including the freight container of the embodiments of the present invention, for the transport of pressurized materials such as pressure liquefied gasses may be mounted on a transport vehicle (such as a truck, ship, or railroad car), before or after being filled with a pressurized material, and then transported to a remote location. In most countries, freight containers must be approved for use by a competent authority (or its designated body) appointed by the specific country's government. For example, in the United States, these freight containers must be approved by the Department of Transportation (D.O.T.). Further in most countries the competent authority adopts in whole or in part, a recognized pressure vessel code. For example, the U.S. D.O.T. has adopted the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, with some additional limitations.
  • In the past, the tanks of such freight containers for fluid under pressure have been designed and constructed in accordance with a recognized pressure vessel code, which in the United States is Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code covering unfired pressure vessels. The entire disclosure of this Division is hereby incorporated by reference. When these tanks are used at normal environmental conditions of temperature and pressure to hold and transport fluids, the minimum thickness Ts, of the shell has been determined by the following equation:

  • T s=(P design *R i)/((E*S DIV.1)−(0.6*P design)), where
  • Pdesign=the internal design pressure for the tank; Ri=inside radius of tank's shell; SDIV.1=tensile strength factor relating to the maximum allowable stress; and, E=joint efficiency.
  • The joint efficiency, E, has a value of between 0 and 1, depending on the extent of radiography of the welded joints. When all welded joints are fully X-rayed, E has a value of 1 and essentially drops out of the equation. (In Division 2, all welded joints are required to be fully X-rayed, so this factor does not appear in the equation.)
  • These prior art freight containers have satisfied the competent authorities in various countries concerned with approval of freight containers, including the United States Department of Transportation which is commonly viewed in the industry as having the most stringent approval requirements. Again it is noteworthy that the ASME Boiler and Pressure Vessel Code is not a permanent, standard and is subject to change from time to time.
  • Tank containers made according to Division 1 of the ASME Boiler and Pressure Vessel Code, Section VIII, which have a capacity of about 4500 U.S.W.G. (U.S. water gallons) and a design pressure of between 335 and 400 psi, have had a tare weight of between about 17,000 lbs and 20,000 lbs. This means that when filled to capacity and placed on a truck for transport over a highway, the tank container can easily cause the truck to exceed the weight limits established for such roads. Perhaps the most restrictive country in this regard is Japan, where a tank container should not exceed 53,000 lbs. when loaded. As a result of such load limits, many tank containers can be filled only partially, depending on the density of the fluid being shipped, and this can make them inefficient.
  • BRIEF SUMMARY
  • A freight container for transporting a pressurized fluid, also termed a tank container, includes a tank (or shell) and a framework (or frame) surrounding the tank. The tank may incorporate various pipes and fittings which are designed to contain the cargo carried and to permit the tank to be filled and emptied. The tank may be formed from a cylindrical shell and two heads, one closing each end of the cylindrical shell. The dimensions of the shell include an outer radius Ro and an inner radius Ri, the difference there between defining the shell's thickness Ts.
  • The shell and heads of a tank container may be constructed of a material meeting the requirements of the approved pressure vessel code or approved by the competent authority. Typically in the United States the shell and heads of tank containers have been made from a high strength steel, for example SA612N, having an ultimate tensile strength (Su) of 81,000 psi.
  • The framework of an ISO freight container for pressurized fluids includes tank mountings, end structures and other load-bearing elements which may not be present for the purposes of containing the fluid. The framework functions to transmit static and dynamic forces arising out of the lifting, handling, securing, and transporting of the freight container as a whole. The framework may include eight corner fittings (four top corner fittings and four bottom corner fittings), rails, posts, and braces which form its base structure, its end structure and its side structure and may satisfy the requirements of ISO 1496-3 Sections 5.1-5.5. In the context of the present application, the term “ISO frame” means a framework which satisfies the framework requirements of these sections.
  • An ISO freight container for pressurized fluid may also include certain additional components depending on the intended use of the container. For example, if the pressurized fluid is temperature sensitive and/or if the transportation will occur in a temperature extreme environment (i.e., hot or cold ambient temperatures), the freight container may include sunscreens, linings, jacketing (cladding), insulations, air baffles, etc.
  • The embodiments of the present invention provide a novel ISO freight container having a tank design which results in a decrease in the freight container's tare weight. In a preferred embodiment, the present invention provides a freight container for transporting a fluid at a pressure P, typically between 100 psi and 500 psi. The freight container may include a tank and an ISO frame. The tank may be made with a shell and heads that have an ultimate tensile strength (Su) of substantially 81,000 psi. The shell of the cylindrical vessel may have a thickness Ts, given by:

  • T s=(P w *R i)/((S u /X a)−(X b *P w)), where:
  • Pw=the internal design pressure for the tank; Ri=inside radius of tank's shell; Xa=scalar factor relating to the maximum allowable stress; Xb=scalar factor relating to the internal design pressure; and, Su=ultimate tensile strength; and
  • where Xa is greater than 1.5. More specifically Xa may be in the range between 1.5 and 3.0. In one embodiment, Xa may be substantially 2.5. The scalar factor Xb may be in the range between 0 and 1. More specifically, Xb may be 0.5. However, it is contemplated in another embodiment that Xb may be between 1 and 5. It is noted here that the shell may be manufactured to the above thickness with a typical manufacturing tolerance of (plus or minus) +/−6%.
  • Freight containers according to the embodiments of the present invention have satisfied the requirements of The United States Department of Transportation. Thus, a freight container according to the embodiments of the present invention may be mounted on a transport vehicle (such as a truck or railroad car), before or after being filled with a pressurized fluid, and then transported to a remote location. Freight containers according to the embodiments of the present invention have a tare weight approximately 2000 lbs less than comparable prior art freight containers where both have a capacity of about 4500 U.S.W.G. and a design pressure of 335 to 365 psi.
  • The embodiments of the present invention provides these and other features hereinafter fully described and particularly pointed out in the claims, the following description and annexed drawings setting forth in detail an illustrative embodiment of the invention, this being indicative, however, of but one of the various ways in which the principles of the invention may be employed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of a freight container according to the present invention.
  • FIG. 2 is a top view of the freight container of FIG. 1.
  • FIG. 3 is an end view of the freight container of FIG. 1.
  • FIG. 4 is a schematic view of the freight container of FIG. 1 mounted on a transport vehicle.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A freight container 10 for transporting pressurized fluids having a service (or design) pressure Pw of at least 100 psi and not over 500 psi is shown in FIGS. 1-3. As is explained in more detail below, the freight container 10 has a novel tank design which results in a decrease in the container's tare weight when compared to prior art freight containers. While the aforementioned is described having a working pressure Pw between 100 psi and 500 psi, it is contemplated that the freight container of the embodiments of the subject invention may have a working pressure in the range between 50 psi and 750 psi.
  • The freight container 10 may includes a tank 12 and a frame 14. The tank 12 may include a shell 24, which may be generally cylindrical, and two heads 26 affixed on distal ends of the shell 24. The dimensions of the shell 24 may be defined by an outer radius Ro and an inner radius Ri, the difference there between resulting in the shell's thickness Ts.
  • The heads 26 may include an elliptical end portion 30 and a straight flange 32 extending from the outer circumference of the elliptical end portion 32 to the respective axial end of the cylindrical shell 24. The affixed heads 26 may be welded to the shell 24. Both the shell 24 and the heads 26 may be constructed of a high strength steel, for example SA612N, which for the thicknesses involved has an ultimate tensile strength Su of about 81,000 psi. However, other material may be used having a tensile strength in the more general range of 60,000 psi and 100,000 psi. More specifically materials having a tensile strength in the range between 70,000 psi and 90,000 psi may be utilized to construct the freight container 10.
  • The frame 14 may function to transmit static and dynamic forces arising out of the lifting, handling, securing, and transporting of the freight container as a whole. The frame 14 may include posts 52, rails 54, braces 56, skirt support members 58 and other load-bearing elements which are not present for the purposes of containing cargo. These components of the frame 14 are joined at eight corner fittings 60 to form its base structure, its end structure and its side structure. The frame 12 may fully or only partially satisfy the requirements of ISO 1496-3 Sections 5.1-5.5. Other frame structures which satisfy the requirements of ISO 1496-3 Sections 5.1-5.5 are possible with, and are contemplated by, the embodiments of the present invention.
  • The skirt support members 58 provide connections between the frame 14 and the tank 12. The skirt support members 58 are cylindrical extensions of the shell 24. The skirt support members are welded to the braces 62, shown in FIG. 3, which extends between the posts 52 and the rails 54 of each end of the freight container 10.
  • The freight container 10 may also include certain additional components, such as a sun screen 72 (FIGS. 1 and 2) if necessary in view of the pressurized fluid being temperature sensitive and/or if the transportation will occur in an environment of temperature extremes. The freight container 10 may also include internal baffles 74 to limit surging when the vehicle carrying the freight container stops or starts.
  • The tank 12 may be manufactured in accordance with Section VIII Division 2 of the ASME Boiler and Pressure Vessel Code covering unfired pressure vessels. The entire disclosure is this Division is hereby incorporated by reference. In one embodiment, the minimum thickness Ts of the shell 24 is substantially:

