US20080083697A1 - Porous silicon composite structure as large filtration array - Google Patents
Porous silicon composite structure as large filtration array Download PDFInfo
- Publication number
- US20080083697A1 US20080083697A1 US11/872,693 US87269307A US2008083697A1 US 20080083697 A1 US20080083697 A1 US 20080083697A1 US 87269307 A US87269307 A US 87269307A US 2008083697 A1 US2008083697 A1 US 2008083697A1
- Authority
- US
- United States
- Prior art keywords
- membrane
- separation membrane
- providing
- silicon
- process recited
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002131 composite material Substances 0.000 title claims description 5
- 229910021426 porous silicon Inorganic materials 0.000 title abstract description 7
- 238000001914 filtration Methods 0.000 title description 13
- 239000012528 membrane Substances 0.000 claims abstract description 85
- 238000000926 separation method Methods 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 46
- 230000008569 process Effects 0.000 claims abstract description 29
- 229920000642 polymer Polymers 0.000 claims abstract description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 7
- 239000010457 zeolite Substances 0.000 claims abstract description 5
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 4
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052710 silicon Inorganic materials 0.000 claims description 20
- 239000010703 silicon Substances 0.000 claims description 20
- 238000000151 deposition Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 9
- 229920002120 photoresistant polymer Polymers 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 5
- 229920001169 thermoplastic Polymers 0.000 claims description 5
- -1 SiLK Polymers 0.000 claims description 4
- 239000012466 permeate Substances 0.000 claims description 4
- 229920002492 poly(sulfone) Polymers 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 239000004695 Polyether sulfone Substances 0.000 claims description 3
- 239000004642 Polyimide Substances 0.000 claims description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 238000001312 dry etching Methods 0.000 claims description 3
- 229920006393 polyether sulfone Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910010272 inorganic material Inorganic materials 0.000 claims 1
- 239000011147 inorganic material Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 20
- 238000004377 microelectronic Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 55
- 239000011148 porous material Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 235000012431 wafers Nutrition 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002091 nanocage Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 230000005328 spin glass Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000036119 Frailty Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000007824 aliphatic compounds Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 150000007516 brønsted-lowry acids Chemical class 0.000 description 1
- 150000007528 brønsted-lowry bases Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000013047 polymeric layer Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000036619 pore blockages Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011045 prefiltration Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0053—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/006—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
- B01D67/0062—Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0023—Organic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/0032—Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
- B01D67/0034—Organic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by micromachining techniques, e.g. using masking and etching steps, photolithography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0072—Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/0213—Silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
- B01D71/64—Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/08—Patterned membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
Definitions
- Microfilters are used in separation processes in which solids, liquids or gasses are separated from fluid media.
- the separation can be on a molecular level or on a coarser level.
- the present invention relates to the use of a composite microfilter comprising a separation layer and a porous support layer. This type of configuration is known as asymmetric. Aspects of the present invention are conveniently adapted to the art of filtration from processes well established in the art of semiconductor processing.
- a simple composite filter typically comprises a thin polymeric membrane separation layer undergirded by a support layer.
- the separation layer may include very small diameter pores or it may be dense, i.e. essentially opening-free, as in osmotic filtration by absorption and diffusion through a semipermeable membrane.
- the separation layer may be on the order of about 1-2 microns thick.
- a thin polymeric layer tends to favor increased permeability, but also tends to promote frailty of the filter.
- the support layer is often also a membrane, of the same or different composition as comprises the separation membrane, having a matrix of pores of larger diameter than those in the separation membrane, the pores extending therethrough to the supported separation membrane.
- a support layer is generally about 12 to about 125 microns thick, but is always much thicker than the separation layer.
- Pore size distribution in the separation layer promotes selectivity in a filtration system which does not rely on osmosis.
- Pore size in an asymmetric membrane can be fabricated to be as small as about 0.01 micron, or even less, and as great as about 100 microns, or even greater, as required by the materials to be separated. Pore distribution may comprise as little as about 3% of the membrane or as much as about 80%.
- Asymmetric membranes have been successful as commercial membrane filters, as they offer high selectivity through the separation layer and a high throughput of material through the supporting layer.
- Asymmetric membranes are found in a number of important fluid-fluid, gas-gas, solid-fluid, solid-gas and gas-fluid filtration processes, which may include ink filtration, semiconductor processing, air and water purification, water desalinization, environmental sampling, gas recovery from manufacturing processes, enrichment of specific gases in a mixture, pharmaceutical manufacture and manufacture of high purity chemicals, purification and testing in the food and beverage industries, blood filtration diagnostics and dialysis in the medical field, quick sample detection, and thin film chromatography.
- a membrane need not be comprised solely of an organic material. Under conditions unfavorable to polymer use, it may be comprised of a mineral such as the carbon-containing or ceramic membranes described in U.S. Pat. No. 5,190,654 to Bauer.
- a membrane may comprise a porous metal layer, such as the metal coated with sintered particles described in U.S. Pat. No. 5,492,623 to Ishibe for use at temperatures up to about 400° C. in the filtration of process gas used in manufacturing semiconductors.
- U.S. Pat. No. 6,605,140 B2 to Guiver et al. refers to a polyimide-silica membrane.
- a membrane may be more highly dimensional, fabricated into shapes in steps modeled on thin film etching, lithographic patterning and deposition practiced in the production of microelectronics, as described in U.S. Pat. No. 4,701,366 to Deckman et al.
- zeolite-like materials of controlled pore size between about 10 and about 10,000 Angstroms, but possibly as small as about 5 Angstroms, are fabricated as slots in shapes etched in a superlattice structure situated on a potentially removable substrate.
- layers that are described as candidates for the superlattice structure include silicon nitride, amorphous silicon, amorphous germanium and amorphous silicon dioxide, deposited sequentially by evaporation and sputter deposition.
- Permeability of a membrane may be improved by applying positive pressure on the separation side and/or by negative pressure on the support side.
- One approach to improving permeance of a porous alumina ceramic membrane is described in U.S. Pat. No. 5,782,959 to Yang et al. in which the alumina pores are provided with a catalytic palladium coating in order to facilitate hydrogen separation from gas streams.
- the Immobilized Liquid Membrane described in U.S. Pat. No. 5,100,555 to Matson, permeability is influenced by the depositing into the pores of the membrane by capillary action any of a number of identified solvents, some of which have been approved by the United States Food and Drug Administration for use in food and medical applications.