  • T s=(P w *R i)/((S u /X a)−(X b *P w)), where
  • Pw=the internal design pressure for the tank; Ri=inside radius of tank's shell; Xa=scalar factor relating to the maximum allowable stress; Xb=scalar factor relating to the internal design pressure; and, Su ultimate tensile strength; and
  • where Xa is generally in the range greater than 1.5. More specifically Xa may be in the range between 1.5 and 3.0. In one embodiment, Xa may be substantially 2.5. The scalar Xb may in the range from 0 to 1. In one embodiment, Xb may be substantially 0.5.
  • Calculations may be performed to determine the minimum thickness for the shell at three different design pressures (335, 400, and 455 psig) and an ultimate tensile strength of about 69,900 psi. The pressures selected represent three different common design pressures of freight containers for fluids under pressure, and the tensile strength represents typical container material. For comparative purposes, a value of 0.5 was assumed for the scalar factor Xb. The weight of the shell of the tank 12 is reduced by an amount greater than 25% and the weight of the heads by 6% from that of otherwise identical tanks made according to Division 1, Section VIII of the ASME Code.
  • One may now appreciate that the present invention provides a novel freight container with a tank design which results in a decrease in the freight container's tare weight. Although the invention has been shown with respect to certain preferred embodiment, equivalent and obvious alternations will occur to those skilled in the art upon the reading and understanding of this application. The present invention includes all such alterations and modifications and is limited only by the scope of the following claims.
  • The invention has been described herein with reference to the preferred embodiment. Obviously, modifications and alterations will occur to others upon a reading and understanding of this specification. It is intended to include all such modifications and alternations in so far as they come within the scope of the appended claims or the equivalence thereof.

Claims (20)

1. A tank for storing a pressurized substance at a design pressure Pw, comprising:
a shell having a wall thickness Ts, an inner radius Rinternal and tensile strength Su;
one or more head caps affixed to the shell; and,
wherein the wall thickness Ts is defined by the equation:

T s=(P w *R i)/((S u /X a)−(X b *P w))
wherein Xa is a scalar greater than 1.5.
2. The tank as defined in claim 1, wherein the scalar Xa is in the range between 1.5 and 3.
3. The tank as defined in claim 1, wherein the scalar Xa is substantially equal to 2.5.
4. The tank as defined in claim 1, wherein the design pressure Pdesign is in the range between 50 and 750 psi.
5. The tank as defined in claim 1, wherein the design pressure Pdesign is in the range between 150 and 550 psi.
6. The tank as defined in claim 1, wherein Xb is a scalar less than 1.
7. The tank as defined in claim 6, wherein Xb is substantially equal to 0.5.
8. The tank as defined in claim 1, wherein Su is in the range between 60,000 psi and 100,000 psi.
9. The tank as defined in claim 1, wherein Su is in the range between 80,000 psi and 90,000 psi.
10. The tank as defined in claim 1, further comprising:
one or more valves permitting the transfer of the associated pressurized substance to and from the tank.
11. A freight container for transporting a pressurized substance at a design pressure Pw to a remote location, the freight container comprising:
frame for transmitting static and dynamic forces arising from transportation of the freight container as a whole; and,
a tank received within the frame, wherein the tank includes:
a shell having a wall thickness Ts, an inner radius Rinternal and tensile strength Su;
one or more head caps affixed to the shell; and,
wherein the wall thickness Ts is defined by the equation:

T s=(P w *R i)/((S u /X a)−(X b *P w))
wherein Xa is a scalar greater than 1.5.
12. The freight container as defined in claim 11, wherein the scalar Xa is in the range between 1.5 and 3.
13. The freight container as defined in claim 11, wherein the scalar Xa is substantially equal to 2.5.
14. The freight container as defined in claim 11, wherein the design pressure Pdesign is in the range between 50 and 750.
15. The freight container as defined in claim 11, wherein the design pressure Pdesign is in the range between 150 and 550.
16. The freight container as defined in claim 11, wherein Xb is a scalar less than 1.
17. The freight container as defined in claim 16, wherein Xb is substantially equal to 0.5.
18. The freight container as defined in claim 11, wherein Su is in the range between 60,000 psi and 100,000 psi.
19. The freight container as defined in claim 11, wherein Su is in the range between 80,000 psi and 90,000 psi.
20. The freight container as defined in claim 11, further comprising:
one or more valves permitting the transfer of the associated pressurized substance to and from the freight container.
US11/870,792 2006-10-13 2007-10-11 Freight container Abandoned US20080087665A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/870,792 US20080087665A1 (en) 2006-10-13 2007-10-11 Freight container
PCT/US2007/081224 WO2008048889A2 (en) 2006-10-13 2007-10-12 Freight container
JP2009532600A JP2010506804A (en) 2006-10-13 2007-10-12 Cargo container
EP07853998A EP2074348A2 (en) 2006-10-13 2007-10-12 Freight container
RU2009117847/06A RU2009117847A (en) 2006-10-13 2007-10-12 FREIGHT CONTAINER
KR1020097006382A KR20090075671A (en) 2006-10-13 2007-10-12 Freight container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82941806P 2006-10-13 2006-10-13
US11/870,792 US20080087665A1 (en) 2006-10-13 2007-10-11 Freight container

Publications (1)

Publication Number Publication Date
US20080087665A1 true US20080087665A1 (en) 2008-04-17

Family

ID=39302230

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/870,792 Abandoned US20080087665A1 (en) 2006-10-13 2007-10-11 Freight container

Country Status (6)

Country Link
US (1) US20080087665A1 (en)
EP (1) EP2074348A2 (en)
JP (1) JP2010506804A (en)
KR (1) KR20090075671A (en)
RU (1) RU2009117847A (en)
WO (1) WO2008048889A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120247067A1 (en) * 2011-03-30 2012-10-04 Podd Stephen D Steam dispersion system for cargo containers
BE1019866A5 (en) * 2011-12-19 2013-01-08 Hool Nv DAMAGE SHOT SYSTEM FOR A CONTAINER SUITABLE FOR TRANSPORTATION OF A FLUIDUM.
EP2568209A1 (en) * 2011-06-23 2013-03-13 Ecsco Ag Tankcontainer for carriage of liquefied hydrocarbon gases, ammonia and petrochemical products
BE1020604A3 (en) * 2012-11-13 2014-01-07 Hool Nv Van DEVICE OF A HOST TANK CONTAINER.
US20140131975A1 (en) * 2012-11-14 2014-05-15 Fmc Corporation Trailer and Method for Transporting Peracetic Acid
CN107035964A (en) * 2016-02-04 2017-08-11 南通中集罐式储运设备制造有限公司 Tank container
USD819778S1 (en) 2014-05-08 2018-06-05 JWF Industries Vertical fluid storage tank
US10202236B2 (en) 2014-05-06 2019-02-12 JWF Industries Portable vertical fluid storage tank
US11091317B2 (en) 2014-05-06 2021-08-17 Jwf Industries, Inc. Vertical fluid storage tank with connecting ports

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260216B1 (en) 2022-08-26 2023-04-18 株式会社日新 Liquefied hydrogen transport system
JP7257011B1 (en) 2022-08-26 2023-04-13 株式会社日新 Liquefied hydrogen transport system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496073A (en) * 1983-02-24 1985-01-29 The Johns Hopkins University Cryogenic tank support system
US4588622A (en) * 1984-07-16 1986-05-13 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Fiber-reinforced pressure container
US5595319A (en) * 1991-06-26 1997-01-21 Nuclear Containers, Inc., A Tennesse Corporation Reusable container unit having spaced protective housings
US5777343A (en) * 1996-05-08 1998-07-07 The Columbiana Boiler Company Uranium hexafluoride carrier
US5960974A (en) * 1996-10-03 1999-10-05 Advance Engineered Products Ltd. Intermodal bulk container
US6012598A (en) * 1997-06-09 2000-01-11 The Columbiana Boiler Company Freight container
US6534776B2 (en) * 2001-04-23 2003-03-18 Columbiana Boiler Company Vessel for uranium hexafluoride transport

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724975A (en) * 1986-06-18 1988-02-16 Cbi Research Corporation High-pressure structure made of rings with peripheral weldments of reduced thickness
JPH06930B2 (en) * 1989-12-01 1994-01-05 株式会社新潟鐵工所 Manufacturing method of extra-thick, low-weldability high-strength steel with excellent resistance to hydrogen sulfide stress corrosion cracking and low temperature toughness
TW359736B (en) * 1997-06-20 1999-06-01 Exxon Production Research Co Systems for vehicular, land-based distribution of liquefied natural gas
JP2002193380A (en) * 2000-12-21 2002-07-10 Nippon Sharyo Seizo Kaisha Ltd Tank container
US6938654B2 (en) * 2002-03-19 2005-09-06 Air Products And Chemicals, Inc. Monitoring of ultra-high purity product storage tanks during transportation
JP2005059913A (en) * 2003-08-18 2005-03-10 Nippon Sharyo Seizo Kaisha Ltd Tank container
KR100657544B1 (en) * 2005-01-20 2006-12-13 인하대학교 산학협력단 Pressure Vessel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496073A (en) * 1983-02-24 1985-01-29 The Johns Hopkins University Cryogenic tank support system
US4588622A (en) * 1984-07-16 1986-05-13 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Fiber-reinforced pressure container
US5595319A (en) * 1991-06-26 1997-01-21 Nuclear Containers, Inc., A Tennesse Corporation Reusable container unit having spaced protective housings
US5777343A (en) * 1996-05-08 1998-07-07 The Columbiana Boiler Company Uranium hexafluoride carrier
US5960974A (en) * 1996-10-03 1999-10-05 Advance Engineered Products Ltd. Intermodal bulk container
US6012598A (en) * 1997-06-09 2000-01-11 The Columbiana Boiler Company Freight container
US6534776B2 (en) * 2001-04-23 2003-03-18 Columbiana Boiler Company Vessel for uranium hexafluoride transport