- a membrane may be or be rendered, hydrophobic, hydrophilic or oleophobic, depending on the intended application and the nature of the materials to be separated.
- Commercial organic asymmetric membranes are generally constructed from thermoplastics.
- problems associated with the natural hydrophobicity of thermoplastics severely limit the use of these materials in many water-based applications.
- the surface, and in some cases the interior, of these membranes must be rendered hydrophilic through the addition of a wetting agent, such as a dilute detergent solution, and/or by chemical modification of the membrane structure prior to use in aqueous separation. Issues frequently encountered in applying these modifications include lack of permanence of the modification, fouling of the filtered material by the impermanent wetting agent or chemical, reduction in porosity of the membrane, and the presence of unmodified areas in the porous structure.
- Some materials used to modify the surface charge of a membrane include polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose or mixtures thereof. As described in U.S. Pat. No. 5,032,149 to Hayes, some materials applied on particular membrane surfaces to improve selectivity either in gas-gas or liquid-liquid separations may include a fluorinated amphophilic compound, a Bronsted-Lowry acid or base or a dilute cationic, anionic or nonionic surfactant solution.
- U.S. Pat. No. 6,110,249 to Medcalf et al. is described a microporous e-polytetrafluoroethylene membrane for removing particles from gas, the membrane and a support layer being melt bonded in order to reduce pore blockage between the layers, thereby reducing the incidence of tearing and cracking attributed to partial pore nonalignment.
- Another approach includes sealing defects with a swelling agent or applying a thin overcoat of dense polymer.
- U.S. Pat. No. 4,775,474 to Chau et al. a glassy polymer, normally dense, is strengthened by crazing on its major surface intended for contact with the permeate stream subsequent to controlled crosslinking to a limited surface depth.
- Solutions to membrane problems may introduce limitations of their own, such as altering the permeation and selectivity, incomplete coverage or delamination of the plug or overcoat with use, and heat degradation.
- silicon a membrane material in the present invention, is naturally and permanently hydrophilic. Silicon is not adversely affected by drying, and its natural hydrophilicity does not elute.
- the present invention is directed to a membrane microfilter having a thin separation layer and a porous silicon substructure, and methods for making the same.
- the invention is set forth in several embodiments.
- the present invention offers several important advantages over commercial polymeric membranes. Silicon offers a wide range of materials and surface chemistries for compatibility with a wide range of filtration systems. The 1410° C. melting point of silicon implies that it is a refractory material suitable for higher temperature filtrations; it can also withstand low temperatures. Silicon is relatively inert to chemical attack, except by halogens, alkali solutions, HF and HNO 3 .
- Silicon wafers are easy to handle and do not easily tear, crack or suffer other insults during normal handling and use, which significantly reduces or eliminates down time due to repair and reduces the opportunity to introduce fouling during repair. Silicon wafers are not expensive, and are commercially available in 5 inch, 6 inch, 8 inch and 12 inch diameter sizes which can be combined to create large filtration arrays for optimal throughput. Silicon is a suitable support membrane for a polymer that is, or can be modified to be, positively photoactive, or a polymer or inorganic that can be dry etched through a mask.
- a support membrane comprised of other semiconductors such as silicon dioxide, silicon nitride or germanium shares many of the advantages of silicon, including the advantage of handling experience in the microelectronics industry.
- the number of steps in the fabrication of the membrane of the present invention are minimal and are less complex than those known in the art for fabricating membranes, such as phase inversion and phase separation processes.
- the process of the invention relies on steps commonly practiced using the extant semiconductor processes, clean room facilities and semiconductor tooling used in FEOL/BEOL (Front End of Line/Back End of Line) microelectronics technologies, wherein obtaining features in the submicron range is routine.
- Fouling is a major concern in the filter art, including fouling that originates in the filter itself.
- With the simpler, clean, processes and fewer, but more robust materials and process steps of the present invention cleanliness is favored as fabricated and as cleaned for reuse. Alternatively, the filter is cheap enough to discard after use. It can be implanted in the body.
- the present invention which incorporates a lithographic process, can provide a higher packing density than polymer-based structures fabricated by phase inversion or phase separation processes.
- FIG. 1 is a schematic representation of a porous separation layer disposed atop a porous silicon support membrane.
- FIG. 2 is a schematic representation of a dense polymer separation layer disposed atop a porous silicon support membrane.
- FIG. 3 is a schematic representation of a porous inorganic separation layer disposed atop a porous silicon support membrane.
- the filter membrane structure shown in FIG. 1 uses a thin separation layer 1 , which can be an inorganic, for example SiO 2 , or an organic material, that is lithographically patterned by a method known in the art to form a channel-pore structure.
- a channel-pore structure permits a size-selective process in which molecules larger than the diameter of the channel-pores are retained, while the smaller molecules elute.
- the thin separation layer 1 is deposited on a bulk crystalline silicon support membrane 2 .
- Spin glass such as siloxanes, silsesquioxanes, N-silsesquioxanes, and polycabosilanes also can be used to form a separation layer, as can polyimide, polysulfone, and polyethersulfone.
- the silicon material comprises a wafer thickness which, as manufactured, is between about 725 and about 750 ⁇ m not mm thick.
- Thin film separation layer 1 can be deposited by a number of methods known to those skilled in the art, such as chemical vapor deposition (CVD), plasma-enhanced CVD, or spin-on.
- the separation layer comprises a silicon oxide formed by a plasma-enhanced CVD process with a tetraethoxysilane (TEOS) source in a process known in the art.
- TEOS tetraethoxysilane
- a photoresist layer is deposited upon the oxide layer and cured, using conventional photoresist processing techniques.
- the photoresist layer is then patterned, preferably with an optical aligner and a photomask, exposed and developed to create openings in the photoresist layer. Then, using the resist layer as a masking layer, the pattern is transferred into the underlying oxide by a dry etching method using a LAM4520XL etch chamber and C 4 F 8 /CO/Ar/O 2 chemistry. Then, the resist is stripped from the oxide layer using conventional photoresist processing techniques, such as a solvent strip or an O 2 dry etch (ashing) method.
- the present invention is not limited to vias or through-holes but includes other shaped structures apparent to those skilled in the art such as lines, squares, and octagons.
- the backside of the wafer to be fabricated into a silicon support membrane is lithographically patterned using a similar method.
- a deep reactive ion etch is used to transfer the features laterally-defined by the masking layer into the bulk substrate.
- a suitable deep etch method is described in pending application for patent, Ser. No. 10/639,989, now U.S. Pat. No. 7,060,624, which is commonly assigned with the present invention, and is incorporated herein by reference.
- support membrane 2 comprises silicon, so that pattern transfer is accomplished using silicon etching by fluorine radicals generated in a plasma, as is known in the art.
- Such deep silicon structures can be accomplished using commercially-available, deep reactive ion etch (RIE) systems such as the A601E, available from Alcatel.
- RIE deep reactive ion etch
- the deep RIE dry etching method uses time-multiplexed deep etching (TMDE), a variation of sidewall passivation, wherein etching and deposition cycles are performed sequentially.
- TMDE time-multiplexed deep etching
- sidewalls formed within support membrane 2 are passivated by a polymer deposited from a plasma formed from the deposition precursor.
- both the polymer and the silicon are preferentially etched from the bottom of the membrane trench by ion bombardment.
- ion bombardment By switching between etching and deposition cycles, deep anisotropic structures having vertical sidewalls can be realized with very high etching rates in silicon membranes.
- a buried or backside oxide or metal layer may be used as a stopping layer for the deep Si etch.
- the resulting structure shown in FIG. 1 can be used in filtration applications in which macromolecules, such as proteins, are separated from fluids, such as plasma, water, milk or the like, based on size, by the porous oxide layer.
- a preferred embodiment uses a very thin oxide layer, less than about 1 ⁇ m thick, a feature size selective to the size of the permeate, and a high pattern density.
- the exact pattern density, or loading, which can be established by mask selection, is generally between about 0.5% and about 50%. However, it is possible to increase the loading above 50%, with the tradeoff of a decrease in etch rate.
- the average diameter of deep vias in the underlying silicon support structure can be made larger than those in the separation layer, so that as the silicon substructure 2 acts as mechanical support for the oxide skin layer 1 it also offers little to no resistance to mass transfer.
- FIGS. 2-3 use a similar method to prepare the underlying silicon support for the separation layer.
- the separation layers 3 and 4 need not be lithograghically-patterned to produce a porous structure.
- the structure shown in FIG. 2 uses a thin organic film, such as a polymer, as separation layer 3 to separate molecules based on chemical affinity or permeability, supported by porous silicon support structure 2 .
- the thin film can be deposited by any of a number of methods known to those skilled in the art, such as chemical vapor deposition, plasma-enhanced chemical vapor deposition, and spin-on.
- small molecules such as N 2 and O 2 can be separated based on their respective rates of permeation through the nonporous skin layer.
- molecules that have a chemical affinity for the particular organic thin film can adsorb and diffuse through the separation layer.
- SilKTM Trademark of Dow Chemical Company
- a crosslinked aromatic thermoset which is highly permeable to short chain aliphatic compounds and can separate organic contaminants from waste water, is used.
- Spin glass such as siloxanes, silsesquioxanes, N-silsesquioxanes, and polycabosilanes also can be used to form a separation layer, as can polyimide, polysulfone, and polyethersulfone.
- the separation layer should be very thin, i.e. under one micron.
- the structure in FIG. 3 uses for the separation layer 4 a thin layer, about 1 micron, of molecular-cage compounds known as zeolites to separate small molecules based on size.
- the thin film can be deposited by spin-on. Small molecules are trapped within the molecular-cage structure, permitting larger molecules to pass. If necessary, pretreatment of the surface underlying the zeolite layer can be used to improve adhesion.
- membrane structure an indefinite number of individual membrane structures may be fabricated simultaneously across a standard diameter silicon wafer in fabricating a large filtration array microfilter for optimal throughput.
- the membrane structure can also be used as a prefilter, or in a chain of filters, each unit of the chain providing an increased level of purity.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
- This application is a divisional of application Ser. No. 10/697,077, filed on Oct. 30, 2003, which is incorporated herein in its entirety.
- Microfilters are used in separation processes in which solids, liquids or gasses are separated from fluid media. The separation can be on a molecular level or on a coarser level. The present invention relates to the use of a composite microfilter comprising a separation layer and a porous support layer. This type of configuration is known as asymmetric. Aspects of the present invention are conveniently adapted to the art of filtration from processes well established in the art of semiconductor processing.
- A simple composite filter typically comprises a thin polymeric membrane separation layer undergirded by a support layer. The separation layer may include very small diameter pores or it may be dense, i.e. essentially opening-free, as in osmotic filtration by absorption and diffusion through a semipermeable membrane. The separation layer may be on the order of about 1-2 microns thick. A thin polymeric layer tends to favor increased permeability, but also tends to promote frailty of the filter. The support layer is often also a membrane, of the same or different composition as comprises the separation membrane, having a matrix of pores of larger diameter than those in the separation membrane, the pores extending therethrough to the supported separation membrane. A support layer is generally about 12 to about 125 microns thick, but is always much thicker than the separation layer.
- There may be more than two membrane layers in a particular filter structure and as many types of material, as described in U.S. Pat. No. 6,596,112 B1 to Ditter et al., in which melt bonding of stacked materials, at a temperature as low as under 200° F. to above 396° F. is used to build a laminated multilayer structure. There also may be additional components within a filter chamber, such as that described in U.S. Pat. No. 6,302,932 B1 to Unger et al, in which a rigid frame of chemical and moisture-resistant metal or polymer can be added to reinforce the support of the separation layer.
- As a fluid medium passes through the separation chamber, one or more of the materials within the fluid are separated by molecular or particle size or by chemical affinity for the separation layer, while the porous support membrane, having larger diameter pores than in the separation layer, offers little or no resistance to mass transfer and adds to the mechanical strength of the much thinner separation layer. Pore size distribution in the separation layer promotes selectivity in a filtration system which does not rely on osmosis. Pore size in an asymmetric membrane can be fabricated to be as small as about 0.01 micron, or even less, and as great as about 100 microns, or even greater, as required by the materials to be separated. Pore distribution may comprise as little as about 3% of the membrane or as much as about 80%.
- Asymmetric membranes have been successful as commercial membrane filters, as they offer high selectivity through the separation layer and a high throughput of material through the supporting layer. Asymmetric membranes are found in a number of important fluid-fluid, gas-gas, solid-fluid, solid-gas and gas-fluid filtration processes, which may include ink filtration, semiconductor processing, air and water purification, water desalinization, environmental sampling, gas recovery from manufacturing processes, enrichment of specific gases in a mixture, pharmaceutical manufacture and manufacture of high purity chemicals, purification and testing in the food and beverage industries, blood filtration diagnostics and dialysis in the medical field, quick sample detection, and thin film chromatography.
- The selection of materials for inclusion in the filter is highly solute- and solvent-dependent. Although commercial asymmetric membranes are generally fabricated from thermoplastics, such as polysulfone, because they are thermally robust and somewhat chemically resistant when compared to other polymers, a membrane need not be comprised solely of an organic material. Under conditions unfavorable to polymer use, it may be comprised of a mineral such as the carbon-containing or ceramic membranes described in U.S. Pat. No. 5,190,654 to Bauer. A membrane may comprise a porous metal layer, such as the metal coated with sintered particles described in U.S. Pat. No. 5,492,623 to Ishibe for use at temperatures up to about 400° C. in the filtration of process gas used in manufacturing semiconductors. U.S. Pat. No. 6,605,140 B2 to Guiver et al. refers to a polyimide-silica membrane.
- While the present invention is configured in essentially smooth layers, a membrane may be more highly dimensional, fabricated into shapes in steps modeled on thin film etching, lithographic patterning and deposition practiced in the production of microelectronics, as described in U.S. Pat. No. 4,701,366 to Deckman et al. As described in the Deckman et al. patent, zeolite-like materials of controlled pore size between about 10 and about 10,000 Angstroms, but possibly as small as about 5 Angstroms, are fabricated as slots in shapes etched in a superlattice structure situated on a potentially removable substrate. In addition to zeolite, layers that are described as candidates for the superlattice structure include silicon nitride, amorphous silicon, amorphous germanium and amorphous silicon dioxide, deposited sequentially by evaporation and sputter deposition.
- Permeability of a membrane may be improved by applying positive pressure on the separation side and/or by negative pressure on the support side. One approach to improving permeance of a porous alumina ceramic membrane is described in U.S. Pat. No. 5,782,959 to Yang et al. in which the alumina pores are provided with a catalytic palladium coating in order to facilitate hydrogen separation from gas streams. In another type of support membrane, the Immobilized Liquid Membrane, described in U.S. Pat. No. 5,100,555 to Matson, permeability is influenced by the depositing into the pores of the membrane by capillary action any of a number of identified solvents, some of which have been approved by the United States Food and Drug Administration for use in food and medical applications.
- A membrane may be or be rendered, hydrophobic, hydrophilic or oleophobic, depending on the intended application and the nature of the materials to be separated. Commercial organic asymmetric membranes are generally constructed from thermoplastics. However, problems associated with the natural hydrophobicity of thermoplastics severely limit the use of these materials in many water-based applications. As a consequence, the surface, and in some cases the interior, of these membranes must be rendered hydrophilic through the addition of a wetting agent, such as a dilute detergent solution, and/or by chemical modification of the membrane structure prior to use in aqueous separation. Issues frequently encountered in applying these modifications include lack of permanence of the modification, fouling of the filtered material by the impermanent wetting agent or chemical, reduction in porosity of the membrane, and the presence of unmodified areas in the porous structure.
- Some materials used to modify the surface charge of a membrane include polyvinylpyrrolidone, polyethylene glycol, polyvinyl alcohol, carboxymethyl cellulose or mixtures thereof. As described in U.S. Pat. No. 5,032,149 to Hayes, some materials applied on particular membrane surfaces to improve selectivity either in gas-gas or liquid-liquid separations may include a fluorinated amphophilic compound, a Bronsted-Lowry acid or base or a dilute cationic, anionic or nonionic surfactant solution.
- Other issues that plague long-term use of treated membranes include increased risk of embrittlement, shrinkage, and pinhole defects. The membrane industry incurs an inordinate expense in developing alternate membrane materials and broadening the types of membrane surface chemistries. In one example, U.S. Pat. No. 6,110,249 to Medcalf et al., is described a microporous e-polytetrafluoroethylene membrane for removing particles from gas, the membrane and a support layer being melt bonded in order to reduce pore blockage between the layers, thereby reducing the incidence of tearing and cracking attributed to partial pore nonalignment. Another approach includes sealing defects with a swelling agent or applying a thin overcoat of dense polymer. In U.S. Pat. No. 4,775,474 to Chau et al. a glassy polymer, normally dense, is strengthened by crazing on its major surface intended for contact with the permeate stream subsequent to controlled crosslinking to a limited surface depth.
- Solutions to membrane problems may introduce limitations of their own, such as altering the permeation and selectivity, incomplete coverage or delamination of the plug or overcoat with use, and heat degradation. Notably, silicon, a membrane material in the present invention, is naturally and permanently hydrophilic. Silicon is not adversely affected by drying, and its natural hydrophilicity does not elute.
- The art, both prior and current, describes a number of complex multistep processes for fabrication of filters for particular separations and in particular applications. U.S. Pat. No. 6,565,782 B1 and U.S. Pat. No. 6,045,899 to Wang et al. review in the art the formation of asymmetric, hydrophilic microfiltration membranes fabricated using a typical sol-gel phase inversion process, involving a number of steps to obtain the gel, which is the polymer matrix. The Wang patents also review the fabrication of polymeric membranes by casting from homogenous solutions of polymer, citing that the resulting membranes are not usually as asymmetric as those cast from an inversion process and may even have reverse asymmetry. U.S. Pat. No. 6,486,240 B1 to Won et al. describes issues involved in the fabrication of membranes by gelation, and describes an alternative phase separation gelation. Another set of processes for fabricating polymeric asymmetric membranes, for separation of certain liquids and of certain gases, is found in U.S. Pat. No. 4,873,037 to Chau et al. The Chau et al. patent describes several modes of fabrication and is also useful for its description of other fabrication methods for asymmetric membranes in the art, as well as listing a number of uses.
- Despite the work reported in the field of membrane development, the need remains for the unique combination of materials and processes set forth in the several embodiments of the present invention, in which robust versatile membranes are provided relatively simply and cleanly, using steps adapted from the microelectronics art.
- The present invention is directed to a membrane microfilter having a thin separation layer and a porous silicon substructure, and methods for making the same. The invention is set forth in several embodiments. The present invention offers several important advantages over commercial polymeric membranes. Silicon offers a wide range of materials and surface chemistries for compatibility with a wide range of filtration systems. The 1410° C. melting point of silicon implies that it is a refractory material suitable for higher temperature filtrations; it can also withstand low temperatures. Silicon is relatively inert to chemical attack, except by halogens, alkali solutions, HF and HNO3. Silicon wafers are easy to handle and do not easily tear, crack or suffer other insults during normal handling and use, which significantly reduces or eliminates down time due to repair and reduces the opportunity to introduce fouling during repair. Silicon wafers are not expensive, and are commercially available in 5 inch, 6 inch, 8 inch and 12 inch diameter sizes which can be combined to create large filtration arrays for optimal throughput. Silicon is a suitable support membrane for a polymer that is, or can be modified to be, positively photoactive, or a polymer or inorganic that can be dry etched through a mask.
- A support membrane comprised of other semiconductors such as silicon dioxide, silicon nitride or germanium shares many of the advantages of silicon, including the advantage of handling experience in the microelectronics industry.
- The number of steps in the fabrication of the membrane of the present invention are minimal and are less complex than those known in the art for fabricating membranes, such as phase inversion and phase separation processes. The process of the invention relies on steps commonly practiced using the extant semiconductor processes, clean room facilities and semiconductor tooling used in FEOL/BEOL (Front End of Line/Back End of Line) microelectronics technologies, wherein obtaining features in the submicron range is routine. Fouling is a major concern in the filter art, including fouling that originates in the filter itself. With the simpler, clean, processes and fewer, but more robust materials and process steps of the present invention, cleanliness is favored as fabricated and as cleaned for reuse. Alternatively, the filter is cheap enough to discard after use. It can be implanted in the body. The present invention, which incorporates a lithographic process, can provide a higher packing density than polymer-based structures fabricated by phase inversion or phase separation processes.
-
FIG. 1 is a schematic representation of a porous separation layer disposed atop a porous silicon support membrane. -
FIG. 2 is a schematic representation of a dense polymer separation layer disposed atop a porous silicon support membrane. -
FIG. 3 is a schematic representation of a porous inorganic separation layer disposed atop a porous silicon support membrane. - The filter membrane structure shown in
FIG. 1 uses athin separation layer 1, which can be an inorganic, for example SiO2, or an organic material, that is lithographically patterned by a method known in the art to form a channel-pore structure. A channel-pore structure permits a size-selective process in which molecules larger than the diameter of the channel-pores are retained, while the smaller molecules elute. Thethin separation layer 1 is deposited on a bulk crystalline silicon support membrane 2. Spin glass, such as siloxanes, silsesquioxanes, N-silsesquioxanes, and polycabosilanes also can be used to form a separation layer, as can polyimide, polysulfone, and polyethersulfone. - The silicon material comprises a wafer thickness which, as manufactured, is between about 725 and about 750 μm not mm thick. Thin
film separation layer 1 can be deposited by a number of methods known to those skilled in the art, such as chemical vapor deposition (CVD), plasma-enhanced CVD, or spin-on. In an exemplary embodiment, the separation layer comprises a silicon oxide formed by a plasma-enhanced CVD process with a tetraethoxysilane (TEOS) source in a process known in the art. Next, a photoresist layer is deposited upon the oxide layer and cured, using conventional photoresist processing techniques. The photoresist layer is then patterned, preferably with an optical aligner and a photomask, exposed and developed to create openings in the photoresist layer. Then, using the resist layer as a masking layer, the pattern is transferred into the underlying oxide by a dry etching method using a LAM4520XL etch chamber and C4F8/CO/Ar/O2 chemistry. Then, the resist is stripped from the oxide layer using conventional photoresist processing techniques, such as a solvent strip or an O2 dry etch (ashing) method. Notably, the present invention is not limited to vias or through-holes but includes other shaped structures apparent to those skilled in the art such as lines, squares, and octagons. - The backside of the wafer to be fabricated into a silicon support membrane is lithographically patterned using a similar method. A deep reactive ion etch is used to transfer the features laterally-defined by the masking layer into the bulk substrate. A suitable deep etch method is described in pending application for patent, Ser. No. 10/639,989, now U.S. Pat. No. 7,060,624, which is commonly assigned with the present invention, and is incorporated herein by reference.
- In the presently preferred embodiment, support membrane 2 comprises silicon, so that pattern transfer is accomplished using silicon etching by fluorine radicals generated in a plasma, as is known in the art. Such deep silicon structures can be accomplished using commercially-available, deep reactive ion etch (RIE) systems such as the A601E, available from Alcatel. The deep RIE dry etching method uses time-multiplexed deep etching (TMDE), a variation of sidewall passivation, wherein etching and deposition cycles are performed sequentially. During the deposition step, sidewalls formed within support membrane 2 are passivated by a polymer deposited from a plasma formed from the deposition precursor. During the subsequent etching cycle, both the polymer and the silicon are preferentially etched from the bottom of the membrane trench by ion bombardment. By switching between etching and deposition cycles, deep anisotropic structures having vertical sidewalls can be realized with very high etching rates in silicon membranes. A buried or backside oxide or metal layer may be used as a stopping layer for the deep Si etch.
- The resulting structure shown in
FIG. 1 can be used in filtration applications in which macromolecules, such as proteins, are separated from fluids, such as plasma, water, milk or the like, based on size, by the porous oxide layer. To assure a high selectivity and throughput, a preferred embodiment uses a very thin oxide layer, less than about 1 μm thick, a feature size selective to the size of the permeate, and a high pattern density. The exact pattern density, or loading, which can be established by mask selection, is generally between about 0.5% and about 50%. However, it is possible to increase the loading above 50%, with the tradeoff of a decrease in etch rate. The average diameter of deep vias in the underlying silicon support structure can be made larger than those in the separation layer, so that as the silicon substructure 2 acts as mechanical support for theoxide skin layer 1 it also offers little to no resistance to mass transfer. - The embodiments shown in
FIGS. 2-3 use a similar method to prepare the underlying silicon support for the separation layer. However, in the embodiments shown inFIGS. 2-3 , the separation layers 3 and 4, respectively, need not be lithograghically-patterned to produce a porous structure. The structure shown inFIG. 2 uses a thin organic film, such as a polymer, asseparation layer 3 to separate molecules based on chemical affinity or permeability, supported by porous silicon support structure 2. In this embodiment, the thin film can be deposited by any of a number of methods known to those skilled in the art, such as chemical vapor deposition, plasma-enhanced chemical vapor deposition, and spin-on. Hence, small molecules such as N2 and O2 can be separated based on their respective rates of permeation through the nonporous skin layer. Alternatively, molecules that have a chemical affinity for the particular organic thin film can adsorb and diffuse through the separation layer. In a preferred embodiment, a material highly permeable to certain organic molecules, trade named SilK™ (Trademark of Dow Chemical Company), a crosslinked aromatic thermoset which is highly permeable to short chain aliphatic compounds and can separate organic contaminants from waste water, is used. Spin glass, such as siloxanes, silsesquioxanes, N-silsesquioxanes, and polycabosilanes also can be used to form a separation layer, as can polyimide, polysulfone, and polyethersulfone. To assure high throughput, the separation layer should be very thin, i.e. under one micron. - The structure in
FIG. 3 uses for the separation layer 4 a thin layer, about 1 micron, of molecular-cage compounds known as zeolites to separate small molecules based on size. The thin film can be deposited by spin-on. Small molecules are trapped within the molecular-cage structure, permitting larger molecules to pass. If necessary, pretreatment of the surface underlying the zeolite layer can be used to improve adhesion. - Although the figures show only one membrane structure, an indefinite number of individual membrane structures may be fabricated simultaneously across a standard diameter silicon wafer in fabricating a large filtration array microfilter for optimal throughput. The membrane structure can also be used as a prefilter, or in a chain of filters, each unit of the chain providing an increased level of purity.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/872,693 US20080083697A1 (en) | 2003-10-30 | 2007-10-15 | Porous silicon composite structure as large filtration array |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/697,077 US7282148B2 (en) | 2003-10-30 | 2003-10-30 | Porous silicon composite structure as large filtration array |
US11/872,693 US20080083697A1 (en) | 2003-10-30 | 2007-10-15 | Porous silicon composite structure as large filtration array |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/697,077 Division US7282148B2 (en) | 2003-10-30 | 2003-10-30 | Porous silicon composite structure as large filtration array |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080083697A1 true US20080083697A1 (en) | 2008-04-10 |
Family
ID=34550270
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/697,077 Expired - Fee Related US7282148B2 (en) | 2003-10-30 | 2003-10-30 | Porous silicon composite structure as large filtration array |
US11/872,693 Abandoned US20080083697A1 (en) | 2003-10-30 | 2007-10-15 | Porous silicon composite structure as large filtration array |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/697,077 Expired - Fee Related US7282148B2 (en) | 2003-10-30 | 2003-10-30 | Porous silicon composite structure as large filtration array |
Country Status (1)
Country | Link |
---|---|
US (2) | US7282148B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110042299A1 (en) * | 2009-08-20 | 2011-02-24 | General Electric Company | Composite membrane assemblies and methods of making and using the same |
US20110042301A1 (en) * | 2009-08-20 | 2011-02-24 | General Electric Company | Inorganic membrane devices and methods of making and using the same |
US20130167494A1 (en) * | 2011-12-28 | 2013-07-04 | Hitachi, Ltd. | Filter and Method of the Same |
CN104377327A (en) * | 2014-09-28 | 2015-02-25 | 中山国安火炬科技发展有限公司 | Production method of novel lithium ion battery diaphragm with variable inclined holes |
CN104399376A (en) * | 2014-09-28 | 2015-03-11 | 中山国安火炬科技发展有限公司 | Polyimides microporous membrane and production method |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10353894B4 (en) * | 2003-07-11 | 2007-02-15 | Nft Nanofiltertechnik Gmbh | Filter element and method for its production |
JP5076502B2 (en) * | 2004-10-20 | 2012-11-21 | 大日本印刷株式会社 | Hydrogen purification filter and method for producing the same |
DE602005002108T2 (en) * | 2004-10-29 | 2008-05-15 | Brother Kogyo K.K., Nagoya | Method for producing a filter |
NL1028759C2 (en) * | 2005-04-13 | 2006-10-16 | Fluxxion B V | Emulsification with microsieve. |
CA2606440A1 (en) * | 2005-04-29 | 2006-11-09 | University Of Rochester | Ultrathin porous nanoscale membranes, methods of making, and uses thereof |
WO2006119252A2 (en) * | 2005-04-29 | 2006-11-09 | University Of Rochester | Ultrathin nanoscale membranes, methods of making, and uses thereof |
US8119394B2 (en) * | 2006-03-14 | 2012-02-21 | University Of Rochester | Cell culture devices having ultrathin porous membrane and uses thereof |
US20090105096A1 (en) * | 2006-04-20 | 2009-04-23 | Hiroshi Uematsu | Filter-Equipped Microplate |
DE102006041396A1 (en) * | 2006-09-04 | 2008-03-06 | Robert Bosch Gmbh | Microsieve for filtering particles in microfluidic applications and its production |
EP2253372A4 (en) * | 2008-03-11 | 2011-07-13 | Toray Industries | Composite separation membrane |
JP5042110B2 (en) * | 2008-04-22 | 2012-10-03 | サルナス、ペトロニス | Production of nanopores |
EP2243746B1 (en) * | 2009-04-22 | 2015-04-01 | Lg Electronics Inc. | Water purifying filter and method for fabricating the same |
WO2011139233A1 (en) * | 2010-05-04 | 2011-11-10 | Agency For Science, Technology And Research | A microsieve for cells and particles filtration |
US8895104B2 (en) | 2011-07-01 | 2014-11-25 | International Business Machines Corporation | Thin film composite membranes embedded with molecular cage compounds |
US10040018B2 (en) | 2013-01-09 | 2018-08-07 | Imagine Tf, Llc | Fluid filters and methods of use |
CN105683687B (en) | 2013-08-09 | 2018-09-21 | 开利公司 | purification system for water chilling unit system |
US10584906B2 (en) | 2013-08-09 | 2020-03-10 | Carrier Corporation | Refrigeration purge system |
US9861920B1 (en) | 2015-05-01 | 2018-01-09 | Imagine Tf, Llc | Three dimensional nanometer filters and methods of use |
US10730047B2 (en) | 2014-06-24 | 2020-08-04 | Imagine Tf, Llc | Micro-channel fluid filters and methods of use |
JP6359895B2 (en) * | 2014-06-27 | 2018-07-18 | 東京応化工業株式会社 | Membrane filter |
JP6460658B2 (en) * | 2014-06-27 | 2019-01-30 | 東京応化工業株式会社 | Membrane filter |
US10124275B2 (en) | 2014-09-05 | 2018-11-13 | Imagine Tf, Llc | Microstructure separation filters |
US10758849B2 (en) | 2015-02-18 | 2020-09-01 | Imagine Tf, Llc | Three dimensional filter devices and apparatuses |
KR101759093B1 (en) * | 2015-07-01 | 2017-07-18 | 서울대학교산학협력단 | Nanopore structure, ionic device using nanopore structure and method of manufacturing nanomembrane structure |
US10118842B2 (en) | 2015-07-09 | 2018-11-06 | Imagine Tf, Llc | Deionizing fluid filter devices and methods of use |
US10479046B2 (en) | 2015-08-19 | 2019-11-19 | Imagine Tf, Llc | Absorbent microstructure arrays and methods of use |
US10137665B2 (en) | 2016-01-14 | 2018-11-27 | Tokyo Ohka Kogyo Co., Ltd. | Method for manufacturing laminate, and laminate |
CN112334720A (en) | 2018-12-03 | 2021-02-05 | 开利公司 | Enhanced refrigeration purification system |
WO2020117580A1 (en) | 2018-12-03 | 2020-06-11 | Carrier Corporation | Membrane purge system |
CN112334721A (en) | 2018-12-03 | 2021-02-05 | 开利公司 | Enhanced refrigeration purge system |
WO2020117582A1 (en) | 2018-12-03 | 2020-06-11 | Carrier Corporation | Enhanced refrigeration purge system |
CN114768552B (en) * | 2022-04-11 | 2024-01-12 | 重庆工程职业技术学院 | Preparation method of silicon nano-pore oil-water separation film and oil-water separator |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4872888A (en) * | 1987-02-13 | 1989-10-10 | Kernforschungszentrum Karlsruhe Gmbh | Microporous membrane filter and method of producing same |
US5753014A (en) * | 1993-11-12 | 1998-05-19 | Van Rijn; Cornelis Johannes Maria | Membrane filter and a method of manufacturing the same as well as a membrane |
US20010019029A1 (en) * | 1997-11-07 | 2001-09-06 | California Institute Of Technology | Micromachined membrane particle filter using parylene reinforcement |
US20050037608A1 (en) * | 2003-08-13 | 2005-02-17 | Ibm | Deep filled vias |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4775474A (en) * | 1984-12-21 | 1988-10-04 | The Dow Chemical Company | Membranes containing microporous structure |
US4701366A (en) * | 1985-07-01 | 1987-10-20 | Exxon Research And Engineering Company | Micro-porous superlattice material having zeolite-like properties |
US4786482A (en) * | 1986-02-03 | 1988-11-22 | Aluminum Company Of America | Bayer process for producing aluminum hydroxide having improved whiteness |
US5271858A (en) * | 1986-03-24 | 1993-12-21 | Ensci Inc. | Field dependent fluids containing electrically conductive tin oxide coated materials |
GB2207994B (en) * | 1987-08-11 | 1990-12-12 | Creda Mfg Ltd | Improvements relating to electrical storage heaters |
US4873037A (en) * | 1988-10-05 | 1989-10-10 | The Dow Chemical Company | Method for preparing an asymmetric semi-permeable membrane |
US4941893B1 (en) * | 1989-09-19 | 1996-07-30 | Advanced Silicon Materials Inc | Gas separation by semi-permeable membranes |
US5032149A (en) * | 1989-10-10 | 1991-07-16 | E. I. Du Pont De Nemours And Company | Surfactant treatment of polyaramide gas separation membranes |
US5100555A (en) * | 1990-06-15 | 1992-03-31 | Matson Stephen L | Method and system for removing radon from radon containing water |
FR2665087B1 (en) * | 1990-07-24 | 1992-10-09 | Lorraine Carbone | PROCESS FOR THE MANUFACTURE OF AN ULTRA-THIN AND ASYMMETRIC MINERAL MEMBRANE. |
US5114581A (en) * | 1991-01-10 | 1992-05-19 | Ceramem Corporation | Back-flushable filtration device and method of forming and using same |
WO1993006912A1 (en) * | 1991-10-07 | 1993-04-15 | Nippon Seisen Co., Ltd. | Laminated filter medium, method of making said medium, and filter using said medium |
US5194154A (en) * | 1991-12-05 | 1993-03-16 | The Dow Chemical Company | Structure for filter or heat exchanger, composed of a fused single crystal acicular ceramic |
US5716526A (en) * | 1994-01-14 | 1998-02-10 | The Liposome Company, Inc. | Method of separating materials from liposomes or lipid complexes |
US5763360A (en) * | 1994-02-02 | 1998-06-09 | The Regents Of The University Of California | Quantitative organic vapor-particle sampler |
US5464798A (en) * | 1994-02-24 | 1995-11-07 | Jia; Meng-Dong | Ceramic-zeolite composite membranes and use for separation of vapor/gas mixtures |
DE4418931C2 (en) * | 1994-05-31 | 1997-06-19 | Degussa | Process for separating catalyst-free working solution from the hydrogenation cycle of the anthraquinone process for the production of hydrogen peroxide |
KR0158431B1 (en) * | 1995-06-23 | 1998-11-16 | 윤덕용 | Method for preparing inorganic material membrane for hydrogen separation membrane |
US5772735A (en) * | 1995-11-02 | 1998-06-30 | University Of New Mexico | Supported inorganic membranes |
US5789024A (en) * | 1996-05-15 | 1998-08-04 | New Jersey Institute Of Technology | Subnanoscale composite, N2-permselective membrane for the separation of volatile organic compounds |
US6045899A (en) * | 1996-12-12 | 2000-04-04 | Usf Filtration & Separations Group, Inc. | Highly assymetric, hydrophilic, microfiltration membranes having large pore diameters |
PL338562A1 (en) * | 1998-06-03 | 2000-11-06 | Creavis Ges F Technologie Und | Ion-conductive permeable composite material, method of obtaining same and application thereof |
KR100291632B1 (en) * | 1998-10-28 | 2001-08-07 | 박호군 | Method for Producing an Asymmetric Support Membrane Through the Physical Gelation and the Resultant Membranes |
US6302932B1 (en) * | 1998-11-12 | 2001-10-16 | Honeywell International, Inc. | Combined water coalescer odor removal filter for use in water separation systems |
US6110249A (en) * | 1999-03-26 | 2000-08-29 | Bha Technologies, Inc. | Filter element with membrane and bicomponent substrate |
US6316684B1 (en) * | 1999-09-01 | 2001-11-13 | Membrane Technology And Research, Inc. | Filled superglassy membrane |
US20010050250A1 (en) * | 1999-09-14 | 2001-12-13 | Olli Hognabba | Corrosion-resistant filter element |
JP4211168B2 (en) * | 1999-12-21 | 2009-01-21 | 東レ株式会社 | Dialyzer manufacturing method and sterilization method |
US6605140B2 (en) * | 2000-08-09 | 2003-08-12 | National Research Council Of Canada | Composite gas separation membranes |
US6598112B1 (en) * | 2000-09-11 | 2003-07-22 | Agilent Technologies, Inc. | Method and apparatus for executing a program using primary, secondary and tertiary memories |
US6596112B1 (en) | 2000-10-20 | 2003-07-22 | Pall Corporation | Laminates of asymmetric membranes |
US6706402B2 (en) * | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
JP2003051137A (en) * | 2001-08-07 | 2003-02-21 | Hitachi Ltd | Information recording medium |
US6854602B2 (en) * | 2002-06-04 | 2005-02-15 | Conocophillips Company | Hydrogen-selective silica-based membrane |
US6930034B2 (en) * | 2002-12-27 | 2005-08-16 | International Business Machines Corporation | Robust ultra-low k interconnect structures using bridge-then-metallization fabrication sequence |
US7169885B2 (en) * | 2003-03-13 | 2007-01-30 | National University Of Singapore | Polyimide membranes |
US7071539B2 (en) * | 2003-07-28 | 2006-07-04 | International Business Machines Corporation | Chemical planarization performance for copper/low-k interconnect structures |
US7153335B2 (en) * | 2003-10-10 | 2006-12-26 | Dupont Air Products Nanomaterials Llc | Tunable composition and method for chemical-mechanical planarization with aspartic acid/tolyltriazole |
-
2003
- 2003-10-30 US US10/697,077 patent/US7282148B2/en not_active Expired - Fee Related
-
2007
- 2007-10-15 US US11/872,693 patent/US20080083697A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4872888A (en) * | 1987-02-13 | 1989-10-10 | Kernforschungszentrum Karlsruhe Gmbh | Microporous membrane filter and method of producing same |
US5753014A (en) * | 1993-11-12 | 1998-05-19 | Van Rijn; Cornelis Johannes Maria | Membrane filter and a method of manufacturing the same as well as a membrane |
US20010019029A1 (en) * | 1997-11-07 | 2001-09-06 | California Institute Of Technology | Micromachined membrane particle filter using parylene reinforcement |
US20050037608A1 (en) * | 2003-08-13 | 2005-02-17 | Ibm | Deep filled vias |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110042299A1 (en) * | 2009-08-20 | 2011-02-24 | General Electric Company | Composite membrane assemblies and methods of making and using the same |
US20110042301A1 (en) * | 2009-08-20 | 2011-02-24 | General Electric Company | Inorganic membrane devices and methods of making and using the same |
US8168101B2 (en) | 2009-08-20 | 2012-05-01 | General Electric Company | Inorganic membrane devices and methods of making and using the same |
US20130167494A1 (en) * | 2011-12-28 | 2013-07-04 | Hitachi, Ltd. | Filter and Method of the Same |
US9005342B2 (en) * | 2011-12-28 | 2015-04-14 | Hitachi, Ltd. | Filter and method of the same |
CN104377327A (en) * | 2014-09-28 | 2015-02-25 | 中山国安火炬科技发展有限公司 | Production method of novel lithium ion battery diaphragm with variable inclined holes |
CN104399376A (en) * | 2014-09-28 | 2015-03-11 | 中山国安火炬科技发展有限公司 | Polyimides microporous membrane and production method |
Also Published As
Publication number | Publication date |
---|---|
US7282148B2 (en) | 2007-10-16 |
US20050092676A1 (en) | 2005-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7282148B2 (en) | Porous silicon composite structure as large filtration array | |
US7547393B2 (en) | Membrane structure and method of making | |
US10391219B2 (en) | Nanoporous silicon nitride membranes, and methods for making and using such membranes | |
US20100147763A1 (en) | Modified porous membranes, methods of membrane pore modification, and methods of use thereof | |
EP2089143B1 (en) | Ceramic filter and regenerating method thereof | |
US7784621B2 (en) | Ultrafiltration membrane and process | |
CN210495957U (en) | Coated filter membrane, filter cartridge and filter | |
JP6060074B2 (en) | Cleaning method of ceramic filter | |
KR20160027196A (en) | Multiple channel membranes | |
JP2003093853A (en) | Structuralized membrane | |
JP6678238B2 (en) | Method of making a fluid cavity by transmembrane etching through a porous membrane and structures produced thereby and uses of such structures | |
Tu et al. | Filtration of sub-100 nm particles using a bulk-micromachined, direct-bonded silicon filter | |
US20120132590A1 (en) | Method for fabrication of elastomeric asymmetric membranes from hydrophobic polymers | |
WO2012056668A1 (en) | Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module | |
WO2020073036A1 (en) | Method of filtering liquids or gases for electronics production | |
CA2367547A1 (en) | Porous membrane | |
CN110944736A (en) | Method of cleaning a membrane including drying the membrane | |
JP4451039B2 (en) | Virus removal device and membrane | |
Khulbe et al. | Synthetic membranes for membrane processes | |
WO2022195967A1 (en) | Separation membrane and method for manufacturing separation membrane | |
JP3582986B2 (en) | Ceramic composite member for degassing and degassing method using the same | |
JPS62117603A (en) | Dynamic membrane and ultrafiltration method | |
JP2002102640A (en) | Gas separation module and gas separation apparatus | |
JPH11216303A (en) | Ceramic composite member for degassing and degassing method | |
WO2012067049A1 (en) | Filtration filter and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001 Effective date: 20150629 |
|
AS | Assignment |
Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001 Effective date: 20150910 |