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120247067A1 (en) * 2011-03-30 2012-10-04 Podd Stephen D Steam dispersion system for cargo containers
EP2568209A1 (en) * 2011-06-23 2013-03-13 Ecsco Ag Tankcontainer for carriage of liquefied hydrocarbon gases, ammonia and petrochemical products
BE1019866A5 (en) * 2011-12-19 2013-01-08 Hool Nv DAMAGE SHOT SYSTEM FOR A CONTAINER SUITABLE FOR TRANSPORTATION OF A FLUIDUM.
US9863582B2 (en) 2012-11-13 2018-01-09 Van Hool Nv Gas tank container
BE1020604A3 (en) * 2012-11-13 2014-01-07 Hool Nv Van DEVICE OF A HOST TANK CONTAINER.
EP2730832A3 (en) * 2012-11-13 2018-02-28 VAN HOOL, naamloze vennootschap Tank mounted in a frame
US20140131975A1 (en) * 2012-11-14 2014-05-15 Fmc Corporation Trailer and Method for Transporting Peracetic Acid
US10086743B2 (en) * 2012-11-14 2018-10-02 Peroxychem Llc Trailer and method for transporting peracetic acid
US10625655B2 (en) 2012-11-14 2020-04-21 Peroxychem Llc Trailer and method for transporting peracetic acid
US10202236B2 (en) 2014-05-06 2019-02-12 JWF Industries Portable vertical fluid storage tank
US10494170B2 (en) 2014-05-06 2019-12-03 JWF Industries Portable vertical fluid storage tank
US11091317B2 (en) 2014-05-06 2021-08-17 Jwf Industries, Inc. Vertical fluid storage tank with connecting ports
USD819778S1 (en) 2014-05-08 2018-06-05 JWF Industries Vertical fluid storage tank
CN107035964A (en) * 2016-02-04 2017-08-11 南通中集罐式储运设备制造有限公司 Tank container

Also Published As

Publication number Publication date
JP2010506804A (en) 2010-03-04
WO2008048889A2 (en) 2008-04-24
RU2009117847A (en) 2010-11-20
WO2008048889A3 (en) 2008-06-05
EP2074348A2 (en) 2009-07-01
KR20090075671A (en) 2009-07-08

Similar Documents

Publication Publication Date Title
US20080087665A1 (en) Freight container
US6012598A (en) Freight container
US20080067178A1 (en) Portable tank and tank container for liquefied gas transportation
US8146761B2 (en) Intermodal container for transporting natural gas
US9376049B2 (en) Method of fabricating type 4 cylinders and arranging in transportation housings for transport of gaseous fluids
US4098426A (en) Double-walled transport container for flowable media
US3537416A (en) Shipping container and method for transporting hydrocarbon fluids and the like
KR20090125265A (en) Storing, transporting and handling compressed fluids
US20150122821A1 (en) Iso modal container
US9976701B2 (en) Tank
US11333301B2 (en) Pressure vessel for the storage of pressurized fluids and vehicle comprising such a pressure vessel
US20170106948A1 (en) Ship for gas storage and transport
US20210164616A1 (en) Support structure for cryogenic transport trailer
US9863582B2 (en) Gas tank container
WO2013083159A1 (en) Iso modal container and anchorage structure therefor
CN101553686A (en) Freight container
IE980503A1 (en) A tank container
AU2019231331A1 (en) Containment system for storing and transporting bulk liquid
KR100751895B1 (en) Pressure Vessel
US20240034552A1 (en) Interoperable prefabricated mobile structure
WO2023276890A1 (en) Carbon dioxide transportation container and carbon dioxide transportation method
WO2006020871A2 (en) Iso gas freight container
JPS5819440Y2 (en) double wall fluid transfer vessel
KR200396699Y1 (en) Pressure Vessel
RU93055240A (en) CAPACITY FOR FLUID ENVIRONMENT UNDER PRESSURE

Legal Events

Date Code Title Description
AS Assignment

Owner name: COLUMBIANA BOILER COMPANY, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RUMMEL, TREVOR M.;REEL/FRAME:019949/0694

Effective date: 20071010

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION